Involvement of 3-methyladenine DNA glycosylases Mag1p and Mag2p in base excision repair of methyl methanesulfonate-damaged DNA in the fission yeast Schizosaccharomyces pombe

Schizosaccharomyces pombe has two paralogues of 3-methyladenine DNA glycosylase, Mag1p and Mag2p, which share homology with Escherichia coli AlkA. To clarify the function of these redundant enzymes in base excision repair (BER) of alkylation damage, we performed several genetic analyses. The mag1 an...

Full description

Saved in:
Bibliographic Details
Published inGenes & Genetic Systems Vol. 82; no. 6; pp. 489 - 494
Main Authors Kanamitsu, K.(Okayama Univ. of Science (Japan)), Tanihigashi, H, Tanita, Y, Inatani, S, Ikeda, S
Format Journal Article
LanguageEnglish
Published Japan The Genetics Society of Japan 2007
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Schizosaccharomyces pombe has two paralogues of 3-methyladenine DNA glycosylase, Mag1p and Mag2p, which share homology with Escherichia coli AlkA. To clarify the function of these redundant enzymes in base excision repair (BER) of alkylation damage, we performed several genetic analyses. The mag1 and mag2 single mutants as well as the double mutant showed no obvious methyl methanesulfonate (MMS) sensitivity. Deletion of mag1 or mag2 from an nth1 mutant resulted in tolerance to MMS damage, indicating that both enzymes generate AP sites in vivo by removal of methylated bases. A rad16 mutant that is deficient in nucleotide excision repair (NER) exhibited moderate MMS sensitivity. Deletion of mag1 from the rad16 mutant greatly enhanced MMS sensitivity, and the mag2 deletion also weakened the resistance to MMS of the rad16 mutant. A mag1/mag2/rad16 triple mutant was most sensitive to MMS. These results suggest that the NER pathway obscures the mag1 and mag2 functions in MMS resistance and that both paralogues initiate the BER pathway of MMS-induced DNA damage at the same level in NER-deficient cells or that Mag2p tends to make a little lower contribution than Mag1p. Mag1p and Mag2p functioned additively in vivo. Expression of mag1 and mag2 in the triple mutant confirmed the contribution of Mag1p and Mag2p to BER of MMS resistance.
AbstractList Schizosaccharomyces pombe has two paralogues of 3-methyladenine DNA glycosylase, Mag1p and Mag2p, which share homology with Escherichia coli AlkA. To clarify the function of these redundant enzymes in base excision repair (BER) of alkylation damage, we performed several genetic analyses. The mag1 and mag2 single mutants as well as the double mutant showed no obvious methyl methanesulfonate (MMS) sensitivity. Deletion of mag1 or mag2 from an nth1 mutant resulted in tolerance to MMS damage, indicating that both enzymes generate AP sites in vivo by removal of methylated bases. A rad16 mutant that is deficient in nucleotide excision repair (NER) exhibited moderate MMS sensitivity. Deletion of mag1 from the rad16 mutant greatly enhanced MMS sensitivity, and the mag2 deletion also weakened the resistance to MMS of the rad16 mutant. A mag1/mag2/rad16 triple mutant was most sensitive to MMS. These results suggest that the NER pathway obscures the mag1 and mag2 functions in MMS resistance and that both paralogues initiate the BER pathway of MMS-induced DNA damage at the same level in NER-deficient cells or that Mag2p tends to make a little lower contribution than Mag1p. Mag1p and Mag2p functioned additively in vivo. Expression of mag1 and mag2 in the triple mutant confirmed the contribution of Mag1p and Mag2p to BER of MMS resistance.
Schizosaccharomyces pombe has two paralogues of 3-methyladenine DNA glycosylase, Mag1p and Mag2p, which share homology with Escherichia coli AlkA. To clarify the function of these redundant enzymes in base excision repair (BER) of alkylation damage, we performed several genetic analyses. The mag1 and mag2 single mutants as well as the double mutant showed no obvious methyl methanesulfonate (MMS) sensitivity. Deletion of mag1 or mag2 from an nth1 mutant resulted in tolerance to MMS damage, indicating that both enzymes generate AP sites in vivo by removal of methylated bases. A rad16 mutant that is deficient in nucleotide excision repair (NER) exhibited moderate MMS sensitivity. Deletion of mag1 from the rad16 mutant greatly enhanced MMS sensitivity, and the mag2 deletion also weakened the resistance to MMS of the rad16 mutant. A mag1/mag2/rad16 triple mutant was most sensitive to MMS. These results suggest that the NER pathway obscures the mag1 and mag2 functions in MMS resistance and that both paralogues initiate the BER pathway of MMS-induced DNA damage at the same level in NER-deficient cells or that Mag2p tends to make a little lower contribution than Mag1p. Mag1p and Mag2p functioned additively in vivo. Expression of mag1 and mag2 in the triple mutant confirmed the contribution of Mag1p and Mag2p to BER of MMS resistance.Schizosaccharomyces pombe has two paralogues of 3-methyladenine DNA glycosylase, Mag1p and Mag2p, which share homology with Escherichia coli AlkA. To clarify the function of these redundant enzymes in base excision repair (BER) of alkylation damage, we performed several genetic analyses. The mag1 and mag2 single mutants as well as the double mutant showed no obvious methyl methanesulfonate (MMS) sensitivity. Deletion of mag1 or mag2 from an nth1 mutant resulted in tolerance to MMS damage, indicating that both enzymes generate AP sites in vivo by removal of methylated bases. A rad16 mutant that is deficient in nucleotide excision repair (NER) exhibited moderate MMS sensitivity. Deletion of mag1 from the rad16 mutant greatly enhanced MMS sensitivity, and the mag2 deletion also weakened the resistance to MMS of the rad16 mutant. A mag1/mag2/rad16 triple mutant was most sensitive to MMS. These results suggest that the NER pathway obscures the mag1 and mag2 functions in MMS resistance and that both paralogues initiate the BER pathway of MMS-induced DNA damage at the same level in NER-deficient cells or that Mag2p tends to make a little lower contribution than Mag1p. Mag1p and Mag2p functioned additively in vivo. Expression of mag1 and mag2 in the triple mutant confirmed the contribution of Mag1p and Mag2p to BER of MMS resistance.
Author Tanita, Y
Ikeda, S
Tanihigashi, H
Inatani, S
Kanamitsu, K.(Okayama Univ. of Science (Japan))
Author_xml – sequence: 1
  fullname: Kanamitsu, K.(Okayama Univ. of Science (Japan))
– sequence: 2
  fullname: Tanihigashi, H
– sequence: 3
  fullname: Tanita, Y
– sequence: 4
  fullname: Inatani, S
– sequence: 5
  fullname: Ikeda, S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18270439$$D View this record in MEDLINE/PubMed
BookMark eNp9kluL1DAUx4usuBd98V0JCApCx9zapk-yrLeV9QLqc0jTk5kMbVKTzOL4nfyOZqa787CIL8kh-f3_h3M5LY6cd1AUjwleEFrXr5bLuBB0wUV7rzghQuCyapr2KMeMk7KpanFcnMa4xpjiVrAHxTERtMGctSfFn0t37YdrGMEl5A1i5QhptR1UD846QG8-n6PlsNU-5rcIEX1SSzIh5fpdRCdkHeryB4Jf2kbrHQowKRt2XrPT_lIO4mYw3qkEZa9GtYR-753laQXI2LgXb0HFhL7plf3to9J6pYIftzrnnfzYwcPivlFDhEc391nx493b7xcfyqsv7y8vzq9KXfE6lcZwwKbGWhjMKlXRmnBOiaIc667hfVcbQbvcL1WDqFjTNTUBYozWqoWOUHZWvJh9p-B_biAmOdqoYRhyHX4TpagEz2ZVm8nn_yUbnFvetiyDz-6Aa78JLlchCa85Y7xtd4mf3lCbboReTsGOKmzl7cAygGdABx9jACO1TSrl3qWg7CAJlrudkHknpKAy15glL-9IDq7_gl_P8DqmPKQDqkKyeoBbtJ6PrDj87GYlwWWHJ7ODUV6qZbBRfvxKMRYY1w0T7C8Jjtlq
CitedBy_id crossref_primary_10_1016_j_dnarep_2012_12_001
crossref_primary_10_1002_yea_1461
crossref_primary_10_4236_abb_2015_64026
crossref_primary_10_1002_cbin_10722
crossref_primary_10_1016_j_str_2012_11_004
crossref_primary_10_3390_ijms222212418
crossref_primary_10_1016_j_dnarep_2012_06_001
crossref_primary_10_1038_embor_2011_189
crossref_primary_10_1016_j_mrfmmm_2014_03_007
crossref_primary_10_1093_nar_gky245
crossref_primary_10_3123_jemsge_30_86
crossref_primary_10_1266_ggs_86_83
crossref_primary_10_4061_2010_450926
crossref_primary_10_4265_bio_27_41
Cites_doi 10.1016/j.dnarep.2005.06.009
10.1093/nar/gki259
10.1016/0378-1119(96)00308-3
10.1038/nbt1222
10.1091/mbc.E02-08-0499
10.1128/JB.182.8.2104-2112.2000
10.1093/nar/gkh151
10.1016/j.bbrc.2006.06.191
10.1093/nar/gkh851
10.1016/j.dnarep.2006.10.005
10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y
ContentType Journal Article
Copyright 2007 by The Genetics Society of Japan
Copyright Japan Science and Technology Agency 2007
Copyright_xml – notice: 2007 by The Genetics Society of Japan
– notice: Copyright Japan Science and Technology Agency 2007
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
7TM
M7N
DOI 10.1266/ggs.82.489
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Nucleic Acids Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
DatabaseTitleList MEDLINE
Genetics Abstracts
Entomology Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1880-5779
EndPage 494
ExternalDocumentID 3143820831
18270439
10_1266_ggs_82_489
article_ggs_82_6_82_6_489_article_char_en
JP2008006738
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
29H
2WC
36B
3O-
53G
5GY
ACGFO
ACPRK
ADBBV
AENEX
AEQTP
AHMBA
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
F20
F5P
FBQ
GROUPED_DOAJ
GX1
JMI
JSF
JSH
KQ8
L7B
MOJWN
M~E
OK1
PQQKQ
RJT
RNS
RZJ
SV3
TKC
TR2
W2D
X7M
XSB
AAUGY
PQEST
AAYXX
CITATION
OVT
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
7TM
M7N
ID FETCH-LOGICAL-c546t-ff4e0f60c8f035a52614421a240cb74db6f82b489a6e8537b761e1ffcca9eb123
ISSN 1341-7568
1880-5779
IngestDate Fri Jul 11 11:20:33 EDT 2025
Fri Jul 11 00:22:22 EDT 2025
Mon Jun 30 09:58:47 EDT 2025
Mon Jul 21 05:33:44 EDT 2025
Tue Jul 01 04:33:19 EDT 2025
Thu Apr 24 23:05:43 EDT 2025
Thu Aug 17 20:25:43 EDT 2023
Wed Dec 27 19:12:00 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c546t-ff4e0f60c8f035a52614421a240cb74db6f82b489a6e8537b761e1ffcca9eb123
Notes 2008006738
F30
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.jstage.jst.go.jp/article/ggs/82/6/82_6_489/_article/-char/en
PMID 18270439
PQID 1464334992
PQPubID 1996350
PageCount 6
ParticipantIDs proquest_miscellaneous_858424059
proquest_miscellaneous_70098993
proquest_journals_1464334992
pubmed_primary_18270439
crossref_citationtrail_10_1266_ggs_82_489
crossref_primary_10_1266_ggs_82_489
jstage_primary_article_ggs_82_6_82_6_489_article_char_en
fao_agris_JP2008006738
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-00-00
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – year: 2007
  text: 2007-00-00
PublicationDecade 2000
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Mishima
PublicationTitle Genes & Genetic Systems
PublicationTitleAlternate Genes Genet. Syst.
PublicationYear 2007
Publisher The Genetics Society of Japan
Japan Science and Technology Agency
Publisher_xml – name: The Genetics Society of Japan
– name: Japan Science and Technology Agency
References Ribar, B., Izumi, T., and Mitra, S. (2004) The major role of human AP-endonuclease homolog Apn2 in repair of abasic sites in Schizosaccharomyces pombe. Nucleic Acids Res. 32, 115–126.
Alseth, I., Osman, F., Korvald, H., Tsaneva, I., Whitby, M. C., Seeberg, E., and Bjoras, M. (2005) Biochemical characterization and DNA repair pathway interactions of Mag1-mediated base excision repair in Schizosaccharomyces pombe. Nucleic Acids Res. 33, 1123–1131.
Matsuyama, A., Arai, R., Yashiroda, Y., Shirai, A., Kamata, A., Sekido, S., Kobayashi, Y., Hashimoto, A., Hamamoto, M., Hiraoka, Y., Horinouchi, S., and Yoshida, M. (2006) ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 24, 841–847.
Memisoglu, A., and Samson, L. (2000) Contribution of base excision repair, nucleotide excision repair, and DNA recombination to alkylation resistance of the fission yeast Schizosaccharomyces pombe. J. Bacteriol. 182, 2104–2112 .
Memisoglu, A., and Samson, L. (1996) Cloning and characterization of a cDNA encoding a 3-methyladenine DNA glycosylase from the fission yeast Schizosaccharomyces pombe. Gene 177, 229–235.
Friedberg, E. C., Walker, G. C., and Siede, W. (1995) DNA Repair and Mutagenesis, ASM Press, Washington, D. C.
Chen, D., Toone, W. M., Mata, J., Lyne, R., Burns, G., Kivinen, K., Brazma, A., Jones, N., and Bahler, J. (2003) Global transcriptional responses of fission yeast to environmental stress. Mol. Biol. Cell. 14, 214–229.
Sugimoto, T., Igawa, E., Tanihigashi, H., Matsubara, M., Ide, H., and Ikeda, S. (2005) Roles of base excision repair enzymes Nth1p and Apn2p from Schizosaccharomyces pombe in processing alkylation and oxidative DNA damage. DNA Repair 4, 1270–1280.
Adams, A., Gottschling, D. E., Kaiser, C. A., and Stearns, T. (1998) Yeast protein extracts. In: Methods in Yeast Genetics, a Cold Spring Harbor Laboratory Course Manual, 1997 edition, pp. 115–116. Cold Spring Harbor Laboratory Press, New York.
Alseth, I., Korvald, H., Osman, F., Seeberg, E., and Bjoras, M. (2004) A general role of the DNA glycosylase Nth1 in the abasic sites cleavage step of base excision repair in Schizosaccharomyces pombe. Nucleic Acids Res. 32, 5119–5125.
Bähler, J., Wu, J. Q., Longtine, M. S., Shah, N. G., McKenzie, A., 3rd, Steever, A. B., Wach, A., Philippsen, P., and Pringle, J. R. (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951.
Tanihigashi, H., Yamada, A., Igawa, E., and Ikeda, S. (2006) The role of Schizosaccharomyces pombe DNA repair enzymes Apn1p and Uve1p in the base excision repair of apurinic/apyrimidinic sites. Biochem. Biophys. Res. Commun. 347, 889–894.
Sedgwick, B., Bates, P. A., Paik, J., Jacobs, S. C., and Lindahl, T. (2007) Repair of alkylated DNA: recent advances. DNA Repair 6, 429–442.
11
12
13
(2) 2004; 32
4
5
(1) 1998
6
(10) 2004; 32
7
8
9
(3) 2005; 33
References_xml – reference: Alseth, I., Korvald, H., Osman, F., Seeberg, E., and Bjoras, M. (2004) A general role of the DNA glycosylase Nth1 in the abasic sites cleavage step of base excision repair in Schizosaccharomyces pombe. Nucleic Acids Res. 32, 5119–5125.
– reference: Memisoglu, A., and Samson, L. (2000) Contribution of base excision repair, nucleotide excision repair, and DNA recombination to alkylation resistance of the fission yeast Schizosaccharomyces pombe. J. Bacteriol. 182, 2104–2112 .
– reference: Bähler, J., Wu, J. Q., Longtine, M. S., Shah, N. G., McKenzie, A., 3rd, Steever, A. B., Wach, A., Philippsen, P., and Pringle, J. R. (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951.
– reference: Adams, A., Gottschling, D. E., Kaiser, C. A., and Stearns, T. (1998) Yeast protein extracts. In: Methods in Yeast Genetics, a Cold Spring Harbor Laboratory Course Manual, 1997 edition, pp. 115–116. Cold Spring Harbor Laboratory Press, New York.
– reference: Matsuyama, A., Arai, R., Yashiroda, Y., Shirai, A., Kamata, A., Sekido, S., Kobayashi, Y., Hashimoto, A., Hamamoto, M., Hiraoka, Y., Horinouchi, S., and Yoshida, M. (2006) ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 24, 841–847.
– reference: Alseth, I., Osman, F., Korvald, H., Tsaneva, I., Whitby, M. C., Seeberg, E., and Bjoras, M. (2005) Biochemical characterization and DNA repair pathway interactions of Mag1-mediated base excision repair in Schizosaccharomyces pombe. Nucleic Acids Res. 33, 1123–1131.
– reference: Tanihigashi, H., Yamada, A., Igawa, E., and Ikeda, S. (2006) The role of Schizosaccharomyces pombe DNA repair enzymes Apn1p and Uve1p in the base excision repair of apurinic/apyrimidinic sites. Biochem. Biophys. Res. Commun. 347, 889–894.
– reference: Memisoglu, A., and Samson, L. (1996) Cloning and characterization of a cDNA encoding a 3-methyladenine DNA glycosylase from the fission yeast Schizosaccharomyces pombe. Gene 177, 229–235.
– reference: Friedberg, E. C., Walker, G. C., and Siede, W. (1995) DNA Repair and Mutagenesis, ASM Press, Washington, D. C.
– reference: Sedgwick, B., Bates, P. A., Paik, J., Jacobs, S. C., and Lindahl, T. (2007) Repair of alkylated DNA: recent advances. DNA Repair 6, 429–442.
– reference: Sugimoto, T., Igawa, E., Tanihigashi, H., Matsubara, M., Ide, H., and Ikeda, S. (2005) Roles of base excision repair enzymes Nth1p and Apn2p from Schizosaccharomyces pombe in processing alkylation and oxidative DNA damage. DNA Repair 4, 1270–1280.
– reference: Chen, D., Toone, W. M., Mata, J., Lyne, R., Burns, G., Kivinen, K., Brazma, A., Jones, N., and Bahler, J. (2003) Global transcriptional responses of fission yeast to environmental stress. Mol. Biol. Cell. 14, 214–229.
– reference: Ribar, B., Izumi, T., and Mitra, S. (2004) The major role of human AP-endonuclease homolog Apn2 in repair of abasic sites in Schizosaccharomyces pombe. Nucleic Acids Res. 32, 115–126.
– ident: 12
  doi: 10.1016/j.dnarep.2005.06.009
– volume: 33
  start-page: 1123
  year: 2005
  ident: 3
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki259
– start-page: 115
  year: 1998
  ident: 1
  publication-title: Methods in Yeast Genetics, a Cold Spring Harbor Laboratory Course Manual
– ident: 8
  doi: 10.1016/0378-1119(96)00308-3
– ident: 7
  doi: 10.1038/nbt1222
– ident: 5
  doi: 10.1091/mbc.E02-08-0499
– ident: 9
  doi: 10.1128/JB.182.8.2104-2112.2000
– volume: 32
  start-page: 115
  year: 2004
  ident: 10
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh151
– ident: 13
  doi: 10.1016/j.bbrc.2006.06.191
– volume: 32
  start-page: 5119
  year: 2004
  ident: 2
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh851
– ident: 11
  doi: 10.1016/j.dnarep.2006.10.005
– ident: 6
– ident: 4
  doi: 10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y
SSID ssj0020983
Score 1.781118
Snippet Schizosaccharomyces pombe has two paralogues of 3-methyladenine DNA glycosylase, Mag1p and Mag2p, which share homology with Escherichia coli AlkA. To clarify...
SourceID proquest
pubmed
crossref
jstage
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 489
SubjectTerms 3-methyladenine DNA glycosylase
Alkylation
alkylation damage
Base excision repair
DNA damage
DNA Damage - physiology
DNA glycosylase
DNA Glycosylases - genetics
DNA Glycosylases - metabolism
DNA Repair
Enzymes
Escherichia coli
EXPRESION GENICA
EXPRESSION DES GENES
Gene deletion
GENE EXPRESSION
Genetic analysis
Homology
mag1
mag2
Methyl methanesulfonate
Methyl Methanesulfonate - toxicity
MMS
Mutagens - toxicity
MUTANT
MUTANTES
MUTANTS
NTH1 protein
Nucleotide excision repair
REPAIRING
REPARACION
REPARATION
Schizosaccharomyces - drug effects
Schizosaccharomyces - enzymology
Schizosaccharomyces - genetics
SCHIZOSACCHAROMYCES POMBE
Schizosaccharomyces pombe Proteins - genetics
Schizosaccharomyces pombe Proteins - metabolism
Title Involvement of 3-methyladenine DNA glycosylases Mag1p and Mag2p in base excision repair of methyl methanesulfonate-damaged DNA in the fission yeast Schizosaccharomyces pombe
URI https://www.jstage.jst.go.jp/article/ggs/82/6/82_6_489/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/18270439
https://www.proquest.com/docview/1464334992
https://www.proquest.com/docview/70098993
https://www.proquest.com/docview/858424059
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Genes & Genetic Systems, 2007, Vol.82(6), pp.489-494
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe2ISReEP8GhQGW4AVVKa2bNOnjBBvbxAYSnVSeIie1Q1CbVEsr0X0nvh0fgN_ZaZLChoCXtPKfc5379Xzns-8YexlBTSB_j-MGWjluJFxyEvpO5EKZ1d2JF_t0wfn0bHB07p6MvfHW1o_GqaXlIurEl1feK_kfrqIMfKVbsv_A2YooCvAd_MUTHMbzr3h8nEG4mIDfxp_fdygf9GoqIUtIeXx7tt9Opqs4L1BWqKJ9KpPevDxakYg57XXQKtZW32yiHfIgSOs3sJTMh4Q0XE41bbMrZyJnkEATQ7s8IqnTwnReURogCuuZXuaFjOk-Vz5b0YmveT6LNo4cUbDrwqAOc6NrlGVE6dqzJDM5SxfF0giiVZ6C6kVebzNk6Zc0oTxQZumUF8tMNiutSvw5R4MKuMf4_TaBVfsT1OaN7Q6_XoSgPNQSj15V7Xxo75uLqg05jsXZ8T2bsaejbBlEleP5NnfNWvgHogHypiR3bWaj31YYKDSARZIUnUB0ykabYbzPPoSH5-_fh6OD8Wiz1qoNlHBeUIK3bXZDwLihvBvvxtXBJNEdmuCx1RTKoLoY-HU97IYata1lDg3qK-yJRF1vKhmVaXSH3S5tHb5vgXuXbansHrtps5-u7rPvDfjyXPNf4MsBMd6ELzfw5eAJN_DlacYJvnwNX27hS7QsJX4dfA1tdAd8eQlfbuDLr4AvN_B9wM4PD0Zvjpwye4gTe-5g4Wjtqq4edONAd_ue9ARtfYiehAobR75L108DEeFVyoGCzupH_qCnelpDpA2hwIj-LtvJ8kw9YlyIidICjSaqi45SwgYJZF9LNYkDT4sWe7VmRhiXofUpw8s0JBMbjAvBuDAQIUZrsRdV27kNKHNlq13wNJQJVvrw5KMwhh0l6G2xwLK56lxKn3XngX2ARlVDLwzissX21sAISyFWkOXv9vvucIhJPK-qscSQ3xAMypdF6FPQYdgxLcavaRHAjMF79fC7H1rE1XMLhE_X7x__efQn7Jb1mtDm5h7bWVws1VOo-4vomfl3_ARE4gtN
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Involvement+of+3-methyladenine+DNA+glycosylases+Mag1p+and+Mag2p+in+base+excision+repair+of+methyl+methanesulfonate-damaged+DNA+in+the+fission+yeast+Schizosaccharomyces+pombe&rft.jtitle=Genes+%26+genetic+systems&rft.au=Kanamitsu%2C+Kyoichiro&rft.au=Tanihigashi%2C+Haruna&rft.au=Tanita%2C+Yoshie&rft.au=Inatani%2C+Saki&rft.date=2007&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1341-7568&rft.eissn=1880-5779&rft.volume=82&rft.issue=6&rft.spage=489&rft_id=info:doi/10.1266%2Fggs.82.489&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3143820831
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-7568&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-7568&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-7568&client=summon