Machine learning-based detection of label-free cancer stem-like cell fate

The detection of cancer stem-like cells (CSCs) is mainly based on molecular markers or functional tests giving a posteriori results. Therefore label-free and real-time detection of single CSCs remains a difficult challenge. The recent development of microfluidics has made it possible to perform high...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 19066 - 11
Main Authors Chambost, Alexis J., Berabez, Nabila, Cochet-Escartin, Olivier, Ducray, François, Gabut, Mathieu, Isaac, Caroline, Martel, Sylvie, Idbaih, Ahmed, Rousseau, David, Meyronet, David, Monnier, Sylvain
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.11.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The detection of cancer stem-like cells (CSCs) is mainly based on molecular markers or functional tests giving a posteriori results. Therefore label-free and real-time detection of single CSCs remains a difficult challenge. The recent development of microfluidics has made it possible to perform high-throughput single cell imaging under controlled conditions and geometries. Such a throughput requires adapted image analysis pipelines while providing the necessary amount of data for the development of machine-learning algorithms. In this paper, we provide a data-driven study to assess the complexity of brightfield time-lapses to monitor the fate of isolated cancer stem-like cells in non-adherent conditions. We combined for the first time individual cell fate and cell state temporality analysis in a unique algorithm. We show that with our experimental system and on two different primary cell lines our optimized deep learning based algorithm outperforms classical computer vision and shallow learning-based algorithms in terms of accuracy while being faster than cutting-edge convolutional neural network (CNNs). With this study, we show that tailoring our deep learning-based algorithm to the image analysis problem yields better results than pre-trained models. As a result, such a rapid and accurate CNN is compatible with the rise of high-throughput data generation and opens the door to on-the-fly CSC fate analysis.
AbstractList The detection of cancer stem-like cells (CSCs) is mainly based on molecular markers or functional tests giving a posteriori results. Therefore label-free and real-time detection of single CSCs remains a difficult challenge. The recent development of microfluidics has made it possible to perform high-throughput single cell imaging under controlled conditions and geometries. Such a throughput requires adapted image analysis pipelines while providing the necessary amount of data for the development of machine-learning algorithms. In this paper, we provide a data-driven study to assess the complexity of brightfield time-lapses to monitor the fate of isolated cancer stem-like cells in non-adherent conditions. We combined for the first time individual cell fate and cell state temporality analysis in a unique algorithm. We show that with our experimental system and on two different primary cell lines our optimized deep learning based algorithm outperforms classical computer vision and shallow learning-based algorithms in terms of accuracy while being faster than cutting-edge convolutional neural network (CNNs). With this study, we show that tailoring our deep learning-based algorithm to the image analysis problem yields better results than pre-trained models. As a result, such a rapid and accurate CNN is compatible with the rise of high-throughput data generation and opens the door to on-the-fly CSC fate analysis.
Abstract The detection of cancer stem-like cells (CSCs) is mainly based on molecular markers or functional tests giving a posteriori results. Therefore label-free and real-time detection of single CSCs remains a difficult challenge. The recent development of microfluidics has made it possible to perform high-throughput single cell imaging under controlled conditions and geometries. Such a throughput requires adapted image analysis pipelines while providing the necessary amount of data for the development of machine-learning algorithms. In this paper, we provide a data-driven study to assess the complexity of brightfield time-lapses to monitor the fate of isolated cancer stem-like cells in non-adherent conditions. We combined for the first time individual cell fate and cell state temporality analysis in a unique algorithm. We show that with our experimental system and on two different primary cell lines our optimized deep learning based algorithm outperforms classical computer vision and shallow learning-based algorithms in terms of accuracy while being faster than cutting-edge convolutional neural network (CNNs). With this study, we show that tailoring our deep learning-based algorithm to the image analysis problem yields better results than pre-trained models. As a result, such a rapid and accurate CNN is compatible with the rise of high-throughput data generation and opens the door to on-the-fly CSC fate analysis.
The detection of cancer stem-like cells (CSCs) is mainly based on molecular markers or functional tests giving a posteriori results. Therefore label-free and real-time detection of single CSCs remains a difficult challenge. The recent development of microfluidics has made it possible to perform high-throughput single cell imaging under controlled conditions and geometries. Such a throughput requires adapted image analysis pipelines while providing the necessary amount of data for the development of machine-learning algorithms. In this paper, we provide a data-driven study to assess the complexity of brightfield time-lapses to monitor the fate of isolated cancer stem-like cells in non-adherent conditions. We combined for the first time individual cell fate and cell state temporality analysis in a unique algorithm. We show that with our experimental system and on two different primary cell lines our optimized deep learning based algorithm outperforms classical computer vision and shallow learning-based algorithms in terms of accuracy while being faster than cutting-edge convolutional neural network (CNNs). With this study, we show that tailoring our deep learning-based algorithm to the image analysis problem yields better results than pre-trained models. As a result, such a rapid and accurate CNN is compatible with the rise of high-throughput data generation and opens the door to on-the-fly CSC fate analysis.The detection of cancer stem-like cells (CSCs) is mainly based on molecular markers or functional tests giving a posteriori results. Therefore label-free and real-time detection of single CSCs remains a difficult challenge. The recent development of microfluidics has made it possible to perform high-throughput single cell imaging under controlled conditions and geometries. Such a throughput requires adapted image analysis pipelines while providing the necessary amount of data for the development of machine-learning algorithms. In this paper, we provide a data-driven study to assess the complexity of brightfield time-lapses to monitor the fate of isolated cancer stem-like cells in non-adherent conditions. We combined for the first time individual cell fate and cell state temporality analysis in a unique algorithm. We show that with our experimental system and on two different primary cell lines our optimized deep learning based algorithm outperforms classical computer vision and shallow learning-based algorithms in terms of accuracy while being faster than cutting-edge convolutional neural network (CNNs). With this study, we show that tailoring our deep learning-based algorithm to the image analysis problem yields better results than pre-trained models. As a result, such a rapid and accurate CNN is compatible with the rise of high-throughput data generation and opens the door to on-the-fly CSC fate analysis.
ArticleNumber 19066
Author Chambost, Alexis J.
Meyronet, David
Isaac, Caroline
Martel, Sylvie
Cochet-Escartin, Olivier
Ducray, François
Idbaih, Ahmed
Rousseau, David
Monnier, Sylvain
Gabut, Mathieu
Berabez, Nabila
Author_xml – sequence: 1
  givenname: Alexis J.
  surname: Chambost
  fullname: Chambost, Alexis J.
  organization: Cancer Initiation and Tumor Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Univ Lyon, CNRS, Institut Lumière Matière, Univ Claude Bernard Lyon 1, Pathology Institute, Hospices Civils de Lyon
– sequence: 2
  givenname: Nabila
  surname: Berabez
  fullname: Berabez, Nabila
  organization: Cancer Initiation and Tumor Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1
– sequence: 3
  givenname: Olivier
  surname: Cochet-Escartin
  fullname: Cochet-Escartin, Olivier
  organization: Univ Lyon, CNRS, Institut Lumière Matière, Univ Claude Bernard Lyon 1
– sequence: 4
  givenname: François
  surname: Ducray
  fullname: Ducray, François
  organization: Cancer Initiation and Tumor Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Neuro-oncology Department, Hospices Civils de Lyon
– sequence: 5
  givenname: Mathieu
  surname: Gabut
  fullname: Gabut, Mathieu
  organization: Cancer Initiation and Tumor Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1
– sequence: 6
  givenname: Caroline
  surname: Isaac
  fullname: Isaac, Caroline
  organization: Cancer Initiation and Tumor Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1
– sequence: 7
  givenname: Sylvie
  surname: Martel
  fullname: Martel, Sylvie
  organization: Cancer Initiation and Tumor Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1
– sequence: 8
  givenname: Ahmed
  surname: Idbaih
  fullname: Idbaih, Ahmed
  organization: Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire La Pitié Salpêtrière, DMU Neurosciences, Sorbonne Université
– sequence: 9
  givenname: David
  surname: Rousseau
  fullname: Rousseau, David
  email: david.rousseau@univ-angers.fr
  organization: Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR Inrae IRHS, Université d’Angers
– sequence: 10
  givenname: David
  surname: Meyronet
  fullname: Meyronet, David
  organization: Cancer Initiation and Tumor Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Pathology Institute, Hospices Civils de Lyon
– sequence: 11
  givenname: Sylvain
  surname: Monnier
  fullname: Monnier, Sylvain
  email: sylvain.monnier@univ-lyon1.fr
  organization: Univ Lyon, CNRS, Institut Lumière Matière, Univ Claude Bernard Lyon 1
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36352045$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03880836$$DView record in HAL
BookMark eNp9Uk1v1DAQtVARLUv_AAeUIxwC_orjXJCqCuhKRVzgbPljsuvFaxc7W4n-epymVG0P9WFszbz3xvab1-gopggIvSX4I8FMfiqcdINsMaUtJbLGmxfohGLetZRRevTgfIxOS9nhujo6cDK8QsdMsG6un6D1d223PkITQOfo46Y1uoBrHExgJ59ik8YmaAOhHTNAY3W0kJsywb4N_ndNQAjNqCd4g16OOhQ4vdtX6NfXLz_PL9rLH9_W52eXre24mNqRGcql5U6Igds59kTQESh1ABS6gVPBnARMHB8GxxgRTEhOTecMBy7YCq0XXZf0Tl1lv9f5r0raq9tEyhul8-RtAGU5MSMeCJXUcANEGyo6Q4TmmAlcxVfo86J1dTB7cBbilHV4JPq4Ev1WbdK1GgQXPZdV4MMisH1Cuzi7VHOuWiWxZOKaVOz7u2Y5_TlAmdTel_n7dIR0KIr2rCM97nlfoe8e3ute-b9vFUAXgM2plAzjPYRgNc-HWuZD1flQt_OhbipJPiFZP-nZ5Po2H56nsoVaap-4gax26ZBj9fk51j_tc81z
CitedBy_id crossref_primary_10_1371_journal_pone_0281931
crossref_primary_10_1007_s00521_024_10767_1
crossref_primary_10_3389_fimmu_2023_1214425
crossref_primary_10_3390_ijms25073903
Cites_doi 10.1038/ncomms10256
10.1371/journal.pone.0007497
10.1016/j.bbe.2019.01.005
10.1146/annurev-pathol-012615-044438
10.1038/s41598-020-78129-0
10.1073/pnas.1721650115
10.1109/MCSE.2007.55
10.1038/nmeth.1855
10.3390/ht7010008
10.1038/s41598-020-57900-3
10.1038/s41598-018-29647-5
10.1109/TSMC.1979.4310076
10.1039/D0LC00055H
10.1016/j.ygeno.2012.04.003
10.1038/s41598-019-56583-9
10.1371/journal.pone.0253666
10.1101/gad.261982.115
10.1038/s41467-019-09853-z
10.1016/j.stemcr.2019.02.004
10.5334/jors.ac
10.1242/dev.101709
10.1038/s41592-019-0582-9
10.1038/s41467-017-00623-3
10.1038/s42003-021-01937-1
10.3389/fgene.2020.00248
10.1016/j.jneumeth.2019.108522
10.1126/science.1254257
10.1039/D1LC00192B
10.1016/j.tibtech.2018.08.005
10.1002/cyto.a.23595
10.1021/acs.analchem.0c00710
10.1038/s41592-021-01249-6
10.1038/s41598-018-25458-w
10.1038/s41467-020-17186-5
10.1016/j.stemcr.2021.04.008
10.1016/j.stem.2011.04.007
10.1038/s41420-021-00616-8
10.1073/pnas.2011795117
10.1038/s41586-020-2649-2
10.1038/s41592-019-0686-2
10.1088/0954-898X_5_4_006
10.1038/s41467-019-13993-7
10.1109/CVPR.2009.5206848
10.1002/bies.201700003
10.3389/fncel.2020.00171
10.25080/Majora-92bf1922-00a
10.14440/jbm.2014.36
10.3390/cancers12102853
10.21105/joss.03021
10.1016/j.cell.2019.06.024
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
Attribution
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: Attribution
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.1038/s41598-022-21822-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_c41bf091282b4be1ab265b16a403609d
PMC9646748
oai_HAL_hal_03880836v1
36352045
10_1038_s41598_022_21822_z
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ITMO Cancer Soutien pour la formation à la recherche fondamentale et translationnelle en Cancérologie
– fundername: Ligue Nationale contre de le Cancer, comité Auvergne-Rhône-Alpes
– fundername: Hospices Civils de Lyon
  funderid: http://dx.doi.org/10.13039/501100006451
– fundername: Institut Convergence PLAsCAN
– fundername: Agence Nationale de la Recherche
  funderid: http://dx.doi.org/10.13039/501100001665
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PJZUB
PPXIY
PQGLB
1XC
EJD
IPNFZ
RIG
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c546t-f3b248c4d6694cd6697162fe22dee2e594263d8e01d499d331636842b5db4e463
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:30 EDT 2025
Thu Aug 21 18:39:21 EDT 2025
Wed Jul 02 06:36:23 EDT 2025
Mon Jul 21 12:06:07 EDT 2025
Thu Jan 02 22:53:09 EST 2025
Thu Apr 24 23:05:33 EDT 2025
Tue Jul 01 00:55:22 EDT 2025
Fri Feb 21 02:39:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Attribution: http://creativecommons.org/licenses/by
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-f3b248c4d6694cd6697162fe22dee2e594263d8e01d499d331636842b5db4e463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7343-5361
0000-0002-8150-5785
0000-0001-7924-702X
0000-0001-9943-4578
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-21822-z
PMID 36352045
PQID 2735170747
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_c41bf091282b4be1ab265b16a403609d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9646748
hal_primary_oai_HAL_hal_03880836v1
proquest_miscellaneous_2735170747
pubmed_primary_36352045
crossref_primary_10_1038_s41598_022_21822_z
crossref_citationtrail_10_1038_s41598_022_21822_z
springer_journals_10_1038_s41598_022_21822_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-09
PublicationDateYYYYMMDD 2022-11-09
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Rasti (CR37) 2019; 9
Hunter (CR54) 2007; 9
Hegde, Prasad, Hebbar, Singh (CR17) 2019; 39
Berg (CR27) 2019; 16
CR38
Nassar, Blanpain (CR2) 2016; 11
Ossinger (CR13) 2020; 331
Soetje, Fuellekrug, Haffner, Ziegler (CR18) 2020; 11
Selinummi (CR8) 2009; 4
Couturier (CR42) 2020; 11
CR30
Lugagne (CR12) 2018; 8
Kim (CR19) 2020; 10
Chen, Ishwaran (CR28) 2012; 99
Otsu (CR26) 1979; 9
Ahmad (CR33) 2014; 141
Liao (CR39) 2021; 4
Patel (CR40) 2014; 344
D’Argenio (CR9) 2018; 7
CR5
Blasi (CR35) 2016; 7
Maslova (CR32) 2020; 117
CR49
CR47
CR46
Edlund (CR10) 2021; 18
CR45
Pastrana, Silva-Vargas, Doetsch (CR3) 2011; 8
Schnell, Dijk, Sjollema, Giepmans (CR6) 2012; 9
CR41
Anagnostidis (CR15) 2020; 20
Chen, Zhang, Yoon (CR16) 2020; 92
Greca (CR20) 2021; 16
Goodarzi (CR23) 2021; 21
Riordon, Sovilj, Sanner, Sinton, Young (CR11) 2019; 37
Singh (CR34) 2003; 63
Eulenberg (CR29) 2017; 8
Verduijn, Van der Meeren, Krysko, Skirtach (CR21) 2021; 7
CR55
Talukdar (CR44) 2018; 115
CR53
CR52
Lathia, Mack, Mulkearns-Hubert, Valentim, Rich (CR4) 2015; 29
CR50
Riba, Schoendube, Zimmermann, Koltay, Zengerle (CR36) 2020; 10
Dirkse (CR1) 2019; 10
Waisman (CR22) 2019; 12
Joy, Libby, McDevitt (CR31) 2021; 16
Couturier (CR43) 2020; 11
Wei, Roberts (CR14) 2018; 8
Coelho (CR48) 2013; 1
CR25
Chiang, Wu, Tseng, Huang (CR7) 2018; 93
CR24
Harris (CR51) 2020; 585
J Riba (21822_CR36) 2020; 10
21822_CR46
21822_CR45
21822_CR41
L Wei (21822_CR14) 2018; 8
CP Couturier (21822_CR43) 2020; 11
S Talukdar (21822_CR44) 2018; 115
JD Lathia (21822_CR4) 2015; 29
21822_CR49
N Otsu (21822_CR26) 1979; 9
21822_CR47
V Anagnostidis (21822_CR15) 2020; 20
J-B Lugagne (21822_CR12) 2018; 8
LP Coelho (21822_CR48) 2013; 1
S Goodarzi (21822_CR23) 2021; 21
ADL Greca (21822_CR20) 2021; 16
T Blasi (21822_CR35) 2016; 7
A Ossinger (21822_CR13) 2020; 331
J Verduijn (21822_CR21) 2021; 7
SK Singh (21822_CR34) 2003; 63
J Selinummi (21822_CR8) 2009; 4
SM Ahmad (21822_CR33) 2014; 141
21822_CR55
21822_CR53
21822_CR52
JD Hunter (21822_CR54) 2007; 9
21822_CR50
P Eulenberg (21822_CR29) 2017; 8
S Berg (21822_CR27) 2019; 16
A Maslova (21822_CR32) 2020; 117
CP Couturier (21822_CR42) 2020; 11
B Soetje (21822_CR18) 2020; 11
Q Liao (21822_CR39) 2021; 4
U Schnell (21822_CR6) 2012; 9
Y-G Kim (21822_CR19) 2020; 10
21822_CR24
D Nassar (21822_CR2) 2016; 11
A Waisman (21822_CR22) 2019; 12
V D’Argenio (21822_CR9) 2018; 7
21822_CR25
P Rasti (21822_CR37) 2019; 9
21822_CR5
X Chen (21822_CR28) 2012; 99
21822_CR30
E Pastrana (21822_CR3) 2011; 8
RB Hegde (21822_CR17) 2019; 39
C Edlund (21822_CR10) 2021; 18
Y-C Chen (21822_CR16) 2020; 92
CR Harris (21822_CR51) 2020; 585
21822_CR38
AP Patel (21822_CR40) 2014; 344
P-J Chiang (21822_CR7) 2018; 93
J Riordon (21822_CR11) 2019; 37
A Dirkse (21822_CR1) 2019; 10
DA Joy (21822_CR31) 2021; 16
References_xml – ident: CR45
– volume: 7
  start-page: 10256
  year: 2016
  ident: CR35
  article-title: Label-free cell cycle analysis for high-throughput imaging flow cytometry
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10256
– ident: CR49
– volume: 4
  year: 2009
  ident: CR8
  article-title: Bright field microscopy as an alternative to whole cell fluorescence in automated analysis of macrophage images
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0007497
– volume: 39
  start-page: 382
  year: 2019
  end-page: 392
  ident: CR17
  article-title: Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2019.01.005
– volume: 11
  start-page: 47
  year: 2016
  end-page: 76
  ident: CR2
  article-title: Cancer stem cells: basic concepts and therapeutic implications
  publication-title: Annu. Rev. Pathol.: Mech. Dis.
  doi: 10.1146/annurev-pathol-012615-044438
– volume: 10
  start-page: 21899
  year: 2020
  ident: CR19
  article-title: Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-78129-0
– volume: 115
  start-page: 5768
  year: 2018
  end-page: 5773
  ident: CR44
  article-title: MDA-9/syntenin regulates protective autophagy in anoikis-resistant glioma stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1721650115
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  ident: CR54
  article-title: Matplotlib: a 2D graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– ident: CR25
– volume: 9
  start-page: 152
  year: 2012
  end-page: 158
  ident: CR6
  article-title: Immunolabeling artifacts and the need for live-cell imaging
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1855
– volume: 7
  start-page: 8
  year: 2018
  ident: CR9
  article-title: The high-throughput analyses era: are we ready for the data struggle?
  publication-title: High Throughput
  doi: 10.3390/ht7010008
– volume: 10
  start-page: 1193
  year: 2020
  ident: CR36
  article-title: Single-cell dispensing and ‘real-time’ cell classification using convolutional neural networks for higher efficiency in single-cell cloning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-57900-3
– volume: 8
  start-page: 11455
  year: 2018
  ident: CR12
  article-title: Identification of individual cells from z-stacks of bright-field microscopy images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29647-5
– ident: CR46
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: CR26
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– volume: 20
  start-page: 889
  year: 2020
  end-page: 900
  ident: CR15
  article-title: Deep learning guided image-based droplet sorting for on-demand selection and analysis of single cells and 3D cell cultures
  publication-title: Lab Chip
  doi: 10.1039/D0LC00055H
– volume: 99
  start-page: 323
  year: 2012
  end-page: 329
  ident: CR28
  article-title: Random forests for genomic data analysis
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2012.04.003
– ident: CR50
– volume: 9
  start-page: 20010
  year: 2019
  ident: CR37
  article-title: Machine learning-based classification of the health state of mice colon in cancer study from confocal laser endomicroscopy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56583-9
– volume: 16
  year: 2021
  ident: CR20
  article-title: Celldeath: a tool for detection of cell death in transmitted light microscopy images by deep learning-based visual recognition
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0253666
– ident: CR5
– volume: 63
  start-page: 5821
  year: 2003
  end-page: 5828
  ident: CR34
  article-title: Identification of a cancer stem cell in human brain tumors
  publication-title: Cancer Res.
– volume: 29
  start-page: 1203
  year: 2015
  end-page: 1217
  ident: CR4
  article-title: Cancer stem cells in glioblastoma
  publication-title: Genes Dev.
  doi: 10.1101/gad.261982.115
– volume: 10
  start-page: 1787
  year: 2019
  ident: CR1
  article-title: Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09853-z
– volume: 12
  start-page: 845
  year: 2019
  end-page: 859
  ident: CR22
  article-title: Deep learning neural networks highly predict very early onset of pluripotent stem cell differentiation
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2019.02.004
– volume: 1
  year: 2013
  ident: CR48
  article-title: Mahotas: open source software for scriptable computer vision
  publication-title: J. Open Res. Softw.
  doi: 10.5334/jors.ac
– volume: 141
  start-page: 878
  year: 2014
  end-page: 888
  ident: CR33
  article-title: Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification
  publication-title: Development
  doi: 10.1242/dev.101709
– ident: CR47
– volume: 16
  start-page: 1226
  year: 2019
  end-page: 1232
  ident: CR27
  article-title: Ilastik: interactive machine learning for (bio)image analysis
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0582-9
– volume: 8
  start-page: 463
  year: 2017
  ident: CR29
  article-title: Reconstructing cell cycle and disease progression using deep learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00623-3
– volume: 4
  start-page: 1
  year: 2021
  end-page: 9
  ident: CR39
  article-title: Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring
  publication-title: Commun Biol
  doi: 10.1038/s42003-021-01937-1
– volume: 11
  start-page: 248
  year: 2020
  ident: CR18
  article-title: Application and comparison of supervised learning strategies to classify polarity of epithelial cell spheroids in 3D culture
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.00248
– ident: CR53
– ident: CR30
– volume: 331
  year: 2020
  ident: CR13
  article-title: A rapid and accurate method to quantify neurite outgrowth from cell and tissue cultures: two image analytic approaches using adaptive thresholds or machine learning
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108522
– volume: 344
  start-page: 1396
  year: 2014
  end-page: 1401
  ident: CR40
  article-title: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
  publication-title: Science
  doi: 10.1126/science.1254257
– volume: 21
  start-page: 2495
  year: 2021
  end-page: 2510
  ident: CR23
  article-title: Quantifying nanotherapeutic penetration using a hydrogel-based microsystem as a new 3D in vitro platform
  publication-title: Lab Chip
  doi: 10.1039/D1LC00192B
– volume: 37
  start-page: 310
  year: 2019
  end-page: 324
  ident: CR11
  article-title: Deep learning with microfluidics for biotechnology
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.08.005
– volume: 93
  start-page: 1004
  year: 2018
  end-page: 1018
  ident: CR7
  article-title: Automated bright field segmentation of cells and vacuoles using image processing technique
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23595
– volume: 92
  start-page: 7717
  year: 2020
  end-page: 7724
  ident: CR16
  article-title: Early prediction of single-cell derived sphere formation rate using convolutional neural network image analysis
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c00710
– volume: 11
  start-page: 1
  year: 2020
  end-page: 19
  ident: CR43
  article-title: Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy
  publication-title: Nat. Commun.
– volume: 18
  start-page: 1
  year: 2021
  end-page: 8
  ident: CR10
  article-title: LIVECell: a large-scale dataset for label-free live cell segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01249-6
– volume: 8
  start-page: 7313
  year: 2018
  ident: CR14
  article-title: Neural network control of focal position during time-lapse microscopy of cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25458-w
– volume: 11
  start-page: 3406
  year: 2020
  ident: CR42
  article-title: Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17186-5
– volume: 16
  start-page: 1317
  year: 2021
  end-page: 1330
  ident: CR31
  article-title: Deep neural net tracking of human pluripotent stem cells reveals intrinsic behaviors directing morphogenesis
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2021.04.008
– ident: CR38
– ident: CR52
– volume: 8
  start-page: 486
  year: 2011
  end-page: 498
  ident: CR3
  article-title: Eyes wide open: a critical review of sphere-formation as an assay for stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.04.007
– volume: 7
  start-page: 1
  year: 2021
  end-page: 10
  ident: CR21
  article-title: Deep learning with digital holographic microscopy discriminates apoptosis and necroptosis
  publication-title: Cell Death Discov.
  doi: 10.1038/s41420-021-00616-8
– ident: CR55
– volume: 117
  start-page: 25655
  year: 2020
  end-page: 25666
  ident: CR32
  article-title: Deep learning of immune cell differentiation
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2011795117
– ident: CR41
– ident: CR24
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: CR51
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 7
  start-page: 8
  year: 2018
  ident: 21822_CR9
  publication-title: High Throughput
  doi: 10.3390/ht7010008
– volume: 21
  start-page: 2495
  year: 2021
  ident: 21822_CR23
  publication-title: Lab Chip
  doi: 10.1039/D1LC00192B
– volume: 16
  year: 2021
  ident: 21822_CR20
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0253666
– ident: 21822_CR52
  doi: 10.1038/s41592-019-0686-2
– volume: 37
  start-page: 310
  year: 2019
  ident: 21822_CR11
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.08.005
– volume: 117
  start-page: 25655
  year: 2020
  ident: 21822_CR32
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2011795117
– volume: 10
  start-page: 21899
  year: 2020
  ident: 21822_CR19
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-78129-0
– ident: 21822_CR38
  doi: 10.1088/0954-898X_5_4_006
– volume: 11
  start-page: 248
  year: 2020
  ident: 21822_CR18
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.00248
– volume: 39
  start-page: 382
  year: 2019
  ident: 21822_CR17
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2019.01.005
– volume: 11
  start-page: 1
  year: 2020
  ident: 21822_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13993-7
– volume: 11
  start-page: 47
  year: 2016
  ident: 21822_CR2
  publication-title: Annu. Rev. Pathol.: Mech. Dis.
  doi: 10.1146/annurev-pathol-012615-044438
– volume: 10
  start-page: 1193
  year: 2020
  ident: 21822_CR36
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-57900-3
– volume: 99
  start-page: 323
  year: 2012
  ident: 21822_CR28
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2012.04.003
– volume: 344
  start-page: 1396
  year: 2014
  ident: 21822_CR40
  publication-title: Science
  doi: 10.1126/science.1254257
– ident: 21822_CR55
– volume: 9
  start-page: 62
  year: 1979
  ident: 21822_CR26
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– volume: 8
  start-page: 11455
  year: 2018
  ident: 21822_CR12
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29647-5
– volume: 115
  start-page: 5768
  year: 2018
  ident: 21822_CR44
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1721650115
– volume: 331
  year: 2020
  ident: 21822_CR13
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108522
– volume: 10
  start-page: 1787
  year: 2019
  ident: 21822_CR1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09853-z
– volume: 9
  start-page: 152
  year: 2012
  ident: 21822_CR6
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1855
– ident: 21822_CR49
– volume: 63
  start-page: 5821
  year: 2003
  ident: 21822_CR34
  publication-title: Cancer Res.
– ident: 21822_CR24
– volume: 4
  year: 2009
  ident: 21822_CR8
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0007497
– volume: 7
  start-page: 1
  year: 2021
  ident: 21822_CR21
  publication-title: Cell Death Discov.
  doi: 10.1038/s41420-021-00616-8
– volume: 16
  start-page: 1317
  year: 2021
  ident: 21822_CR31
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2021.04.008
– volume: 29
  start-page: 1203
  year: 2015
  ident: 21822_CR4
  publication-title: Genes Dev.
  doi: 10.1101/gad.261982.115
– ident: 21822_CR25
  doi: 10.1109/CVPR.2009.5206848
– volume: 12
  start-page: 845
  year: 2019
  ident: 21822_CR22
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2019.02.004
– volume: 141
  start-page: 878
  year: 2014
  ident: 21822_CR33
  publication-title: Development
  doi: 10.1242/dev.101709
– volume: 93
  start-page: 1004
  year: 2018
  ident: 21822_CR7
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23595
– volume: 8
  start-page: 486
  year: 2011
  ident: 21822_CR3
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.04.007
– volume: 9
  start-page: 90
  year: 2007
  ident: 21822_CR54
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 92
  start-page: 7717
  year: 2020
  ident: 21822_CR16
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c00710
– volume: 16
  start-page: 1226
  year: 2019
  ident: 21822_CR27
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0582-9
– volume: 20
  start-page: 889
  year: 2020
  ident: 21822_CR15
  publication-title: Lab Chip
  doi: 10.1039/D0LC00055H
– volume: 585
  start-page: 357
  year: 2020
  ident: 21822_CR51
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 11
  start-page: 3406
  year: 2020
  ident: 21822_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17186-5
– ident: 21822_CR5
  doi: 10.1002/bies.201700003
– volume: 8
  start-page: 7313
  year: 2018
  ident: 21822_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25458-w
– volume: 1
  year: 2013
  ident: 21822_CR48
  publication-title: J. Open Res. Softw.
  doi: 10.5334/jors.ac
– ident: 21822_CR30
  doi: 10.3389/fncel.2020.00171
– volume: 8
  start-page: 463
  year: 2017
  ident: 21822_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00623-3
– volume: 4
  start-page: 1
  year: 2021
  ident: 21822_CR39
  publication-title: Commun Biol
  doi: 10.1038/s42003-021-01937-1
– ident: 21822_CR53
  doi: 10.25080/Majora-92bf1922-00a
– volume: 18
  start-page: 1
  year: 2021
  ident: 21822_CR10
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01249-6
– ident: 21822_CR46
  doi: 10.14440/jbm.2014.36
– ident: 21822_CR45
  doi: 10.3390/cancers12102853
– volume: 9
  start-page: 20010
  year: 2019
  ident: 21822_CR37
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56583-9
– ident: 21822_CR47
– ident: 21822_CR50
  doi: 10.21105/joss.03021
– ident: 21822_CR41
  doi: 10.1016/j.cell.2019.06.024
– volume: 7
  start-page: 10256
  year: 2016
  ident: 21822_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10256
SSID ssj0000529419
Score 2.4172342
Snippet The detection of cancer stem-like cells (CSCs) is mainly based on molecular markers or functional tests giving a posteriori results. Therefore label-free and...
Abstract The detection of cancer stem-like cells (CSCs) is mainly based on molecular markers or functional tests giving a posteriori results. Therefore...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19066
SubjectTerms 631/114/1564
639/166/985
639/705/1042
Algorithms
Cancer
Cellular Biology
Computer Science
Humanities and Social Sciences
Humans
Image Processing
Image Processing, Computer-Assisted - methods
Life Sciences
Machine Learning
multidisciplinary
Neoplasms
Neural Networks, Computer
Science
Science (multidisciplinary)
Subcellular Processes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEG_CSwZxA6sbe-LEx4KoFgScqNSbtY5tWhFl0e62UvvrmXGyq4ZK5cIlB8dxom_Gnpl4_A3AW-WNqVQdJCJ6iU3S0pJpkD74FkNUoVlkts_vZn6EX46r4yulvjgnbKAHHoDbb7H0iYwahQYefSwXXpnKl2aBtPbObODVl25fCaYGVm9lsbTjKZmZbvbXZKn4NBnFXkxaruTlxBJlwn6yLyecDnnd17yeMvnXvmk2R4f34O7oR4qD4fvvw63YP4DbQ2XJi4fw-VtOkoxirArxU7K5CiLETc696sUyCVKA2Mm0ilG0LPyVYFZn2Z3-oobYdSKRI_oIjg4__fg4l2PVBNlWaDYyaa-wIaCNsdjylUmiUlQqxKhiZZmiPTRxVgaKdoLW5JHxZpyvgseIRj-GvX7Zx6cgatVakmFbh-TRpORrQ_FFhZgycR8WUG4RdO1IKc6VLTqXt7Z14wbUHaHuMurusoB3u2d-D4QaN_b-wILZ9WQy7NxAKuJGFXH_UpEC3pBYJ2PMD746bstcOI0252UBr7dSdzTDGOVFH5dna0cOXlXWXGiggCeDFuzG0uSvMaF_AfVEPyYvm97pT08yi7c1udBLAe-3muTG5WN9AyDP_gcgz-GO4onAf8ftC9jbrM7iS_KtNv5VnkZ_AGIyG5Y
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGJiReJr7pGKgg3iDimrhp-3hDTMcJeIFJe4suTbJNVL3p7jaJ_fXYaXtSGZrESx_SJK1sJ7Zj52eAd9JqncvCCUS0AsugREWqQVhna3ReunIR0T6_69kJzk_z0x2Qw12YmLQfIS3jNj1kh31ck6Lhy2DkOjHmuBQ392CPodpJtvem0_mP-fZkhWNXmFX9DZmJKv8xeKSFIlg_6ZZzToW8bWfeTpf8K2YaVdHxQ9jvbch02v31I9jx7WO431WV_P0EvnyLCZI-7StCnAlWVS51fhPzrtp0GVJivm9EWHmf1sz4VcqIzqK5-EUNvmnSQEboUzg5_vzz00z0FRNEnaPeiKCsxJKIrHWFNT8ZICp4KZ330ucVw7O70k8yR56OU4qsMQ7E2dxZ9KjVM9htl61_AWkh64r4VxcuWNQh2EKTb5EjhgjahwlkAwVN3cOJc1WLxsSwtipNR3VDVDeR6uYmgffbMZcdmMadvY-YMdueDIQdG5arM9MLhqkxs4FsHvIcLVqfLazUuc30Akk1TyqXwFti62iO2fSr4baIg1MqfZ0l8GbguqHVxVRetH55tTZk3OVZwUUGEnjeScF2LkW2GoP5J1CM5GP0sfGb9uI8InhXOhZ5SeDDIEmm3zrWdxDk4P-6v4QHkkWez8CrQ9jdrK78K7KgNvZ1v2T-AC27E0E
  priority: 102
  providerName: Springer Nature
Title Machine learning-based detection of label-free cancer stem-like cell fate
URI https://link.springer.com/article/10.1038/s41598-022-21822-z
https://www.ncbi.nlm.nih.gov/pubmed/36352045
https://www.proquest.com/docview/2735170747
https://hal.science/hal-03880836
https://pubmed.ncbi.nlm.nih.gov/PMC9646748
https://doaj.org/article/c41bf091282b4be1ab265b16a403609d
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9swFL30g8FextZ9eR_BHXvbtNWyLNsPY6ShJQtrGdsCeRORJbVlxtmcdKz99btXtgNuS5_6koBiO3B0L_dcSzoH4C3XUiY8NUwIoZnIXMxyLA1MG10IY7nJ5l7t81iOp2IyS2Yb0NkdtQAub2ztyE9qWpcf_v25-IwJ_6k5Mp59XGIRooNi2FaRHjlnl5uwjZUpJUeDo5buN1rfPBdR3p6dufnWXn3yMv5YdU5pk-R1Bnp9I-WV1VRfpA4fwoOWXYbDJhwewYatduBe4zd58Ri-HPmtkzZsvSJOGBUxExq78juyqnDhQgwLWzJXWxsWFBJ1SFrPrDz7hQO2LEOH9PQJTA8Pfo7GrPVSYEUi5Iq5WHORIfxS5qKgT5KOcpZzYy23SU7C7Saze5HBHsjEMfI0WqLTidHCChk_ha1qUdnnEKa8yHFmi9Q4LaRzOpXYdSRCOC_nJwKIOgRV0QqNk99FqfyCd5ypBnWFqCuPuroM4N36nt-NzMatV-_TxKyvJIlsP7CoT1SbcaoQkXbIhrCn1ELbaK65THQk5wKL9l5uAniD09p7xnj4VdGYV8jJYvk3CmC3m3WFeUcozyu7OF8qpH1JlJL9QADPmihYPytGFkcy_wGkvfjo_Vn_l-rs1Gt759LbvwTwvosk1eXELYC8uAtAXsJ9TolA78zzV7C1qs_ta2RcKz2AzXSWDmB7OJz8mOD3_sHxt-84OpKjgX-LMfCJ9h-lQCmn
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgQXxJvwDIgbWGzsiZMcy4pqC9ueWqk3ax3bbUWURbtbJPrrmXGSlUJRJS45OLYTzYw9n-3xNwAfpNU6l4UTiGgFlkGJilyDsM7W6Lx05SKyfR7p2Ql-O81Pd0AOd2Fi0H6ktIzT9BAd9nlNjoYvg9HSiTnHpbi6BbcJa2u25KmebvdV-OQKs6q_HzNR5T-ajnxQpOonz3LOgZDXUeb1YMm_TkyjI9p_APd7BJnudf_8EHZ8-wjudDklfz-Gg8MYHunTPh_EmWBH5VLnNzHqqk2XISXV-0aElfdpzWpfpcznLJqLH1TgmyYNBEGfwMn-1-PpTPT5EkSdo96IoKzEkkSsdYU1P5keKngpnffS5xWTs7vSTzJH6xynFGExPoazubPoUaunsNsuW_8c0kLWFWmvLlywqEOwhaaVRY4YImUfJpANEjR1TybOOS0aEw-1VWk6qRuSuolSN1cJfNy2-dlRadxY-wsrZluTabBjwXJ1ZnqzMDVmNhDioXWjReuzhZU6t5leIDnmSeUSeE9qHfUx25sbLossOKXSv7IE3g1aNzS2WMqL1i8v14agXZ4VnGIggWedFWz7UoTUmMo_gWJkH6OPjd-0F-eRv7vSMcVLAp8GSzL9xLG-QSAv_q_6W7g7Oz6cm_nB0feXcE-y-fNuePUKdjerS_-asNTGvomD5w-tYRTV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrUBcEG_CMyBuYNg4Eyc5Lo_VdikVElTqzVrHdlsRZavdLRL99cw4yUqhqBKXHBzHiWbGmW_s8TcAr6VRKpO5FYhoBBY-FSW5BmGsqdA6aYtFYPs8ULNDnB9lRzug-rMwIWk_UFqG33SfHfZ-TY6GD4NR6MSc41JcvDuz_hrsEt5OcAS7k8n8-3y7usL7V5iU3SmZcVr8Y4CBJwqE_eRfTjgd8jLWvJwy-de-aXBH09twq8OR8aT98juw45q7cL2tLPn7Hux9DUmSLu6qQhwLdlc2tm4Tcq-aeOljMgBXC79yLq5Y-auYWZ1FffqTGlxdx56A6H04nH7-8XEmuqoJospQbYRPjcSCBK1UiRVfmSTKOymtc9JlJVO028KNE0vRjk1TQmS8GWcya9ChSh_AqFk27hHEuaxK0mGVW29QeW9yRfFFhugDcR9GkPQS1FVHKc6VLWodtrbTQrdS1yR1HaSuLyJ4s33mrCXUuLL3B1bMtieTYYeG5epYd8ahK0yMJ9xD0aNB45KFkSoziVoguedxaSN4RWodjDGb7GtuC1w4Rap-JRG87LWuaYaxlBeNW56vNQG8LMm50EAED1sr2I6VEl5jQv8I8oF9DF42vNOcngQW71KFQi8RvO0tSXe_j_UVAnn8f91fwI1vn6Z6f-_gyxO4Kdn6eUm8fAqjzercPSNAtTHPu9nzBzzLFzk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+detection+of+label-free+cancer+stem-like+cell+fate&rft.jtitle=Scientific+reports&rft.au=Alexis+J.+Chambost&rft.au=Nabila+Berabez&rft.au=Olivier+Cochet-Escartin&rft.au=Fran%C3%A7ois+Ducray&rft.date=2022-11-09&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41598-022-21822-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c41bf091282b4be1ab265b16a403609d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon