ZIF-8 Derived Graphene-Based Nitrogen-Doped Porous Carbon Sheets as Highly Efficient and Durable Oxygen Reduction Electrocatalysts

Nitrogen‐doped carbon (NC) materials have been proposed as next‐generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich‐lik...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 53; no. 51; pp. 14235 - 14239
Main Authors Zhong, Hai-xia, Wang, Jun, Zhang, Yu-wei, Xu, Wei-lin, Xing, Wei, Xu, Dan, Zhang, Yue-fei, Zhang, Xin-bo
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 15.12.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nitrogen‐doped carbon (NC) materials have been proposed as next‐generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich‐like zeolitic imidazolate framework (ZIF) derived graphene‐based nitrogen‐doped porous carbon sheets (GNPCSs) obtained by in situ growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open‐circuit voltage and power density are obtained in direct methanol fuel cells. Nitrogen‐doped: A new oxygen reduction reaction electrocatalyst was obtained from ZIF‐derived porous carbon and graphene. The catalyst exhibits high activity, superior tolerance to methanol, and good stability in comparison to commercial Pt/C catalyst.
AbstractList Nitrogen‐doped carbon (NC) materials have been proposed as next‐generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich‐like zeolitic imidazolate framework (ZIF) derived graphene‐based nitrogen‐doped porous carbon sheets (GNPCSs) obtained by in situ growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open‐circuit voltage and power density are obtained in direct methanol fuel cells.
Nitrogen‐doped carbon (NC) materials have been proposed as next‐generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich‐like zeolitic imidazolate framework (ZIF) derived graphene‐based nitrogen‐doped porous carbon sheets (GNPCSs) obtained by in situ growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open‐circuit voltage and power density are obtained in direct methanol fuel cells. Nitrogen‐doped: A new oxygen reduction reaction electrocatalyst was obtained from ZIF‐derived porous carbon and graphene. The catalyst exhibits high activity, superior tolerance to methanol, and good stability in comparison to commercial Pt/C catalyst.
Nitrogen-doped carbon (NC) materials have been proposed as next-generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich-like zeolitic imidazolate framework (ZIF) derived graphene-based nitrogen-doped porous carbon sheets (GNPCSs) obtained by insitu growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open-circuit voltage and power density are obtained in direct methanol fuel cells.
Nitrogen-doped carbon (NC) materials have been proposed as next-generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich-like zeolitic imidazolate framework (ZIF) derived graphene-based nitrogen-doped porous carbon sheets (GNPCSs) obtained by in situ growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open-circuit voltage and power density are obtained in direct methanol fuel cells.Nitrogen-doped carbon (NC) materials have been proposed as next-generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich-like zeolitic imidazolate framework (ZIF) derived graphene-based nitrogen-doped porous carbon sheets (GNPCSs) obtained by in situ growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open-circuit voltage and power density are obtained in direct methanol fuel cells.
Nitrogen-doped carbon (NC) materials have been proposed as next-generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich-like zeolitic imidazolate framework (ZIF) derived graphene-based nitrogen-doped porous carbon sheets (GNPCSs) obtained by insitu growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open-circuit voltage and power density are obtained in direct methanol fuel cells. Nitrogen-doped: A new oxygen reduction reaction electrocatalyst was obtained from ZIF-derived porous carbon and graphene. The catalyst exhibits high activity, superior tolerance to methanol, and good stability in comparison to commercial Pt/C catalyst.
Author Zhang, Yu-wei
Xu, Wei-lin
Zhang, Yue-fei
Xing, Wei
Xu, Dan
Zhang, Xin-bo
Wang, Jun
Zhong, Hai-xia
Author_xml – sequence: 1
  givenname: Hai-xia
  surname: Zhong
  fullname: Zhong, Hai-xia
  organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (P. R. China) energy.ciac.jl.cn
– sequence: 2
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
  organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (P. R. China) energy.ciac.jl.cn
– sequence: 3
  givenname: Yu-wei
  surname: Zhang
  fullname: Zhang, Yu-wei
  organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022 (China)
– sequence: 4
  givenname: Wei-lin
  surname: Xu
  fullname: Xu, Wei-lin
  organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022 (China)
– sequence: 5
  givenname: Wei
  surname: Xing
  fullname: Xing, Wei
  organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022 (China)
– sequence: 6
  givenname: Dan
  surname: Xu
  fullname: Xu, Dan
  organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (P. R. China) energy.ciac.jl.cn
– sequence: 7
  givenname: Yue-fei
  surname: Zhang
  fullname: Zhang, Yue-fei
  organization: Beijing University of Technology, Beijing, 100124 (P. R. China)
– sequence: 8
  givenname: Xin-bo
  surname: Zhang
  fullname: Zhang, Xin-bo
  email: xbzhang@ciac.ac.cn
  organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (P. R. China) energy.ciac.jl.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25331053$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAURiNURB-wZYkssWGT4Tq281iWmenMSGWKyqMSG8txrjsumWSwE2i2_HIcTVuhSqgr29I5n3zvdxwdNG2DUfSawoQCJO9VY3GSAOWQFwU8i46oSGjMsowdhDtnLM5yQQ-jY-9vAp_nkL6IDhPBGAXBjqI_31dncU5m6OwvrMjCqd0GG4w_KB-ea9u59hqbeNbuwvNT69rek6lyZduQzxvEzhPlydJeb-qBzI2x2mLTEdVUZNY7VdZILm6HkEAusep1Z4M3r1GHWK06VQ--8y-j50bVHl_dnSfR17P5l-kyPr9YrKan57EWPINYmKpEnaS54cKE7xcaEm0EqCxRCLkqizIVxpTIaUUFrXIDiGkOlSmEoFCwk-jdPnfn2p89-k5urddY16rBMJakGYSVQpHSp9GUCQAejIC-fYTetL1rwiAjxXnGOIyBb-6ovtxiJXfObpUb5H0RAeB7QLvWe4dGatupcV-dU7aWFOTYtxz7lg99B23ySLtP_q9Q7IXftsbhCVqerlfzf91471rf4e2Dq9wPmWYsE_JqvZDf-MflJStm8or9BTMoy9g
CODEN ACIEAY
CitedBy_id crossref_primary_10_1002_slct_201601259
crossref_primary_10_1016_j_apsusc_2017_09_013
crossref_primary_10_1039_D0MA00433B
crossref_primary_10_1002_gch2_201700086
crossref_primary_10_1021_accountsmr_3c00197
crossref_primary_10_1021_acscatal_7b02101
crossref_primary_10_1002_anie_202004213
crossref_primary_10_1016_j_ijhydene_2022_08_003
crossref_primary_10_1002_adma_201803339
crossref_primary_10_1016_j_jallcom_2016_09_247
crossref_primary_10_1016_j_apcata_2022_118712
crossref_primary_10_1021_acsami_6b05560
crossref_primary_10_1021_acsanm_9b01935
crossref_primary_10_1002_smll_202300621
crossref_primary_10_1039_C7TA00253J
crossref_primary_10_1002_ange_201710997
crossref_primary_10_1002_slct_201800860
crossref_primary_10_1021_acscatal_9b03971
crossref_primary_10_1039_D0CC03253K
crossref_primary_10_1016_j_ccr_2022_214967
crossref_primary_10_3390_nano11092418
crossref_primary_10_1039_C8SC05450A
crossref_primary_10_1039_C6CY01031H
crossref_primary_10_1039_C6RA27834E
crossref_primary_10_1002_celc_201500473
crossref_primary_10_1039_D0TA11493F
crossref_primary_10_1038_s41467_020_18820_y
crossref_primary_10_1021_jacs_8b08682
crossref_primary_10_1021_acssuschemeng_9b07255
crossref_primary_10_1016_j_est_2024_111231
crossref_primary_10_1016_j_colsurfb_2022_112420
crossref_primary_10_4028_www_scientific_net_KEM_797_48
crossref_primary_10_1016_j_compositesb_2021_109256
crossref_primary_10_1016_j_cattod_2018_03_020
crossref_primary_10_1016_j_ijhydene_2022_09_073
crossref_primary_10_1002_aenm_201701416
crossref_primary_10_1002_fuce_202000175
crossref_primary_10_1016_j_carbon_2018_04_019
crossref_primary_10_1039_C5NR02497H
crossref_primary_10_1039_C6CE00733C
crossref_primary_10_1039_C7TA00299H
crossref_primary_10_1007_s10934_021_01125_w
crossref_primary_10_1016_j_micromeso_2017_11_052
crossref_primary_10_1016_j_apsusc_2019_07_181
crossref_primary_10_1002_adfm_201906081
crossref_primary_10_1016_j_hybadv_2024_100150
crossref_primary_10_1002_smll_202401103
crossref_primary_10_1002_ange_201814711
crossref_primary_10_1016_j_chemosphere_2019_05_173
crossref_primary_10_3390_molecules28237751
crossref_primary_10_1002_adfm_202409274
crossref_primary_10_1039_D0NJ01373K
crossref_primary_10_1007_s40843_021_1732_1
crossref_primary_10_1016_j_ijhydene_2019_01_155
crossref_primary_10_1021_acsami_6b15106
crossref_primary_10_1002_adma_201803588
crossref_primary_10_1039_C7TA00276A
crossref_primary_10_1039_C6TA04684C
crossref_primary_10_1002_adma_201802011
crossref_primary_10_1002_smll_201704461
crossref_primary_10_1016_j_jcis_2021_02_008
crossref_primary_10_1021_acsami_9b11988
crossref_primary_10_1039_C9CY02364J
crossref_primary_10_1016_j_rser_2024_114520
crossref_primary_10_1039_D3TA03934J
crossref_primary_10_1039_C8CC06918B
crossref_primary_10_1016_j_ijhydene_2022_09_090
crossref_primary_10_3390_batteries10020047
crossref_primary_10_1039_C5CP06970J
crossref_primary_10_1039_C7TA01346A
crossref_primary_10_1016_j_jssc_2019_04_014
crossref_primary_10_1002_smtd_202200207
crossref_primary_10_1002_advs_201802362
crossref_primary_10_1007_s12039_022_02067_9
crossref_primary_10_1109_MNANO_2017_2710380
crossref_primary_10_1002_admt_201700224
crossref_primary_10_1039_D0CY01130D
crossref_primary_10_1016_j_jcis_2017_09_002
crossref_primary_10_1016_j_jcis_2021_03_070
crossref_primary_10_1039_C6NR02622B
crossref_primary_10_1007_s00604_018_3032_y
crossref_primary_10_1039_C6CS00426A
crossref_primary_10_1007_s11771_023_5227_6
crossref_primary_10_1016_j_jcis_2021_12_046
crossref_primary_10_1039_C9TA07845B
crossref_primary_10_1002_anie_201814605
crossref_primary_10_1016_j_diamond_2020_107999
crossref_primary_10_1021_acssuschemeng_8b03678
crossref_primary_10_1016_j_jallcom_2018_06_339
crossref_primary_10_1002_aenm_201701620
crossref_primary_10_1016_j_memsci_2020_117934
crossref_primary_10_1039_C8MH00859K
crossref_primary_10_1016_j_nanoen_2017_01_045
crossref_primary_10_1021_acscatal_7b02165
crossref_primary_10_1039_C5CS00670H
crossref_primary_10_1002_celc_201700955
crossref_primary_10_1002_smll_201907141
crossref_primary_10_1016_j_applthermaleng_2021_117366
crossref_primary_10_1016_j_electacta_2017_08_114
crossref_primary_10_1016_j_snb_2016_12_085
crossref_primary_10_1016_j_jcis_2023_05_028
crossref_primary_10_2139_ssrn_4170562
crossref_primary_10_1002_aenm_201700518
crossref_primary_10_1021_acsami_6b15154
crossref_primary_10_1007_s11581_020_03473_0
crossref_primary_10_1016_j_jelechem_2019_113478
crossref_primary_10_1016_j_ensm_2020_01_016
crossref_primary_10_1016_j_renene_2024_120613
crossref_primary_10_1016_j_mattod_2018_10_016
crossref_primary_10_1002_cssc_201801480
crossref_primary_10_1002_cssc_202001293
crossref_primary_10_1021_acs_langmuir_7b03083
crossref_primary_10_1007_s10853_016_0344_3
crossref_primary_10_1039_C5EE02474A
crossref_primary_10_3390_chemengineering3010016
crossref_primary_10_1016_j_electacta_2019_135445
crossref_primary_10_1039_C8EE01472H
crossref_primary_10_1002_aenm_201801257
crossref_primary_10_1039_C8TA05295F
crossref_primary_10_1016_j_jallcom_2024_174103
crossref_primary_10_3390_catal8080301
crossref_primary_10_1039_C9ME00007K
crossref_primary_10_1016_j_jece_2022_108351
crossref_primary_10_1002_chem_201806417
crossref_primary_10_1016_j_jpowsour_2019_05_084
crossref_primary_10_1039_C6TA02858F
crossref_primary_10_1002_adfm_201606190
crossref_primary_10_1039_D0NR04458J
crossref_primary_10_1002_slct_202103181
crossref_primary_10_1016_j_mtsust_2023_100371
crossref_primary_10_1038_ncomms15341
crossref_primary_10_1016_j_cej_2018_05_190
crossref_primary_10_1016_j_nanoen_2017_11_018
crossref_primary_10_1002_slct_201901709
crossref_primary_10_1007_s11356_022_22430_0
crossref_primary_10_1007_s00604_019_4103_4
crossref_primary_10_1016_j_carbon_2024_119816
crossref_primary_10_1016_j_chroma_2023_463929
crossref_primary_10_1016_j_talanta_2017_01_078
crossref_primary_10_1021_acs_jpcc_6b12868
crossref_primary_10_1016_j_apcatb_2022_122136
crossref_primary_10_1039_C7DT01694H
crossref_primary_10_1016_j_flatc_2019_100109
crossref_primary_10_1021_acsami_5b10642
crossref_primary_10_1039_C8TA09839E
crossref_primary_10_1002_slct_201902827
crossref_primary_10_1039_C7MH00801E
crossref_primary_10_1007_s42114_020_00199_5
crossref_primary_10_1002_anie_201811573
crossref_primary_10_1002_anie_201507692
crossref_primary_10_1098_rsos_171824
crossref_primary_10_3390_nano12091593
crossref_primary_10_1002_ente_201900964
crossref_primary_10_1021_acsami_8b09851
crossref_primary_10_1016_j_carbon_2015_08_015
crossref_primary_10_1002_aenm_202001005
crossref_primary_10_1021_acsanm_9b00654
crossref_primary_10_1016_j_carbon_2018_11_055
crossref_primary_10_1016_j_apsusc_2018_09_168
crossref_primary_10_1016_j_watres_2018_03_007
crossref_primary_10_1021_acscatal_7b01649
crossref_primary_10_1016_j_apcatb_2019_118534
crossref_primary_10_1021_acsami_8b20619
crossref_primary_10_1021_acs_inorgchem_5b00544
crossref_primary_10_1002_celc_201901875
crossref_primary_10_1002_cctc_201800890
crossref_primary_10_1016_j_ijhydene_2018_06_156
crossref_primary_10_1002_adma_201505086
crossref_primary_10_1007_s11426_018_9441_4
crossref_primary_10_1021_acscatal_6b02573
crossref_primary_10_1007_s10450_024_00561_9
crossref_primary_10_1021_acssuschemeng_4c01329
crossref_primary_10_1016_j_cej_2018_02_111
crossref_primary_10_1016_j_apcatb_2019_117888
crossref_primary_10_1016_j_apcatb_2019_117886
crossref_primary_10_1016_j_carbon_2018_10_066
crossref_primary_10_1021_acssuschemeng_8b02170
crossref_primary_10_1016_j_cej_2020_127863
crossref_primary_10_1016_j_ijhydene_2017_07_076
crossref_primary_10_1002_adfm_201705356
crossref_primary_10_1016_j_carbon_2020_06_006
crossref_primary_10_1007_s41918_021_00113_7
crossref_primary_10_1016_j_jallcom_2018_11_368
crossref_primary_10_1016_j_micromeso_2016_08_022
crossref_primary_10_1016_j_jcis_2018_10_007
crossref_primary_10_1016_j_cej_2024_155822
crossref_primary_10_1039_C6TA02150F
crossref_primary_10_1002_aenm_202003410
crossref_primary_10_1007_s12598_023_02380_3
crossref_primary_10_1016_j_jechem_2021_10_011
crossref_primary_10_1016_j_est_2021_102496
crossref_primary_10_1007_s12274_019_2310_2
crossref_primary_10_1016_j_aca_2023_341675
crossref_primary_10_1016_j_carbon_2018_02_003
crossref_primary_10_1021_acs_accounts_6b00317
crossref_primary_10_1002_advs_201600060
crossref_primary_10_1016_j_ensm_2017_03_007
crossref_primary_10_1039_D1NR02255E
crossref_primary_10_1039_C7TA06658A
crossref_primary_10_1002_aenm_201700363
crossref_primary_10_1021_acsaem_9b00023
crossref_primary_10_1038_srep43366
crossref_primary_10_1016_j_cej_2020_126312
crossref_primary_10_1016_j_nanoen_2016_05_029
crossref_primary_10_1039_C9TA02304F
crossref_primary_10_1016_j_carbon_2018_10_052
crossref_primary_10_1016_j_cej_2020_127649
crossref_primary_10_1016_j_ccr_2022_214741
crossref_primary_10_1016_j_apsusc_2022_156281
crossref_primary_10_1039_D3CC01167D
crossref_primary_10_3390_nano11061540
crossref_primary_10_1002_adma_201505045
crossref_primary_10_1002_anie_201604802
crossref_primary_10_1016_j_tifs_2024_104449
crossref_primary_10_1021_acsami_7b19332
crossref_primary_10_1088_1361_6528_ab6475
crossref_primary_10_1016_j_carbon_2018_04_061
crossref_primary_10_1039_D4QI01433B
crossref_primary_10_1002_adma_201604898
crossref_primary_10_1107_S205698901701461X
crossref_primary_10_1039_C6TA08892A
crossref_primary_10_3389_fenrg_2021_673923
crossref_primary_10_1088_2053_1583_ab4439
crossref_primary_10_1016_j_carbon_2021_07_017
crossref_primary_10_1016_j_ijhydene_2017_11_084
crossref_primary_10_1021_acsami_8b11867
crossref_primary_10_1021_acsanm_8b00748
crossref_primary_10_1016_j_carbon_2019_11_064
crossref_primary_10_1002_chem_201903822
crossref_primary_10_1016_j_jcat_2018_03_021
crossref_primary_10_1016_j_mtener_2020_100574
crossref_primary_10_1002_anie_201509213
crossref_primary_10_1007_s40820_021_00669_5
crossref_primary_10_1016_j_mseb_2019_02_012
crossref_primary_10_1016_j_nanoen_2016_11_033
crossref_primary_10_1039_C9TA02338K
crossref_primary_10_1039_C9CC04869C
crossref_primary_10_1021_acsami_8b06272
crossref_primary_10_1002_cey2_484
crossref_primary_10_1021_acsami_7b16567
crossref_primary_10_1039_C5SC04668H
crossref_primary_10_1016_j_est_2022_104827
crossref_primary_10_1016_j_ijhydene_2016_07_160
crossref_primary_10_1016_j_jhazmat_2020_122331
crossref_primary_10_1002_cjoc_201700752
crossref_primary_10_1021_acsanm_3c03751
crossref_primary_10_1039_D0QM01078B
crossref_primary_10_1002_cssc_201600583
crossref_primary_10_1021_acsami_8b11406
crossref_primary_10_1021_acs_iecr_3c04383
crossref_primary_10_1039_C5SC04425A
crossref_primary_10_1021_acsami_8b12739
crossref_primary_10_1016_j_nanoen_2017_05_016
crossref_primary_10_1021_acsami_8b21661
crossref_primary_10_1021_acsami_8b00504
crossref_primary_10_1007_s10853_017_1951_3
crossref_primary_10_1021_acsami_6b12501
crossref_primary_10_1016_j_cej_2021_131323
crossref_primary_10_1039_C6NJ01896C
crossref_primary_10_1039_D1TA01407B
crossref_primary_10_1039_D4NR02168A
crossref_primary_10_1002_asia_201900727
crossref_primary_10_1002_ppsc_201700006
crossref_primary_10_1016_j_apsusc_2017_04_113
crossref_primary_10_1016_j_mtchem_2022_101210
crossref_primary_10_1088_2053_1591_ac9fae
crossref_primary_10_1021_acsnano_7b09175
crossref_primary_10_1149_2_1231606jes
crossref_primary_10_1002_cnma_202200521
crossref_primary_10_1002_ppsc_201800266
crossref_primary_10_1039_C8NR03527J
crossref_primary_10_1039_C9RA08867A
crossref_primary_10_1002_ange_202215985
crossref_primary_10_1016_j_ccr_2019_05_006
crossref_primary_10_1039_C8CY00483H
crossref_primary_10_1016_j_cclet_2019_12_009
crossref_primary_10_1039_C8TA02385A
crossref_primary_10_1021_acssuschemeng_7b01398
crossref_primary_10_1002_celc_201700299
crossref_primary_10_1021_acssuschemeng_7b02244
crossref_primary_10_1016_j_cej_2019_03_283
crossref_primary_10_1016_j_cej_2016_12_127
crossref_primary_10_1021_acssuschemeng_9b00264
crossref_primary_10_1021_acs_energyfuels_1c00658
crossref_primary_10_1016_j_cej_2021_132660
crossref_primary_10_1021_acs_langmuir_2c02240
crossref_primary_10_1016_j_energy_2021_122972
crossref_primary_10_1002_chem_201701389
crossref_primary_10_1016_j_ijhydene_2019_06_151
crossref_primary_10_1021_acscatal_1c04360
crossref_primary_10_1002_smtd_202100024
crossref_primary_10_1039_D1RA08817C
crossref_primary_10_1039_C8TA00099A
crossref_primary_10_1016_j_apsusc_2022_152529
crossref_primary_10_1002_celc_201600755
crossref_primary_10_1016_j_ccr_2017_02_010
crossref_primary_10_1002_chem_201904938
crossref_primary_10_1039_D3RA08052H
crossref_primary_10_1039_C6TA05829A
crossref_primary_10_1016_j_carbon_2016_12_016
crossref_primary_10_1016_j_colsurfa_2024_134766
crossref_primary_10_1016_j_snb_2020_129371
crossref_primary_10_1002_smll_202004142
crossref_primary_10_1039_C6NJ02679F
crossref_primary_10_1039_C7RA04774F
crossref_primary_10_3390_ma14102597
crossref_primary_10_1002_aenm_201800612
crossref_primary_10_1016_j_jcis_2018_01_020
crossref_primary_10_1016_j_apcatb_2019_118570
crossref_primary_10_1021_acsami_6b02522
crossref_primary_10_12677_JAPC_2021_103004
crossref_primary_10_1039_C6RA13646J
crossref_primary_10_1002_chem_201702694
crossref_primary_10_1039_C8RA05102J
crossref_primary_10_1002_asia_201901616
crossref_primary_10_1002_er_6834
crossref_primary_10_1016_j_cej_2021_129048
crossref_primary_10_1039_C9CS00806C
crossref_primary_10_1002_smll_201503542
crossref_primary_10_1016_j_ijhydene_2021_08_220
crossref_primary_10_1016_j_apcatb_2016_10_084
crossref_primary_10_1016_j_micromeso_2021_111455
crossref_primary_10_1039_C8TA08476A
crossref_primary_10_1002_ange_201507735
crossref_primary_10_1039_C6RA01623E
crossref_primary_10_1016_j_carbon_2024_119125
crossref_primary_10_1039_C6TA08363C
crossref_primary_10_1039_C8EN01196F
crossref_primary_10_1016_j_jpowsour_2020_227841
crossref_primary_10_1021_acsanm_4c03542
crossref_primary_10_1039_C6TA05516H
crossref_primary_10_1002_adma_201505855
crossref_primary_10_1039_D1CE01015H
crossref_primary_10_1016_j_jphotochem_2019_03_004
crossref_primary_10_1021_acsomega_3c07706
crossref_primary_10_1002_cssc_201901436
crossref_primary_10_1016_j_jallcom_2019_152684
crossref_primary_10_1039_C5RA26386G
crossref_primary_10_1016_j_jhazmat_2020_123498
crossref_primary_10_1016_j_envres_2022_114542
crossref_primary_10_1038_srep28847
crossref_primary_10_1016_j_snb_2015_06_157
crossref_primary_10_1007_s12274_017_1519_1
crossref_primary_10_1002_aesr_202100033
crossref_primary_10_1021_acsaem_9b01861
crossref_primary_10_1016_j_apsusc_2025_162859
crossref_primary_10_1002_eem2_12484
crossref_primary_10_1016_j_jssc_2019_03_036
crossref_primary_10_1002_cctc_201601284
crossref_primary_10_1016_j_microc_2021_107067
crossref_primary_10_1039_C5CE00828J
crossref_primary_10_1039_C6TA02420C
crossref_primary_10_1016_j_ijhydene_2017_01_187
crossref_primary_10_1002_ppsc_201700074
crossref_primary_10_1016_j_jpowsour_2022_231685
crossref_primary_10_1149_2_0171816jes
crossref_primary_10_1002_aenm_201800013
crossref_primary_10_1002_chem_201903888
crossref_primary_10_1021_acsami_8b22351
crossref_primary_10_1016_j_ccr_2019_02_017
crossref_primary_10_1016_j_jssc_2019_03_028
crossref_primary_10_1016_j_nanoen_2016_09_040
crossref_primary_10_1039_C9DT04009A
crossref_primary_10_1111_jace_19447
crossref_primary_10_1021_acsami_7b16936
crossref_primary_10_1002_advs_201901480
crossref_primary_10_1016_j_apmt_2019_05_013
crossref_primary_10_1016_j_jallcom_2020_154435
crossref_primary_10_1016_j_electacta_2023_141817
crossref_primary_10_1039_D2DT00551D
crossref_primary_10_1016_j_cej_2017_04_103
crossref_primary_10_1016_j_jpowsour_2019_226778
crossref_primary_10_1021_acsami_2c11200
crossref_primary_10_1002_cssc_201901668
crossref_primary_10_1007_s40843_017_9191_5
crossref_primary_10_1002_ejic_201901244
crossref_primary_10_1021_acscatal_1c01473
crossref_primary_10_1002_cssc_201700245
crossref_primary_10_1021_acsami_1c21445
crossref_primary_10_1021_acsenergylett_9b02625
crossref_primary_10_1016_j_micromeso_2018_12_008
crossref_primary_10_1016_j_cej_2024_156009
crossref_primary_10_1002_chem_201604930
crossref_primary_10_1016_j_apcatb_2019_118192
crossref_primary_10_1002_adma_201502315
crossref_primary_10_1039_C5NR08008H
crossref_primary_10_1021_acsanm_3c04856
crossref_primary_10_1016_j_fuel_2021_121562
crossref_primary_10_1038_s41427_019_0154_6
crossref_primary_10_1002_adfm_201605332
crossref_primary_10_1002_slct_201800251
crossref_primary_10_1002_smll_201900470
crossref_primary_10_1007_s12274_015_0845_4
crossref_primary_10_1021_acsami_6b06979
crossref_primary_10_1016_j_jcou_2022_101920
crossref_primary_10_1016_j_jiec_2022_03_046
crossref_primary_10_1002_elan_201700780
crossref_primary_10_1016_j_jelechem_2020_114498
crossref_primary_10_1007_s10853_017_1818_7
crossref_primary_10_1039_C8TA10925G
crossref_primary_10_1002_celc_202100687
crossref_primary_10_1021_acsami_8b13472
crossref_primary_10_1016_j_talanta_2024_126887
crossref_primary_10_1002_ente_202301702
crossref_primary_10_1016_j_electacta_2016_12_052
crossref_primary_10_1002_adma_201703711
crossref_primary_10_1002_adsu_201700020
crossref_primary_10_1002_adfm_201502311
crossref_primary_10_1002_adfm_202200763
crossref_primary_10_1002_ange_201604802
crossref_primary_10_1038_srep39789
crossref_primary_10_1016_j_carbon_2019_09_029
crossref_primary_10_1016_j_jpowsour_2019_227659
crossref_primary_10_1039_C9RA09254D
crossref_primary_10_1002_asia_202001150
crossref_primary_10_1021_acssuschemeng_7b02661
crossref_primary_10_1039_C7TA11140A
crossref_primary_10_1021_acscatal_2c00164
crossref_primary_10_1021_acs_inorgchem_3c00584
crossref_primary_10_1007_s40843_017_9149_y
crossref_primary_10_1002_celc_201900198
crossref_primary_10_1002_chem_201604703
crossref_primary_10_1002_cey2_44
crossref_primary_10_1088_2053_1591_aac67e
crossref_primary_10_1002_slct_201800979
crossref_primary_10_1016_j_cej_2025_159553
crossref_primary_10_1016_j_energy_2023_128378
crossref_primary_10_1016_j_cej_2017_12_157
crossref_primary_10_1039_C7RA07850A
crossref_primary_10_1016_j_jenvrad_2022_106895
crossref_primary_10_1002_ange_201814605
crossref_primary_10_1021_acsnano_6b05914
crossref_primary_10_1002_adma_201703614
crossref_primary_10_1016_j_jmst_2022_07_015
crossref_primary_10_1021_acssuschemeng_8b02014
crossref_primary_10_1039_D0TA01171A
crossref_primary_10_1016_j_jcis_2024_01_144
crossref_primary_10_1016_j_jpowsour_2018_12_047
crossref_primary_10_1016_j_ensm_2021_04_044
crossref_primary_10_1002_celc_202001593
crossref_primary_10_1016_j_solener_2020_03_050
crossref_primary_10_1002_adma_201600979
crossref_primary_10_1021_acsaem_2c03833
crossref_primary_10_1039_C6NR07268B
crossref_primary_10_1016_j_nanoen_2017_09_042
crossref_primary_10_1039_C9NR10109H
crossref_primary_10_1016_j_cclet_2019_02_021
crossref_primary_10_1021_acsami_8b02226
crossref_primary_10_1016_j_ijhydene_2024_05_288
crossref_primary_10_1016_j_ccr_2022_214602
crossref_primary_10_1016_j_apcatb_2017_08_039
crossref_primary_10_1021_acs_energyfuels_4c05356
crossref_primary_10_1007_s12274_019_2339_2
crossref_primary_10_1039_C7TA08690C
crossref_primary_10_1016_j_asems_2022_100029
crossref_primary_10_1038_srep27805
crossref_primary_10_1039_C7TA07387A
crossref_primary_10_1039_D1NR01612A
crossref_primary_10_1016_j_apsusc_2019_05_014
crossref_primary_10_3390_catal12121605
crossref_primary_10_1021_acsami_7b08115
crossref_primary_10_1002_aenm_201701771
crossref_primary_10_1016_j_cej_2022_137948
crossref_primary_10_1039_C5TA03507D
crossref_primary_10_1039_C8NJ04919J
crossref_primary_10_1039_C8TA04813D
crossref_primary_10_1002_anie_201507735
crossref_primary_10_1021_acssensors_9b00914
crossref_primary_10_1016_j_nanoen_2023_109154
crossref_primary_10_1007_s40145_021_0466_1
crossref_primary_10_1039_C8RA03572E
crossref_primary_10_1007_s10853_024_09732_z
crossref_primary_10_26599_CF_2024_9200024
crossref_primary_10_1016_j_carbon_2019_07_071
crossref_primary_10_1039_C6TA03015G
crossref_primary_10_1016_j_colsurfa_2021_126218
crossref_primary_10_1002_aenm_201802263
crossref_primary_10_1016_j_apsusc_2021_150114
crossref_primary_10_1016_j_jcis_2021_02_125
crossref_primary_10_1016_j_ccr_2022_214817
crossref_primary_10_1002_ange_201811573
crossref_primary_10_1039_C7NJ02765F
crossref_primary_10_1016_j_jelechem_2020_114732
crossref_primary_10_1002_advs_201700691
crossref_primary_10_1016_j_cej_2021_134171
crossref_primary_10_1186_s11671_016_1489_3
crossref_primary_10_1002_smll_202310348
crossref_primary_10_1039_C9CS00871C
crossref_primary_10_1016_j_cej_2022_137962
crossref_primary_10_1016_j_jiec_2018_01_002
crossref_primary_10_1016_j_jallcom_2022_164083
crossref_primary_10_1016_j_est_2019_101165
crossref_primary_10_1016_j_jcis_2017_07_117
crossref_primary_10_1038_srep43084
crossref_primary_10_1021_acsami_2c05717
crossref_primary_10_1039_C6CE02616H
crossref_primary_10_1002_cctc_201600484
crossref_primary_10_1039_D1TC02729H
crossref_primary_10_1021_acssuschemeng_8b04883
crossref_primary_10_1021_acs_inorgchem_6b00746
crossref_primary_10_1007_s42114_024_00996_2
crossref_primary_10_1016_j_jpowsour_2018_11_024
crossref_primary_10_1016_j_foodchem_2024_138382
crossref_primary_10_1002_smll_201704169
crossref_primary_10_1016_j_jhazmat_2022_130016
crossref_primary_10_1039_D0NJ04479B
crossref_primary_10_1002_adfm_201704537
crossref_primary_10_1002_anie_201710997
crossref_primary_10_1021_acs_chemmater_8b02275
crossref_primary_10_1039_D4SE00084F
crossref_primary_10_3390_catal8120607
crossref_primary_10_1016_j_electacta_2024_144872
crossref_primary_10_1007_s40242_020_0163_6
crossref_primary_10_1002_cssc_201700864
crossref_primary_10_1007_s00604_019_3298_8
crossref_primary_10_1039_C9NJ00508K
crossref_primary_10_1039_C5CC07004J
crossref_primary_10_1016_j_micromeso_2018_10_011
crossref_primary_10_1039_D1QI00394A
crossref_primary_10_1149_1945_7111_ac5547
crossref_primary_10_1016_j_jssc_2021_122180
crossref_primary_10_1039_C7TC03784H
crossref_primary_10_1002_cctc_201701566
crossref_primary_10_1016_j_apsusc_2019_06_076
crossref_primary_10_1039_C6CC01095D
crossref_primary_10_1016_j_colsurfa_2022_128733
crossref_primary_10_1039_C5RA10484J
crossref_primary_10_1039_C8TA11704G
crossref_primary_10_1016_j_matpr_2022_09_603
crossref_primary_10_1016_j_jcis_2023_06_198
crossref_primary_10_1039_D1EE03614A
crossref_primary_10_1039_C5RA21998A
crossref_primary_10_1002_celc_201500536
crossref_primary_10_1002_ente_202100035
crossref_primary_10_3390_en11010167
crossref_primary_10_1021_acsnano_4c18558
crossref_primary_10_1007_s11664_020_08466_3
crossref_primary_10_1002_adsu_201800167
crossref_primary_10_1002_cctc_201601705
crossref_primary_10_1039_C7NR07235J
crossref_primary_10_1021_acsmaterialslett_3c00302
crossref_primary_10_1016_j_electacta_2018_06_058
crossref_primary_10_1039_C8CC05703F
crossref_primary_10_1002_ejic_201801328
crossref_primary_10_1002_batt_201900012
crossref_primary_10_1016_j_poly_2018_08_006
crossref_primary_10_1016_j_jallcom_2019_05_119
crossref_primary_10_3390_catal6080116
crossref_primary_10_1039_C5TA04330A
crossref_primary_10_1016_j_ceramint_2019_01_143
crossref_primary_10_1016_j_jallcom_2024_173710
crossref_primary_10_1021_acs_inorgchem_1c00946
crossref_primary_10_1039_D3EY00066D
crossref_primary_10_1002_chem_201705824
crossref_primary_10_1016_j_colsurfb_2019_110764
crossref_primary_10_1021_acsami_9b07991
crossref_primary_10_1039_D0AY01121E
crossref_primary_10_1016_j_catcom_2022_106439
crossref_primary_10_1039_C9TA03410B
crossref_primary_10_1016_j_jelechem_2019_113348
crossref_primary_10_1002_celc_201500199
crossref_primary_10_1016_j_apsusc_2020_147030
crossref_primary_10_1039_C6GC02118B
crossref_primary_10_1007_s12598_022_02173_0
crossref_primary_10_1016_j_powtec_2023_118769
crossref_primary_10_1016_j_matlet_2020_128135
crossref_primary_10_1002_anie_201814711
crossref_primary_10_1016_j_electacta_2016_01_002
crossref_primary_10_1016_j_ensm_2018_11_034
crossref_primary_10_3390_app12136659
crossref_primary_10_1063_5_0201482
crossref_primary_10_1016_j_jhazmat_2022_130443
crossref_primary_10_1115_1_4051170
crossref_primary_10_2139_ssrn_3986797
crossref_primary_10_1016_j_envres_2019_109059
crossref_primary_10_1021_acsami_6b04189
crossref_primary_10_1002_adma_201904524
crossref_primary_10_2139_ssrn_4070648
crossref_primary_10_1016_j_xcrp_2022_100769
crossref_primary_10_1016_j_ijhydene_2022_11_256
crossref_primary_10_1002_asia_202000310
crossref_primary_10_1016_j_ica_2023_121753
crossref_primary_10_1039_D1SC00095K
crossref_primary_10_1016_j_carbon_2023_01_034
crossref_primary_10_1002_anie_202215985
crossref_primary_10_1016_j_ecoenv_2019_110035
crossref_primary_10_1039_D1NJ03625D
crossref_primary_10_1016_j_jpowsour_2018_04_082
crossref_primary_10_1002_cplu_201800392
crossref_primary_10_1021_acs_langmuir_3c03804
crossref_primary_10_1016_j_electacta_2018_04_001
crossref_primary_10_1016_j_nanoen_2017_08_044
crossref_primary_10_1039_D0TA05626J
crossref_primary_10_1021_acsaem_0c02650
crossref_primary_10_1016_j_jhazmat_2024_134588
crossref_primary_10_1002_cctc_202002045
crossref_primary_10_1002_cnma_201900009
crossref_primary_10_1039_C7QI00233E
crossref_primary_10_3390_ma15175837
crossref_primary_10_1016_j_ijhydene_2017_12_147
crossref_primary_10_1039_C6CC02013E
crossref_primary_10_1021_acs_chemmater_5b02708
crossref_primary_10_1002_cctc_202200383
crossref_primary_10_1016_j_ceramint_2023_07_131
crossref_primary_10_3389_fmats_2019_00022
crossref_primary_10_1002_adfm_201604943
crossref_primary_10_1016_j_enchem_2019_100001
crossref_primary_10_1002_advs_202206239
crossref_primary_10_1021_jacs_5b02027
crossref_primary_10_1007_s10562_024_04615_z
crossref_primary_10_1016_j_aca_2021_338812
crossref_primary_10_1016_j_electacta_2016_02_094
crossref_primary_10_1039_C6TA05102B
crossref_primary_10_1002_advs_201800241
crossref_primary_10_1021_acsomega_0c00358
crossref_primary_10_1039_D2CC06895H
crossref_primary_10_1039_C9CY00633H
crossref_primary_10_1016_j_ijhydene_2018_08_059
crossref_primary_10_1039_C9NR02914A
crossref_primary_10_1016_j_carbon_2019_10_004
crossref_primary_10_1016_j_carbpol_2020_117107
crossref_primary_10_1002_er_4389
crossref_primary_10_1016_j_jcis_2019_06_040
crossref_primary_10_1016_j_electacta_2019_05_139
crossref_primary_10_1016_j_carbon_2019_05_044
crossref_primary_10_1039_C4NR06631F
crossref_primary_10_1021_acssuschemeng_8b04029
crossref_primary_10_1039_D2TA02957J
crossref_primary_10_1021_acscatal_5b02325
crossref_primary_10_1002_celc_202001306
crossref_primary_10_1038_srep23667
crossref_primary_10_1002_aenm_201501497
crossref_primary_10_1016_j_apcatb_2022_121348
crossref_primary_10_1021_acsanm_8b00235
crossref_primary_10_2139_ssrn_4127683
crossref_primary_10_1088_1755_1315_384_1_012057
crossref_primary_10_1002_aenm_201801836
crossref_primary_10_1016_j_jpowsour_2016_11_114
crossref_primary_10_1039_C6TA08335H
crossref_primary_10_1021_acs_accounts_2c00579
crossref_primary_10_1039_D0TA10797B
crossref_primary_10_1016_j_jmst_2020_07_007
crossref_primary_10_3390_catal11050561
crossref_primary_10_1007_s11664_019_07187_6
crossref_primary_10_1016_j_nanoen_2015_08_007
crossref_primary_10_1021_acsnano_8b01056
crossref_primary_10_1021_acsami_1c22058
crossref_primary_10_1002_chem_201705675
crossref_primary_10_1039_C7TA04255H
crossref_primary_10_1021_acsomega_7b00673
crossref_primary_10_1039_C8CY02210K
crossref_primary_10_1021_acssuschemeng_7b02164
crossref_primary_10_1016_j_jpowsour_2023_232758
crossref_primary_10_1039_D1TA01768C
crossref_primary_10_1002_admi_202100805
crossref_primary_10_1016_j_jelechem_2018_05_029
crossref_primary_10_1021_acsami_7b02490
crossref_primary_10_1016_j_apsusc_2018_08_183
crossref_primary_10_1039_C9MH01829H
crossref_primary_10_1002_ange_201507692
crossref_primary_10_1021_acs_cgd_8b01925
crossref_primary_10_1016_j_seppur_2023_124994
crossref_primary_10_1002_aenm_202003970
crossref_primary_10_1039_D1SE00652E
crossref_primary_10_1016_j_apcatb_2019_01_080
crossref_primary_10_1016_j_scib_2018_04_016
crossref_primary_10_1246_cl_190444
crossref_primary_10_1021_acs_chemrev_6b00558
crossref_primary_10_1016_j_electacta_2019_01_005
crossref_primary_10_1039_D0TA09544C
crossref_primary_10_1016_j_elecom_2020_106758
crossref_primary_10_1021_acsami_8b12854
crossref_primary_10_1002_adma_201501310
crossref_primary_10_1016_j_indcrop_2024_119579
crossref_primary_10_1016_j_ccr_2023_215639
crossref_primary_10_1016_j_mtchem_2023_101632
crossref_primary_10_1002_aenm_201602002
crossref_primary_10_1016_j_jcis_2016_11_101
crossref_primary_10_1016_j_talanta_2019_05_034
crossref_primary_10_1016_j_ijhydene_2022_05_025
crossref_primary_10_1016_j_ijhydene_2018_09_223
crossref_primary_10_1021_acsami_7b12069
crossref_primary_10_1016_j_cej_2022_138126
crossref_primary_10_1016_j_cej_2021_132762
crossref_primary_10_1016_j_jpowsour_2019_226811
crossref_primary_10_1016_j_electacta_2016_04_037
crossref_primary_10_1016_j_ccr_2018_02_008
crossref_primary_10_1002_smll_202300036
crossref_primary_10_1039_C5SC03430B
crossref_primary_10_1002_celc_201900905
crossref_primary_10_2139_ssrn_3972243
crossref_primary_10_1007_s12274_016_1400_7
crossref_primary_10_1016_j_cej_2018_02_078
crossref_primary_10_1021_acsomega_1c00419
crossref_primary_10_1016_j_talanta_2025_127761
crossref_primary_10_1002_adma_202312797
crossref_primary_10_1016_j_ccr_2021_213954
crossref_primary_10_1016_j_jechem_2019_09_019
crossref_primary_10_1038_natrevmats_2017_75
crossref_primary_10_1016_j_seppur_2024_127017
crossref_primary_10_1002_aenm_201800955
crossref_primary_10_1016_j_ijhydene_2022_06_280
crossref_primary_10_1021_acs_energyfuels_0c02173
crossref_primary_10_1021_acsnano_7b09064
crossref_primary_10_1016_j_jiec_2016_08_004
crossref_primary_10_1016_j_nanoen_2016_04_041
crossref_primary_10_1016_j_envres_2021_112184
crossref_primary_10_1039_C9DT02278C
crossref_primary_10_1016_j_cej_2017_08_024
crossref_primary_10_1016_j_jallcom_2020_157604
crossref_primary_10_1021_acssuschemeng_9b05833
crossref_primary_10_1021_acs_chemrev_3c00005
crossref_primary_10_30919_es8d729
crossref_primary_10_1002_advs_202101653
crossref_primary_10_1021_acsnano_1c09402
crossref_primary_10_1039_C6EE01867J
crossref_primary_10_1016_j_apsusc_2020_148235
crossref_primary_10_1016_j_jcis_2019_03_038
crossref_primary_10_1021_acsami_7b12095
crossref_primary_10_1007_s11356_023_29169_2
crossref_primary_10_1016_j_jpowsour_2016_02_020
crossref_primary_10_1016_j_electacta_2018_07_061
crossref_primary_10_1007_s12274_018_2199_1
crossref_primary_10_1016_j_carbon_2019_02_013
crossref_primary_10_1016_j_apsusc_2023_157155
crossref_primary_10_1016_j_jpowsour_2017_01_081
crossref_primary_10_1021_acs_nanolett_9b05024
crossref_primary_10_1039_C6TA02722A
crossref_primary_10_1039_C6TA01525E
crossref_primary_10_1016_j_ccr_2020_213214
crossref_primary_10_1039_C5EE00762C
crossref_primary_10_1016_j_jece_2023_110864
crossref_primary_10_1002_smll_201604045
crossref_primary_10_1039_C6DT02678H
crossref_primary_10_1002_cssc_202400570
crossref_primary_10_1016_j_jece_2021_105118
crossref_primary_10_1021_acs_inorgchem_8b03533
crossref_primary_10_1002_ange_201509213
crossref_primary_10_1021_acs_energyfuels_2c03812
crossref_primary_10_1039_C7CC05673G
crossref_primary_10_1039_D1TA09491B
crossref_primary_10_20964_2016_11_39
crossref_primary_10_1016_j_enbuild_2021_111616
crossref_primary_10_1021_acsami_7b13799
crossref_primary_10_1002_cctc_201900910
crossref_primary_10_1039_C6CC09442B
crossref_primary_10_1002_smll_202104375
crossref_primary_10_1088_1361_6528_abe32f
crossref_primary_10_1016_j_ensm_2018_02_011
crossref_primary_10_1039_C9TA12776C
crossref_primary_10_1007_s12274_022_4415_2
crossref_primary_10_1021_acs_inorgchem_3c01536
crossref_primary_10_1016_j_jechem_2023_02_002
crossref_primary_10_1557_jmr_2017_416
crossref_primary_10_1016_j_ijhydene_2020_02_204
crossref_primary_10_1016_j_apsusc_2016_11_073
crossref_primary_10_1021_acsami_6b16851
crossref_primary_10_1039_C6TA02017H
crossref_primary_10_1007_s12598_022_01987_2
crossref_primary_10_1016_j_cej_2018_07_138
crossref_primary_10_1016_j_ijhydene_2018_11_096
crossref_primary_10_1016_j_scib_2017_08_006
crossref_primary_10_1039_C6EE01297C
crossref_primary_10_1126_sciadv_aap9252
crossref_primary_10_1002_cctc_201701794
crossref_primary_10_1016_j_jclepro_2023_139799
crossref_primary_10_1039_D0QI00371A
crossref_primary_10_1039_C6NJ04114K
crossref_primary_10_1016_j_carbon_2016_05_013
crossref_primary_10_1016_j_est_2022_106012
crossref_primary_10_1002_admi_201600047
crossref_primary_10_1016_j_cej_2019_02_179
crossref_primary_10_1002_ejic_201601527
crossref_primary_10_1039_D1TC01905H
crossref_primary_10_1016_j_electacta_2019_01_085
crossref_primary_10_1016_j_snb_2019_01_105
crossref_primary_10_1016_j_cclet_2020_04_040
crossref_primary_10_2139_ssrn_4132892
crossref_primary_10_1039_D2DT02765H
crossref_primary_10_1021_acsami_7b11120
crossref_primary_10_1002_smtd_201900277
crossref_primary_10_1002_ange_202004213
crossref_primary_10_1002_asia_201800747
crossref_primary_10_1016_j_biombioe_2024_107173
crossref_primary_10_1016_j_carbon_2016_05_021
crossref_primary_10_1016_j_jallcom_2018_09_298
crossref_primary_10_1021_acs_jpclett_2c02684
crossref_primary_10_1039_C8TA07994C
crossref_primary_10_1002_adfm_201602158
crossref_primary_10_1016_S1872_5805_24_60828_0
crossref_primary_10_2139_ssrn_3972611
crossref_primary_10_1002_sstr_202200268
crossref_primary_10_1039_C7MH00358G
crossref_primary_10_1039_D0NR04920D
crossref_primary_10_1039_D2NR03617G
crossref_primary_10_1002_adfm_202003871
crossref_primary_10_1021_acsami_8b03742
crossref_primary_10_1039_C8NR02337A
crossref_primary_10_1016_j_apsusc_2018_11_052
crossref_primary_10_1016_j_cej_2019_123324
crossref_primary_10_1016_j_jhazmat_2019_120761
crossref_primary_10_1039_C9CY01131E
crossref_primary_10_1021_acssuschemeng_8b04919
crossref_primary_10_1007_s12274_016_1130_x
crossref_primary_10_1016_j_materresbull_2019_02_029
crossref_primary_10_1016_j_apcatb_2020_119325
crossref_primary_10_1016_j_jcis_2017_12_012
crossref_primary_10_1021_acs_inorgchem_1c02639
crossref_primary_10_1021_jacs_6b00757
crossref_primary_10_1039_C5TA05776K
crossref_primary_10_1016_j_flatc_2021_100332
crossref_primary_10_1016_j_bios_2021_113686
crossref_primary_10_1039_C9EE00555B
crossref_primary_10_1016_j_jpowsour_2016_06_098
crossref_primary_10_1016_j_ensm_2017_08_009
crossref_primary_10_1016_j_jpowsour_2020_227999
crossref_primary_10_1002_smll_201704207
crossref_primary_10_1021_acs_jpclett_9b02082
crossref_primary_10_1039_C6TA05196K
crossref_primary_10_1021_acsami_7b15315
crossref_primary_10_1149_2_0361813jes
crossref_primary_10_1016_j_ijhydene_2021_07_123
crossref_primary_10_1016_j_jallcom_2023_171513
crossref_primary_10_1016_j_jpowsour_2019_01_028
crossref_primary_10_1016_j_ijhydene_2020_06_276
crossref_primary_10_1021_acs_inorgchem_8b03594
crossref_primary_10_1016_j_solener_2018_09_018
crossref_primary_10_1016_j_electacta_2019_134777
crossref_primary_10_1016_j_nanoen_2023_108763
crossref_primary_10_1016_j_electacta_2018_08_038
crossref_primary_10_1039_C8TA00439K
crossref_primary_10_1002_aenm_201602217
crossref_primary_10_1002_ppsc_201600233
crossref_primary_10_1039_C7CY01509G
crossref_primary_10_1021_acsomega_8b01968
crossref_primary_10_1021_acs_cgd_1c00581
crossref_primary_10_1002_aenm_202203136
crossref_primary_10_1021_acsaem_1c03245
crossref_primary_10_1007_s11426_017_9118_6
crossref_primary_10_1016_j_jallcom_2023_171722
crossref_primary_10_1002_smll_201701143
crossref_primary_10_1016_j_matchemphys_2020_123043
crossref_primary_10_1039_C6EE00054A
crossref_primary_10_1016_j_micromeso_2017_11_010
crossref_primary_10_1002_celc_201801859
crossref_primary_10_1021_acsanm_0c01029
crossref_primary_10_1039_C8NR10327E
crossref_primary_10_1039_D2TA08709J
crossref_primary_10_1039_D1RA03093K
crossref_primary_10_1016_j_carbon_2018_07_013
crossref_primary_10_1039_C6MH00344C
crossref_primary_10_1021_acscatal_9b03175
crossref_primary_10_1021_acsami_7b14686
crossref_primary_10_1021_acsanm_1c00177
crossref_primary_10_1016_j_snb_2015_06_052
crossref_primary_10_1016_j_nxsust_2023_100014
crossref_primary_10_1002_smll_201702002
crossref_primary_10_1002_aenm_201800569
Cites_doi 10.1021/nn100315s
10.1002/adma.201302569
10.1002/anie.201209548
10.1021/ja203184k
10.1021/nn503834u
10.1002/cssc.201200680
10.1002/anie.201209320
10.1021/nn3021234
10.1126/science.1152516
10.1021/ja402450a
10.1002/ange.200907289
10.1021/ar300122m
10.1002/ange.201307319
10.1002/ange.201001634
10.1002/ange.201104004
10.1021/ja306501x
10.1002/ange.201206720
10.1039/c3ee23421e
10.1021/ja306376s
10.1039/c3cc00136a
10.1002/adfm.201200186
10.1039/c0ee00326c
10.1039/c3cc41039k
10.1021/ja904595t
10.1038/ncomms1427
10.1038/nnano.2012.72
10.1002/adma.201203923
10.1021/ja407552k
10.1021/ja211433h
10.1021/ja2104334
10.1002/anie.201001634
10.1002/adfm.201300510
10.1016/j.apcatb.2007.09.047
10.1038/nature05118
10.1021/nn302674k
10.1002/anie.201100170
10.1002/anie.201206720
10.1016/j.physrep.2004.10.006
10.1002/adma.201300515
10.1002/adma.201104392
10.1021/ja3030565
10.1021/am3013104
10.1002/adma.201202424
10.1039/c2ee23599d
10.1039/c2sc20657a
10.1021/ja105089w
10.1038/nmat3457
10.1038/nmat3087
10.1021/nn1030127
10.1002/anie.201303924
10.1002/anie.201004631
10.1021/la302050m
10.1002/ange.201100170
10.1002/ange.201209548
10.1002/adma.200901581
10.1039/c3nr01439h
10.1002/ange.201209320
10.1002/adfm.201001202
10.1039/c2cc33433j
10.1021/nn103584t
10.1002/anie.200907289
10.1002/adma.200501576
10.1021/ja108039j
10.1002/ange.201004631
10.1002/anie.201307319
10.1039/c3dt53133c
10.1002/anie.201104004
10.1039/c3cc38955c
10.1002/ange.201303924
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7TM
K9.
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/anie.201408990
DatabaseName Istex
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 14239
ExternalDocumentID 3520270421
25331053
10_1002_anie_201408990
ANIE201408990
ark_67375_WNG_V4MHR39D_W
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: 100 Talents Programme of the Chinese Academy of Sciences
– fundername: National Program on Key Basic Research Project of China
  funderid: 2014CB932300; 2012CB215500
– fundername: National Natural Science Foundation of China
  funderid: 21422108; 51472232; 21271168
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGQPQ
AGYGG
CITATION
NPM
7TM
K9.
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c5470-5fdbec268f45f3319c02cf50a72ae08ab9b65ffbe41d151d8f0ee680df9551093
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 11:43:43 EDT 2025
Fri Jul 11 00:34:36 EDT 2025
Sun Jul 13 04:32:05 EDT 2025
Mon Jul 21 06:07:13 EDT 2025
Tue Jul 01 03:26:42 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Wed Jan 22 16:37:01 EST 2025
Wed Oct 30 09:52:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords electrocatalysts
porous carbon sheets
oxygen reduction reaction
nitrogen doping
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5470-5fdbec268f45f3319c02cf50a72ae08ab9b65ffbe41d151d8f0ee680df9551093
Notes We appreciate the constructive comments and insightful suggestions of the referees. This work was supported by the 100 Talents Programme of the Chinese Academy of Sciences, the National Program on Key Basic Research Project of China (973 Program, grant no. 2014CB932300 and 2012CB215500), and the National Natural Science Foundation of China (grant no. 21422108, 51472232, and 21271168).
istex:F4D427C810A01E968833048472954B202E00AFD9
ark:/67375/WNG-V4MHR39D-W
ArticleID:ANIE201408990
100 Talents Programme of the Chinese Academy of Sciences
National Program on Key Basic Research Project of China - No. 2014CB932300; No. 2012CB215500
National Natural Science Foundation of China - No. 21422108; No. 51472232; No. 21271168
These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25331053
PQID 1634473401
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1701000961
proquest_miscellaneous_1635004170
proquest_journals_1634473401
pubmed_primary_25331053
crossref_citationtrail_10_1002_anie_201408990
crossref_primary_10_1002_anie_201408990
wiley_primary_10_1002_anie_201408990_ANIE201408990
istex_primary_ark_67375_WNG_V4MHR39D_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 15, 2014
PublicationDateYYYYMMDD 2014-12-15
PublicationDate_xml – month: 12
  year: 2014
  text: December 15, 2014
  day: 15
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References Angew. Chem. 2014, 126, 1596.
S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, K. Müllen, Adv. Funct. Mater. 2012, 22, 3634
R. Bashyam, P. Zelenay, Nature 2006, 443, 63
J. Lee, J. Kim, T. Hyeon, Adv. Mater. 2006, 18, 2073.
Angew. Chem. 2013, 125, 4670.
N. L. Torad, M. Hu, Y. Kamachi, K. Takai, M. Imura, M. Naito, Y. Yamauchi, Chem. Commun. 2013, 49, 2521.
Angew. Chem. 2013, 125, 3192.
Y. Y. Shao, J. H. Sui, G. P. Yin, Y. Z. Gao, Appl. Catal. B 2008, 79, 89
Angew. Chem. 2011, 123, 11161
W. Wei, H. Liang, K. Parvez, X. Zhuang, X. Feng, K. Müllen, Angew. Chem. Int. Ed. 2014, 53, 1570
J. Liang, X. Du, C. Gibson, X. W. Du, S. Z. Qiao, Adv. Mater. 2013, 25, 6226.
Y. Deng, Y. Cai, Z. Sun, D. Gu, J. Wei, W. Li, X. Guo, J. Yang, D. Zhao, Adv. Funct. Mater. 2010, 20, 3658
W. Yang, T. P. Fellinger, M. Antonietti, J. Am. Chem. Soc. 2011, 133, 206
H. G. Wang, Z. Wu, F. L. Meng, D. L. Ma, X. L. Huang, L. M. Wang, X. B. Zhang, ChemSusChem 2013, 6, 56.
R. Silva, D. Voiry, M. Chhowalla, T. Asefa, J. Am. Chem. Soc. 2013, 135, 7823
P. Chen, T. Y. Xiao, Y. H. Qian, S. S. Li, S. H. Yu, Adv. Mater. 2013, 25, 3192
Angew. Chem. 2010, 122, 2619
M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 2005, 409, 47
Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J. C. Idrobo, S. J. Pennycook, H. Dai, Nat. Nanotechnol. 2012, 7, 394
K. Parvez, S. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. Feng, K. Müllen, ACS Nano 2012, 6, 9541.
Z. H. Sheng, L. Shao, J. J. Chen, W. J. Bao, F. B. Wang, X. H. Xia, ACS Nano 2011, 5, 4350.
M. Jahan, Q. L. Bao, K. P. Loh, J. Am. Chem. Soc. 2012, 134, 6707
X. Huang, B. Zheng, Z. Liu, C. Tan, J. Liu, B. Chen, H. Li, J. Chen, X. Zhang, Z. Fan, W. Zhang, Z. Guo, F. Huo, Y. Yang, L.-H. Xie, W. Huang, H. Zhang, ACS Nano 2014, 8, 8695.
Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780
R. L. Liu, D. Q. Wu, X. L. Feng, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 2565
D. Zhao, J. L. Shui, C. Chen, X. Chen, B. M. Reprogle, D. Wang, D. J. Liu, Chem. Sci. 2012, 3, 3200.
H. Wang, Y. Liang, Y. Li, H. Dai, Angew. Chem. Int. Ed. 2011, 50, 10969
D. F. van der Vliet, C. Wang, D. Tripkovic, D. Strmcnik, X. F. Zhang, M. K. Debe, R. T. Atanasoski, N. M. Markovic, V. R. Stamenkovic, Nat. Mater. 2012, 11, 1051
S. Yang, X. Feng, X. Wang, K. Müllen, Angew. Chem. Int. Ed. 2011, 50, 5339
H. L. Jiang, B. Liu, Y. Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, Q. Xu, J. Am. Chem. Soc. 2011, 133, 11854
D. S. Yang, D. Bhattacharjya, S. Inamdar, J. Park, J. S. Yu, J. Am. Chem. Soc. 2012, 134, 16127.
Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2013, 52, 3110
Angew. Chem. 2011, 123, 442.
J. H. Lee, J. Jaworski, J. H. Jung, Nanoscale 2013, 5, 8533
Angew. Chem. 2012, 124, 11664.
R. Kumar, K. Jayaramulu, T. K. Maji, C. N. R. Rao, Dalton Trans. 2014, 43, 7383
X. H. Li, M. Antonietti, Angew. Chem. Int. Ed. 2013, 52, 4572
E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian, J. Herranz, J. P. Dodelet, Nat. Commun. 2011, 2, 416
K. Ai, Y. Liu, C. Ruan, L. Lu, G. M. Lu, Adv. Mater. 2013, 25, 998
M. Jahan, Q. Bao, J. X. Yang, K. P. Loh, J. Am. Chem. Soc. 2010, 132, 14487
Z. Wang, R. Jia, J. Zheng, J. Zhao, L. Li, J. Song, Z. Zhu, ACS Nano 2011, 5, 1677
W. Ding, Z. Wei, S. Chen, X. Qi, T. Yang, J. Hu, D. Wang, L. J. Wan, S. F. Alvi, L. Li, Angew. Chem. Int. Ed. 2013, 52, 11755
S. Chen, Z. Wei, X. Qi, L. Dong, Y. G. Guo, L. Wan, Z. Shao, L. Li, J. Am. Chem. Soc. 2012, 134, 13252
Angew. Chem. 2010, 122, 4905
S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu, Adv. Mater. 2012, 24, 5593.
S. Guo, S. Sun, J. Am. Chem. Soc. 2012, 134, 2492.
S. Liu, L. Sun, F. Xu, J. Zhang, C. Jiao, F. Li, Z. Li, S. Wang, Z. Wang, X. Jiang, H. Zhou, L. Yang, C. Schick, Energy Environ. Sci. 2013, 6, 818
Z. Wen, S. Ci, F. Zhang, X. Feng, S. Cui, S. Mao, S. Luo, Z. He, J. Chen, Adv. Mater. 2012, 24, 1399
H. W. Liang, W. Wei, Z. S. Wu, X. Feng, K. Müllen, J. Am. Chem. Soc. 2013, 135, 16002.
J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 11496
R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, O. M. Yaghi, Science 2008, 319, 939
D. S. Geng, Y. Chen, Y. G. Chen, Y. L. Li, R. Y. Li, X. L. Sun, S. Y. Ye, S. Knights, Energy Environ. Sci. 2011, 4, 760.
S. Yang, X. Feng, L. Wang, K. Tang, J. Maier, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 4795
M. Jahan, Z. Liu, K. P. Loh, Adv. Funct. Mater. 2013, 23, 5363
C. Petit, T. J. Bandosz, Adv. Mater. 2009, 21, 4753
R. Kumar, K. Jayaramulu, T. K. Maji, C. N. Rao, Chem. Commun. 2013, 49, 4947.
C. H. Choi, S. H. Park, S. I. Woo, ACS Nano 2012, 6, 7084
L. Dai, Acc. Chem. Res. 2013, 46, 31.
S. Sun, G. Zhang, D. Geng, Y. Chen, R. Li, M. Cai, X. Sun, Angew. Chem. Int. Ed. 2011, 50, 422
H. T. Kwon, H. K. Jeong, Chem. Commun. 2013, 49, 3854
Z. H. Huang, G. Liu, F. Kang, ACS Appl. Mater. Interfaces 2012, 4, 4942
Z. Li, Z. Xu, X. Tan, H. Wang, C. M. B. Holt, T. Stephenson, B. C. Olsen, D. Mitlin, Energy Environ. Sci. 2013, 6, 871.
W. Chaikittisilp, M. Hu, H. Wang, H. S. Huang, T. Fujita, K. C. Wu, L. C. Chen, Y. Yamauchi, K. Ariga, Chem. Commun. 2012, 48, 7259.
Z. S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 9082.
Angew. Chem. 2011, 123, 5451
Y. Tang, B. L. Allen, D. R. Kauffman, A. Star, J. Am. Chem. Soc. 2009, 131, 13200.
N. P. Stadie, J. J. Vajo, R. W. Cumberland, A. A. Wilson, C. C. Ahn, B. Fultz, Langmuir 2012, 28, 10057
Y. Wang, Y. Y. Shao, D. W. Matson, J. H. Li, Y. H. Lin, ACS Nano 2010, 4, 1790.
Angew. Chem. 2013, 125, 11971.
2014 2014; 53 126
2013; 25
2011; 2
2009; 21
2013; 49
2013; 46
2013; 23
2006; 18
2011; 10
2008; 79
2010 2010; 49 122
2009; 131
2011; 4
2013; 5
2012; 11
2011; 5
2013; 6
2011; 133
2013 2013; 52 125
2014; 43
2010; 20
2012; 3
2012; 134
2012 2012; 51 124
2008; 319
2010; 132
2013; 135
2011 2011; 50 123
2012; 28
2005; 409
2012; 48
2012; 6
2012; 24
2012; 7
2014; 8
2012; 4
2012; 22
2010; 4
2006; 443
e_1_2_2_2_3
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_22_2
e_1_2_2_49_2
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_62_2
e_1_2_2_41_2
e_1_2_2_64_2
e_1_2_2_28_3
e_1_2_2_41_3
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_66_2
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_68_2
e_1_2_2_8_3
e_1_2_2_24_3
e_1_2_2_60_2
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_59_2
e_1_2_2_36_3
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_51_2
e_1_2_2_72_3
e_1_2_2_74_2
e_1_2_2_72_2
e_1_2_2_74_3
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_17_3
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_55_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_57_2
e_1_2_2_70_2
e_1_2_2_3_2
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_69_2
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_1_2
e_1_2_2_40_2
e_1_2_2_61_2
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_63_2
e_1_2_2_7_2
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_65_2
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_67_2
e_1_2_2_35_3
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_58_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_50_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_52_2
e_1_2_2_73_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_54_2
e_1_2_2_14_2
e_1_2_2_35_2
e_1_2_2_56_2
e_1_2_2_71_2
References_xml – reference: S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, K. Müllen, Adv. Funct. Mater. 2012, 22, 3634;
– reference: H. T. Kwon, H. K. Jeong, Chem. Commun. 2013, 49, 3854;
– reference: D. S. Yang, D. Bhattacharjya, S. Inamdar, J. Park, J. S. Yu, J. Am. Chem. Soc. 2012, 134, 16127.
– reference: X. H. Li, M. Antonietti, Angew. Chem. Int. Ed. 2013, 52, 4572;
– reference: Y. Deng, Y. Cai, Z. Sun, D. Gu, J. Wei, W. Li, X. Guo, J. Yang, D. Zhao, Adv. Funct. Mater. 2010, 20, 3658;
– reference: W. Yang, T. P. Fellinger, M. Antonietti, J. Am. Chem. Soc. 2011, 133, 206;
– reference: W. Wei, H. Liang, K. Parvez, X. Zhuang, X. Feng, K. Müllen, Angew. Chem. Int. Ed. 2014, 53, 1570;
– reference: K. Ai, Y. Liu, C. Ruan, L. Lu, G. M. Lu, Adv. Mater. 2013, 25, 998;
– reference: M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 2005, 409, 47;
– reference: S. Liu, L. Sun, F. Xu, J. Zhang, C. Jiao, F. Li, Z. Li, S. Wang, Z. Wang, X. Jiang, H. Zhou, L. Yang, C. Schick, Energy Environ. Sci. 2013, 6, 818;
– reference: Y. Wang, Y. Y. Shao, D. W. Matson, J. H. Li, Y. H. Lin, ACS Nano 2010, 4, 1790.
– reference: Angew. Chem. 2011, 123, 442.
– reference: J. Liang, X. Du, C. Gibson, X. W. Du, S. Z. Qiao, Adv. Mater. 2013, 25, 6226.
– reference: J. Lee, J. Kim, T. Hyeon, Adv. Mater. 2006, 18, 2073.
– reference: Angew. Chem. 2013, 125, 3192.
– reference: R. L. Liu, D. Q. Wu, X. L. Feng, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 2565;
– reference: Z. S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 9082.
– reference: H. G. Wang, Z. Wu, F. L. Meng, D. L. Ma, X. L. Huang, L. M. Wang, X. B. Zhang, ChemSusChem 2013, 6, 56.
– reference: Z. H. Huang, G. Liu, F. Kang, ACS Appl. Mater. Interfaces 2012, 4, 4942;
– reference: Y. Y. Shao, J. H. Sui, G. P. Yin, Y. Z. Gao, Appl. Catal. B 2008, 79, 89;
– reference: X. Huang, B. Zheng, Z. Liu, C. Tan, J. Liu, B. Chen, H. Li, J. Chen, X. Zhang, Z. Fan, W. Zhang, Z. Guo, F. Huo, Y. Yang, L.-H. Xie, W. Huang, H. Zhang, ACS Nano 2014, 8, 8695.
– reference: Angew. Chem. 2010, 122, 2619;
– reference: N. P. Stadie, J. J. Vajo, R. W. Cumberland, A. A. Wilson, C. C. Ahn, B. Fultz, Langmuir 2012, 28, 10057;
– reference: M. Jahan, Q. L. Bao, K. P. Loh, J. Am. Chem. Soc. 2012, 134, 6707;
– reference: E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian, J. Herranz, J. P. Dodelet, Nat. Commun. 2011, 2, 416;
– reference: D. Zhao, J. L. Shui, C. Chen, X. Chen, B. M. Reprogle, D. Wang, D. J. Liu, Chem. Sci. 2012, 3, 3200.
– reference: S. Sun, G. Zhang, D. Geng, Y. Chen, R. Li, M. Cai, X. Sun, Angew. Chem. Int. Ed. 2011, 50, 422;
– reference: Z. Wang, R. Jia, J. Zheng, J. Zhao, L. Li, J. Song, Z. Zhu, ACS Nano 2011, 5, 1677;
– reference: P. Chen, T. Y. Xiao, Y. H. Qian, S. S. Li, S. H. Yu, Adv. Mater. 2013, 25, 3192;
– reference: R. Kumar, K. Jayaramulu, T. K. Maji, C. N. R. Rao, Dalton Trans. 2014, 43, 7383;
– reference: R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, O. M. Yaghi, Science 2008, 319, 939;
– reference: Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J. C. Idrobo, S. J. Pennycook, H. Dai, Nat. Nanotechnol. 2012, 7, 394;
– reference: M. Jahan, Z. Liu, K. P. Loh, Adv. Funct. Mater. 2013, 23, 5363;
– reference: Angew. Chem. 2011, 123, 11161;
– reference: H. W. Liang, W. Wei, Z. S. Wu, X. Feng, K. Müllen, J. Am. Chem. Soc. 2013, 135, 16002.
– reference: Y. Tang, B. L. Allen, D. R. Kauffman, A. Star, J. Am. Chem. Soc. 2009, 131, 13200.
– reference: D. S. Geng, Y. Chen, Y. G. Chen, Y. L. Li, R. Y. Li, X. L. Sun, S. Y. Ye, S. Knights, Energy Environ. Sci. 2011, 4, 760.
– reference: Z. Li, Z. Xu, X. Tan, H. Wang, C. M. B. Holt, T. Stephenson, B. C. Olsen, D. Mitlin, Energy Environ. Sci. 2013, 6, 871.
– reference: R. Kumar, K. Jayaramulu, T. K. Maji, C. N. Rao, Chem. Commun. 2013, 49, 4947.
– reference: Angew. Chem. 2013, 125, 11971.
– reference: Z. H. Sheng, L. Shao, J. J. Chen, W. J. Bao, F. B. Wang, X. H. Xia, ACS Nano 2011, 5, 4350.
– reference: H. L. Jiang, B. Liu, Y. Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, Q. Xu, J. Am. Chem. Soc. 2011, 133, 11854;
– reference: J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 11496;
– reference: M. Jahan, Q. Bao, J. X. Yang, K. P. Loh, J. Am. Chem. Soc. 2010, 132, 14487;
– reference: R. Silva, D. Voiry, M. Chhowalla, T. Asefa, J. Am. Chem. Soc. 2013, 135, 7823;
– reference: Angew. Chem. 2010, 122, 4905;
– reference: Angew. Chem. 2013, 125, 4670.
– reference: J. H. Lee, J. Jaworski, J. H. Jung, Nanoscale 2013, 5, 8533;
– reference: S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu, Adv. Mater. 2012, 24, 5593.
– reference: Z. Wen, S. Ci, F. Zhang, X. Feng, S. Cui, S. Mao, S. Luo, Z. He, J. Chen, Adv. Mater. 2012, 24, 1399;
– reference: S. Yang, X. Feng, X. Wang, K. Müllen, Angew. Chem. Int. Ed. 2011, 50, 5339;
– reference: N. L. Torad, M. Hu, Y. Kamachi, K. Takai, M. Imura, M. Naito, Y. Yamauchi, Chem. Commun. 2013, 49, 2521.
– reference: Angew. Chem. 2011, 123, 5451;
– reference: R. Bashyam, P. Zelenay, Nature 2006, 443, 63;
– reference: Angew. Chem. 2012, 124, 11664.
– reference: Angew. Chem. 2014, 126, 1596.
– reference: D. F. van der Vliet, C. Wang, D. Tripkovic, D. Strmcnik, X. F. Zhang, M. K. Debe, R. T. Atanasoski, N. M. Markovic, V. R. Stamenkovic, Nat. Mater. 2012, 11, 1051;
– reference: S. Guo, S. Sun, J. Am. Chem. Soc. 2012, 134, 2492.
– reference: H. Wang, Y. Liang, Y. Li, H. Dai, Angew. Chem. Int. Ed. 2011, 50, 10969;
– reference: C. Petit, T. J. Bandosz, Adv. Mater. 2009, 21, 4753;
– reference: Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780;
– reference: S. Yang, X. Feng, L. Wang, K. Tang, J. Maier, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 4795;
– reference: K. Parvez, S. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. Feng, K. Müllen, ACS Nano 2012, 6, 9541.
– reference: W. Chaikittisilp, M. Hu, H. Wang, H. S. Huang, T. Fujita, K. C. Wu, L. C. Chen, Y. Yamauchi, K. Ariga, Chem. Commun. 2012, 48, 7259.
– reference: C. H. Choi, S. H. Park, S. I. Woo, ACS Nano 2012, 6, 7084;
– reference: S. Chen, Z. Wei, X. Qi, L. Dong, Y. G. Guo, L. Wan, Z. Shao, L. Li, J. Am. Chem. Soc. 2012, 134, 13252;
– reference: L. Dai, Acc. Chem. Res. 2013, 46, 31.
– reference: Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2013, 52, 3110;
– reference: W. Ding, Z. Wei, S. Chen, X. Qi, T. Yang, J. Hu, D. Wang, L. J. Wan, S. F. Alvi, L. Li, Angew. Chem. Int. Ed. 2013, 52, 11755;
– volume: 24
  start-page: 5593
  year: 2012
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1790
  year: 2010
  publication-title: ACS Nano
– volume: 49 122
  start-page: 4795 4905
  year: 2010 2010
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 8533
  year: 2013
  publication-title: Nanoscale
– volume: 4
  start-page: 760
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 1051
  year: 2012
  publication-title: Nat. Mater.
– volume: 25
  start-page: 6226
  year: 2013
  publication-title: Adv. Mater.
– volume: 49
  start-page: 4947
  year: 2013
  publication-title: Chem. Commun.
– volume: 79
  start-page: 89
  year: 2008
  publication-title: Appl. Catal. B
– volume: 132
  start-page: 14487
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 9082
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 206
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 409
  start-page: 47
  year: 2005
  publication-title: Phys. Rep.
– volume: 6
  start-page: 7084
  year: 2012
  publication-title: ACS Nano
– volume: 49
  start-page: 2521
  year: 2013
  publication-title: Chem. Commun.
– volume: 10
  start-page: 780
  year: 2011
  publication-title: Nat. Mater.
– volume: 23
  start-page: 5363
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 52 125
  start-page: 3110 3192
  year: 2013 2013
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 319
  start-page: 939
  year: 2008
  publication-title: Science
– volume: 7
  start-page: 394
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 49 122
  start-page: 2565 2619
  year: 2010 2010
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52 125
  start-page: 4572 4670
  year: 2013 2013
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 28
  start-page: 10057
  year: 2012
  publication-title: Langmuir
– volume: 134
  start-page: 6707
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 13200
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 7823
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 2492
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 9541
  year: 2012
  publication-title: ACS Nano
– volume: 24
  start-page: 1399
  year: 2012
  publication-title: Adv. Mater.
– volume: 134
  start-page: 13252
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 50 123
  start-page: 422 442
  year: 2011 2011
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43
  start-page: 7383
  year: 2014
  publication-title: Dalton Trans.
– volume: 49
  start-page: 3854
  year: 2013
  publication-title: Chem. Commun.
– volume: 135
  start-page: 16002
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 31
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 4
  start-page: 4942
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52 125
  start-page: 11755 11971
  year: 2013 2013
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53 126
  start-page: 1570 1596
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 818
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 50 123
  start-page: 5339 5451
  year: 2011 2011
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 4350
  year: 2011
  publication-title: ACS Nano
– volume: 25
  start-page: 3192
  year: 2013
  publication-title: Adv. Mater.
– volume: 51 124
  start-page: 11496 11664
  year: 2012 2012
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50 123
  start-page: 10969 11161
  year: 2011 2011
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 16127
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 11854
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 998
  year: 2013
  publication-title: Adv. Mater.
– volume: 6
  start-page: 56
  year: 2013
  publication-title: ChemSusChem
– volume: 18
  start-page: 2073
  year: 2006
  publication-title: Adv. Mater.
– volume: 48
  start-page: 7259
  year: 2012
  publication-title: Chem. Commun.
– volume: 3
  start-page: 3200
  year: 2012
  publication-title: Chem. Sci.
– volume: 2
  start-page: 416
  year: 2011
  publication-title: Nat. Commun.
– volume: 20
  start-page: 3658
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 1677
  year: 2011
  publication-title: ACS Nano
– volume: 6
  start-page: 871
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 21
  start-page: 4753
  year: 2009
  publication-title: Adv. Mater.
– volume: 22
  start-page: 3634
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 8695
  year: 2014
  publication-title: ACS Nano
– volume: 443
  start-page: 63
  year: 2006
  publication-title: Nature
– ident: e_1_2_2_65_2
  doi: 10.1021/nn100315s
– ident: e_1_2_2_29_2
  doi: 10.1002/adma.201302569
– ident: e_1_2_2_53_2
– ident: e_1_2_2_74_2
  doi: 10.1002/anie.201209548
– ident: e_1_2_2_38_2
  doi: 10.1021/ja203184k
– ident: e_1_2_2_30_2
– ident: e_1_2_2_52_2
  doi: 10.1021/nn503834u
– ident: e_1_2_2_25_2
  doi: 10.1002/cssc.201200680
– ident: e_1_2_2_72_2
  doi: 10.1002/anie.201209320
– ident: e_1_2_2_15_2
  doi: 10.1021/nn3021234
– ident: e_1_2_2_14_2
– ident: e_1_2_2_54_2
  doi: 10.1126/science.1152516
– ident: e_1_2_2_9_2
– ident: e_1_2_2_23_2
  doi: 10.1021/ja402450a
– ident: e_1_2_2_28_3
  doi: 10.1002/ange.200907289
– ident: e_1_2_2_42_2
  doi: 10.1021/ar300122m
– ident: e_1_2_2_60_2
– ident: e_1_2_2_17_3
  doi: 10.1002/ange.201307319
– ident: e_1_2_2_41_3
  doi: 10.1002/ange.201001634
– ident: e_1_2_2_66_2
– ident: e_1_2_2_2_3
  doi: 10.1002/ange.201104004
– ident: e_1_2_2_6_2
  doi: 10.1021/ja306501x
– ident: e_1_2_2_36_3
  doi: 10.1002/ange.201206720
– ident: e_1_2_2_51_2
  doi: 10.1039/c3ee23421e
– ident: e_1_2_2_43_2
– ident: e_1_2_2_73_2
  doi: 10.1021/ja306376s
– ident: e_1_2_2_56_2
  doi: 10.1039/c3cc00136a
– ident: e_1_2_2_19_2
  doi: 10.1002/adfm.201200186
– ident: e_1_2_2_57_2
– ident: e_1_2_2_40_2
– ident: e_1_2_2_20_2
  doi: 10.1039/c0ee00326c
– ident: e_1_2_2_55_2
  doi: 10.1039/c3cc41039k
– ident: e_1_2_2_59_2
  doi: 10.1021/ja904595t
– ident: e_1_2_2_27_2
– ident: e_1_2_2_7_2
  doi: 10.1038/ncomms1427
– ident: e_1_2_2_10_2
  doi: 10.1038/nnano.2012.72
– ident: e_1_2_2_68_2
  doi: 10.1002/adma.201203923
– ident: e_1_2_2_26_2
  doi: 10.1021/ja407552k
– ident: e_1_2_2_48_2
  doi: 10.1021/ja211433h
– ident: e_1_2_2_70_2
– ident: e_1_2_2_5_2
  doi: 10.1021/ja2104334
– ident: e_1_2_2_41_2
  doi: 10.1002/anie.201001634
– ident: e_1_2_2_47_2
  doi: 10.1002/adfm.201300510
– ident: e_1_2_2_71_2
  doi: 10.1016/j.apcatb.2007.09.047
– ident: e_1_2_2_12_2
  doi: 10.1038/nature05118
– ident: e_1_2_2_21_2
  doi: 10.1021/nn302674k
– ident: e_1_2_2_35_2
  doi: 10.1002/anie.201100170
– ident: e_1_2_2_36_2
  doi: 10.1002/anie.201206720
– ident: e_1_2_2_61_2
  doi: 10.1016/j.physrep.2004.10.006
– ident: e_1_2_2_67_2
  doi: 10.1002/adma.201300515
– ident: e_1_2_2_3_2
  doi: 10.1002/adma.201104392
– ident: e_1_2_2_13_2
  doi: 10.1021/ja3030565
– ident: e_1_2_2_45_2
  doi: 10.1021/am3013104
– ident: e_1_2_2_64_2
  doi: 10.1002/adma.201202424
– ident: e_1_2_2_62_2
  doi: 10.1039/c2ee23599d
– ident: e_1_2_2_69_2
  doi: 10.1039/c2sc20657a
– ident: e_1_2_2_49_2
  doi: 10.1021/ja105089w
– ident: e_1_2_2_4_2
  doi: 10.1038/nmat3457
– ident: e_1_2_2_11_2
  doi: 10.1038/nmat3087
– ident: e_1_2_2_16_2
  doi: 10.1021/nn1030127
– ident: e_1_2_2_24_2
  doi: 10.1002/anie.201303924
– ident: e_1_2_2_8_2
  doi: 10.1002/anie.201004631
– ident: e_1_2_2_1_2
– ident: e_1_2_2_32_2
  doi: 10.1021/la302050m
– ident: e_1_2_2_35_3
  doi: 10.1002/ange.201100170
– ident: e_1_2_2_74_3
  doi: 10.1002/ange.201209548
– ident: e_1_2_2_44_2
  doi: 10.1002/adma.200901581
– ident: e_1_2_2_46_2
  doi: 10.1039/c3nr01439h
– ident: e_1_2_2_72_3
  doi: 10.1002/ange.201209320
– ident: e_1_2_2_31_2
  doi: 10.1002/adfm.201001202
– ident: e_1_2_2_63_2
  doi: 10.1039/c2cc33433j
– ident: e_1_2_2_34_2
– ident: e_1_2_2_37_2
– ident: e_1_2_2_22_2
  doi: 10.1021/nn103584t
– ident: e_1_2_2_28_2
  doi: 10.1002/anie.200907289
– ident: e_1_2_2_33_2
  doi: 10.1002/adma.200501576
– ident: e_1_2_2_58_2
  doi: 10.1021/ja108039j
– ident: e_1_2_2_8_3
  doi: 10.1002/ange.201004631
– ident: e_1_2_2_17_2
  doi: 10.1002/anie.201307319
– ident: e_1_2_2_50_2
  doi: 10.1039/c3dt53133c
– ident: e_1_2_2_2_2
  doi: 10.1002/anie.201104004
– ident: e_1_2_2_39_2
  doi: 10.1039/c3cc38955c
– ident: e_1_2_2_24_3
  doi: 10.1002/ange.201303924
– ident: e_1_2_2_18_2
SSID ssj0028806
Score 2.6460512
Snippet Nitrogen‐doped carbon (NC) materials have been proposed as next‐generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and...
Nitrogen-doped carbon (NC) materials have been proposed as next-generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14235
SubjectTerms Carbon
Catalysis
Catalysts
Durability
Electrocatalysts
Graphene
Methanol
Methyl alcohol
Nitrogen
nitrogen doping
Oxygen
oxygen reduction reaction
porous carbon sheets
Reduction
Synergistic effect
Tolerances
Title ZIF-8 Derived Graphene-Based Nitrogen-Doped Porous Carbon Sheets as Highly Efficient and Durable Oxygen Reduction Electrocatalysts
URI https://api.istex.fr/ark:/67375/WNG-V4MHR39D-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201408990
https://www.ncbi.nlm.nih.gov/pubmed/25331053
https://www.proquest.com/docview/1634473401
https://www.proquest.com/docview/1635004170
https://www.proquest.com/docview/1701000961
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQWcAGyrOhBRkJwSqtE9t5LMs8OkViQAOlFZvIjm2BWiVVkkEdVixZ8o18CfcmM4FBPCTYJc515NjH9rFzfS4hjxIb5DJ1qR9oFfvCaeErJbTPDXeOC-Oizst3Gk2OxLMTefLDKf5OH6LfcMOe0Y7X2MGVrve-i4biCWx0zRL44woX7eiwhaxo1utHhQDO7ngR5z5GoV-pNrJwbz372qx0GSv44leUc53BtlPQ-DpRq8J3nienu_NG7-Yff9J1_J-v2yTXlvyU7neAukEu2eImuTJYhYW7RT6_PRx__fQloUPA7gdr6AFKXsOICYlPYUo0dPq-qUrAJSQMy3NIeFlW5bymA1XpsqCv3lnb1FTVFH1MzhZ01KpYwORHVWHocF7haS764mIB76AzlJZF8NBRF7Cn3W9a1E19mxyNR68HE38ZzsHPpYiZL50BwIRR4oR0HLp-zsLcSabiUFmWKJ3qSDqnrQgM8BCTOGZtlDDjUqB1LOV3yEZRFnaL0DQwqQ5UCha5SKxWuQllzuIQ8gSxdh7xV82Z5Uutcwy5cZZ1Ks1hhvWb9fXrkSe9_Xmn8vFby8ctOnozVZ2ib1wss-PpQfZGPJ_MeDrMjj2ys4JPthwW6gzIrxAxhzWtRx72j6EB8S-NKiw0BtpIVEGL2R9sYha0q094z90Omn2BQiDwQJq5R8IWYH_5oGx_ejjq7-79S6ZtchWv0cknkDtko6nm9j5QtUY_aLvjN8zQOOA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQuygb3o-BAkZCsErrJPYkWZZ5dAbaAZWWVmwsO7YFapVUSQZ1WLFkyTfyJdybTIIG8ZBgGefacuxj-9i5PpeQJ7H1U5G4xPO1ijzuNPeU4toLTehcyI3rN16-s_7kiL84Ea03Id6FafQhugM3HBn1fI0DHA-kt3-ohuIVbPTN4vjnCnbt6xjWu95VHXQKUgHAs7lgFIYexqFvdRtZsL2af2VdWscmvvgV6VzlsPUiNL5KdFv9xvfkdGte6a3000_Kjv_1fdfIlSVFpTsNpq6TSza7QTYGbWS4m-TLu-n42-evMR0CfD9aQ3dR9RomTUh8DquiobMPVZEDNCFhmJ9Dwuu8yOclHahC5xl9897aqqSqpOhmcrago1rIAtY_qjJDh_MCL3TRVxcLKIMeoLos4oeOmpg99ZHToqzKW-RoPDocTLxlRAcvFTxinnAGMBP0Y8eFC2H0pyxInWAqCpRlsdKJ7gvntOW-ASpiYses7cfMuASYHUvC22QtyzN7l9DEN4n2VQIWKY-tVqkJRMqiAPL4kXY94rX9KdOl3DlG3TiTjVBzILF9Zde-PfKssz9vhD5-a_m0hkdnpopTdI-LhDye7cq3fH9yECZDedwjmy1-5HJmKCXwX86jELa1PfK4ew0diD9qVGahM9BGoBBaxP5gEzG_3oBCOXcabHYVCoDDA28OeySoEfaXD5I7s-moe7r3L5kekY3J4f6e3JvOXt4nlzEdfX58sUnWqmJuHwBzq_TDemx-BziHPPs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQKwEb3o9AASMhWKV1EjuPZZnMdIbHUA2UVt1YdmwL1CoZJRnUYcWSJd_Il3CdTAKDeEiwS5zryLGP7WPn-lyEHsXay1hiEteTInKpkdQVgko3UIExAVUmbL18p-H4gD47Ykc_nOJv9SH6DTfbM5rx2nbwuTI730VD7Qls65pF7Y8rWLRv0hCuLC2a9QJSPqCzPV8UBK4NQ9_JNhJ_Zz3_2rS0aWv47Fecc53CNnPQ6DISXelb15OT7UUtt7OPPwk7_s_nXUGXVgQV77aIuorO6fwaujDo4sJdR5-PJ6Ovn77EOAXwftAK71nNaxgyIfEpzIkKT9_XZQHAhIS0mEPCflEWiwoPRCmLHL9-p3VdYVFh62RyusTDRsYCZj8scoXTRWmPc-FXZ0t4B55ZbVmLHjxsI_Y0G07Lqq5uoIPR8M1g7K7iObgZoxFxmVGAGD-MDWUmgL6fET8zjIjIF5rEQiYyZMZITT0FRETFhmgdxkSZBHgdSYKbaCMvcn0b4cRTifREAhYZjbUUmfJZRiIf8niRNA5yu-bk2Urs3MbcOOWtTLPPbf3yvn4d9KS3n7cyH7-1fNygozcT5Yl1josYP5zu8bf05XgWJCk_dNBWBx--GhcqDuyX0iiARa2DHvaPoQHtbxqRa2gMa8OsDFpE_mATEa9ZfsJ7brXQ7AvkA4MH1hw4yG8A9pcP4rvTybC_u_MvmR6g8_vpiL-YTJ_fRRdtsnX48dgW2qjLhb4HtK2W95ue-Q1y6zuz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ZIF-8+Derived+Graphene-Based+Nitrogen-Doped+Porous+Carbon+Sheets+as+Highly+Efficient+and+Durable+Oxygen+Reduction+Electrocatalysts&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhong%2C+Hai-xia&rft.au=Wang%2C+Jun&rft.au=Zhang%2C+Yu-wei&rft.au=Xu%2C+Wei-lin&rft.date=2014-12-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=53&rft.issue=51&rft.spage=14235&rft_id=info:doi/10.1002%2Fanie.201408990&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3520270421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon