Involvement of 3-methyladenine DNA glycosylases Mag1p and Mag2p in base excision repair of methyl methanesulfonate-damaged DNA in the fission yeast Schizosaccharomyces pombe
Schizosaccharomyces pombe has two paralogues of 3-methyladenine DNA glycosylase, Mag1p and Mag2p, which share homology with Escherichia coli AlkA. To clarify the function of these redundant enzymes in base excision repair (BER) of alkylation damage, we performed several genetic analyses. The mag1 an...
Saved in:
Published in | Genes & Genetic Systems Vol. 82; no. 6; pp. 489 - 494 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Genetics Society of Japan
2007
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Schizosaccharomyces pombe has two paralogues of 3-methyladenine DNA glycosylase, Mag1p and Mag2p, which share homology with Escherichia coli AlkA. To clarify the function of these redundant enzymes in base excision repair (BER) of alkylation damage, we performed several genetic analyses. The mag1 and mag2 single mutants as well as the double mutant showed no obvious methyl methanesulfonate (MMS) sensitivity. Deletion of mag1 or mag2 from an nth1 mutant resulted in tolerance to MMS damage, indicating that both enzymes generate AP sites in vivo by removal of methylated bases. A rad16 mutant that is deficient in nucleotide excision repair (NER) exhibited moderate MMS sensitivity. Deletion of mag1 from the rad16 mutant greatly enhanced MMS sensitivity, and the mag2 deletion also weakened the resistance to MMS of the rad16 mutant. A mag1/mag2/rad16 triple mutant was most sensitive to MMS. These results suggest that the NER pathway obscures the mag1 and mag2 functions in MMS resistance and that both paralogues initiate the BER pathway of MMS-induced DNA damage at the same level in NER-deficient cells or that Mag2p tends to make a little lower contribution than Mag1p. Mag1p and Mag2p functioned additively in vivo. Expression of mag1 and mag2 in the triple mutant confirmed the contribution of Mag1p and Mag2p to BER of MMS resistance. |
---|---|
AbstractList | Schizosaccharomyces pombe has two paralogues of 3-methyladenine DNA glycosylase, Mag1p and Mag2p, which share homology with Escherichia coli AlkA. To clarify the function of these redundant enzymes in base excision repair (BER) of alkylation damage, we performed several genetic analyses. The mag1 and mag2 single mutants as well as the double mutant showed no obvious methyl methanesulfonate (MMS) sensitivity. Deletion of mag1 or mag2 from an nth1 mutant resulted in tolerance to MMS damage, indicating that both enzymes generate AP sites in vivo by removal of methylated bases. A rad16 mutant that is deficient in nucleotide excision repair (NER) exhibited moderate MMS sensitivity. Deletion of mag1 from the rad16 mutant greatly enhanced MMS sensitivity, and the mag2 deletion also weakened the resistance to MMS of the rad16 mutant. A mag1/mag2/rad16 triple mutant was most sensitive to MMS. These results suggest that the NER pathway obscures the mag1 and mag2 functions in MMS resistance and that both paralogues initiate the BER pathway of MMS-induced DNA damage at the same level in NER-deficient cells or that Mag2p tends to make a little lower contribution than Mag1p. Mag1p and Mag2p functioned additively in vivo. Expression of mag1 and mag2 in the triple mutant confirmed the contribution of Mag1p and Mag2p to BER of MMS resistance. Schizosaccharomyces pombe has two paralogues of 3-methyladenine DNA glycosylase, Mag1p and Mag2p, which share homology with Escherichia coli AlkA. To clarify the function of these redundant enzymes in base excision repair (BER) of alkylation damage, we performed several genetic analyses. The mag1 and mag2 single mutants as well as the double mutant showed no obvious methyl methanesulfonate (MMS) sensitivity. Deletion of mag1 or mag2 from an nth1 mutant resulted in tolerance to MMS damage, indicating that both enzymes generate AP sites in vivo by removal of methylated bases. A rad16 mutant that is deficient in nucleotide excision repair (NER) exhibited moderate MMS sensitivity. Deletion of mag1 from the rad16 mutant greatly enhanced MMS sensitivity, and the mag2 deletion also weakened the resistance to MMS of the rad16 mutant. A mag1/mag2/rad16 triple mutant was most sensitive to MMS. These results suggest that the NER pathway obscures the mag1 and mag2 functions in MMS resistance and that both paralogues initiate the BER pathway of MMS-induced DNA damage at the same level in NER-deficient cells or that Mag2p tends to make a little lower contribution than Mag1p. Mag1p and Mag2p functioned additively in vivo. Expression of mag1 and mag2 in the triple mutant confirmed the contribution of Mag1p and Mag2p to BER of MMS resistance.Schizosaccharomyces pombe has two paralogues of 3-methyladenine DNA glycosylase, Mag1p and Mag2p, which share homology with Escherichia coli AlkA. To clarify the function of these redundant enzymes in base excision repair (BER) of alkylation damage, we performed several genetic analyses. The mag1 and mag2 single mutants as well as the double mutant showed no obvious methyl methanesulfonate (MMS) sensitivity. Deletion of mag1 or mag2 from an nth1 mutant resulted in tolerance to MMS damage, indicating that both enzymes generate AP sites in vivo by removal of methylated bases. A rad16 mutant that is deficient in nucleotide excision repair (NER) exhibited moderate MMS sensitivity. Deletion of mag1 from the rad16 mutant greatly enhanced MMS sensitivity, and the mag2 deletion also weakened the resistance to MMS of the rad16 mutant. A mag1/mag2/rad16 triple mutant was most sensitive to MMS. These results suggest that the NER pathway obscures the mag1 and mag2 functions in MMS resistance and that both paralogues initiate the BER pathway of MMS-induced DNA damage at the same level in NER-deficient cells or that Mag2p tends to make a little lower contribution than Mag1p. Mag1p and Mag2p functioned additively in vivo. Expression of mag1 and mag2 in the triple mutant confirmed the contribution of Mag1p and Mag2p to BER of MMS resistance. |
Author | Tanita, Y Ikeda, S Tanihigashi, H Inatani, S Kanamitsu, K.(Okayama Univ. of Science (Japan)) |
Author_xml | – sequence: 1 fullname: Kanamitsu, K.(Okayama Univ. of Science (Japan)) – sequence: 2 fullname: Tanihigashi, H – sequence: 3 fullname: Tanita, Y – sequence: 4 fullname: Inatani, S – sequence: 5 fullname: Ikeda, S |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18270439$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kluL1DAUx4usuBd98V0JCApCx9zapk-yrLeV9QLqc0jTk5kMbVKTzOL4nfyOZqa787CIL8kh-f3_h3M5LY6cd1AUjwleEFrXr5bLuBB0wUV7rzghQuCyapr2KMeMk7KpanFcnMa4xpjiVrAHxTERtMGctSfFn0t37YdrGMEl5A1i5QhptR1UD846QG8-n6PlsNU-5rcIEX1SSzIh5fpdRCdkHeryB4Jf2kbrHQowKRt2XrPT_lIO4mYw3qkEZa9GtYR-753laQXI2LgXb0HFhL7plf3to9J6pYIftzrnnfzYwcPivlFDhEc391nx493b7xcfyqsv7y8vzq9KXfE6lcZwwKbGWhjMKlXRmnBOiaIc667hfVcbQbvcL1WDqFjTNTUBYozWqoWOUHZWvJh9p-B_biAmOdqoYRhyHX4TpagEz2ZVm8nn_yUbnFvetiyDz-6Aa78JLlchCa85Y7xtd4mf3lCbboReTsGOKmzl7cAygGdABx9jACO1TSrl3qWg7CAJlrudkHknpKAy15glL-9IDq7_gl_P8DqmPKQDqkKyeoBbtJ6PrDj87GYlwWWHJ7ODUV6qZbBRfvxKMRYY1w0T7C8Jjtlq |
CitedBy_id | crossref_primary_10_1016_j_dnarep_2012_12_001 crossref_primary_10_1002_yea_1461 crossref_primary_10_4236_abb_2015_64026 crossref_primary_10_1002_cbin_10722 crossref_primary_10_1016_j_str_2012_11_004 crossref_primary_10_3390_ijms222212418 crossref_primary_10_1016_j_dnarep_2012_06_001 crossref_primary_10_1038_embor_2011_189 crossref_primary_10_1016_j_mrfmmm_2014_03_007 crossref_primary_10_1093_nar_gky245 crossref_primary_10_3123_jemsge_30_86 crossref_primary_10_1266_ggs_86_83 crossref_primary_10_4061_2010_450926 crossref_primary_10_4265_bio_27_41 |
Cites_doi | 10.1016/j.dnarep.2005.06.009 10.1093/nar/gki259 10.1016/0378-1119(96)00308-3 10.1038/nbt1222 10.1091/mbc.E02-08-0499 10.1128/JB.182.8.2104-2112.2000 10.1093/nar/gkh151 10.1016/j.bbrc.2006.06.191 10.1093/nar/gkh851 10.1016/j.dnarep.2006.10.005 10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y |
ContentType | Journal Article |
Copyright | 2007 by The Genetics Society of Japan Copyright Japan Science and Technology Agency 2007 |
Copyright_xml | – notice: 2007 by The Genetics Society of Japan – notice: Copyright Japan Science and Technology Agency 2007 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SS 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 7TM M7N |
DOI | 10.1266/ggs.82.489 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Entomology Abstracts (Full archive) Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Nucleic Acids Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts |
DatabaseTitleList | MEDLINE Genetics Abstracts Entomology Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1880-5779 |
EndPage | 494 |
ExternalDocumentID | 3143820831 18270439 10_1266_ggs_82_489 article_ggs_82_6_82_6_489_article_char_en JP2008006738 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .55 29H 2WC 36B 3O- 53G 5GY ACGFO ACPRK ADBBV AENEX AEQTP AHMBA ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP CS3 DIK DU5 E3Z EBD EBS EJD EMB EMOBN F20 F5P FBQ GROUPED_DOAJ GX1 JMI JSF JSH KQ8 L7B MOJWN M~E OK1 PQQKQ RJT RNS RZJ SV3 TKC TR2 W2D X7M XSB AAUGY PQEST AAYXX CITATION OVT CGR CUY CVF ECM EIF NPM 7SS 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 7TM M7N |
ID | FETCH-LOGICAL-c546t-ff4e0f60c8f035a52614421a240cb74db6f82b489a6e8537b761e1ffcca9eb123 |
ISSN | 1341-7568 1880-5779 |
IngestDate | Fri Jul 11 11:20:33 EDT 2025 Fri Jul 11 00:22:22 EDT 2025 Mon Jun 30 09:58:47 EDT 2025 Mon Jul 21 05:33:44 EDT 2025 Tue Jul 01 04:33:19 EDT 2025 Thu Apr 24 23:05:43 EDT 2025 Thu Aug 17 20:25:43 EDT 2023 Wed Dec 27 19:12:00 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c546t-ff4e0f60c8f035a52614421a240cb74db6f82b489a6e8537b761e1ffcca9eb123 |
Notes | 2008006738 F30 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/ggs/82/6/82_6_489/_article/-char/en |
PMID | 18270439 |
PQID | 1464334992 |
PQPubID | 1996350 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_858424059 proquest_miscellaneous_70098993 proquest_journals_1464334992 pubmed_primary_18270439 crossref_citationtrail_10_1266_ggs_82_489 crossref_primary_10_1266_ggs_82_489 jstage_primary_article_ggs_82_6_82_6_489_article_char_en fao_agris_JP2008006738 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-00-00 |
PublicationDateYYYYMMDD | 2007-01-01 |
PublicationDate_xml | – year: 2007 text: 2007-00-00 |
PublicationDecade | 2000 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Mishima |
PublicationTitle | Genes & Genetic Systems |
PublicationTitleAlternate | Genes Genet. Syst. |
PublicationYear | 2007 |
Publisher | The Genetics Society of Japan Japan Science and Technology Agency |
Publisher_xml | – name: The Genetics Society of Japan – name: Japan Science and Technology Agency |
References | Ribar, B., Izumi, T., and Mitra, S. (2004) The major role of human AP-endonuclease homolog Apn2 in repair of abasic sites in Schizosaccharomyces pombe. Nucleic Acids Res. 32, 115–126. Alseth, I., Osman, F., Korvald, H., Tsaneva, I., Whitby, M. C., Seeberg, E., and Bjoras, M. (2005) Biochemical characterization and DNA repair pathway interactions of Mag1-mediated base excision repair in Schizosaccharomyces pombe. Nucleic Acids Res. 33, 1123–1131. Matsuyama, A., Arai, R., Yashiroda, Y., Shirai, A., Kamata, A., Sekido, S., Kobayashi, Y., Hashimoto, A., Hamamoto, M., Hiraoka, Y., Horinouchi, S., and Yoshida, M. (2006) ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 24, 841–847. Memisoglu, A., and Samson, L. (2000) Contribution of base excision repair, nucleotide excision repair, and DNA recombination to alkylation resistance of the fission yeast Schizosaccharomyces pombe. J. Bacteriol. 182, 2104–2112 . Memisoglu, A., and Samson, L. (1996) Cloning and characterization of a cDNA encoding a 3-methyladenine DNA glycosylase from the fission yeast Schizosaccharomyces pombe. Gene 177, 229–235. Friedberg, E. C., Walker, G. C., and Siede, W. (1995) DNA Repair and Mutagenesis, ASM Press, Washington, D. C. Chen, D., Toone, W. M., Mata, J., Lyne, R., Burns, G., Kivinen, K., Brazma, A., Jones, N., and Bahler, J. (2003) Global transcriptional responses of fission yeast to environmental stress. Mol. Biol. Cell. 14, 214–229. Sugimoto, T., Igawa, E., Tanihigashi, H., Matsubara, M., Ide, H., and Ikeda, S. (2005) Roles of base excision repair enzymes Nth1p and Apn2p from Schizosaccharomyces pombe in processing alkylation and oxidative DNA damage. DNA Repair 4, 1270–1280. Adams, A., Gottschling, D. E., Kaiser, C. A., and Stearns, T. (1998) Yeast protein extracts. In: Methods in Yeast Genetics, a Cold Spring Harbor Laboratory Course Manual, 1997 edition, pp. 115–116. Cold Spring Harbor Laboratory Press, New York. Alseth, I., Korvald, H., Osman, F., Seeberg, E., and Bjoras, M. (2004) A general role of the DNA glycosylase Nth1 in the abasic sites cleavage step of base excision repair in Schizosaccharomyces pombe. Nucleic Acids Res. 32, 5119–5125. Bähler, J., Wu, J. Q., Longtine, M. S., Shah, N. G., McKenzie, A., 3rd, Steever, A. B., Wach, A., Philippsen, P., and Pringle, J. R. (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951. Tanihigashi, H., Yamada, A., Igawa, E., and Ikeda, S. (2006) The role of Schizosaccharomyces pombe DNA repair enzymes Apn1p and Uve1p in the base excision repair of apurinic/apyrimidinic sites. Biochem. Biophys. Res. Commun. 347, 889–894. Sedgwick, B., Bates, P. A., Paik, J., Jacobs, S. C., and Lindahl, T. (2007) Repair of alkylated DNA: recent advances. DNA Repair 6, 429–442. 11 12 13 (2) 2004; 32 4 5 (1) 1998 6 (10) 2004; 32 7 8 9 (3) 2005; 33 |
References_xml | – reference: Alseth, I., Korvald, H., Osman, F., Seeberg, E., and Bjoras, M. (2004) A general role of the DNA glycosylase Nth1 in the abasic sites cleavage step of base excision repair in Schizosaccharomyces pombe. Nucleic Acids Res. 32, 5119–5125. – reference: Memisoglu, A., and Samson, L. (2000) Contribution of base excision repair, nucleotide excision repair, and DNA recombination to alkylation resistance of the fission yeast Schizosaccharomyces pombe. J. Bacteriol. 182, 2104–2112 . – reference: Bähler, J., Wu, J. Q., Longtine, M. S., Shah, N. G., McKenzie, A., 3rd, Steever, A. B., Wach, A., Philippsen, P., and Pringle, J. R. (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951. – reference: Adams, A., Gottschling, D. E., Kaiser, C. A., and Stearns, T. (1998) Yeast protein extracts. In: Methods in Yeast Genetics, a Cold Spring Harbor Laboratory Course Manual, 1997 edition, pp. 115–116. Cold Spring Harbor Laboratory Press, New York. – reference: Matsuyama, A., Arai, R., Yashiroda, Y., Shirai, A., Kamata, A., Sekido, S., Kobayashi, Y., Hashimoto, A., Hamamoto, M., Hiraoka, Y., Horinouchi, S., and Yoshida, M. (2006) ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 24, 841–847. – reference: Alseth, I., Osman, F., Korvald, H., Tsaneva, I., Whitby, M. C., Seeberg, E., and Bjoras, M. (2005) Biochemical characterization and DNA repair pathway interactions of Mag1-mediated base excision repair in Schizosaccharomyces pombe. Nucleic Acids Res. 33, 1123–1131. – reference: Tanihigashi, H., Yamada, A., Igawa, E., and Ikeda, S. (2006) The role of Schizosaccharomyces pombe DNA repair enzymes Apn1p and Uve1p in the base excision repair of apurinic/apyrimidinic sites. Biochem. Biophys. Res. Commun. 347, 889–894. – reference: Memisoglu, A., and Samson, L. (1996) Cloning and characterization of a cDNA encoding a 3-methyladenine DNA glycosylase from the fission yeast Schizosaccharomyces pombe. Gene 177, 229–235. – reference: Friedberg, E. C., Walker, G. C., and Siede, W. (1995) DNA Repair and Mutagenesis, ASM Press, Washington, D. C. – reference: Sedgwick, B., Bates, P. A., Paik, J., Jacobs, S. C., and Lindahl, T. (2007) Repair of alkylated DNA: recent advances. DNA Repair 6, 429–442. – reference: Sugimoto, T., Igawa, E., Tanihigashi, H., Matsubara, M., Ide, H., and Ikeda, S. (2005) Roles of base excision repair enzymes Nth1p and Apn2p from Schizosaccharomyces pombe in processing alkylation and oxidative DNA damage. DNA Repair 4, 1270–1280. – reference: Chen, D., Toone, W. M., Mata, J., Lyne, R., Burns, G., Kivinen, K., Brazma, A., Jones, N., and Bahler, J. (2003) Global transcriptional responses of fission yeast to environmental stress. Mol. Biol. Cell. 14, 214–229. – reference: Ribar, B., Izumi, T., and Mitra, S. (2004) The major role of human AP-endonuclease homolog Apn2 in repair of abasic sites in Schizosaccharomyces pombe. Nucleic Acids Res. 32, 115–126. – ident: 12 doi: 10.1016/j.dnarep.2005.06.009 – volume: 33 start-page: 1123 year: 2005 ident: 3 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki259 – start-page: 115 year: 1998 ident: 1 publication-title: Methods in Yeast Genetics, a Cold Spring Harbor Laboratory Course Manual – ident: 8 doi: 10.1016/0378-1119(96)00308-3 – ident: 7 doi: 10.1038/nbt1222 – ident: 5 doi: 10.1091/mbc.E02-08-0499 – ident: 9 doi: 10.1128/JB.182.8.2104-2112.2000 – volume: 32 start-page: 115 year: 2004 ident: 10 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh151 – ident: 13 doi: 10.1016/j.bbrc.2006.06.191 – volume: 32 start-page: 5119 year: 2004 ident: 2 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh851 – ident: 11 doi: 10.1016/j.dnarep.2006.10.005 – ident: 6 – ident: 4 doi: 10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y |
SSID | ssj0020983 |
Score | 1.781118 |
Snippet | Schizosaccharomyces pombe has two paralogues of 3-methyladenine DNA glycosylase, Mag1p and Mag2p, which share homology with Escherichia coli AlkA. To clarify... |
SourceID | proquest pubmed crossref jstage fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 489 |
SubjectTerms | 3-methyladenine DNA glycosylase Alkylation alkylation damage Base excision repair DNA damage DNA Damage - physiology DNA glycosylase DNA Glycosylases - genetics DNA Glycosylases - metabolism DNA Repair Enzymes Escherichia coli EXPRESION GENICA EXPRESSION DES GENES Gene deletion GENE EXPRESSION Genetic analysis Homology mag1 mag2 Methyl methanesulfonate Methyl Methanesulfonate - toxicity MMS Mutagens - toxicity MUTANT MUTANTES MUTANTS NTH1 protein Nucleotide excision repair REPAIRING REPARACION REPARATION Schizosaccharomyces - drug effects Schizosaccharomyces - enzymology Schizosaccharomyces - genetics SCHIZOSACCHAROMYCES POMBE Schizosaccharomyces pombe Proteins - genetics Schizosaccharomyces pombe Proteins - metabolism |
Title | Involvement of 3-methyladenine DNA glycosylases Mag1p and Mag2p in base excision repair of methyl methanesulfonate-damaged DNA in the fission yeast Schizosaccharomyces pombe |
URI | https://www.jstage.jst.go.jp/article/ggs/82/6/82_6_489/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/18270439 https://www.proquest.com/docview/1464334992 https://www.proquest.com/docview/70098993 https://www.proquest.com/docview/858424059 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Genes & Genetic Systems, 2007, Vol.82(6), pp.489-494 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe2ISReEP8GhQGW4AVVKa2bNOnjBBvbxAYSnVSeIie1Q1CbVEsr0X0nvh0fgN_ZaZLChoCXtPKfc5379Xzns-8YexlBTSB_j-MGWjluJFxyEvpO5EKZ1d2JF_t0wfn0bHB07p6MvfHW1o_GqaXlIurEl1feK_kfrqIMfKVbsv_A2YooCvAd_MUTHMbzr3h8nEG4mIDfxp_fdygf9GoqIUtIeXx7tt9Opqs4L1BWqKJ9KpPevDxakYg57XXQKtZW32yiHfIgSOs3sJTMh4Q0XE41bbMrZyJnkEATQ7s8IqnTwnReURogCuuZXuaFjOk-Vz5b0YmveT6LNo4cUbDrwqAOc6NrlGVE6dqzJDM5SxfF0giiVZ6C6kVebzNk6Zc0oTxQZumUF8tMNiutSvw5R4MKuMf4_TaBVfsT1OaN7Q6_XoSgPNQSj15V7Xxo75uLqg05jsXZ8T2bsaejbBlEleP5NnfNWvgHogHypiR3bWaj31YYKDSARZIUnUB0ykabYbzPPoSH5-_fh6OD8Wiz1qoNlHBeUIK3bXZDwLihvBvvxtXBJNEdmuCx1RTKoLoY-HU97IYata1lDg3qK-yJRF1vKhmVaXSH3S5tHb5vgXuXbansHrtps5-u7rPvDfjyXPNf4MsBMd6ELzfw5eAJN_DlacYJvnwNX27hS7QsJX4dfA1tdAd8eQlfbuDLr4AvN_B9wM4PD0Zvjpwye4gTe-5g4Wjtqq4edONAd_ue9ARtfYiehAobR75L108DEeFVyoGCzupH_qCnelpDpA2hwIj-LtvJ8kw9YlyIidICjSaqi45SwgYJZF9LNYkDT4sWe7VmRhiXofUpw8s0JBMbjAvBuDAQIUZrsRdV27kNKHNlq13wNJQJVvrw5KMwhh0l6G2xwLK56lxKn3XngX2ARlVDLwzissX21sAISyFWkOXv9vvucIhJPK-qscSQ3xAMypdF6FPQYdgxLcavaRHAjMF79fC7H1rE1XMLhE_X7x__efQn7Jb1mtDm5h7bWVws1VOo-4vomfl3_ARE4gtN |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Involvement+of+3-methyladenine+DNA+glycosylases+Mag1p+and+Mag2p+in+base+excision+repair+of+methyl+methanesulfonate-damaged+DNA+in+the+fission+yeast+Schizosaccharomyces+pombe&rft.jtitle=Genes+%26+genetic+systems&rft.au=Kanamitsu%2C+Kyoichiro&rft.au=Tanihigashi%2C+Haruna&rft.au=Tanita%2C+Yoshie&rft.au=Inatani%2C+Saki&rft.date=2007&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1341-7568&rft.eissn=1880-5779&rft.volume=82&rft.issue=6&rft.spage=489&rft_id=info:doi/10.1266%2Fggs.82.489&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3143820831 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-7568&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-7568&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-7568&client=summon |