ZIF-8 Derived Graphene-Based Nitrogen-Doped Porous Carbon Sheets as Highly Efficient and Durable Oxygen Reduction Electrocatalysts
Nitrogen‐doped carbon (NC) materials have been proposed as next‐generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich‐lik...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 53; no. 51; pp. 14235 - 14239 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
15.12.2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nitrogen‐doped carbon (NC) materials have been proposed as next‐generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich‐like zeolitic imidazolate framework (ZIF) derived graphene‐based nitrogen‐doped porous carbon sheets (GNPCSs) obtained by in situ growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open‐circuit voltage and power density are obtained in direct methanol fuel cells.
Nitrogen‐doped: A new oxygen reduction reaction electrocatalyst was obtained from ZIF‐derived porous carbon and graphene. The catalyst exhibits high activity, superior tolerance to methanol, and good stability in comparison to commercial Pt/C catalyst. |
---|---|
AbstractList | Nitrogen‐doped carbon (NC) materials have been proposed as next‐generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich‐like zeolitic imidazolate framework (ZIF) derived graphene‐based nitrogen‐doped porous carbon sheets (GNPCSs) obtained by in situ growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open‐circuit voltage and power density are obtained in direct methanol fuel cells. Nitrogen‐doped carbon (NC) materials have been proposed as next‐generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich‐like zeolitic imidazolate framework (ZIF) derived graphene‐based nitrogen‐doped porous carbon sheets (GNPCSs) obtained by in situ growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open‐circuit voltage and power density are obtained in direct methanol fuel cells. Nitrogen‐doped: A new oxygen reduction reaction electrocatalyst was obtained from ZIF‐derived porous carbon and graphene. The catalyst exhibits high activity, superior tolerance to methanol, and good stability in comparison to commercial Pt/C catalyst. Nitrogen-doped carbon (NC) materials have been proposed as next-generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich-like zeolitic imidazolate framework (ZIF) derived graphene-based nitrogen-doped porous carbon sheets (GNPCSs) obtained by insitu growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open-circuit voltage and power density are obtained in direct methanol fuel cells. Nitrogen-doped carbon (NC) materials have been proposed as next-generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich-like zeolitic imidazolate framework (ZIF) derived graphene-based nitrogen-doped porous carbon sheets (GNPCSs) obtained by in situ growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open-circuit voltage and power density are obtained in direct methanol fuel cells.Nitrogen-doped carbon (NC) materials have been proposed as next-generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich-like zeolitic imidazolate framework (ZIF) derived graphene-based nitrogen-doped porous carbon sheets (GNPCSs) obtained by in situ growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open-circuit voltage and power density are obtained in direct methanol fuel cells. Nitrogen-doped carbon (NC) materials have been proposed as next-generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich-like zeolitic imidazolate framework (ZIF) derived graphene-based nitrogen-doped porous carbon sheets (GNPCSs) obtained by insitu growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open-circuit voltage and power density are obtained in direct methanol fuel cells. Nitrogen-doped: A new oxygen reduction reaction electrocatalyst was obtained from ZIF-derived porous carbon and graphene. The catalyst exhibits high activity, superior tolerance to methanol, and good stability in comparison to commercial Pt/C catalyst. |
Author | Zhang, Yu-wei Xu, Wei-lin Zhang, Yue-fei Xing, Wei Xu, Dan Zhang, Xin-bo Wang, Jun Zhong, Hai-xia |
Author_xml | – sequence: 1 givenname: Hai-xia surname: Zhong fullname: Zhong, Hai-xia organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (P. R. China) energy.ciac.jl.cn – sequence: 2 givenname: Jun surname: Wang fullname: Wang, Jun organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (P. R. China) energy.ciac.jl.cn – sequence: 3 givenname: Yu-wei surname: Zhang fullname: Zhang, Yu-wei organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022 (China) – sequence: 4 givenname: Wei-lin surname: Xu fullname: Xu, Wei-lin organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022 (China) – sequence: 5 givenname: Wei surname: Xing fullname: Xing, Wei organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022 (China) – sequence: 6 givenname: Dan surname: Xu fullname: Xu, Dan organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (P. R. China) energy.ciac.jl.cn – sequence: 7 givenname: Yue-fei surname: Zhang fullname: Zhang, Yue-fei organization: Beijing University of Technology, Beijing, 100124 (P. R. China) – sequence: 8 givenname: Xin-bo surname: Zhang fullname: Zhang, Xin-bo email: xbzhang@ciac.ac.cn organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (P. R. China) energy.ciac.jl.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25331053$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAURiNURB-wZYkssWGT4Tq281iWmenMSGWKyqMSG8txrjsumWSwE2i2_HIcTVuhSqgr29I5n3zvdxwdNG2DUfSawoQCJO9VY3GSAOWQFwU8i46oSGjMsowdhDtnLM5yQQ-jY-9vAp_nkL6IDhPBGAXBjqI_31dncU5m6OwvrMjCqd0GG4w_KB-ea9u59hqbeNbuwvNT69rek6lyZduQzxvEzhPlydJeb-qBzI2x2mLTEdVUZNY7VdZILm6HkEAusep1Z4M3r1GHWK06VQ--8y-j50bVHl_dnSfR17P5l-kyPr9YrKan57EWPINYmKpEnaS54cKE7xcaEm0EqCxRCLkqizIVxpTIaUUFrXIDiGkOlSmEoFCwk-jdPnfn2p89-k5urddY16rBMJakGYSVQpHSp9GUCQAejIC-fYTetL1rwiAjxXnGOIyBb-6ovtxiJXfObpUb5H0RAeB7QLvWe4dGatupcV-dU7aWFOTYtxz7lg99B23ySLtP_q9Q7IXftsbhCVqerlfzf91471rf4e2Dq9wPmWYsE_JqvZDf-MflJStm8or9BTMoy9g |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_1002_slct_201601259 crossref_primary_10_1016_j_apsusc_2017_09_013 crossref_primary_10_1039_D0MA00433B crossref_primary_10_1002_gch2_201700086 crossref_primary_10_1021_accountsmr_3c00197 crossref_primary_10_1021_acscatal_7b02101 crossref_primary_10_1002_anie_202004213 crossref_primary_10_1016_j_ijhydene_2022_08_003 crossref_primary_10_1002_adma_201803339 crossref_primary_10_1016_j_jallcom_2016_09_247 crossref_primary_10_1016_j_apcata_2022_118712 crossref_primary_10_1021_acsami_6b05560 crossref_primary_10_1021_acsanm_9b01935 crossref_primary_10_1002_smll_202300621 crossref_primary_10_1039_C7TA00253J crossref_primary_10_1002_ange_201710997 crossref_primary_10_1002_slct_201800860 crossref_primary_10_1021_acscatal_9b03971 crossref_primary_10_1039_D0CC03253K crossref_primary_10_1016_j_ccr_2022_214967 crossref_primary_10_3390_nano11092418 crossref_primary_10_1039_C8SC05450A crossref_primary_10_1039_C6CY01031H crossref_primary_10_1039_C6RA27834E crossref_primary_10_1002_celc_201500473 crossref_primary_10_1039_D0TA11493F crossref_primary_10_1038_s41467_020_18820_y crossref_primary_10_1021_jacs_8b08682 crossref_primary_10_1021_acssuschemeng_9b07255 crossref_primary_10_1016_j_est_2024_111231 crossref_primary_10_1016_j_colsurfb_2022_112420 crossref_primary_10_4028_www_scientific_net_KEM_797_48 crossref_primary_10_1016_j_compositesb_2021_109256 crossref_primary_10_1016_j_cattod_2018_03_020 crossref_primary_10_1016_j_ijhydene_2022_09_073 crossref_primary_10_1002_aenm_201701416 crossref_primary_10_1002_fuce_202000175 crossref_primary_10_1016_j_carbon_2018_04_019 crossref_primary_10_1039_C5NR02497H crossref_primary_10_1039_C6CE00733C crossref_primary_10_1039_C7TA00299H crossref_primary_10_1007_s10934_021_01125_w crossref_primary_10_1016_j_micromeso_2017_11_052 crossref_primary_10_1016_j_apsusc_2019_07_181 crossref_primary_10_1002_adfm_201906081 crossref_primary_10_1016_j_hybadv_2024_100150 crossref_primary_10_1002_smll_202401103 crossref_primary_10_1002_ange_201814711 crossref_primary_10_1016_j_chemosphere_2019_05_173 crossref_primary_10_3390_molecules28237751 crossref_primary_10_1002_adfm_202409274 crossref_primary_10_1039_D0NJ01373K crossref_primary_10_1007_s40843_021_1732_1 crossref_primary_10_1016_j_ijhydene_2019_01_155 crossref_primary_10_1021_acsami_6b15106 crossref_primary_10_1002_adma_201803588 crossref_primary_10_1039_C7TA00276A crossref_primary_10_1039_C6TA04684C crossref_primary_10_1002_adma_201802011 crossref_primary_10_1002_smll_201704461 crossref_primary_10_1016_j_jcis_2021_02_008 crossref_primary_10_1021_acsami_9b11988 crossref_primary_10_1039_C9CY02364J crossref_primary_10_1016_j_rser_2024_114520 crossref_primary_10_1039_D3TA03934J crossref_primary_10_1039_C8CC06918B crossref_primary_10_1016_j_ijhydene_2022_09_090 crossref_primary_10_3390_batteries10020047 crossref_primary_10_1039_C5CP06970J crossref_primary_10_1039_C7TA01346A crossref_primary_10_1016_j_jssc_2019_04_014 crossref_primary_10_1002_smtd_202200207 crossref_primary_10_1002_advs_201802362 crossref_primary_10_1007_s12039_022_02067_9 crossref_primary_10_1109_MNANO_2017_2710380 crossref_primary_10_1002_admt_201700224 crossref_primary_10_1039_D0CY01130D crossref_primary_10_1016_j_jcis_2017_09_002 crossref_primary_10_1016_j_jcis_2021_03_070 crossref_primary_10_1039_C6NR02622B crossref_primary_10_1007_s00604_018_3032_y crossref_primary_10_1039_C6CS00426A crossref_primary_10_1007_s11771_023_5227_6 crossref_primary_10_1016_j_jcis_2021_12_046 crossref_primary_10_1039_C9TA07845B crossref_primary_10_1002_anie_201814605 crossref_primary_10_1016_j_diamond_2020_107999 crossref_primary_10_1021_acssuschemeng_8b03678 crossref_primary_10_1016_j_jallcom_2018_06_339 crossref_primary_10_1002_aenm_201701620 crossref_primary_10_1016_j_memsci_2020_117934 crossref_primary_10_1039_C8MH00859K crossref_primary_10_1016_j_nanoen_2017_01_045 crossref_primary_10_1021_acscatal_7b02165 crossref_primary_10_1039_C5CS00670H crossref_primary_10_1002_celc_201700955 crossref_primary_10_1002_smll_201907141 crossref_primary_10_1016_j_applthermaleng_2021_117366 crossref_primary_10_1016_j_electacta_2017_08_114 crossref_primary_10_1016_j_snb_2016_12_085 crossref_primary_10_1016_j_jcis_2023_05_028 crossref_primary_10_2139_ssrn_4170562 crossref_primary_10_1002_aenm_201700518 crossref_primary_10_1021_acsami_6b15154 crossref_primary_10_1007_s11581_020_03473_0 crossref_primary_10_1016_j_jelechem_2019_113478 crossref_primary_10_1016_j_ensm_2020_01_016 crossref_primary_10_1016_j_renene_2024_120613 crossref_primary_10_1016_j_mattod_2018_10_016 crossref_primary_10_1002_cssc_201801480 crossref_primary_10_1002_cssc_202001293 crossref_primary_10_1021_acs_langmuir_7b03083 crossref_primary_10_1007_s10853_016_0344_3 crossref_primary_10_1039_C5EE02474A crossref_primary_10_3390_chemengineering3010016 crossref_primary_10_1016_j_electacta_2019_135445 crossref_primary_10_1039_C8EE01472H crossref_primary_10_1002_aenm_201801257 crossref_primary_10_1039_C8TA05295F crossref_primary_10_1016_j_jallcom_2024_174103 crossref_primary_10_3390_catal8080301 crossref_primary_10_1039_C9ME00007K crossref_primary_10_1016_j_jece_2022_108351 crossref_primary_10_1002_chem_201806417 crossref_primary_10_1016_j_jpowsour_2019_05_084 crossref_primary_10_1039_C6TA02858F crossref_primary_10_1002_adfm_201606190 crossref_primary_10_1039_D0NR04458J crossref_primary_10_1002_slct_202103181 crossref_primary_10_1016_j_mtsust_2023_100371 crossref_primary_10_1038_ncomms15341 crossref_primary_10_1016_j_cej_2018_05_190 crossref_primary_10_1016_j_nanoen_2017_11_018 crossref_primary_10_1002_slct_201901709 crossref_primary_10_1007_s11356_022_22430_0 crossref_primary_10_1007_s00604_019_4103_4 crossref_primary_10_1016_j_carbon_2024_119816 crossref_primary_10_1016_j_chroma_2023_463929 crossref_primary_10_1016_j_talanta_2017_01_078 crossref_primary_10_1021_acs_jpcc_6b12868 crossref_primary_10_1016_j_apcatb_2022_122136 crossref_primary_10_1039_C7DT01694H crossref_primary_10_1016_j_flatc_2019_100109 crossref_primary_10_1021_acsami_5b10642 crossref_primary_10_1039_C8TA09839E crossref_primary_10_1002_slct_201902827 crossref_primary_10_1039_C7MH00801E crossref_primary_10_1007_s42114_020_00199_5 crossref_primary_10_1002_anie_201811573 crossref_primary_10_1002_anie_201507692 crossref_primary_10_1098_rsos_171824 crossref_primary_10_3390_nano12091593 crossref_primary_10_1002_ente_201900964 crossref_primary_10_1021_acsami_8b09851 crossref_primary_10_1016_j_carbon_2015_08_015 crossref_primary_10_1002_aenm_202001005 crossref_primary_10_1021_acsanm_9b00654 crossref_primary_10_1016_j_carbon_2018_11_055 crossref_primary_10_1016_j_apsusc_2018_09_168 crossref_primary_10_1016_j_watres_2018_03_007 crossref_primary_10_1021_acscatal_7b01649 crossref_primary_10_1016_j_apcatb_2019_118534 crossref_primary_10_1021_acsami_8b20619 crossref_primary_10_1021_acs_inorgchem_5b00544 crossref_primary_10_1002_celc_201901875 crossref_primary_10_1002_cctc_201800890 crossref_primary_10_1016_j_ijhydene_2018_06_156 crossref_primary_10_1002_adma_201505086 crossref_primary_10_1007_s11426_018_9441_4 crossref_primary_10_1021_acscatal_6b02573 crossref_primary_10_1007_s10450_024_00561_9 crossref_primary_10_1021_acssuschemeng_4c01329 crossref_primary_10_1016_j_cej_2018_02_111 crossref_primary_10_1016_j_apcatb_2019_117888 crossref_primary_10_1016_j_apcatb_2019_117886 crossref_primary_10_1016_j_carbon_2018_10_066 crossref_primary_10_1021_acssuschemeng_8b02170 crossref_primary_10_1016_j_cej_2020_127863 crossref_primary_10_1016_j_ijhydene_2017_07_076 crossref_primary_10_1002_adfm_201705356 crossref_primary_10_1016_j_carbon_2020_06_006 crossref_primary_10_1007_s41918_021_00113_7 crossref_primary_10_1016_j_jallcom_2018_11_368 crossref_primary_10_1016_j_micromeso_2016_08_022 crossref_primary_10_1016_j_jcis_2018_10_007 crossref_primary_10_1016_j_cej_2024_155822 crossref_primary_10_1039_C6TA02150F crossref_primary_10_1002_aenm_202003410 crossref_primary_10_1007_s12598_023_02380_3 crossref_primary_10_1016_j_jechem_2021_10_011 crossref_primary_10_1016_j_est_2021_102496 crossref_primary_10_1007_s12274_019_2310_2 crossref_primary_10_1016_j_aca_2023_341675 crossref_primary_10_1016_j_carbon_2018_02_003 crossref_primary_10_1021_acs_accounts_6b00317 crossref_primary_10_1002_advs_201600060 crossref_primary_10_1016_j_ensm_2017_03_007 crossref_primary_10_1039_D1NR02255E crossref_primary_10_1039_C7TA06658A crossref_primary_10_1002_aenm_201700363 crossref_primary_10_1021_acsaem_9b00023 crossref_primary_10_1038_srep43366 crossref_primary_10_1016_j_cej_2020_126312 crossref_primary_10_1016_j_nanoen_2016_05_029 crossref_primary_10_1039_C9TA02304F crossref_primary_10_1016_j_carbon_2018_10_052 crossref_primary_10_1016_j_cej_2020_127649 crossref_primary_10_1016_j_ccr_2022_214741 crossref_primary_10_1016_j_apsusc_2022_156281 crossref_primary_10_1039_D3CC01167D crossref_primary_10_3390_nano11061540 crossref_primary_10_1002_adma_201505045 crossref_primary_10_1002_anie_201604802 crossref_primary_10_1016_j_tifs_2024_104449 crossref_primary_10_1021_acsami_7b19332 crossref_primary_10_1088_1361_6528_ab6475 crossref_primary_10_1016_j_carbon_2018_04_061 crossref_primary_10_1039_D4QI01433B crossref_primary_10_1002_adma_201604898 crossref_primary_10_1107_S205698901701461X crossref_primary_10_1039_C6TA08892A crossref_primary_10_3389_fenrg_2021_673923 crossref_primary_10_1088_2053_1583_ab4439 crossref_primary_10_1016_j_carbon_2021_07_017 crossref_primary_10_1016_j_ijhydene_2017_11_084 crossref_primary_10_1021_acsami_8b11867 crossref_primary_10_1021_acsanm_8b00748 crossref_primary_10_1016_j_carbon_2019_11_064 crossref_primary_10_1002_chem_201903822 crossref_primary_10_1016_j_jcat_2018_03_021 crossref_primary_10_1016_j_mtener_2020_100574 crossref_primary_10_1002_anie_201509213 crossref_primary_10_1007_s40820_021_00669_5 crossref_primary_10_1016_j_mseb_2019_02_012 crossref_primary_10_1016_j_nanoen_2016_11_033 crossref_primary_10_1039_C9TA02338K crossref_primary_10_1039_C9CC04869C crossref_primary_10_1021_acsami_8b06272 crossref_primary_10_1002_cey2_484 crossref_primary_10_1021_acsami_7b16567 crossref_primary_10_1039_C5SC04668H crossref_primary_10_1016_j_est_2022_104827 crossref_primary_10_1016_j_ijhydene_2016_07_160 crossref_primary_10_1016_j_jhazmat_2020_122331 crossref_primary_10_1002_cjoc_201700752 crossref_primary_10_1021_acsanm_3c03751 crossref_primary_10_1039_D0QM01078B crossref_primary_10_1002_cssc_201600583 crossref_primary_10_1021_acsami_8b11406 crossref_primary_10_1021_acs_iecr_3c04383 crossref_primary_10_1039_C5SC04425A crossref_primary_10_1021_acsami_8b12739 crossref_primary_10_1016_j_nanoen_2017_05_016 crossref_primary_10_1021_acsami_8b21661 crossref_primary_10_1021_acsami_8b00504 crossref_primary_10_1007_s10853_017_1951_3 crossref_primary_10_1021_acsami_6b12501 crossref_primary_10_1016_j_cej_2021_131323 crossref_primary_10_1039_C6NJ01896C crossref_primary_10_1039_D1TA01407B crossref_primary_10_1039_D4NR02168A crossref_primary_10_1002_asia_201900727 crossref_primary_10_1002_ppsc_201700006 crossref_primary_10_1016_j_apsusc_2017_04_113 crossref_primary_10_1016_j_mtchem_2022_101210 crossref_primary_10_1088_2053_1591_ac9fae crossref_primary_10_1021_acsnano_7b09175 crossref_primary_10_1149_2_1231606jes crossref_primary_10_1002_cnma_202200521 crossref_primary_10_1002_ppsc_201800266 crossref_primary_10_1039_C8NR03527J crossref_primary_10_1039_C9RA08867A crossref_primary_10_1002_ange_202215985 crossref_primary_10_1016_j_ccr_2019_05_006 crossref_primary_10_1039_C8CY00483H crossref_primary_10_1016_j_cclet_2019_12_009 crossref_primary_10_1039_C8TA02385A crossref_primary_10_1021_acssuschemeng_7b01398 crossref_primary_10_1002_celc_201700299 crossref_primary_10_1021_acssuschemeng_7b02244 crossref_primary_10_1016_j_cej_2019_03_283 crossref_primary_10_1016_j_cej_2016_12_127 crossref_primary_10_1021_acssuschemeng_9b00264 crossref_primary_10_1021_acs_energyfuels_1c00658 crossref_primary_10_1016_j_cej_2021_132660 crossref_primary_10_1021_acs_langmuir_2c02240 crossref_primary_10_1016_j_energy_2021_122972 crossref_primary_10_1002_chem_201701389 crossref_primary_10_1016_j_ijhydene_2019_06_151 crossref_primary_10_1021_acscatal_1c04360 crossref_primary_10_1002_smtd_202100024 crossref_primary_10_1039_D1RA08817C crossref_primary_10_1039_C8TA00099A crossref_primary_10_1016_j_apsusc_2022_152529 crossref_primary_10_1002_celc_201600755 crossref_primary_10_1016_j_ccr_2017_02_010 crossref_primary_10_1002_chem_201904938 crossref_primary_10_1039_D3RA08052H crossref_primary_10_1039_C6TA05829A crossref_primary_10_1016_j_carbon_2016_12_016 crossref_primary_10_1016_j_colsurfa_2024_134766 crossref_primary_10_1016_j_snb_2020_129371 crossref_primary_10_1002_smll_202004142 crossref_primary_10_1039_C6NJ02679F crossref_primary_10_1039_C7RA04774F crossref_primary_10_3390_ma14102597 crossref_primary_10_1002_aenm_201800612 crossref_primary_10_1016_j_jcis_2018_01_020 crossref_primary_10_1016_j_apcatb_2019_118570 crossref_primary_10_1021_acsami_6b02522 crossref_primary_10_12677_JAPC_2021_103004 crossref_primary_10_1039_C6RA13646J crossref_primary_10_1002_chem_201702694 crossref_primary_10_1039_C8RA05102J crossref_primary_10_1002_asia_201901616 crossref_primary_10_1002_er_6834 crossref_primary_10_1016_j_cej_2021_129048 crossref_primary_10_1039_C9CS00806C crossref_primary_10_1002_smll_201503542 crossref_primary_10_1016_j_ijhydene_2021_08_220 crossref_primary_10_1016_j_apcatb_2016_10_084 crossref_primary_10_1016_j_micromeso_2021_111455 crossref_primary_10_1039_C8TA08476A crossref_primary_10_1002_ange_201507735 crossref_primary_10_1039_C6RA01623E crossref_primary_10_1016_j_carbon_2024_119125 crossref_primary_10_1039_C6TA08363C crossref_primary_10_1039_C8EN01196F crossref_primary_10_1016_j_jpowsour_2020_227841 crossref_primary_10_1021_acsanm_4c03542 crossref_primary_10_1039_C6TA05516H crossref_primary_10_1002_adma_201505855 crossref_primary_10_1039_D1CE01015H crossref_primary_10_1016_j_jphotochem_2019_03_004 crossref_primary_10_1021_acsomega_3c07706 crossref_primary_10_1002_cssc_201901436 crossref_primary_10_1016_j_jallcom_2019_152684 crossref_primary_10_1039_C5RA26386G crossref_primary_10_1016_j_jhazmat_2020_123498 crossref_primary_10_1016_j_envres_2022_114542 crossref_primary_10_1038_srep28847 crossref_primary_10_1016_j_snb_2015_06_157 crossref_primary_10_1007_s12274_017_1519_1 crossref_primary_10_1002_aesr_202100033 crossref_primary_10_1021_acsaem_9b01861 crossref_primary_10_1016_j_apsusc_2025_162859 crossref_primary_10_1002_eem2_12484 crossref_primary_10_1016_j_jssc_2019_03_036 crossref_primary_10_1002_cctc_201601284 crossref_primary_10_1016_j_microc_2021_107067 crossref_primary_10_1039_C5CE00828J crossref_primary_10_1039_C6TA02420C crossref_primary_10_1016_j_ijhydene_2017_01_187 crossref_primary_10_1002_ppsc_201700074 crossref_primary_10_1016_j_jpowsour_2022_231685 crossref_primary_10_1149_2_0171816jes crossref_primary_10_1002_aenm_201800013 crossref_primary_10_1002_chem_201903888 crossref_primary_10_1021_acsami_8b22351 crossref_primary_10_1016_j_ccr_2019_02_017 crossref_primary_10_1016_j_jssc_2019_03_028 crossref_primary_10_1016_j_nanoen_2016_09_040 crossref_primary_10_1039_C9DT04009A crossref_primary_10_1111_jace_19447 crossref_primary_10_1021_acsami_7b16936 crossref_primary_10_1002_advs_201901480 crossref_primary_10_1016_j_apmt_2019_05_013 crossref_primary_10_1016_j_jallcom_2020_154435 crossref_primary_10_1016_j_electacta_2023_141817 crossref_primary_10_1039_D2DT00551D crossref_primary_10_1016_j_cej_2017_04_103 crossref_primary_10_1016_j_jpowsour_2019_226778 crossref_primary_10_1021_acsami_2c11200 crossref_primary_10_1002_cssc_201901668 crossref_primary_10_1007_s40843_017_9191_5 crossref_primary_10_1002_ejic_201901244 crossref_primary_10_1021_acscatal_1c01473 crossref_primary_10_1002_cssc_201700245 crossref_primary_10_1021_acsami_1c21445 crossref_primary_10_1021_acsenergylett_9b02625 crossref_primary_10_1016_j_micromeso_2018_12_008 crossref_primary_10_1016_j_cej_2024_156009 crossref_primary_10_1002_chem_201604930 crossref_primary_10_1016_j_apcatb_2019_118192 crossref_primary_10_1002_adma_201502315 crossref_primary_10_1039_C5NR08008H crossref_primary_10_1021_acsanm_3c04856 crossref_primary_10_1016_j_fuel_2021_121562 crossref_primary_10_1038_s41427_019_0154_6 crossref_primary_10_1002_adfm_201605332 crossref_primary_10_1002_slct_201800251 crossref_primary_10_1002_smll_201900470 crossref_primary_10_1007_s12274_015_0845_4 crossref_primary_10_1021_acsami_6b06979 crossref_primary_10_1016_j_jcou_2022_101920 crossref_primary_10_1016_j_jiec_2022_03_046 crossref_primary_10_1002_elan_201700780 crossref_primary_10_1016_j_jelechem_2020_114498 crossref_primary_10_1007_s10853_017_1818_7 crossref_primary_10_1039_C8TA10925G crossref_primary_10_1002_celc_202100687 crossref_primary_10_1021_acsami_8b13472 crossref_primary_10_1016_j_talanta_2024_126887 crossref_primary_10_1002_ente_202301702 crossref_primary_10_1016_j_electacta_2016_12_052 crossref_primary_10_1002_adma_201703711 crossref_primary_10_1002_adsu_201700020 crossref_primary_10_1002_adfm_201502311 crossref_primary_10_1002_adfm_202200763 crossref_primary_10_1002_ange_201604802 crossref_primary_10_1038_srep39789 crossref_primary_10_1016_j_carbon_2019_09_029 crossref_primary_10_1016_j_jpowsour_2019_227659 crossref_primary_10_1039_C9RA09254D crossref_primary_10_1002_asia_202001150 crossref_primary_10_1021_acssuschemeng_7b02661 crossref_primary_10_1039_C7TA11140A crossref_primary_10_1021_acscatal_2c00164 crossref_primary_10_1021_acs_inorgchem_3c00584 crossref_primary_10_1007_s40843_017_9149_y crossref_primary_10_1002_celc_201900198 crossref_primary_10_1002_chem_201604703 crossref_primary_10_1002_cey2_44 crossref_primary_10_1088_2053_1591_aac67e crossref_primary_10_1002_slct_201800979 crossref_primary_10_1016_j_cej_2025_159553 crossref_primary_10_1016_j_energy_2023_128378 crossref_primary_10_1016_j_cej_2017_12_157 crossref_primary_10_1039_C7RA07850A crossref_primary_10_1016_j_jenvrad_2022_106895 crossref_primary_10_1002_ange_201814605 crossref_primary_10_1021_acsnano_6b05914 crossref_primary_10_1002_adma_201703614 crossref_primary_10_1016_j_jmst_2022_07_015 crossref_primary_10_1021_acssuschemeng_8b02014 crossref_primary_10_1039_D0TA01171A crossref_primary_10_1016_j_jcis_2024_01_144 crossref_primary_10_1016_j_jpowsour_2018_12_047 crossref_primary_10_1016_j_ensm_2021_04_044 crossref_primary_10_1002_celc_202001593 crossref_primary_10_1016_j_solener_2020_03_050 crossref_primary_10_1002_adma_201600979 crossref_primary_10_1021_acsaem_2c03833 crossref_primary_10_1039_C6NR07268B crossref_primary_10_1016_j_nanoen_2017_09_042 crossref_primary_10_1039_C9NR10109H crossref_primary_10_1016_j_cclet_2019_02_021 crossref_primary_10_1021_acsami_8b02226 crossref_primary_10_1016_j_ijhydene_2024_05_288 crossref_primary_10_1016_j_ccr_2022_214602 crossref_primary_10_1016_j_apcatb_2017_08_039 crossref_primary_10_1021_acs_energyfuels_4c05356 crossref_primary_10_1007_s12274_019_2339_2 crossref_primary_10_1039_C7TA08690C crossref_primary_10_1016_j_asems_2022_100029 crossref_primary_10_1038_srep27805 crossref_primary_10_1039_C7TA07387A crossref_primary_10_1039_D1NR01612A crossref_primary_10_1016_j_apsusc_2019_05_014 crossref_primary_10_3390_catal12121605 crossref_primary_10_1021_acsami_7b08115 crossref_primary_10_1002_aenm_201701771 crossref_primary_10_1016_j_cej_2022_137948 crossref_primary_10_1039_C5TA03507D crossref_primary_10_1039_C8NJ04919J crossref_primary_10_1039_C8TA04813D crossref_primary_10_1002_anie_201507735 crossref_primary_10_1021_acssensors_9b00914 crossref_primary_10_1016_j_nanoen_2023_109154 crossref_primary_10_1007_s40145_021_0466_1 crossref_primary_10_1039_C8RA03572E crossref_primary_10_1007_s10853_024_09732_z crossref_primary_10_26599_CF_2024_9200024 crossref_primary_10_1016_j_carbon_2019_07_071 crossref_primary_10_1039_C6TA03015G crossref_primary_10_1016_j_colsurfa_2021_126218 crossref_primary_10_1002_aenm_201802263 crossref_primary_10_1016_j_apsusc_2021_150114 crossref_primary_10_1016_j_jcis_2021_02_125 crossref_primary_10_1016_j_ccr_2022_214817 crossref_primary_10_1002_ange_201811573 crossref_primary_10_1039_C7NJ02765F crossref_primary_10_1016_j_jelechem_2020_114732 crossref_primary_10_1002_advs_201700691 crossref_primary_10_1016_j_cej_2021_134171 crossref_primary_10_1186_s11671_016_1489_3 crossref_primary_10_1002_smll_202310348 crossref_primary_10_1039_C9CS00871C crossref_primary_10_1016_j_cej_2022_137962 crossref_primary_10_1016_j_jiec_2018_01_002 crossref_primary_10_1016_j_jallcom_2022_164083 crossref_primary_10_1016_j_est_2019_101165 crossref_primary_10_1016_j_jcis_2017_07_117 crossref_primary_10_1038_srep43084 crossref_primary_10_1021_acsami_2c05717 crossref_primary_10_1039_C6CE02616H crossref_primary_10_1002_cctc_201600484 crossref_primary_10_1039_D1TC02729H crossref_primary_10_1021_acssuschemeng_8b04883 crossref_primary_10_1021_acs_inorgchem_6b00746 crossref_primary_10_1007_s42114_024_00996_2 crossref_primary_10_1016_j_jpowsour_2018_11_024 crossref_primary_10_1016_j_foodchem_2024_138382 crossref_primary_10_1002_smll_201704169 crossref_primary_10_1016_j_jhazmat_2022_130016 crossref_primary_10_1039_D0NJ04479B crossref_primary_10_1002_adfm_201704537 crossref_primary_10_1002_anie_201710997 crossref_primary_10_1021_acs_chemmater_8b02275 crossref_primary_10_1039_D4SE00084F crossref_primary_10_3390_catal8120607 crossref_primary_10_1016_j_electacta_2024_144872 crossref_primary_10_1007_s40242_020_0163_6 crossref_primary_10_1002_cssc_201700864 crossref_primary_10_1007_s00604_019_3298_8 crossref_primary_10_1039_C9NJ00508K crossref_primary_10_1039_C5CC07004J crossref_primary_10_1016_j_micromeso_2018_10_011 crossref_primary_10_1039_D1QI00394A crossref_primary_10_1149_1945_7111_ac5547 crossref_primary_10_1016_j_jssc_2021_122180 crossref_primary_10_1039_C7TC03784H crossref_primary_10_1002_cctc_201701566 crossref_primary_10_1016_j_apsusc_2019_06_076 crossref_primary_10_1039_C6CC01095D crossref_primary_10_1016_j_colsurfa_2022_128733 crossref_primary_10_1039_C5RA10484J crossref_primary_10_1039_C8TA11704G crossref_primary_10_1016_j_matpr_2022_09_603 crossref_primary_10_1016_j_jcis_2023_06_198 crossref_primary_10_1039_D1EE03614A crossref_primary_10_1039_C5RA21998A crossref_primary_10_1002_celc_201500536 crossref_primary_10_1002_ente_202100035 crossref_primary_10_3390_en11010167 crossref_primary_10_1021_acsnano_4c18558 crossref_primary_10_1007_s11664_020_08466_3 crossref_primary_10_1002_adsu_201800167 crossref_primary_10_1002_cctc_201601705 crossref_primary_10_1039_C7NR07235J crossref_primary_10_1021_acsmaterialslett_3c00302 crossref_primary_10_1016_j_electacta_2018_06_058 crossref_primary_10_1039_C8CC05703F crossref_primary_10_1002_ejic_201801328 crossref_primary_10_1002_batt_201900012 crossref_primary_10_1016_j_poly_2018_08_006 crossref_primary_10_1016_j_jallcom_2019_05_119 crossref_primary_10_3390_catal6080116 crossref_primary_10_1039_C5TA04330A crossref_primary_10_1016_j_ceramint_2019_01_143 crossref_primary_10_1016_j_jallcom_2024_173710 crossref_primary_10_1021_acs_inorgchem_1c00946 crossref_primary_10_1039_D3EY00066D crossref_primary_10_1002_chem_201705824 crossref_primary_10_1016_j_colsurfb_2019_110764 crossref_primary_10_1021_acsami_9b07991 crossref_primary_10_1039_D0AY01121E crossref_primary_10_1016_j_catcom_2022_106439 crossref_primary_10_1039_C9TA03410B crossref_primary_10_1016_j_jelechem_2019_113348 crossref_primary_10_1002_celc_201500199 crossref_primary_10_1016_j_apsusc_2020_147030 crossref_primary_10_1039_C6GC02118B crossref_primary_10_1007_s12598_022_02173_0 crossref_primary_10_1016_j_powtec_2023_118769 crossref_primary_10_1016_j_matlet_2020_128135 crossref_primary_10_1002_anie_201814711 crossref_primary_10_1016_j_electacta_2016_01_002 crossref_primary_10_1016_j_ensm_2018_11_034 crossref_primary_10_3390_app12136659 crossref_primary_10_1063_5_0201482 crossref_primary_10_1016_j_jhazmat_2022_130443 crossref_primary_10_1115_1_4051170 crossref_primary_10_2139_ssrn_3986797 crossref_primary_10_1016_j_envres_2019_109059 crossref_primary_10_1021_acsami_6b04189 crossref_primary_10_1002_adma_201904524 crossref_primary_10_2139_ssrn_4070648 crossref_primary_10_1016_j_xcrp_2022_100769 crossref_primary_10_1016_j_ijhydene_2022_11_256 crossref_primary_10_1002_asia_202000310 crossref_primary_10_1016_j_ica_2023_121753 crossref_primary_10_1039_D1SC00095K crossref_primary_10_1016_j_carbon_2023_01_034 crossref_primary_10_1002_anie_202215985 crossref_primary_10_1016_j_ecoenv_2019_110035 crossref_primary_10_1039_D1NJ03625D crossref_primary_10_1016_j_jpowsour_2018_04_082 crossref_primary_10_1002_cplu_201800392 crossref_primary_10_1021_acs_langmuir_3c03804 crossref_primary_10_1016_j_electacta_2018_04_001 crossref_primary_10_1016_j_nanoen_2017_08_044 crossref_primary_10_1039_D0TA05626J crossref_primary_10_1021_acsaem_0c02650 crossref_primary_10_1016_j_jhazmat_2024_134588 crossref_primary_10_1002_cctc_202002045 crossref_primary_10_1002_cnma_201900009 crossref_primary_10_1039_C7QI00233E crossref_primary_10_3390_ma15175837 crossref_primary_10_1016_j_ijhydene_2017_12_147 crossref_primary_10_1039_C6CC02013E crossref_primary_10_1021_acs_chemmater_5b02708 crossref_primary_10_1002_cctc_202200383 crossref_primary_10_1016_j_ceramint_2023_07_131 crossref_primary_10_3389_fmats_2019_00022 crossref_primary_10_1002_adfm_201604943 crossref_primary_10_1016_j_enchem_2019_100001 crossref_primary_10_1002_advs_202206239 crossref_primary_10_1021_jacs_5b02027 crossref_primary_10_1007_s10562_024_04615_z crossref_primary_10_1016_j_aca_2021_338812 crossref_primary_10_1016_j_electacta_2016_02_094 crossref_primary_10_1039_C6TA05102B crossref_primary_10_1002_advs_201800241 crossref_primary_10_1021_acsomega_0c00358 crossref_primary_10_1039_D2CC06895H crossref_primary_10_1039_C9CY00633H crossref_primary_10_1016_j_ijhydene_2018_08_059 crossref_primary_10_1039_C9NR02914A crossref_primary_10_1016_j_carbon_2019_10_004 crossref_primary_10_1016_j_carbpol_2020_117107 crossref_primary_10_1002_er_4389 crossref_primary_10_1016_j_jcis_2019_06_040 crossref_primary_10_1016_j_electacta_2019_05_139 crossref_primary_10_1016_j_carbon_2019_05_044 crossref_primary_10_1039_C4NR06631F crossref_primary_10_1021_acssuschemeng_8b04029 crossref_primary_10_1039_D2TA02957J crossref_primary_10_1021_acscatal_5b02325 crossref_primary_10_1002_celc_202001306 crossref_primary_10_1038_srep23667 crossref_primary_10_1002_aenm_201501497 crossref_primary_10_1016_j_apcatb_2022_121348 crossref_primary_10_1021_acsanm_8b00235 crossref_primary_10_2139_ssrn_4127683 crossref_primary_10_1088_1755_1315_384_1_012057 crossref_primary_10_1002_aenm_201801836 crossref_primary_10_1016_j_jpowsour_2016_11_114 crossref_primary_10_1039_C6TA08335H crossref_primary_10_1021_acs_accounts_2c00579 crossref_primary_10_1039_D0TA10797B crossref_primary_10_1016_j_jmst_2020_07_007 crossref_primary_10_3390_catal11050561 crossref_primary_10_1007_s11664_019_07187_6 crossref_primary_10_1016_j_nanoen_2015_08_007 crossref_primary_10_1021_acsnano_8b01056 crossref_primary_10_1021_acsami_1c22058 crossref_primary_10_1002_chem_201705675 crossref_primary_10_1039_C7TA04255H crossref_primary_10_1021_acsomega_7b00673 crossref_primary_10_1039_C8CY02210K crossref_primary_10_1021_acssuschemeng_7b02164 crossref_primary_10_1016_j_jpowsour_2023_232758 crossref_primary_10_1039_D1TA01768C crossref_primary_10_1002_admi_202100805 crossref_primary_10_1016_j_jelechem_2018_05_029 crossref_primary_10_1021_acsami_7b02490 crossref_primary_10_1016_j_apsusc_2018_08_183 crossref_primary_10_1039_C9MH01829H crossref_primary_10_1002_ange_201507692 crossref_primary_10_1021_acs_cgd_8b01925 crossref_primary_10_1016_j_seppur_2023_124994 crossref_primary_10_1002_aenm_202003970 crossref_primary_10_1039_D1SE00652E crossref_primary_10_1016_j_apcatb_2019_01_080 crossref_primary_10_1016_j_scib_2018_04_016 crossref_primary_10_1246_cl_190444 crossref_primary_10_1021_acs_chemrev_6b00558 crossref_primary_10_1016_j_electacta_2019_01_005 crossref_primary_10_1039_D0TA09544C crossref_primary_10_1016_j_elecom_2020_106758 crossref_primary_10_1021_acsami_8b12854 crossref_primary_10_1002_adma_201501310 crossref_primary_10_1016_j_indcrop_2024_119579 crossref_primary_10_1016_j_ccr_2023_215639 crossref_primary_10_1016_j_mtchem_2023_101632 crossref_primary_10_1002_aenm_201602002 crossref_primary_10_1016_j_jcis_2016_11_101 crossref_primary_10_1016_j_talanta_2019_05_034 crossref_primary_10_1016_j_ijhydene_2022_05_025 crossref_primary_10_1016_j_ijhydene_2018_09_223 crossref_primary_10_1021_acsami_7b12069 crossref_primary_10_1016_j_cej_2022_138126 crossref_primary_10_1016_j_cej_2021_132762 crossref_primary_10_1016_j_jpowsour_2019_226811 crossref_primary_10_1016_j_electacta_2016_04_037 crossref_primary_10_1016_j_ccr_2018_02_008 crossref_primary_10_1002_smll_202300036 crossref_primary_10_1039_C5SC03430B crossref_primary_10_1002_celc_201900905 crossref_primary_10_2139_ssrn_3972243 crossref_primary_10_1007_s12274_016_1400_7 crossref_primary_10_1016_j_cej_2018_02_078 crossref_primary_10_1021_acsomega_1c00419 crossref_primary_10_1016_j_talanta_2025_127761 crossref_primary_10_1002_adma_202312797 crossref_primary_10_1016_j_ccr_2021_213954 crossref_primary_10_1016_j_jechem_2019_09_019 crossref_primary_10_1038_natrevmats_2017_75 crossref_primary_10_1016_j_seppur_2024_127017 crossref_primary_10_1002_aenm_201800955 crossref_primary_10_1016_j_ijhydene_2022_06_280 crossref_primary_10_1021_acs_energyfuels_0c02173 crossref_primary_10_1021_acsnano_7b09064 crossref_primary_10_1016_j_jiec_2016_08_004 crossref_primary_10_1016_j_nanoen_2016_04_041 crossref_primary_10_1016_j_envres_2021_112184 crossref_primary_10_1039_C9DT02278C crossref_primary_10_1016_j_cej_2017_08_024 crossref_primary_10_1016_j_jallcom_2020_157604 crossref_primary_10_1021_acssuschemeng_9b05833 crossref_primary_10_1021_acs_chemrev_3c00005 crossref_primary_10_30919_es8d729 crossref_primary_10_1002_advs_202101653 crossref_primary_10_1021_acsnano_1c09402 crossref_primary_10_1039_C6EE01867J crossref_primary_10_1016_j_apsusc_2020_148235 crossref_primary_10_1016_j_jcis_2019_03_038 crossref_primary_10_1021_acsami_7b12095 crossref_primary_10_1007_s11356_023_29169_2 crossref_primary_10_1016_j_jpowsour_2016_02_020 crossref_primary_10_1016_j_electacta_2018_07_061 crossref_primary_10_1007_s12274_018_2199_1 crossref_primary_10_1016_j_carbon_2019_02_013 crossref_primary_10_1016_j_apsusc_2023_157155 crossref_primary_10_1016_j_jpowsour_2017_01_081 crossref_primary_10_1021_acs_nanolett_9b05024 crossref_primary_10_1039_C6TA02722A crossref_primary_10_1039_C6TA01525E crossref_primary_10_1016_j_ccr_2020_213214 crossref_primary_10_1039_C5EE00762C crossref_primary_10_1016_j_jece_2023_110864 crossref_primary_10_1002_smll_201604045 crossref_primary_10_1039_C6DT02678H crossref_primary_10_1002_cssc_202400570 crossref_primary_10_1016_j_jece_2021_105118 crossref_primary_10_1021_acs_inorgchem_8b03533 crossref_primary_10_1002_ange_201509213 crossref_primary_10_1021_acs_energyfuels_2c03812 crossref_primary_10_1039_C7CC05673G crossref_primary_10_1039_D1TA09491B crossref_primary_10_20964_2016_11_39 crossref_primary_10_1016_j_enbuild_2021_111616 crossref_primary_10_1021_acsami_7b13799 crossref_primary_10_1002_cctc_201900910 crossref_primary_10_1039_C6CC09442B crossref_primary_10_1002_smll_202104375 crossref_primary_10_1088_1361_6528_abe32f crossref_primary_10_1016_j_ensm_2018_02_011 crossref_primary_10_1039_C9TA12776C crossref_primary_10_1007_s12274_022_4415_2 crossref_primary_10_1021_acs_inorgchem_3c01536 crossref_primary_10_1016_j_jechem_2023_02_002 crossref_primary_10_1557_jmr_2017_416 crossref_primary_10_1016_j_ijhydene_2020_02_204 crossref_primary_10_1016_j_apsusc_2016_11_073 crossref_primary_10_1021_acsami_6b16851 crossref_primary_10_1039_C6TA02017H crossref_primary_10_1007_s12598_022_01987_2 crossref_primary_10_1016_j_cej_2018_07_138 crossref_primary_10_1016_j_ijhydene_2018_11_096 crossref_primary_10_1016_j_scib_2017_08_006 crossref_primary_10_1039_C6EE01297C crossref_primary_10_1126_sciadv_aap9252 crossref_primary_10_1002_cctc_201701794 crossref_primary_10_1016_j_jclepro_2023_139799 crossref_primary_10_1039_D0QI00371A crossref_primary_10_1039_C6NJ04114K crossref_primary_10_1016_j_carbon_2016_05_013 crossref_primary_10_1016_j_est_2022_106012 crossref_primary_10_1002_admi_201600047 crossref_primary_10_1016_j_cej_2019_02_179 crossref_primary_10_1002_ejic_201601527 crossref_primary_10_1039_D1TC01905H crossref_primary_10_1016_j_electacta_2019_01_085 crossref_primary_10_1016_j_snb_2019_01_105 crossref_primary_10_1016_j_cclet_2020_04_040 crossref_primary_10_2139_ssrn_4132892 crossref_primary_10_1039_D2DT02765H crossref_primary_10_1021_acsami_7b11120 crossref_primary_10_1002_smtd_201900277 crossref_primary_10_1002_ange_202004213 crossref_primary_10_1002_asia_201800747 crossref_primary_10_1016_j_biombioe_2024_107173 crossref_primary_10_1016_j_carbon_2016_05_021 crossref_primary_10_1016_j_jallcom_2018_09_298 crossref_primary_10_1021_acs_jpclett_2c02684 crossref_primary_10_1039_C8TA07994C crossref_primary_10_1002_adfm_201602158 crossref_primary_10_1016_S1872_5805_24_60828_0 crossref_primary_10_2139_ssrn_3972611 crossref_primary_10_1002_sstr_202200268 crossref_primary_10_1039_C7MH00358G crossref_primary_10_1039_D0NR04920D crossref_primary_10_1039_D2NR03617G crossref_primary_10_1002_adfm_202003871 crossref_primary_10_1021_acsami_8b03742 crossref_primary_10_1039_C8NR02337A crossref_primary_10_1016_j_apsusc_2018_11_052 crossref_primary_10_1016_j_cej_2019_123324 crossref_primary_10_1016_j_jhazmat_2019_120761 crossref_primary_10_1039_C9CY01131E crossref_primary_10_1021_acssuschemeng_8b04919 crossref_primary_10_1007_s12274_016_1130_x crossref_primary_10_1016_j_materresbull_2019_02_029 crossref_primary_10_1016_j_apcatb_2020_119325 crossref_primary_10_1016_j_jcis_2017_12_012 crossref_primary_10_1021_acs_inorgchem_1c02639 crossref_primary_10_1021_jacs_6b00757 crossref_primary_10_1039_C5TA05776K crossref_primary_10_1016_j_flatc_2021_100332 crossref_primary_10_1016_j_bios_2021_113686 crossref_primary_10_1039_C9EE00555B crossref_primary_10_1016_j_jpowsour_2016_06_098 crossref_primary_10_1016_j_ensm_2017_08_009 crossref_primary_10_1016_j_jpowsour_2020_227999 crossref_primary_10_1002_smll_201704207 crossref_primary_10_1021_acs_jpclett_9b02082 crossref_primary_10_1039_C6TA05196K crossref_primary_10_1021_acsami_7b15315 crossref_primary_10_1149_2_0361813jes crossref_primary_10_1016_j_ijhydene_2021_07_123 crossref_primary_10_1016_j_jallcom_2023_171513 crossref_primary_10_1016_j_jpowsour_2019_01_028 crossref_primary_10_1016_j_ijhydene_2020_06_276 crossref_primary_10_1021_acs_inorgchem_8b03594 crossref_primary_10_1016_j_solener_2018_09_018 crossref_primary_10_1016_j_electacta_2019_134777 crossref_primary_10_1016_j_nanoen_2023_108763 crossref_primary_10_1016_j_electacta_2018_08_038 crossref_primary_10_1039_C8TA00439K crossref_primary_10_1002_aenm_201602217 crossref_primary_10_1002_ppsc_201600233 crossref_primary_10_1039_C7CY01509G crossref_primary_10_1021_acsomega_8b01968 crossref_primary_10_1021_acs_cgd_1c00581 crossref_primary_10_1002_aenm_202203136 crossref_primary_10_1021_acsaem_1c03245 crossref_primary_10_1007_s11426_017_9118_6 crossref_primary_10_1016_j_jallcom_2023_171722 crossref_primary_10_1002_smll_201701143 crossref_primary_10_1016_j_matchemphys_2020_123043 crossref_primary_10_1039_C6EE00054A crossref_primary_10_1016_j_micromeso_2017_11_010 crossref_primary_10_1002_celc_201801859 crossref_primary_10_1021_acsanm_0c01029 crossref_primary_10_1039_C8NR10327E crossref_primary_10_1039_D2TA08709J crossref_primary_10_1039_D1RA03093K crossref_primary_10_1016_j_carbon_2018_07_013 crossref_primary_10_1039_C6MH00344C crossref_primary_10_1021_acscatal_9b03175 crossref_primary_10_1021_acsami_7b14686 crossref_primary_10_1021_acsanm_1c00177 crossref_primary_10_1016_j_snb_2015_06_052 crossref_primary_10_1016_j_nxsust_2023_100014 crossref_primary_10_1002_smll_201702002 crossref_primary_10_1002_aenm_201800569 |
Cites_doi | 10.1021/nn100315s 10.1002/adma.201302569 10.1002/anie.201209548 10.1021/ja203184k 10.1021/nn503834u 10.1002/cssc.201200680 10.1002/anie.201209320 10.1021/nn3021234 10.1126/science.1152516 10.1021/ja402450a 10.1002/ange.200907289 10.1021/ar300122m 10.1002/ange.201307319 10.1002/ange.201001634 10.1002/ange.201104004 10.1021/ja306501x 10.1002/ange.201206720 10.1039/c3ee23421e 10.1021/ja306376s 10.1039/c3cc00136a 10.1002/adfm.201200186 10.1039/c0ee00326c 10.1039/c3cc41039k 10.1021/ja904595t 10.1038/ncomms1427 10.1038/nnano.2012.72 10.1002/adma.201203923 10.1021/ja407552k 10.1021/ja211433h 10.1021/ja2104334 10.1002/anie.201001634 10.1002/adfm.201300510 10.1016/j.apcatb.2007.09.047 10.1038/nature05118 10.1021/nn302674k 10.1002/anie.201100170 10.1002/anie.201206720 10.1016/j.physrep.2004.10.006 10.1002/adma.201300515 10.1002/adma.201104392 10.1021/ja3030565 10.1021/am3013104 10.1002/adma.201202424 10.1039/c2ee23599d 10.1039/c2sc20657a 10.1021/ja105089w 10.1038/nmat3457 10.1038/nmat3087 10.1021/nn1030127 10.1002/anie.201303924 10.1002/anie.201004631 10.1021/la302050m 10.1002/ange.201100170 10.1002/ange.201209548 10.1002/adma.200901581 10.1039/c3nr01439h 10.1002/ange.201209320 10.1002/adfm.201001202 10.1039/c2cc33433j 10.1021/nn103584t 10.1002/anie.200907289 10.1002/adma.200501576 10.1021/ja108039j 10.1002/ange.201004631 10.1002/anie.201307319 10.1039/c3dt53133c 10.1002/anie.201104004 10.1039/c3cc38955c 10.1002/ange.201303924 |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7TM K9. 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/anie.201408990 |
DatabaseName | Istex CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 14239 |
ExternalDocumentID | 3520270421 25331053 10_1002_anie_201408990 ANIE201408990 ark_67375_WNG_V4MHR39D_W |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: 100 Talents Programme of the Chinese Academy of Sciences – fundername: National Program on Key Basic Research Project of China funderid: 2014CB932300; 2012CB215500 – fundername: National Natural Science Foundation of China funderid: 21422108; 51472232; 21271168 |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ABDBF ABJNI AETEA AEYWJ AGQPQ AGYGG CITATION NPM 7TM K9. 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c5470-5fdbec268f45f3319c02cf50a72ae08ab9b65ffbe41d151d8f0ee680df9551093 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 11:43:43 EDT 2025 Fri Jul 11 00:34:36 EDT 2025 Sun Jul 13 04:32:05 EDT 2025 Mon Jul 21 06:07:13 EDT 2025 Tue Jul 01 03:26:42 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Wed Jan 22 16:37:01 EST 2025 Wed Oct 30 09:52:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | electrocatalysts porous carbon sheets oxygen reduction reaction nitrogen doping |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5470-5fdbec268f45f3319c02cf50a72ae08ab9b65ffbe41d151d8f0ee680df9551093 |
Notes | We appreciate the constructive comments and insightful suggestions of the referees. This work was supported by the 100 Talents Programme of the Chinese Academy of Sciences, the National Program on Key Basic Research Project of China (973 Program, grant no. 2014CB932300 and 2012CB215500), and the National Natural Science Foundation of China (grant no. 21422108, 51472232, and 21271168). istex:F4D427C810A01E968833048472954B202E00AFD9 ark:/67375/WNG-V4MHR39D-W ArticleID:ANIE201408990 100 Talents Programme of the Chinese Academy of Sciences National Program on Key Basic Research Project of China - No. 2014CB932300; No. 2012CB215500 National Natural Science Foundation of China - No. 21422108; No. 51472232; No. 21271168 These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25331053 |
PQID | 1634473401 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1701000961 proquest_miscellaneous_1635004170 proquest_journals_1634473401 pubmed_primary_25331053 crossref_citationtrail_10_1002_anie_201408990 crossref_primary_10_1002_anie_201408990 wiley_primary_10_1002_anie_201408990_ANIE201408990 istex_primary_ark_67375_WNG_V4MHR39D_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 15, 2014 |
PublicationDateYYYYMMDD | 2014-12-15 |
PublicationDate_xml | – month: 12 year: 2014 text: December 15, 2014 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2014 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | Angew. Chem. 2014, 126, 1596. S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, K. Müllen, Adv. Funct. Mater. 2012, 22, 3634 R. Bashyam, P. Zelenay, Nature 2006, 443, 63 J. Lee, J. Kim, T. Hyeon, Adv. Mater. 2006, 18, 2073. Angew. Chem. 2013, 125, 4670. N. L. Torad, M. Hu, Y. Kamachi, K. Takai, M. Imura, M. Naito, Y. Yamauchi, Chem. Commun. 2013, 49, 2521. Angew. Chem. 2013, 125, 3192. Y. Y. Shao, J. H. Sui, G. P. Yin, Y. Z. Gao, Appl. Catal. B 2008, 79, 89 Angew. Chem. 2011, 123, 11161 W. Wei, H. Liang, K. Parvez, X. Zhuang, X. Feng, K. Müllen, Angew. Chem. Int. Ed. 2014, 53, 1570 J. Liang, X. Du, C. Gibson, X. W. Du, S. Z. Qiao, Adv. Mater. 2013, 25, 6226. Y. Deng, Y. Cai, Z. Sun, D. Gu, J. Wei, W. Li, X. Guo, J. Yang, D. Zhao, Adv. Funct. Mater. 2010, 20, 3658 W. Yang, T. P. Fellinger, M. Antonietti, J. Am. Chem. Soc. 2011, 133, 206 H. G. Wang, Z. Wu, F. L. Meng, D. L. Ma, X. L. Huang, L. M. Wang, X. B. Zhang, ChemSusChem 2013, 6, 56. R. Silva, D. Voiry, M. Chhowalla, T. Asefa, J. Am. Chem. Soc. 2013, 135, 7823 P. Chen, T. Y. Xiao, Y. H. Qian, S. S. Li, S. H. Yu, Adv. Mater. 2013, 25, 3192 Angew. Chem. 2010, 122, 2619 M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 2005, 409, 47 Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J. C. Idrobo, S. J. Pennycook, H. Dai, Nat. Nanotechnol. 2012, 7, 394 K. Parvez, S. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. Feng, K. Müllen, ACS Nano 2012, 6, 9541. Z. H. Sheng, L. Shao, J. J. Chen, W. J. Bao, F. B. Wang, X. H. Xia, ACS Nano 2011, 5, 4350. M. Jahan, Q. L. Bao, K. P. Loh, J. Am. Chem. Soc. 2012, 134, 6707 X. Huang, B. Zheng, Z. Liu, C. Tan, J. Liu, B. Chen, H. Li, J. Chen, X. Zhang, Z. Fan, W. Zhang, Z. Guo, F. Huo, Y. Yang, L.-H. Xie, W. Huang, H. Zhang, ACS Nano 2014, 8, 8695. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780 R. L. Liu, D. Q. Wu, X. L. Feng, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 2565 D. Zhao, J. L. Shui, C. Chen, X. Chen, B. M. Reprogle, D. Wang, D. J. Liu, Chem. Sci. 2012, 3, 3200. H. Wang, Y. Liang, Y. Li, H. Dai, Angew. Chem. Int. Ed. 2011, 50, 10969 D. F. van der Vliet, C. Wang, D. Tripkovic, D. Strmcnik, X. F. Zhang, M. K. Debe, R. T. Atanasoski, N. M. Markovic, V. R. Stamenkovic, Nat. Mater. 2012, 11, 1051 S. Yang, X. Feng, X. Wang, K. Müllen, Angew. Chem. Int. Ed. 2011, 50, 5339 H. L. Jiang, B. Liu, Y. Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, Q. Xu, J. Am. Chem. Soc. 2011, 133, 11854 D. S. Yang, D. Bhattacharjya, S. Inamdar, J. Park, J. S. Yu, J. Am. Chem. Soc. 2012, 134, 16127. Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2013, 52, 3110 Angew. Chem. 2011, 123, 442. J. H. Lee, J. Jaworski, J. H. Jung, Nanoscale 2013, 5, 8533 Angew. Chem. 2012, 124, 11664. R. Kumar, K. Jayaramulu, T. K. Maji, C. N. R. Rao, Dalton Trans. 2014, 43, 7383 X. H. Li, M. Antonietti, Angew. Chem. Int. Ed. 2013, 52, 4572 E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian, J. Herranz, J. P. Dodelet, Nat. Commun. 2011, 2, 416 K. Ai, Y. Liu, C. Ruan, L. Lu, G. M. Lu, Adv. Mater. 2013, 25, 998 M. Jahan, Q. Bao, J. X. Yang, K. P. Loh, J. Am. Chem. Soc. 2010, 132, 14487 Z. Wang, R. Jia, J. Zheng, J. Zhao, L. Li, J. Song, Z. Zhu, ACS Nano 2011, 5, 1677 W. Ding, Z. Wei, S. Chen, X. Qi, T. Yang, J. Hu, D. Wang, L. J. Wan, S. F. Alvi, L. Li, Angew. Chem. Int. Ed. 2013, 52, 11755 S. Chen, Z. Wei, X. Qi, L. Dong, Y. G. Guo, L. Wan, Z. Shao, L. Li, J. Am. Chem. Soc. 2012, 134, 13252 Angew. Chem. 2010, 122, 4905 S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu, Adv. Mater. 2012, 24, 5593. S. Guo, S. Sun, J. Am. Chem. Soc. 2012, 134, 2492. S. Liu, L. Sun, F. Xu, J. Zhang, C. Jiao, F. Li, Z. Li, S. Wang, Z. Wang, X. Jiang, H. Zhou, L. Yang, C. Schick, Energy Environ. Sci. 2013, 6, 818 Z. Wen, S. Ci, F. Zhang, X. Feng, S. Cui, S. Mao, S. Luo, Z. He, J. Chen, Adv. Mater. 2012, 24, 1399 H. W. Liang, W. Wei, Z. S. Wu, X. Feng, K. Müllen, J. Am. Chem. Soc. 2013, 135, 16002. J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 11496 R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, O. M. Yaghi, Science 2008, 319, 939 D. S. Geng, Y. Chen, Y. G. Chen, Y. L. Li, R. Y. Li, X. L. Sun, S. Y. Ye, S. Knights, Energy Environ. Sci. 2011, 4, 760. S. Yang, X. Feng, L. Wang, K. Tang, J. Maier, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 4795 M. Jahan, Z. Liu, K. P. Loh, Adv. Funct. Mater. 2013, 23, 5363 C. Petit, T. J. Bandosz, Adv. Mater. 2009, 21, 4753 R. Kumar, K. Jayaramulu, T. K. Maji, C. N. Rao, Chem. Commun. 2013, 49, 4947. C. H. Choi, S. H. Park, S. I. Woo, ACS Nano 2012, 6, 7084 L. Dai, Acc. Chem. Res. 2013, 46, 31. S. Sun, G. Zhang, D. Geng, Y. Chen, R. Li, M. Cai, X. Sun, Angew. Chem. Int. Ed. 2011, 50, 422 H. T. Kwon, H. K. Jeong, Chem. Commun. 2013, 49, 3854 Z. H. Huang, G. Liu, F. Kang, ACS Appl. Mater. Interfaces 2012, 4, 4942 Z. Li, Z. Xu, X. Tan, H. Wang, C. M. B. Holt, T. Stephenson, B. C. Olsen, D. Mitlin, Energy Environ. Sci. 2013, 6, 871. W. Chaikittisilp, M. Hu, H. Wang, H. S. Huang, T. Fujita, K. C. Wu, L. C. Chen, Y. Yamauchi, K. Ariga, Chem. Commun. 2012, 48, 7259. Z. S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 9082. Angew. Chem. 2011, 123, 5451 Y. Tang, B. L. Allen, D. R. Kauffman, A. Star, J. Am. Chem. Soc. 2009, 131, 13200. N. P. Stadie, J. J. Vajo, R. W. Cumberland, A. A. Wilson, C. C. Ahn, B. Fultz, Langmuir 2012, 28, 10057 Y. Wang, Y. Y. Shao, D. W. Matson, J. H. Li, Y. H. Lin, ACS Nano 2010, 4, 1790. Angew. Chem. 2013, 125, 11971. 2014 2014; 53 126 2013; 25 2011; 2 2009; 21 2013; 49 2013; 46 2013; 23 2006; 18 2011; 10 2008; 79 2010 2010; 49 122 2009; 131 2011; 4 2013; 5 2012; 11 2011; 5 2013; 6 2011; 133 2013 2013; 52 125 2014; 43 2010; 20 2012; 3 2012; 134 2012 2012; 51 124 2008; 319 2010; 132 2013; 135 2011 2011; 50 123 2012; 28 2005; 409 2012; 48 2012; 6 2012; 24 2012; 7 2014; 8 2012; 4 2012; 22 2010; 4 2006; 443 e_1_2_2_2_3 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_22_2 e_1_2_2_49_2 e_1_2_2_6_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_62_2 e_1_2_2_41_2 e_1_2_2_64_2 e_1_2_2_28_3 e_1_2_2_41_3 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_66_2 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_68_2 e_1_2_2_8_3 e_1_2_2_24_3 e_1_2_2_60_2 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_59_2 e_1_2_2_36_3 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_51_2 e_1_2_2_72_3 e_1_2_2_74_2 e_1_2_2_72_2 e_1_2_2_74_3 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_17_3 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_55_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_57_2 e_1_2_2_70_2 e_1_2_2_3_2 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_69_2 e_1_2_2_5_2 e_1_2_2_21_2 e_1_2_2_1_2 e_1_2_2_40_2 e_1_2_2_61_2 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_63_2 e_1_2_2_7_2 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_65_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_67_2 e_1_2_2_35_3 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_58_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_50_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_52_2 e_1_2_2_73_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_54_2 e_1_2_2_14_2 e_1_2_2_35_2 e_1_2_2_56_2 e_1_2_2_71_2 |
References_xml | – reference: S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, K. Müllen, Adv. Funct. Mater. 2012, 22, 3634; – reference: H. T. Kwon, H. K. Jeong, Chem. Commun. 2013, 49, 3854; – reference: D. S. Yang, D. Bhattacharjya, S. Inamdar, J. Park, J. S. Yu, J. Am. Chem. Soc. 2012, 134, 16127. – reference: X. H. Li, M. Antonietti, Angew. Chem. Int. Ed. 2013, 52, 4572; – reference: Y. Deng, Y. Cai, Z. Sun, D. Gu, J. Wei, W. Li, X. Guo, J. Yang, D. Zhao, Adv. Funct. Mater. 2010, 20, 3658; – reference: W. Yang, T. P. Fellinger, M. Antonietti, J. Am. Chem. Soc. 2011, 133, 206; – reference: W. Wei, H. Liang, K. Parvez, X. Zhuang, X. Feng, K. Müllen, Angew. Chem. Int. Ed. 2014, 53, 1570; – reference: K. Ai, Y. Liu, C. Ruan, L. Lu, G. M. Lu, Adv. Mater. 2013, 25, 998; – reference: M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 2005, 409, 47; – reference: S. Liu, L. Sun, F. Xu, J. Zhang, C. Jiao, F. Li, Z. Li, S. Wang, Z. Wang, X. Jiang, H. Zhou, L. Yang, C. Schick, Energy Environ. Sci. 2013, 6, 818; – reference: Y. Wang, Y. Y. Shao, D. W. Matson, J. H. Li, Y. H. Lin, ACS Nano 2010, 4, 1790. – reference: Angew. Chem. 2011, 123, 442. – reference: J. Liang, X. Du, C. Gibson, X. W. Du, S. Z. Qiao, Adv. Mater. 2013, 25, 6226. – reference: J. Lee, J. Kim, T. Hyeon, Adv. Mater. 2006, 18, 2073. – reference: Angew. Chem. 2013, 125, 3192. – reference: R. L. Liu, D. Q. Wu, X. L. Feng, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 2565; – reference: Z. S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 9082. – reference: H. G. Wang, Z. Wu, F. L. Meng, D. L. Ma, X. L. Huang, L. M. Wang, X. B. Zhang, ChemSusChem 2013, 6, 56. – reference: Z. H. Huang, G. Liu, F. Kang, ACS Appl. Mater. Interfaces 2012, 4, 4942; – reference: Y. Y. Shao, J. H. Sui, G. P. Yin, Y. Z. Gao, Appl. Catal. B 2008, 79, 89; – reference: X. Huang, B. Zheng, Z. Liu, C. Tan, J. Liu, B. Chen, H. Li, J. Chen, X. Zhang, Z. Fan, W. Zhang, Z. Guo, F. Huo, Y. Yang, L.-H. Xie, W. Huang, H. Zhang, ACS Nano 2014, 8, 8695. – reference: Angew. Chem. 2010, 122, 2619; – reference: N. P. Stadie, J. J. Vajo, R. W. Cumberland, A. A. Wilson, C. C. Ahn, B. Fultz, Langmuir 2012, 28, 10057; – reference: M. Jahan, Q. L. Bao, K. P. Loh, J. Am. Chem. Soc. 2012, 134, 6707; – reference: E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian, J. Herranz, J. P. Dodelet, Nat. Commun. 2011, 2, 416; – reference: D. Zhao, J. L. Shui, C. Chen, X. Chen, B. M. Reprogle, D. Wang, D. J. Liu, Chem. Sci. 2012, 3, 3200. – reference: S. Sun, G. Zhang, D. Geng, Y. Chen, R. Li, M. Cai, X. Sun, Angew. Chem. Int. Ed. 2011, 50, 422; – reference: Z. Wang, R. Jia, J. Zheng, J. Zhao, L. Li, J. Song, Z. Zhu, ACS Nano 2011, 5, 1677; – reference: P. Chen, T. Y. Xiao, Y. H. Qian, S. S. Li, S. H. Yu, Adv. Mater. 2013, 25, 3192; – reference: R. Kumar, K. Jayaramulu, T. K. Maji, C. N. R. Rao, Dalton Trans. 2014, 43, 7383; – reference: R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, O. M. Yaghi, Science 2008, 319, 939; – reference: Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J. C. Idrobo, S. J. Pennycook, H. Dai, Nat. Nanotechnol. 2012, 7, 394; – reference: M. Jahan, Z. Liu, K. P. Loh, Adv. Funct. Mater. 2013, 23, 5363; – reference: Angew. Chem. 2011, 123, 11161; – reference: H. W. Liang, W. Wei, Z. S. Wu, X. Feng, K. Müllen, J. Am. Chem. Soc. 2013, 135, 16002. – reference: Y. Tang, B. L. Allen, D. R. Kauffman, A. Star, J. Am. Chem. Soc. 2009, 131, 13200. – reference: D. S. Geng, Y. Chen, Y. G. Chen, Y. L. Li, R. Y. Li, X. L. Sun, S. Y. Ye, S. Knights, Energy Environ. Sci. 2011, 4, 760. – reference: Z. Li, Z. Xu, X. Tan, H. Wang, C. M. B. Holt, T. Stephenson, B. C. Olsen, D. Mitlin, Energy Environ. Sci. 2013, 6, 871. – reference: R. Kumar, K. Jayaramulu, T. K. Maji, C. N. Rao, Chem. Commun. 2013, 49, 4947. – reference: Angew. Chem. 2013, 125, 11971. – reference: Z. H. Sheng, L. Shao, J. J. Chen, W. J. Bao, F. B. Wang, X. H. Xia, ACS Nano 2011, 5, 4350. – reference: H. L. Jiang, B. Liu, Y. Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, Q. Xu, J. Am. Chem. Soc. 2011, 133, 11854; – reference: J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 11496; – reference: M. Jahan, Q. Bao, J. X. Yang, K. P. Loh, J. Am. Chem. Soc. 2010, 132, 14487; – reference: R. Silva, D. Voiry, M. Chhowalla, T. Asefa, J. Am. Chem. Soc. 2013, 135, 7823; – reference: Angew. Chem. 2010, 122, 4905; – reference: Angew. Chem. 2013, 125, 4670. – reference: J. H. Lee, J. Jaworski, J. H. Jung, Nanoscale 2013, 5, 8533; – reference: S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu, Adv. Mater. 2012, 24, 5593. – reference: Z. Wen, S. Ci, F. Zhang, X. Feng, S. Cui, S. Mao, S. Luo, Z. He, J. Chen, Adv. Mater. 2012, 24, 1399; – reference: S. Yang, X. Feng, X. Wang, K. Müllen, Angew. Chem. Int. Ed. 2011, 50, 5339; – reference: N. L. Torad, M. Hu, Y. Kamachi, K. Takai, M. Imura, M. Naito, Y. Yamauchi, Chem. Commun. 2013, 49, 2521. – reference: Angew. Chem. 2011, 123, 5451; – reference: R. Bashyam, P. Zelenay, Nature 2006, 443, 63; – reference: Angew. Chem. 2012, 124, 11664. – reference: Angew. Chem. 2014, 126, 1596. – reference: D. F. van der Vliet, C. Wang, D. Tripkovic, D. Strmcnik, X. F. Zhang, M. K. Debe, R. T. Atanasoski, N. M. Markovic, V. R. Stamenkovic, Nat. Mater. 2012, 11, 1051; – reference: S. Guo, S. Sun, J. Am. Chem. Soc. 2012, 134, 2492. – reference: H. Wang, Y. Liang, Y. Li, H. Dai, Angew. Chem. Int. Ed. 2011, 50, 10969; – reference: C. Petit, T. J. Bandosz, Adv. Mater. 2009, 21, 4753; – reference: Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780; – reference: S. Yang, X. Feng, L. Wang, K. Tang, J. Maier, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 4795; – reference: K. Parvez, S. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. Feng, K. Müllen, ACS Nano 2012, 6, 9541. – reference: W. Chaikittisilp, M. Hu, H. Wang, H. S. Huang, T. Fujita, K. C. Wu, L. C. Chen, Y. Yamauchi, K. Ariga, Chem. Commun. 2012, 48, 7259. – reference: C. H. Choi, S. H. Park, S. I. Woo, ACS Nano 2012, 6, 7084; – reference: S. Chen, Z. Wei, X. Qi, L. Dong, Y. G. Guo, L. Wan, Z. Shao, L. Li, J. Am. Chem. Soc. 2012, 134, 13252; – reference: L. Dai, Acc. Chem. Res. 2013, 46, 31. – reference: Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2013, 52, 3110; – reference: W. Ding, Z. Wei, S. Chen, X. Qi, T. Yang, J. Hu, D. Wang, L. J. Wan, S. F. Alvi, L. Li, Angew. Chem. Int. Ed. 2013, 52, 11755; – volume: 24 start-page: 5593 year: 2012 publication-title: Adv. Mater. – volume: 4 start-page: 1790 year: 2010 publication-title: ACS Nano – volume: 49 122 start-page: 4795 4905 year: 2010 2010 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 8533 year: 2013 publication-title: Nanoscale – volume: 4 start-page: 760 year: 2011 publication-title: Energy Environ. Sci. – volume: 11 start-page: 1051 year: 2012 publication-title: Nat. Mater. – volume: 25 start-page: 6226 year: 2013 publication-title: Adv. Mater. – volume: 49 start-page: 4947 year: 2013 publication-title: Chem. Commun. – volume: 79 start-page: 89 year: 2008 publication-title: Appl. Catal. B – volume: 132 start-page: 14487 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 9082 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 206 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 409 start-page: 47 year: 2005 publication-title: Phys. Rep. – volume: 6 start-page: 7084 year: 2012 publication-title: ACS Nano – volume: 49 start-page: 2521 year: 2013 publication-title: Chem. Commun. – volume: 10 start-page: 780 year: 2011 publication-title: Nat. Mater. – volume: 23 start-page: 5363 year: 2013 publication-title: Adv. Funct. Mater. – volume: 52 125 start-page: 3110 3192 year: 2013 2013 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 319 start-page: 939 year: 2008 publication-title: Science – volume: 7 start-page: 394 year: 2012 publication-title: Nat. Nanotechnol. – volume: 49 122 start-page: 2565 2619 year: 2010 2010 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 125 start-page: 4572 4670 year: 2013 2013 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 28 start-page: 10057 year: 2012 publication-title: Langmuir – volume: 134 start-page: 6707 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 13200 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 7823 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 2492 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 9541 year: 2012 publication-title: ACS Nano – volume: 24 start-page: 1399 year: 2012 publication-title: Adv. Mater. – volume: 134 start-page: 13252 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 50 123 start-page: 422 442 year: 2011 2011 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 start-page: 7383 year: 2014 publication-title: Dalton Trans. – volume: 49 start-page: 3854 year: 2013 publication-title: Chem. Commun. – volume: 135 start-page: 16002 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 31 year: 2013 publication-title: Acc. Chem. Res. – volume: 4 start-page: 4942 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 52 125 start-page: 11755 11971 year: 2013 2013 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 126 start-page: 1570 1596 year: 2014 2014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 818 year: 2013 publication-title: Energy Environ. Sci. – volume: 50 123 start-page: 5339 5451 year: 2011 2011 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 4350 year: 2011 publication-title: ACS Nano – volume: 25 start-page: 3192 year: 2013 publication-title: Adv. Mater. – volume: 51 124 start-page: 11496 11664 year: 2012 2012 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 123 start-page: 10969 11161 year: 2011 2011 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 16127 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 11854 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 998 year: 2013 publication-title: Adv. Mater. – volume: 6 start-page: 56 year: 2013 publication-title: ChemSusChem – volume: 18 start-page: 2073 year: 2006 publication-title: Adv. Mater. – volume: 48 start-page: 7259 year: 2012 publication-title: Chem. Commun. – volume: 3 start-page: 3200 year: 2012 publication-title: Chem. Sci. – volume: 2 start-page: 416 year: 2011 publication-title: Nat. Commun. – volume: 20 start-page: 3658 year: 2010 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 1677 year: 2011 publication-title: ACS Nano – volume: 6 start-page: 871 year: 2013 publication-title: Energy Environ. Sci. – volume: 21 start-page: 4753 year: 2009 publication-title: Adv. Mater. – volume: 22 start-page: 3634 year: 2012 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 8695 year: 2014 publication-title: ACS Nano – volume: 443 start-page: 63 year: 2006 publication-title: Nature – ident: e_1_2_2_65_2 doi: 10.1021/nn100315s – ident: e_1_2_2_29_2 doi: 10.1002/adma.201302569 – ident: e_1_2_2_53_2 – ident: e_1_2_2_74_2 doi: 10.1002/anie.201209548 – ident: e_1_2_2_38_2 doi: 10.1021/ja203184k – ident: e_1_2_2_30_2 – ident: e_1_2_2_52_2 doi: 10.1021/nn503834u – ident: e_1_2_2_25_2 doi: 10.1002/cssc.201200680 – ident: e_1_2_2_72_2 doi: 10.1002/anie.201209320 – ident: e_1_2_2_15_2 doi: 10.1021/nn3021234 – ident: e_1_2_2_14_2 – ident: e_1_2_2_54_2 doi: 10.1126/science.1152516 – ident: e_1_2_2_9_2 – ident: e_1_2_2_23_2 doi: 10.1021/ja402450a – ident: e_1_2_2_28_3 doi: 10.1002/ange.200907289 – ident: e_1_2_2_42_2 doi: 10.1021/ar300122m – ident: e_1_2_2_60_2 – ident: e_1_2_2_17_3 doi: 10.1002/ange.201307319 – ident: e_1_2_2_41_3 doi: 10.1002/ange.201001634 – ident: e_1_2_2_66_2 – ident: e_1_2_2_2_3 doi: 10.1002/ange.201104004 – ident: e_1_2_2_6_2 doi: 10.1021/ja306501x – ident: e_1_2_2_36_3 doi: 10.1002/ange.201206720 – ident: e_1_2_2_51_2 doi: 10.1039/c3ee23421e – ident: e_1_2_2_43_2 – ident: e_1_2_2_73_2 doi: 10.1021/ja306376s – ident: e_1_2_2_56_2 doi: 10.1039/c3cc00136a – ident: e_1_2_2_19_2 doi: 10.1002/adfm.201200186 – ident: e_1_2_2_57_2 – ident: e_1_2_2_40_2 – ident: e_1_2_2_20_2 doi: 10.1039/c0ee00326c – ident: e_1_2_2_55_2 doi: 10.1039/c3cc41039k – ident: e_1_2_2_59_2 doi: 10.1021/ja904595t – ident: e_1_2_2_27_2 – ident: e_1_2_2_7_2 doi: 10.1038/ncomms1427 – ident: e_1_2_2_10_2 doi: 10.1038/nnano.2012.72 – ident: e_1_2_2_68_2 doi: 10.1002/adma.201203923 – ident: e_1_2_2_26_2 doi: 10.1021/ja407552k – ident: e_1_2_2_48_2 doi: 10.1021/ja211433h – ident: e_1_2_2_70_2 – ident: e_1_2_2_5_2 doi: 10.1021/ja2104334 – ident: e_1_2_2_41_2 doi: 10.1002/anie.201001634 – ident: e_1_2_2_47_2 doi: 10.1002/adfm.201300510 – ident: e_1_2_2_71_2 doi: 10.1016/j.apcatb.2007.09.047 – ident: e_1_2_2_12_2 doi: 10.1038/nature05118 – ident: e_1_2_2_21_2 doi: 10.1021/nn302674k – ident: e_1_2_2_35_2 doi: 10.1002/anie.201100170 – ident: e_1_2_2_36_2 doi: 10.1002/anie.201206720 – ident: e_1_2_2_61_2 doi: 10.1016/j.physrep.2004.10.006 – ident: e_1_2_2_67_2 doi: 10.1002/adma.201300515 – ident: e_1_2_2_3_2 doi: 10.1002/adma.201104392 – ident: e_1_2_2_13_2 doi: 10.1021/ja3030565 – ident: e_1_2_2_45_2 doi: 10.1021/am3013104 – ident: e_1_2_2_64_2 doi: 10.1002/adma.201202424 – ident: e_1_2_2_62_2 doi: 10.1039/c2ee23599d – ident: e_1_2_2_69_2 doi: 10.1039/c2sc20657a – ident: e_1_2_2_49_2 doi: 10.1021/ja105089w – ident: e_1_2_2_4_2 doi: 10.1038/nmat3457 – ident: e_1_2_2_11_2 doi: 10.1038/nmat3087 – ident: e_1_2_2_16_2 doi: 10.1021/nn1030127 – ident: e_1_2_2_24_2 doi: 10.1002/anie.201303924 – ident: e_1_2_2_8_2 doi: 10.1002/anie.201004631 – ident: e_1_2_2_1_2 – ident: e_1_2_2_32_2 doi: 10.1021/la302050m – ident: e_1_2_2_35_3 doi: 10.1002/ange.201100170 – ident: e_1_2_2_74_3 doi: 10.1002/ange.201209548 – ident: e_1_2_2_44_2 doi: 10.1002/adma.200901581 – ident: e_1_2_2_46_2 doi: 10.1039/c3nr01439h – ident: e_1_2_2_72_3 doi: 10.1002/ange.201209320 – ident: e_1_2_2_31_2 doi: 10.1002/adfm.201001202 – ident: e_1_2_2_63_2 doi: 10.1039/c2cc33433j – ident: e_1_2_2_34_2 – ident: e_1_2_2_37_2 – ident: e_1_2_2_22_2 doi: 10.1021/nn103584t – ident: e_1_2_2_28_2 doi: 10.1002/anie.200907289 – ident: e_1_2_2_33_2 doi: 10.1002/adma.200501576 – ident: e_1_2_2_58_2 doi: 10.1021/ja108039j – ident: e_1_2_2_8_3 doi: 10.1002/ange.201004631 – ident: e_1_2_2_17_2 doi: 10.1002/anie.201307319 – ident: e_1_2_2_50_2 doi: 10.1039/c3dt53133c – ident: e_1_2_2_2_2 doi: 10.1002/anie.201104004 – ident: e_1_2_2_39_2 doi: 10.1039/c3cc38955c – ident: e_1_2_2_24_3 doi: 10.1002/ange.201303924 – ident: e_1_2_2_18_2 |
SSID | ssj0028806 |
Score | 2.6460512 |
Snippet | Nitrogen‐doped carbon (NC) materials have been proposed as next‐generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and... Nitrogen-doped carbon (NC) materials have been proposed as next-generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14235 |
SubjectTerms | Carbon Catalysis Catalysts Durability Electrocatalysts Graphene Methanol Methyl alcohol Nitrogen nitrogen doping Oxygen oxygen reduction reaction porous carbon sheets Reduction Synergistic effect Tolerances |
Title | ZIF-8 Derived Graphene-Based Nitrogen-Doped Porous Carbon Sheets as Highly Efficient and Durable Oxygen Reduction Electrocatalysts |
URI | https://api.istex.fr/ark:/67375/WNG-V4MHR39D-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201408990 https://www.ncbi.nlm.nih.gov/pubmed/25331053 https://www.proquest.com/docview/1634473401 https://www.proquest.com/docview/1635004170 https://www.proquest.com/docview/1701000961 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQWcAGyrOhBRkJwSqtE9t5LMs8OkViQAOlFZvIjm2BWiVVkkEdVixZ8o18CfcmM4FBPCTYJc515NjH9rFzfS4hjxIb5DJ1qR9oFfvCaeErJbTPDXeOC-Oizst3Gk2OxLMTefLDKf5OH6LfcMOe0Y7X2MGVrve-i4biCWx0zRL44woX7eiwhaxo1utHhQDO7ngR5z5GoV-pNrJwbz372qx0GSv44leUc53BtlPQ-DpRq8J3nienu_NG7-Yff9J1_J-v2yTXlvyU7neAukEu2eImuTJYhYW7RT6_PRx__fQloUPA7gdr6AFKXsOICYlPYUo0dPq-qUrAJSQMy3NIeFlW5bymA1XpsqCv3lnb1FTVFH1MzhZ01KpYwORHVWHocF7haS764mIB76AzlJZF8NBRF7Cn3W9a1E19mxyNR68HE38ZzsHPpYiZL50BwIRR4oR0HLp-zsLcSabiUFmWKJ3qSDqnrQgM8BCTOGZtlDDjUqB1LOV3yEZRFnaL0DQwqQ5UCha5SKxWuQllzuIQ8gSxdh7xV82Z5Uutcwy5cZZ1Ks1hhvWb9fXrkSe9_Xmn8vFby8ctOnozVZ2ib1wss-PpQfZGPJ_MeDrMjj2ys4JPthwW6gzIrxAxhzWtRx72j6EB8S-NKiw0BtpIVEGL2R9sYha0q094z90Omn2BQiDwQJq5R8IWYH_5oGx_ejjq7-79S6ZtchWv0cknkDtko6nm9j5QtUY_aLvjN8zQOOA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQuygb3o-BAkZCsErrJPYkWZZ5dAbaAZWWVmwsO7YFapVUSQZ1WLFkyTfyJdybTIIG8ZBgGefacuxj-9i5PpeQJ7H1U5G4xPO1ijzuNPeU4toLTehcyI3rN16-s_7kiL84Ea03Id6FafQhugM3HBn1fI0DHA-kt3-ohuIVbPTN4vjnCnbt6xjWu95VHXQKUgHAs7lgFIYexqFvdRtZsL2af2VdWscmvvgV6VzlsPUiNL5KdFv9xvfkdGte6a3000_Kjv_1fdfIlSVFpTsNpq6TSza7QTYGbWS4m-TLu-n42-evMR0CfD9aQ3dR9RomTUh8DquiobMPVZEDNCFhmJ9Dwuu8yOclHahC5xl9897aqqSqpOhmcrago1rIAtY_qjJDh_MCL3TRVxcLKIMeoLos4oeOmpg99ZHToqzKW-RoPDocTLxlRAcvFTxinnAGMBP0Y8eFC2H0pyxInWAqCpRlsdKJ7gvntOW-ASpiYses7cfMuASYHUvC22QtyzN7l9DEN4n2VQIWKY-tVqkJRMqiAPL4kXY94rX9KdOl3DlG3TiTjVBzILF9Zde-PfKssz9vhD5-a_m0hkdnpopTdI-LhDye7cq3fH9yECZDedwjmy1-5HJmKCXwX86jELa1PfK4ew0diD9qVGahM9BGoBBaxP5gEzG_3oBCOXcabHYVCoDDA28OeySoEfaXD5I7s-moe7r3L5kekY3J4f6e3JvOXt4nlzEdfX58sUnWqmJuHwBzq_TDemx-BziHPPs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQKwEb3o9AASMhWKV1EjuPZZnMdIbHUA2UVt1YdmwL1CoZJRnUYcWSJd_Il3CdTAKDeEiwS5zryLGP7WPn-lyEHsXay1hiEteTInKpkdQVgko3UIExAVUmbL18p-H4gD47Ykc_nOJv9SH6DTfbM5rx2nbwuTI730VD7Qls65pF7Y8rWLRv0hCuLC2a9QJSPqCzPV8UBK4NQ9_JNhJ_Zz3_2rS0aWv47Fecc53CNnPQ6DISXelb15OT7UUtt7OPPwk7_s_nXUGXVgQV77aIuorO6fwaujDo4sJdR5-PJ6Ovn77EOAXwftAK71nNaxgyIfEpzIkKT9_XZQHAhIS0mEPCflEWiwoPRCmLHL9-p3VdYVFh62RyusTDRsYCZj8scoXTRWmPc-FXZ0t4B55ZbVmLHjxsI_Y0G07Lqq5uoIPR8M1g7K7iObgZoxFxmVGAGD-MDWUmgL6fET8zjIjIF5rEQiYyZMZITT0FRETFhmgdxkSZBHgdSYKbaCMvcn0b4cRTifREAhYZjbUUmfJZRiIf8niRNA5yu-bk2Urs3MbcOOWtTLPPbf3yvn4d9KS3n7cyH7-1fNygozcT5Yl1josYP5zu8bf05XgWJCk_dNBWBx--GhcqDuyX0iiARa2DHvaPoQHtbxqRa2gMa8OsDFpE_mATEa9ZfsJ7brXQ7AvkA4MH1hw4yG8A9pcP4rvTybC_u_MvmR6g8_vpiL-YTJ_fRRdtsnX48dgW2qjLhb4HtK2W95ue-Q1y6zuz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ZIF-8+Derived+Graphene-Based+Nitrogen-Doped+Porous+Carbon+Sheets+as+Highly+Efficient+and+Durable+Oxygen+Reduction+Electrocatalysts&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhong%2C+Hai-xia&rft.au=Wang%2C+Jun&rft.au=Zhang%2C+Yu-wei&rft.au=Xu%2C+Wei-lin&rft.date=2014-12-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=53&rft.issue=51&rft.spage=14235&rft_id=info:doi/10.1002%2Fanie.201408990&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3520270421 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |