Sample size and power calculations based on generalized linear mixed models with correlated binary outcomes
The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can now be easily implemented with SAS PROC GLIMMIX in version 9.1. For binary outcomes, linearization methods of penalized quasi-likelihood (PQL)...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 91; no. 2; pp. 122 - 127 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier Ireland Ltd
01.08.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-2607 1872-7565 |
DOI | 10.1016/j.cmpb.2008.03.001 |
Cover
Abstract | The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can now be easily implemented with SAS PROC GLIMMIX in version 9.1. For binary outcomes, linearization methods of penalized quasi-likelihood (PQL) or marginal quasi-likelihood (MQL) provide relatively accurate variance estimates for fixed effects. Using GLIMMIX based on these linearization methods, we derived formulas for power and sample size calculations for longitudinal designs with attrition over time. We found that the power and sample size estimates depend on the within-subject correlation and the size of random effects. In this article, we present tables of minimum sample sizes commonly used to test hypotheses for longitudinal studies. A simulation study was used to compare the results. We also provide a Web link to the SAS macro that we developed to compute power and sample sizes for correlated binary outcomes. |
---|---|
AbstractList | The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can now be easily implemented with SAS PROC GLIMMIX in version 9.1. For binary outcomes, linearization methods of penalized quasi-likelihood (PQL) or marginal quasi-likelihood (MQL) provide relatively accurate variance estimates for fixed effects. Using GLIMMIX based on these linearization methods, we derived formulas for power and sample size calculations for longitudinal designs with attrition over time. We found that the power and sample size estimates depend on the within-subject correlation and the size of random effects. In this article, we present tables of minimum sample sizes commonly used to test hypotheses for longitudinal studies. A simulation study was used to compare the results. We also provide a Web link to the SAS macro that we developed to compute power and sample sizes for correlated binary outcomes. The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can now be easily implemented with SAS PROC GLIMMIX in version 9.1. For binary outcomes, linearization methods of penalized quasi-likelihood (PQL) or marginal quasi-likelihood (MQL) provide relatively accurate variance estimates for fixed effects. Using GLIMMIX based on these linearization methods, we derived formulas for power and sample size calculations for longitudinal designs with attrition over time. We found that the power and sample size estimates depend on the within-subject correlation and the size of random effects. In this article, we present tables of minimum sample sizes commonly used to test hypotheses for longitudinal studies. A simulation study was used to compare the results. We also provide a Web link to the SAS macro that we developed to compute power and sample sizes for correlated binary outcomes.The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can now be easily implemented with SAS PROC GLIMMIX in version 9.1. For binary outcomes, linearization methods of penalized quasi-likelihood (PQL) or marginal quasi-likelihood (MQL) provide relatively accurate variance estimates for fixed effects. Using GLIMMIX based on these linearization methods, we derived formulas for power and sample size calculations for longitudinal designs with attrition over time. We found that the power and sample size estimates depend on the within-subject correlation and the size of random effects. In this article, we present tables of minimum sample sizes commonly used to test hypotheses for longitudinal studies. A simulation study was used to compare the results. We also provide a Web link to the SAS macro that we developed to compute power and sample sizes for correlated binary outcomes. Abstract The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can now be easily implemented with SAS PROC GLIMMIX in version 9.1. For binary outcomes, linearization methods of penalized quasi-likelihood (PQL) or marginal quasi-likelihood (MQL) provide relatively accurate variance estimates for fixed effects. Using GLIMMIX based on these linearization methods, we derived formulas for power and sample size calculations for longitudinal designs with attrition over time. We found that the power and sample size estimates depend on the within-subject correlation and the size of random effects. In this article, we present tables of minimum sample sizes commonly used to test hypotheses for longitudinal studies. A simulation study was used to compare the results. We also provide a Web link to the SAS macro that we developed to compute power and sample sizes for correlated binary outcomes. The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can now be easily implemented with SAS PROC GLIMMIX in version 9.1. For binary outcomes, linearization methods of penalized quasilikelihood (PQL) or marginal quasi-likelihood (MQL) provide relatively accurate variance estimates for fixed effects. Using GLIMMIX based on these linearization methods, we derived formulas for power and sample size calculations for longitudinal designs with attrition over time. We found that the power and sample size estimates depend on the within-subject correlation and the size of random effects. In this article, we present tables of minimum sample sizes commonly used to test hypotheses for longitudinal studies. A simulation study was used to compare the results. We also provide a Web link to the SAS macro that we developed to compute power and sample sizes for correlated binary outcomes. |
Author | Dang, Qianyu Houck, Patricia R. Mazumdar, Sati |
AuthorAffiliation | a Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States c Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, United States b Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, United States |
AuthorAffiliation_xml | – name: b Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, United States – name: c Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, United States – name: a Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States |
Author_xml | – sequence: 1 givenname: Qianyu surname: Dang fullname: Dang, Qianyu email: dangq@upmc.edu organization: Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States – sequence: 2 givenname: Sati surname: Mazumdar fullname: Mazumdar, Sati organization: Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, United States – sequence: 3 givenname: Patricia R. surname: Houck fullname: Houck, Patricia R. organization: Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18462826$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstu1TAUtFARvS38AAvkFbsEH-dphCpVFS-pEovC2nLsk9a3iR3spKV8PQ63VFCJdmXZnpkzOjMHZM95h4S8BJYDg_rNNtfj1OWcsTZnRc4YPCEbaBueNVVd7ZFNAomM16zZJwcxbhljvKrqZ2Qf2rLmLa835PJMjdOANNqfSJUzdPLXGKhWg14GNVvvIu1UREO9o-foMKghQQ0drEMV6Gh_pMvoDQ6RXtv5gmofAiZqeu6sU-GG-mXWfsT4nDzt1RDxxe15SL59eP_15FN2-uXj55Pj00xXZT1nfYsl9AWWRnStVoZrAC06gFo3bSGQVU3fK2EUoAFloK-hYk1ltEBA1pfFITna6U5LN6LR6ObkWk7BjsmO9MrKf3-cvZDn_koWTdEI0SaB17cCwX9fMM5ytFHjMCiHfomyFhxYVcKjQBBFwQUUCfjqb0t3Xv4EkQDtDqCDjzFgL7Wdf-8_ObSDBCbXzOVWrpnLNXPJCpkyT1R-j3qn_hDp3Y6UcsMri0FGbdFpNDagnqXx9mH60T26ToWwqTaXeINx65fgUsQSZOSSybO1iWsRWZtK2FTrit_-X-Cx6b8ATafxMw |
CitedBy_id | crossref_primary_10_1001_jamanetworkopen_2019_14996 crossref_primary_10_1371_journal_pone_0130671 crossref_primary_10_1016_j_scitotenv_2023_168158 crossref_primary_10_1111_biom_12764 crossref_primary_10_1136_tobaccocontrol_2016_053323 crossref_primary_10_1186_s13063_021_05542_9 crossref_primary_10_1007_s13571_017_0132_3 crossref_primary_10_1016_j_jclinepi_2016_12_005 crossref_primary_10_1002_sim_7201 crossref_primary_10_1016_j_jacc_2013_03_088 crossref_primary_10_1007_s10461_022_03921_0 crossref_primary_10_1161_CIRCULATIONAHA_109_859280 crossref_primary_10_2136_sssaj2018_09_0335 crossref_primary_10_1515_ijb_2014_0015 crossref_primary_10_1016_j_jclinepi_2014_09_025 crossref_primary_10_1007_s00127_019_01730_w crossref_primary_10_1016_j_yjmcc_2019_02_004 crossref_primary_10_1146_annurev_clinpsy_032408_153550 crossref_primary_10_3390_ijerph19116813 crossref_primary_10_1177_0962280212460443 crossref_primary_10_1016_j_cct_2015_09_015 crossref_primary_10_1080_24733938_2021_1978106 crossref_primary_10_1136_bmjopen_2020_043230 crossref_primary_10_1148_radiol_2017162447 crossref_primary_10_1038_s41386_023_01592_6 crossref_primary_10_1016_j_ultrasmedbio_2015_06_024 crossref_primary_10_3390_jpm14060629 crossref_primary_10_1093_cercor_bhz065 crossref_primary_10_1080_10543406_2018_1535501 crossref_primary_10_1080_19345747_2012_725803 crossref_primary_10_1002_sim_6203 crossref_primary_10_1016_j_ajodo_2015_04_037 |
Cites_doi | 10.2307/1165134 10.1080/00949659308811554 10.2307/2983404 10.3102/10769986024001070 10.1002/(SICI)1097-0258(19980730)17:14<1643::AID-SIM869>3.0.CO;2-3 10.1016/S0197-2456(01)00131-3 10.2307/2533554 10.1002/bimj.4710390803 10.1016/j.cmpb.2006.07.011 |
ContentType | Journal Article |
Copyright | 2008 Elsevier Ireland Ltd Elsevier Ireland Ltd 2008 Elsevier Ireland Ltd. All rights reserved. 2008 |
Copyright_xml | – notice: 2008 Elsevier Ireland Ltd – notice: Elsevier Ireland Ltd – notice: 2008 Elsevier Ireland Ltd. All rights reserved. 2008 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 5PM |
DOI | 10.1016/j.cmpb.2008.03.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
EndPage | 127 |
ExternalDocumentID | PMC3737998 18462826 10_1016_j_cmpb_2008_03_001 S0169260708000758 1_s2_0_S0169260708000758 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: P30 MH071944 – fundername: NIMH NIH HHS grantid: P30 MH 71944 – fundername: National Institute of Mental Health : NIMH grantid: P30 MH071944-01 || MH |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- AFCTW AGRNS RIG AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c546t-f8e41f3e4d9b8cad2c11c9b116c7839e057ffa9da1ed1ad1f615075dc9e1e0f43 |
IEDL.DBID | .~1 |
ISSN | 0169-2607 |
IngestDate | Thu Aug 21 18:17:45 EDT 2025 Fri Sep 05 14:31:39 EDT 2025 Fri Sep 05 07:07:20 EDT 2025 Fri May 30 11:01:43 EDT 2025 Tue Jul 01 02:40:29 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Fri Feb 23 02:22:19 EST 2024 Fri May 16 00:31:32 EDT 2025 Tue Aug 26 19:12:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | GLIMMIX Clinical trials Marginal quasi-likelihood Penalized quasi-likelihood |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c546t-f8e41f3e4d9b8cad2c11c9b116c7839e057ffa9da1ed1ad1f615075dc9e1e0f43 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 18462826 |
PQID | 19332913 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3737998 proquest_miscellaneous_69210541 proquest_miscellaneous_19332913 pubmed_primary_18462826 crossref_citationtrail_10_1016_j_cmpb_2008_03_001 crossref_primary_10_1016_j_cmpb_2008_03_001 elsevier_sciencedirect_doi_10_1016_j_cmpb_2008_03_001 elsevier_clinicalkeyesjournals_1_s2_0_S0169260708000758 elsevier_clinicalkey_doi_10_1016_j_cmpb_2008_03_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-08-01 |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: 2008-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationTitleAlternate | Comput Methods Programs Biomed |
PublicationYear | 2008 |
Publisher | Elsevier Ireland Ltd |
Publisher_xml | – name: Elsevier Ireland Ltd |
References | Accessed August 16, 2007. Liu, Liang (bib1) 1997; 53 Snijders, Bosker (bib5) 1993; 18 Shih (bib2) 1997; 39 Moineddin, Matheson, Glazier (bib13) 2007 Hedeker, Gibbons, Waternaux (bib6) 1999; 24 RMASS, Center for Health Statistics, University of Illinois at Chicago. Available at Pan (bib3) 2001; 22 SAS GLIMMIX Procedure Documentation. SAS Institute Inc., Cary, North Carolina, June 2006. Molenberghs, Verbeke (bib12) 2005 Gastanaga, McLaren, Delfino (bib8) 2006; 84 Wolfinger, O’Connell (bib9) 1993; 4 Rochon (bib4) 1998; 17 Rodriguez, Goldman (bib11) 1995; 158 10.1016/j.cmpb.2008.03.001_bib7 Gastanaga (10.1016/j.cmpb.2008.03.001_bib8) 2006; 84 Molenberghs (10.1016/j.cmpb.2008.03.001_bib12) 2005 Pan (10.1016/j.cmpb.2008.03.001_bib3) 2001; 22 Rochon (10.1016/j.cmpb.2008.03.001_bib4) 1998; 17 Shih (10.1016/j.cmpb.2008.03.001_bib2) 1997; 39 10.1016/j.cmpb.2008.03.001_bib10 Rodriguez (10.1016/j.cmpb.2008.03.001_bib11) 1995; 158 Snijders (10.1016/j.cmpb.2008.03.001_bib5) 1993; 18 Hedeker (10.1016/j.cmpb.2008.03.001_bib6) 1999; 24 Liu (10.1016/j.cmpb.2008.03.001_bib1) 1997; 53 Wolfinger (10.1016/j.cmpb.2008.03.001_bib9) 1993; 4 Moineddin (10.1016/j.cmpb.2008.03.001_bib13) 2007 |
References_xml | – reference: . Accessed August 16, 2007. – volume: 4 start-page: 233 year: 1993 end-page: 243 ident: bib9 article-title: Generalized linear mixed models: a pseudo-likelihood approach publication-title: J. Stat. Comput. Simulation – volume: 17 start-page: 1643 year: 1998 end-page: 1658 ident: bib4 article-title: Application of GEE procedures for sample size calculations in repeated measures publication-title: Stat. Med. – reference: RMASS, Center for Health Statistics, University of Illinois at Chicago. Available at: – volume: 18 start-page: 237 year: 1993 end-page: 259 ident: bib5 article-title: Standard errors and sample sizes for two-level research publication-title: J. Educ. Stat. – volume: 158 start-page: 73 year: 1995 end-page: 89 ident: bib11 article-title: An assessment of estimation for multilevel models with binary responses publication-title: J. Roy. Stat. Soc. A – volume: 22 start-page: 211 year: 2001 end-page: 227 ident: bib3 article-title: Sample size and power calculations with correlated binary data publication-title: Control. Clin. Trials – reference: SAS GLIMMIX Procedure Documentation. SAS Institute Inc., Cary, North Carolina, June 2006. – volume: 53 start-page: 937 year: 1997 end-page: 947 ident: bib1 article-title: Sample size calculations for studies with correlated observations publication-title: Biometrics – start-page: 7 year: 2007 end-page: 34 ident: bib13 article-title: A simulation study of sample size for multilevel logistic regression models publication-title: BMC Med. Res. Methodology – volume: 39 start-page: 899 year: 1997 end-page: 908 ident: bib2 article-title: Sample size and power calculations for periodontal and other studies with clustered samples using the method of generalized estimating equations publication-title: Biometrical J. – volume: 84 start-page: 27 year: 2006 end-page: 33 ident: bib8 article-title: Power calculations for generalized linear models in observational longitudinal studies: a simulation approach in SAS publication-title: Comput. Methods Programs Biomed. – volume: 24 start-page: 70 year: 1999 end-page: 93 ident: bib6 article-title: Sample size estimation for longitudinal designs with attrition: comparing time-related contrasts between two groups publication-title: J. Educ. Behav. Stat. – year: 2005 ident: bib12 article-title: Models for Discrete Longitudinal Data – volume: 18 start-page: 237 year: 1993 ident: 10.1016/j.cmpb.2008.03.001_bib5 article-title: Standard errors and sample sizes for two-level research publication-title: J. Educ. Stat. doi: 10.2307/1165134 – ident: 10.1016/j.cmpb.2008.03.001_bib7 – volume: 4 start-page: 233 year: 1993 ident: 10.1016/j.cmpb.2008.03.001_bib9 article-title: Generalized linear mixed models: a pseudo-likelihood approach publication-title: J. Stat. Comput. Simulation doi: 10.1080/00949659308811554 – volume: 158 start-page: 73 year: 1995 ident: 10.1016/j.cmpb.2008.03.001_bib11 article-title: An assessment of estimation for multilevel models with binary responses publication-title: J. Roy. Stat. Soc. A doi: 10.2307/2983404 – volume: 24 start-page: 70 year: 1999 ident: 10.1016/j.cmpb.2008.03.001_bib6 article-title: Sample size estimation for longitudinal designs with attrition: comparing time-related contrasts between two groups publication-title: J. Educ. Behav. Stat. doi: 10.3102/10769986024001070 – volume: 17 start-page: 1643 year: 1998 ident: 10.1016/j.cmpb.2008.03.001_bib4 article-title: Application of GEE procedures for sample size calculations in repeated measures publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19980730)17:14<1643::AID-SIM869>3.0.CO;2-3 – volume: 22 start-page: 211 year: 2001 ident: 10.1016/j.cmpb.2008.03.001_bib3 article-title: Sample size and power calculations with correlated binary data publication-title: Control. Clin. Trials doi: 10.1016/S0197-2456(01)00131-3 – start-page: 7 year: 2007 ident: 10.1016/j.cmpb.2008.03.001_bib13 article-title: A simulation study of sample size for multilevel logistic regression models publication-title: BMC Med. Res. Methodology – volume: 53 start-page: 937 year: 1997 ident: 10.1016/j.cmpb.2008.03.001_bib1 article-title: Sample size calculations for studies with correlated observations publication-title: Biometrics doi: 10.2307/2533554 – volume: 39 start-page: 899 year: 1997 ident: 10.1016/j.cmpb.2008.03.001_bib2 article-title: Sample size and power calculations for periodontal and other studies with clustered samples using the method of generalized estimating equations publication-title: Biometrical J. doi: 10.1002/bimj.4710390803 – ident: 10.1016/j.cmpb.2008.03.001_bib10 – volume: 84 start-page: 27 year: 2006 ident: 10.1016/j.cmpb.2008.03.001_bib8 article-title: Power calculations for generalized linear models in observational longitudinal studies: a simulation approach in SAS publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2006.07.011 – year: 2005 ident: 10.1016/j.cmpb.2008.03.001_bib12 |
SSID | ssj0002556 |
Score | 2.0236974 |
Snippet | The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can... Abstract The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The... The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 122 |
SubjectTerms | Algorithms Biometry - methods Clinical trials Computer Simulation Data Interpretation, Statistical GLIMMIX Internal Medicine Linear Models Logistic Models Marginal quasi-likelihood Models, Biological Other Outcome Assessment, Health Care - methods Penalized quasi-likelihood Sample Size |
Title | Sample size and power calculations based on generalized linear mixed models with correlated binary outcomes |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260708000758 https://www.clinicalkey.es/playcontent/1-s2.0-S0169260708000758 https://dx.doi.org/10.1016/j.cmpb.2008.03.001 https://www.ncbi.nlm.nih.gov/pubmed/18462826 https://www.proquest.com/docview/19332913 https://www.proquest.com/docview/69210541 https://pubmed.ncbi.nlm.nih.gov/PMC3737998 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkJcEG-W0uIDNxR2Hb_iY1W1WkDtpVTqzXJsB0JpdtXsSqgHfjszibPtUlokjklm8rDHM1-SmW8IeReilM5NQqbCRGbCa5W5shBZADRhjA5KR6xGPjpW01Px6UyebZD9oRYG0yqT7-99euet055xGs3xvK7HJ8gjAmhcI-aBwIcFv0JotPUPv67TPJBiq-f3NhlKp8KZPsfLX8zLlE-JRKfsruB0G3z-mUN5IygdPiaPEpqke_0NPyEbsXlKHhyl_-XPyPmJQ_Zf2tZXkbom0Dk2RaMwLz617WopxrFAZw392jNQg2igCD7dJb2of8JG1y2npfjJlnrs5gGqsLvsSnnpbLmAwYvtc3J6ePBlf5ql9gqZl0ItsqqIglU8imDKwruQe8a8KRlTXgNsioDkqsqZ4FgMzAVWIXe8lsGbyOKkEvwF2WxmTXxFaFFErVTQEO0UeIRglOQekIp0Oi-1zEeEDeNqfeIexxYYP-yQZPbd4lykppgcM-1G5P1KZ94zb9wrzYfpskNNKXhBC4HhXi39N63YpoXcWmbb3E7sLWMbEbnSXLPXf17x7WBLFhYy_p1xTZwt4UqG89wwfrcE3AGgYQHneNnb3vW4FFhinCt4njWrXAkgifj6kab-1pGJc801vHK__s_n2SYP-wwaTIl8QzYXl8u4AzBtUe5263CXbO19_Dw9_g2bPj6f |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYAL4s3yqg_cUNh1_IqPqKJaoNtLW6k3y7EdGqDZVbMrIQ78dmYSZ8tSWiSOm53ZJPbY82XzzTeEvA5RSucmIVNhIjPhtcpcWYgsAJowRgelI1Yjzw7U9Fh8PJEnW2R3qIVBWmXa-_s9vdut05FxGs3xoq7Hh6gjAmhcI-aBxFfcIDeF5Bp5fW9_XvA8UGOrF_g2GZqnypme5OXPFmUiVKLSKbsqO11Gn3-SKH_LSnv3yN0EJ-m7_orvk63YPCC3ZumF-UPy9dCh_C9t6x-RuibQBXZFozAxPvXtaikmskDnDf3cS1CDaaCIPt05Pau_w4euXU5L8T9b6rGdB7jC4bKr5aXz1RJGL7aPyPHe-6PdaZb6K2ReCrXMqiIKVvEogikL70LuGfOmZEx5DbgpApSrKmeCYzEwF1iF4vFaBm8ii5NK8Mdku5k38SmhRRG1UkFDulOwJQSjJPcAVaTTeallPiJsGFfrk_g49sD4ZgeW2ReLc5G6YnKk2o3Im7XPopfeuNaaD9Nlh6JS2AYtZIZrvfTfvGKbVnJrmW1zO7GXom1E5NpzI2D_ecadIZYsrGR8PeOaOF_BmQznuWH8agu4AoDDAn7jSR97F-NSYI1xruB-NqJybYAq4pvfNPVppybONdfwzP3sP-9nh9yeHs327f6Hg0_PyZ2eToP8yBdke3m-ii8Bsy3LV92a_AWVlkAy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sample+size+and+power+calculations+based+on+generalized+linear+mixed+models+with+correlated+binary+outcomes&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Dang%2C+Qianyu&rft.au=Mazumdar%2C+Sati&rft.au=Houck%2C+Patricia+R.&rft.date=2008-08-01&rft.issn=0169-2607&rft.volume=91&rft.issue=2&rft.spage=122&rft.epage=127&rft_id=info:doi/10.1016%2Fj.cmpb.2008.03.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2008_03_001 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01692607%2FS0169260708X00070%2Fcov150h.gif |