Sample size and power calculations based on generalized linear mixed models with correlated binary outcomes

The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can now be easily implemented with SAS PROC GLIMMIX in version 9.1. For binary outcomes, linearization methods of penalized quasi-likelihood (PQL)...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 91; no. 2; pp. 122 - 127
Main Authors Dang, Qianyu, Mazumdar, Sati, Houck, Patricia R.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 01.08.2008
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
DOI10.1016/j.cmpb.2008.03.001

Cover

Abstract The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can now be easily implemented with SAS PROC GLIMMIX in version 9.1. For binary outcomes, linearization methods of penalized quasi-likelihood (PQL) or marginal quasi-likelihood (MQL) provide relatively accurate variance estimates for fixed effects. Using GLIMMIX based on these linearization methods, we derived formulas for power and sample size calculations for longitudinal designs with attrition over time. We found that the power and sample size estimates depend on the within-subject correlation and the size of random effects. In this article, we present tables of minimum sample sizes commonly used to test hypotheses for longitudinal studies. A simulation study was used to compare the results. We also provide a Web link to the SAS macro that we developed to compute power and sample sizes for correlated binary outcomes.
AbstractList The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can now be easily implemented with SAS PROC GLIMMIX in version 9.1. For binary outcomes, linearization methods of penalized quasi-likelihood (PQL) or marginal quasi-likelihood (MQL) provide relatively accurate variance estimates for fixed effects. Using GLIMMIX based on these linearization methods, we derived formulas for power and sample size calculations for longitudinal designs with attrition over time. We found that the power and sample size estimates depend on the within-subject correlation and the size of random effects. In this article, we present tables of minimum sample sizes commonly used to test hypotheses for longitudinal studies. A simulation study was used to compare the results. We also provide a Web link to the SAS macro that we developed to compute power and sample sizes for correlated binary outcomes.
The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can now be easily implemented with SAS PROC GLIMMIX in version 9.1. For binary outcomes, linearization methods of penalized quasi-likelihood (PQL) or marginal quasi-likelihood (MQL) provide relatively accurate variance estimates for fixed effects. Using GLIMMIX based on these linearization methods, we derived formulas for power and sample size calculations for longitudinal designs with attrition over time. We found that the power and sample size estimates depend on the within-subject correlation and the size of random effects. In this article, we present tables of minimum sample sizes commonly used to test hypotheses for longitudinal studies. A simulation study was used to compare the results. We also provide a Web link to the SAS macro that we developed to compute power and sample sizes for correlated binary outcomes.The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can now be easily implemented with SAS PROC GLIMMIX in version 9.1. For binary outcomes, linearization methods of penalized quasi-likelihood (PQL) or marginal quasi-likelihood (MQL) provide relatively accurate variance estimates for fixed effects. Using GLIMMIX based on these linearization methods, we derived formulas for power and sample size calculations for longitudinal designs with attrition over time. We found that the power and sample size estimates depend on the within-subject correlation and the size of random effects. In this article, we present tables of minimum sample sizes commonly used to test hypotheses for longitudinal studies. A simulation study was used to compare the results. We also provide a Web link to the SAS macro that we developed to compute power and sample sizes for correlated binary outcomes.
Abstract The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can now be easily implemented with SAS PROC GLIMMIX in version 9.1. For binary outcomes, linearization methods of penalized quasi-likelihood (PQL) or marginal quasi-likelihood (MQL) provide relatively accurate variance estimates for fixed effects. Using GLIMMIX based on these linearization methods, we derived formulas for power and sample size calculations for longitudinal designs with attrition over time. We found that the power and sample size estimates depend on the within-subject correlation and the size of random effects. In this article, we present tables of minimum sample sizes commonly used to test hypotheses for longitudinal studies. A simulation study was used to compare the results. We also provide a Web link to the SAS macro that we developed to compute power and sample sizes for correlated binary outcomes.
The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can now be easily implemented with SAS PROC GLIMMIX in version 9.1. For binary outcomes, linearization methods of penalized quasilikelihood (PQL) or marginal quasi-likelihood (MQL) provide relatively accurate variance estimates for fixed effects. Using GLIMMIX based on these linearization methods, we derived formulas for power and sample size calculations for longitudinal designs with attrition over time. We found that the power and sample size estimates depend on the within-subject correlation and the size of random effects. In this article, we present tables of minimum sample sizes commonly used to test hypotheses for longitudinal studies. A simulation study was used to compare the results. We also provide a Web link to the SAS macro that we developed to compute power and sample sizes for correlated binary outcomes.
Author Dang, Qianyu
Houck, Patricia R.
Mazumdar, Sati
AuthorAffiliation a Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
c Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, United States
b Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, United States
AuthorAffiliation_xml – name: b Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, United States
– name: c Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, United States
– name: a Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
Author_xml – sequence: 1
  givenname: Qianyu
  surname: Dang
  fullname: Dang, Qianyu
  email: dangq@upmc.edu
  organization: Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
– sequence: 2
  givenname: Sati
  surname: Mazumdar
  fullname: Mazumdar, Sati
  organization: Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, United States
– sequence: 3
  givenname: Patricia R.
  surname: Houck
  fullname: Houck, Patricia R.
  organization: Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18462826$$D View this record in MEDLINE/PubMed
BookMark eNqFUstu1TAUtFARvS38AAvkFbsEH-dphCpVFS-pEovC2nLsk9a3iR3spKV8PQ63VFCJdmXZnpkzOjMHZM95h4S8BJYDg_rNNtfj1OWcsTZnRc4YPCEbaBueNVVd7ZFNAomM16zZJwcxbhljvKrqZ2Qf2rLmLa835PJMjdOANNqfSJUzdPLXGKhWg14GNVvvIu1UREO9o-foMKghQQ0drEMV6Gh_pMvoDQ6RXtv5gmofAiZqeu6sU-GG-mXWfsT4nDzt1RDxxe15SL59eP_15FN2-uXj55Pj00xXZT1nfYsl9AWWRnStVoZrAC06gFo3bSGQVU3fK2EUoAFloK-hYk1ltEBA1pfFITna6U5LN6LR6ObkWk7BjsmO9MrKf3-cvZDn_koWTdEI0SaB17cCwX9fMM5ytFHjMCiHfomyFhxYVcKjQBBFwQUUCfjqb0t3Xv4EkQDtDqCDjzFgL7Wdf-8_ObSDBCbXzOVWrpnLNXPJCpkyT1R-j3qn_hDp3Y6UcsMri0FGbdFpNDagnqXx9mH60T26ToWwqTaXeINx65fgUsQSZOSSybO1iWsRWZtK2FTrit_-X-Cx6b8ATafxMw
CitedBy_id crossref_primary_10_1001_jamanetworkopen_2019_14996
crossref_primary_10_1371_journal_pone_0130671
crossref_primary_10_1016_j_scitotenv_2023_168158
crossref_primary_10_1111_biom_12764
crossref_primary_10_1136_tobaccocontrol_2016_053323
crossref_primary_10_1186_s13063_021_05542_9
crossref_primary_10_1007_s13571_017_0132_3
crossref_primary_10_1016_j_jclinepi_2016_12_005
crossref_primary_10_1002_sim_7201
crossref_primary_10_1016_j_jacc_2013_03_088
crossref_primary_10_1007_s10461_022_03921_0
crossref_primary_10_1161_CIRCULATIONAHA_109_859280
crossref_primary_10_2136_sssaj2018_09_0335
crossref_primary_10_1515_ijb_2014_0015
crossref_primary_10_1016_j_jclinepi_2014_09_025
crossref_primary_10_1007_s00127_019_01730_w
crossref_primary_10_1016_j_yjmcc_2019_02_004
crossref_primary_10_1146_annurev_clinpsy_032408_153550
crossref_primary_10_3390_ijerph19116813
crossref_primary_10_1177_0962280212460443
crossref_primary_10_1016_j_cct_2015_09_015
crossref_primary_10_1080_24733938_2021_1978106
crossref_primary_10_1136_bmjopen_2020_043230
crossref_primary_10_1148_radiol_2017162447
crossref_primary_10_1038_s41386_023_01592_6
crossref_primary_10_1016_j_ultrasmedbio_2015_06_024
crossref_primary_10_3390_jpm14060629
crossref_primary_10_1093_cercor_bhz065
crossref_primary_10_1080_10543406_2018_1535501
crossref_primary_10_1080_19345747_2012_725803
crossref_primary_10_1002_sim_6203
crossref_primary_10_1016_j_ajodo_2015_04_037
Cites_doi 10.2307/1165134
10.1080/00949659308811554
10.2307/2983404
10.3102/10769986024001070
10.1002/(SICI)1097-0258(19980730)17:14<1643::AID-SIM869>3.0.CO;2-3
10.1016/S0197-2456(01)00131-3
10.2307/2533554
10.1002/bimj.4710390803
10.1016/j.cmpb.2006.07.011
ContentType Journal Article
Copyright 2008 Elsevier Ireland Ltd
Elsevier Ireland Ltd
2008 Elsevier Ireland Ltd. All rights reserved. 2008
Copyright_xml – notice: 2008 Elsevier Ireland Ltd
– notice: Elsevier Ireland Ltd
– notice: 2008 Elsevier Ireland Ltd. All rights reserved. 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
5PM
DOI 10.1016/j.cmpb.2008.03.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Engineering Research Database



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 127
ExternalDocumentID PMC3737998
18462826
10_1016_j_cmpb_2008_03_001
S0169260708000758
1_s2_0_S0169260708000758
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: P30 MH071944
– fundername: NIMH NIH HHS
  grantid: P30 MH 71944
– fundername: National Institute of Mental Health : NIMH
  grantid: P30 MH071944-01 || MH
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AFCTW
AGRNS
RIG
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c546t-f8e41f3e4d9b8cad2c11c9b116c7839e057ffa9da1ed1ad1f615075dc9e1e0f43
IEDL.DBID .~1
ISSN 0169-2607
IngestDate Thu Aug 21 18:17:45 EDT 2025
Fri Sep 05 14:31:39 EDT 2025
Fri Sep 05 07:07:20 EDT 2025
Fri May 30 11:01:43 EDT 2025
Tue Jul 01 02:40:29 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Fri Feb 23 02:22:19 EST 2024
Fri May 16 00:31:32 EDT 2025
Tue Aug 26 19:12:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords GLIMMIX
Clinical trials
Marginal quasi-likelihood
Penalized quasi-likelihood
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-f8e41f3e4d9b8cad2c11c9b116c7839e057ffa9da1ed1ad1f615075dc9e1e0f43
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 18462826
PQID 19332913
PQPubID 23462
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3737998
proquest_miscellaneous_69210541
proquest_miscellaneous_19332913
pubmed_primary_18462826
crossref_citationtrail_10_1016_j_cmpb_2008_03_001
crossref_primary_10_1016_j_cmpb_2008_03_001
elsevier_sciencedirect_doi_10_1016_j_cmpb_2008_03_001
elsevier_clinicalkeyesjournals_1_s2_0_S0169260708000758
elsevier_clinicalkey_doi_10_1016_j_cmpb_2008_03_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-08-01
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2008
Publisher Elsevier Ireland Ltd
Publisher_xml – name: Elsevier Ireland Ltd
References Accessed August 16, 2007.
Liu, Liang (bib1) 1997; 53
Snijders, Bosker (bib5) 1993; 18
Shih (bib2) 1997; 39
Moineddin, Matheson, Glazier (bib13) 2007
Hedeker, Gibbons, Waternaux (bib6) 1999; 24
RMASS, Center for Health Statistics, University of Illinois at Chicago. Available at
Pan (bib3) 2001; 22
SAS GLIMMIX Procedure Documentation. SAS Institute Inc., Cary, North Carolina, June 2006.
Molenberghs, Verbeke (bib12) 2005
Gastanaga, McLaren, Delfino (bib8) 2006; 84
Wolfinger, O’Connell (bib9) 1993; 4
Rochon (bib4) 1998; 17
Rodriguez, Goldman (bib11) 1995; 158
10.1016/j.cmpb.2008.03.001_bib7
Gastanaga (10.1016/j.cmpb.2008.03.001_bib8) 2006; 84
Molenberghs (10.1016/j.cmpb.2008.03.001_bib12) 2005
Pan (10.1016/j.cmpb.2008.03.001_bib3) 2001; 22
Rochon (10.1016/j.cmpb.2008.03.001_bib4) 1998; 17
Shih (10.1016/j.cmpb.2008.03.001_bib2) 1997; 39
10.1016/j.cmpb.2008.03.001_bib10
Rodriguez (10.1016/j.cmpb.2008.03.001_bib11) 1995; 158
Snijders (10.1016/j.cmpb.2008.03.001_bib5) 1993; 18
Hedeker (10.1016/j.cmpb.2008.03.001_bib6) 1999; 24
Liu (10.1016/j.cmpb.2008.03.001_bib1) 1997; 53
Wolfinger (10.1016/j.cmpb.2008.03.001_bib9) 1993; 4
Moineddin (10.1016/j.cmpb.2008.03.001_bib13) 2007
References_xml – reference: . Accessed August 16, 2007.
– volume: 4
  start-page: 233
  year: 1993
  end-page: 243
  ident: bib9
  article-title: Generalized linear mixed models: a pseudo-likelihood approach
  publication-title: J. Stat. Comput. Simulation
– volume: 17
  start-page: 1643
  year: 1998
  end-page: 1658
  ident: bib4
  article-title: Application of GEE procedures for sample size calculations in repeated measures
  publication-title: Stat. Med.
– reference: RMASS, Center for Health Statistics, University of Illinois at Chicago. Available at:
– volume: 18
  start-page: 237
  year: 1993
  end-page: 259
  ident: bib5
  article-title: Standard errors and sample sizes for two-level research
  publication-title: J. Educ. Stat.
– volume: 158
  start-page: 73
  year: 1995
  end-page: 89
  ident: bib11
  article-title: An assessment of estimation for multilevel models with binary responses
  publication-title: J. Roy. Stat. Soc. A
– volume: 22
  start-page: 211
  year: 2001
  end-page: 227
  ident: bib3
  article-title: Sample size and power calculations with correlated binary data
  publication-title: Control. Clin. Trials
– reference: SAS GLIMMIX Procedure Documentation. SAS Institute Inc., Cary, North Carolina, June 2006.
– volume: 53
  start-page: 937
  year: 1997
  end-page: 947
  ident: bib1
  article-title: Sample size calculations for studies with correlated observations
  publication-title: Biometrics
– start-page: 7
  year: 2007
  end-page: 34
  ident: bib13
  article-title: A simulation study of sample size for multilevel logistic regression models
  publication-title: BMC Med. Res. Methodology
– volume: 39
  start-page: 899
  year: 1997
  end-page: 908
  ident: bib2
  article-title: Sample size and power calculations for periodontal and other studies with clustered samples using the method of generalized estimating equations
  publication-title: Biometrical J.
– volume: 84
  start-page: 27
  year: 2006
  end-page: 33
  ident: bib8
  article-title: Power calculations for generalized linear models in observational longitudinal studies: a simulation approach in SAS
  publication-title: Comput. Methods Programs Biomed.
– volume: 24
  start-page: 70
  year: 1999
  end-page: 93
  ident: bib6
  article-title: Sample size estimation for longitudinal designs with attrition: comparing time-related contrasts between two groups
  publication-title: J. Educ. Behav. Stat.
– year: 2005
  ident: bib12
  article-title: Models for Discrete Longitudinal Data
– volume: 18
  start-page: 237
  year: 1993
  ident: 10.1016/j.cmpb.2008.03.001_bib5
  article-title: Standard errors and sample sizes for two-level research
  publication-title: J. Educ. Stat.
  doi: 10.2307/1165134
– ident: 10.1016/j.cmpb.2008.03.001_bib7
– volume: 4
  start-page: 233
  year: 1993
  ident: 10.1016/j.cmpb.2008.03.001_bib9
  article-title: Generalized linear mixed models: a pseudo-likelihood approach
  publication-title: J. Stat. Comput. Simulation
  doi: 10.1080/00949659308811554
– volume: 158
  start-page: 73
  year: 1995
  ident: 10.1016/j.cmpb.2008.03.001_bib11
  article-title: An assessment of estimation for multilevel models with binary responses
  publication-title: J. Roy. Stat. Soc. A
  doi: 10.2307/2983404
– volume: 24
  start-page: 70
  year: 1999
  ident: 10.1016/j.cmpb.2008.03.001_bib6
  article-title: Sample size estimation for longitudinal designs with attrition: comparing time-related contrasts between two groups
  publication-title: J. Educ. Behav. Stat.
  doi: 10.3102/10769986024001070
– volume: 17
  start-page: 1643
  year: 1998
  ident: 10.1016/j.cmpb.2008.03.001_bib4
  article-title: Application of GEE procedures for sample size calculations in repeated measures
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19980730)17:14<1643::AID-SIM869>3.0.CO;2-3
– volume: 22
  start-page: 211
  year: 2001
  ident: 10.1016/j.cmpb.2008.03.001_bib3
  article-title: Sample size and power calculations with correlated binary data
  publication-title: Control. Clin. Trials
  doi: 10.1016/S0197-2456(01)00131-3
– start-page: 7
  year: 2007
  ident: 10.1016/j.cmpb.2008.03.001_bib13
  article-title: A simulation study of sample size for multilevel logistic regression models
  publication-title: BMC Med. Res. Methodology
– volume: 53
  start-page: 937
  year: 1997
  ident: 10.1016/j.cmpb.2008.03.001_bib1
  article-title: Sample size calculations for studies with correlated observations
  publication-title: Biometrics
  doi: 10.2307/2533554
– volume: 39
  start-page: 899
  year: 1997
  ident: 10.1016/j.cmpb.2008.03.001_bib2
  article-title: Sample size and power calculations for periodontal and other studies with clustered samples using the method of generalized estimating equations
  publication-title: Biometrical J.
  doi: 10.1002/bimj.4710390803
– ident: 10.1016/j.cmpb.2008.03.001_bib10
– volume: 84
  start-page: 27
  year: 2006
  ident: 10.1016/j.cmpb.2008.03.001_bib8
  article-title: Power calculations for generalized linear models in observational longitudinal studies: a simulation approach in SAS
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2006.07.011
– year: 2005
  ident: 10.1016/j.cmpb.2008.03.001_bib12
SSID ssj0002556
Score 2.0236974
Snippet The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can...
Abstract The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The...
The generalized linear mixed model (GLIMMIX) provides a powerful technique to model correlated outcomes with different types of distributions. The model can...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 122
SubjectTerms Algorithms
Biometry - methods
Clinical trials
Computer Simulation
Data Interpretation, Statistical
GLIMMIX
Internal Medicine
Linear Models
Logistic Models
Marginal quasi-likelihood
Models, Biological
Other
Outcome Assessment, Health Care - methods
Penalized quasi-likelihood
Sample Size
Title Sample size and power calculations based on generalized linear mixed models with correlated binary outcomes
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260708000758
https://www.clinicalkey.es/playcontent/1-s2.0-S0169260708000758
https://dx.doi.org/10.1016/j.cmpb.2008.03.001
https://www.ncbi.nlm.nih.gov/pubmed/18462826
https://www.proquest.com/docview/19332913
https://www.proquest.com/docview/69210541
https://pubmed.ncbi.nlm.nih.gov/PMC3737998
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkJcEG-W0uIDNxR2Hb_iY1W1WkDtpVTqzXJsB0JpdtXsSqgHfjszibPtUlokjklm8rDHM1-SmW8IeReilM5NQqbCRGbCa5W5shBZADRhjA5KR6xGPjpW01Px6UyebZD9oRYG0yqT7-99euet055xGs3xvK7HJ8gjAmhcI-aBwIcFv0JotPUPv67TPJBiq-f3NhlKp8KZPsfLX8zLlE-JRKfsruB0G3z-mUN5IygdPiaPEpqke_0NPyEbsXlKHhyl_-XPyPmJQ_Zf2tZXkbom0Dk2RaMwLz617WopxrFAZw392jNQg2igCD7dJb2of8JG1y2npfjJlnrs5gGqsLvsSnnpbLmAwYvtc3J6ePBlf5ql9gqZl0ItsqqIglU8imDKwruQe8a8KRlTXgNsioDkqsqZ4FgMzAVWIXe8lsGbyOKkEvwF2WxmTXxFaFFErVTQEO0UeIRglOQekIp0Oi-1zEeEDeNqfeIexxYYP-yQZPbd4lykppgcM-1G5P1KZ94zb9wrzYfpskNNKXhBC4HhXi39N63YpoXcWmbb3E7sLWMbEbnSXLPXf17x7WBLFhYy_p1xTZwt4UqG89wwfrcE3AGgYQHneNnb3vW4FFhinCt4njWrXAkgifj6kab-1pGJc801vHK__s_n2SYP-wwaTIl8QzYXl8u4AzBtUe5263CXbO19_Dw9_g2bPj6f
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYAL4s3yqg_cUNh1_IqPqKJaoNtLW6k3y7EdGqDZVbMrIQ78dmYSZ8tSWiSOm53ZJPbY82XzzTeEvA5RSucmIVNhIjPhtcpcWYgsAJowRgelI1Yjzw7U9Fh8PJEnW2R3qIVBWmXa-_s9vdut05FxGs3xoq7Hh6gjAmhcI-aBxFfcIDeF5Bp5fW9_XvA8UGOrF_g2GZqnypme5OXPFmUiVKLSKbsqO11Gn3-SKH_LSnv3yN0EJ-m7_orvk63YPCC3ZumF-UPy9dCh_C9t6x-RuibQBXZFozAxPvXtaikmskDnDf3cS1CDaaCIPt05Pau_w4euXU5L8T9b6rGdB7jC4bKr5aXz1RJGL7aPyPHe-6PdaZb6K2ReCrXMqiIKVvEogikL70LuGfOmZEx5DbgpApSrKmeCYzEwF1iF4vFaBm8ii5NK8Mdku5k38SmhRRG1UkFDulOwJQSjJPcAVaTTeallPiJsGFfrk_g49sD4ZgeW2ReLc5G6YnKk2o3Im7XPopfeuNaaD9Nlh6JS2AYtZIZrvfTfvGKbVnJrmW1zO7GXom1E5NpzI2D_ecadIZYsrGR8PeOaOF_BmQznuWH8agu4AoDDAn7jSR97F-NSYI1xruB-NqJybYAq4pvfNPVppybONdfwzP3sP-9nh9yeHs327f6Hg0_PyZ2eToP8yBdke3m-ii8Bsy3LV92a_AWVlkAy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sample+size+and+power+calculations+based+on+generalized+linear+mixed+models+with+correlated+binary+outcomes&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Dang%2C+Qianyu&rft.au=Mazumdar%2C+Sati&rft.au=Houck%2C+Patricia+R.&rft.date=2008-08-01&rft.issn=0169-2607&rft.volume=91&rft.issue=2&rft.spage=122&rft.epage=127&rft_id=info:doi/10.1016%2Fj.cmpb.2008.03.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2008_03_001
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01692607%2FS0169260708X00070%2Fcov150h.gif