Machine learning-based detection of label-free cancer stem-like cell fate
The detection of cancer stem-like cells (CSCs) is mainly based on molecular markers or functional tests giving a posteriori results. Therefore label-free and real-time detection of single CSCs remains a difficult challenge. The recent development of microfluidics has made it possible to perform high...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 19066 - 11 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.11.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The detection of cancer stem-like cells (CSCs) is mainly based on molecular markers or functional tests giving a posteriori results. Therefore label-free and real-time detection of single CSCs remains a difficult challenge. The recent development of microfluidics has made it possible to perform high-throughput single cell imaging under controlled conditions and geometries. Such a throughput requires adapted image analysis pipelines while providing the necessary amount of data for the development of machine-learning algorithms. In this paper, we provide a data-driven study to assess the complexity of brightfield time-lapses to monitor the fate of isolated cancer stem-like cells in non-adherent conditions. We combined for the first time individual cell fate and cell state temporality analysis in a unique algorithm. We show that with our experimental system and on two different primary cell lines our optimized deep learning based algorithm outperforms classical computer vision and shallow learning-based algorithms in terms of accuracy while being faster than cutting-edge convolutional neural network (CNNs). With this study, we show that tailoring our deep learning-based algorithm to the image analysis problem yields better results than pre-trained models. As a result, such a rapid and accurate CNN is compatible with the rise of high-throughput data generation and opens the door to on-the-fly CSC fate analysis. |
---|---|
AbstractList | The detection of cancer stem-like cells (CSCs) is mainly based on molecular markers or functional tests giving a posteriori results. Therefore label-free and real-time detection of single CSCs remains a difficult challenge. The recent development of microfluidics has made it possible to perform high-throughput single cell imaging under controlled conditions and geometries. Such a throughput requires adapted image analysis pipelines while providing the necessary amount of data for the development of machine-learning algorithms. In this paper, we provide a data-driven study to assess the complexity of brightfield time-lapses to monitor the fate of isolated cancer stem-like cells in non-adherent conditions. We combined for the first time individual cell fate and cell state temporality analysis in a unique algorithm. We show that with our experimental system and on two different primary cell lines our optimized deep learning based algorithm outperforms classical computer vision and shallow learning-based algorithms in terms of accuracy while being faster than cutting-edge convolutional neural network (CNNs). With this study, we show that tailoring our deep learning-based algorithm to the image analysis problem yields better results than pre-trained models. As a result, such a rapid and accurate CNN is compatible with the rise of high-throughput data generation and opens the door to on-the-fly CSC fate analysis. Abstract The detection of cancer stem-like cells (CSCs) is mainly based on molecular markers or functional tests giving a posteriori results. Therefore label-free and real-time detection of single CSCs remains a difficult challenge. The recent development of microfluidics has made it possible to perform high-throughput single cell imaging under controlled conditions and geometries. Such a throughput requires adapted image analysis pipelines while providing the necessary amount of data for the development of machine-learning algorithms. In this paper, we provide a data-driven study to assess the complexity of brightfield time-lapses to monitor the fate of isolated cancer stem-like cells in non-adherent conditions. We combined for the first time individual cell fate and cell state temporality analysis in a unique algorithm. We show that with our experimental system and on two different primary cell lines our optimized deep learning based algorithm outperforms classical computer vision and shallow learning-based algorithms in terms of accuracy while being faster than cutting-edge convolutional neural network (CNNs). With this study, we show that tailoring our deep learning-based algorithm to the image analysis problem yields better results than pre-trained models. As a result, such a rapid and accurate CNN is compatible with the rise of high-throughput data generation and opens the door to on-the-fly CSC fate analysis. The detection of cancer stem-like cells (CSCs) is mainly based on molecular markers or functional tests giving a posteriori results. Therefore label-free and real-time detection of single CSCs remains a difficult challenge. The recent development of microfluidics has made it possible to perform high-throughput single cell imaging under controlled conditions and geometries. Such a throughput requires adapted image analysis pipelines while providing the necessary amount of data for the development of machine-learning algorithms. In this paper, we provide a data-driven study to assess the complexity of brightfield time-lapses to monitor the fate of isolated cancer stem-like cells in non-adherent conditions. We combined for the first time individual cell fate and cell state temporality analysis in a unique algorithm. We show that with our experimental system and on two different primary cell lines our optimized deep learning based algorithm outperforms classical computer vision and shallow learning-based algorithms in terms of accuracy while being faster than cutting-edge convolutional neural network (CNNs). With this study, we show that tailoring our deep learning-based algorithm to the image analysis problem yields better results than pre-trained models. As a result, such a rapid and accurate CNN is compatible with the rise of high-throughput data generation and opens the door to on-the-fly CSC fate analysis.The detection of cancer stem-like cells (CSCs) is mainly based on molecular markers or functional tests giving a posteriori results. Therefore label-free and real-time detection of single CSCs remains a difficult challenge. The recent development of microfluidics has made it possible to perform high-throughput single cell imaging under controlled conditions and geometries. Such a throughput requires adapted image analysis pipelines while providing the necessary amount of data for the development of machine-learning algorithms. In this paper, we provide a data-driven study to assess the complexity of brightfield time-lapses to monitor the fate of isolated cancer stem-like cells in non-adherent conditions. We combined for the first time individual cell fate and cell state temporality analysis in a unique algorithm. We show that with our experimental system and on two different primary cell lines our optimized deep learning based algorithm outperforms classical computer vision and shallow learning-based algorithms in terms of accuracy while being faster than cutting-edge convolutional neural network (CNNs). With this study, we show that tailoring our deep learning-based algorithm to the image analysis problem yields better results than pre-trained models. As a result, such a rapid and accurate CNN is compatible with the rise of high-throughput data generation and opens the door to on-the-fly CSC fate analysis. |
ArticleNumber | 19066 |
Author | Chambost, Alexis J. Meyronet, David Isaac, Caroline Martel, Sylvie Cochet-Escartin, Olivier Ducray, François Idbaih, Ahmed Rousseau, David Monnier, Sylvain Gabut, Mathieu Berabez, Nabila |
Author_xml | – sequence: 1 givenname: Alexis J. surname: Chambost fullname: Chambost, Alexis J. organization: Cancer Initiation and Tumor Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Univ Lyon, CNRS, Institut Lumière Matière, Univ Claude Bernard Lyon 1, Pathology Institute, Hospices Civils de Lyon – sequence: 2 givenname: Nabila surname: Berabez fullname: Berabez, Nabila organization: Cancer Initiation and Tumor Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1 – sequence: 3 givenname: Olivier surname: Cochet-Escartin fullname: Cochet-Escartin, Olivier organization: Univ Lyon, CNRS, Institut Lumière Matière, Univ Claude Bernard Lyon 1 – sequence: 4 givenname: François surname: Ducray fullname: Ducray, François organization: Cancer Initiation and Tumor Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Neuro-oncology Department, Hospices Civils de Lyon – sequence: 5 givenname: Mathieu surname: Gabut fullname: Gabut, Mathieu organization: Cancer Initiation and Tumor Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1 – sequence: 6 givenname: Caroline surname: Isaac fullname: Isaac, Caroline organization: Cancer Initiation and Tumor Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1 – sequence: 7 givenname: Sylvie surname: Martel fullname: Martel, Sylvie organization: Cancer Initiation and Tumor Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1 – sequence: 8 givenname: Ahmed surname: Idbaih fullname: Idbaih, Ahmed organization: Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire La Pitié Salpêtrière, DMU Neurosciences, Sorbonne Université – sequence: 9 givenname: David surname: Rousseau fullname: Rousseau, David email: david.rousseau@univ-angers.fr organization: Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR Inrae IRHS, Université d’Angers – sequence: 10 givenname: David surname: Meyronet fullname: Meyronet, David organization: Cancer Initiation and Tumor Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Pathology Institute, Hospices Civils de Lyon – sequence: 11 givenname: Sylvain surname: Monnier fullname: Monnier, Sylvain email: sylvain.monnier@univ-lyon1.fr organization: Univ Lyon, CNRS, Institut Lumière Matière, Univ Claude Bernard Lyon 1 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36352045$$D View this record in MEDLINE/PubMed https://hal.science/hal-03880836$$DView record in HAL |
BookMark | eNp9Uk1v1DAQtVARLUv_AAeUIxwC_orjXJCqCuhKRVzgbPljsuvFaxc7W4n-epymVG0P9WFszbz3xvab1-gopggIvSX4I8FMfiqcdINsMaUtJbLGmxfohGLetZRRevTgfIxOS9nhujo6cDK8QsdMsG6un6D1d223PkITQOfo46Y1uoBrHExgJ59ik8YmaAOhHTNAY3W0kJsywb4N_ndNQAjNqCd4g16OOhQ4vdtX6NfXLz_PL9rLH9_W52eXre24mNqRGcql5U6Igds59kTQESh1ABS6gVPBnARMHB8GxxgRTEhOTecMBy7YCq0XXZf0Tl1lv9f5r0raq9tEyhul8-RtAGU5MSMeCJXUcANEGyo6Q4TmmAlcxVfo86J1dTB7cBbilHV4JPq4Ev1WbdK1GgQXPZdV4MMisH1Cuzi7VHOuWiWxZOKaVOz7u2Y5_TlAmdTel_n7dIR0KIr2rCM97nlfoe8e3ute-b9vFUAXgM2plAzjPYRgNc-HWuZD1flQt_OhbipJPiFZP-nZ5Po2H56nsoVaap-4gax26ZBj9fk51j_tc81z |
CitedBy_id | crossref_primary_10_1371_journal_pone_0281931 crossref_primary_10_1007_s00521_024_10767_1 crossref_primary_10_3389_fimmu_2023_1214425 crossref_primary_10_3390_ijms25073903 |
Cites_doi | 10.1038/ncomms10256 10.1371/journal.pone.0007497 10.1016/j.bbe.2019.01.005 10.1146/annurev-pathol-012615-044438 10.1038/s41598-020-78129-0 10.1073/pnas.1721650115 10.1109/MCSE.2007.55 10.1038/nmeth.1855 10.3390/ht7010008 10.1038/s41598-020-57900-3 10.1038/s41598-018-29647-5 10.1109/TSMC.1979.4310076 10.1039/D0LC00055H 10.1016/j.ygeno.2012.04.003 10.1038/s41598-019-56583-9 10.1371/journal.pone.0253666 10.1101/gad.261982.115 10.1038/s41467-019-09853-z 10.1016/j.stemcr.2019.02.004 10.5334/jors.ac 10.1242/dev.101709 10.1038/s41592-019-0582-9 10.1038/s41467-017-00623-3 10.1038/s42003-021-01937-1 10.3389/fgene.2020.00248 10.1016/j.jneumeth.2019.108522 10.1126/science.1254257 10.1039/D1LC00192B 10.1016/j.tibtech.2018.08.005 10.1002/cyto.a.23595 10.1021/acs.analchem.0c00710 10.1038/s41592-021-01249-6 10.1038/s41598-018-25458-w 10.1038/s41467-020-17186-5 10.1016/j.stemcr.2021.04.008 10.1016/j.stem.2011.04.007 10.1038/s41420-021-00616-8 10.1073/pnas.2011795117 10.1038/s41586-020-2649-2 10.1038/s41592-019-0686-2 10.1088/0954-898X_5_4_006 10.1038/s41467-019-13993-7 10.1109/CVPR.2009.5206848 10.1002/bies.201700003 10.3389/fncel.2020.00171 10.25080/Majora-92bf1922-00a 10.14440/jbm.2014.36 10.3390/cancers12102853 10.21105/joss.03021 10.1016/j.cell.2019.06.024 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). Attribution |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: Attribution |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM DOA |
DOI | 10.1038/s41598-022-21822-z |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Computer Science |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_c41bf091282b4be1ab265b16a403609d PMC9646748 oai_HAL_hal_03880836v1 36352045 10_1038_s41598_022_21822_z |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ITMO Cancer Soutien pour la formation à la recherche fondamentale et translationnelle en Cancérologie – fundername: Ligue Nationale contre de le Cancer, comité Auvergne-Rhône-Alpes – fundername: Hospices Civils de Lyon funderid: http://dx.doi.org/10.13039/501100006451 – fundername: Institut Convergence PLAsCAN – fundername: Agence Nationale de la Recherche funderid: http://dx.doi.org/10.13039/501100001665 – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7X8 PJZUB PPXIY PQGLB 1XC EJD IPNFZ RIG VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c546t-f3b248c4d6694cd6697162fe22dee2e594263d8e01d499d331636842b5db4e463 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:30 EDT 2025 Thu Aug 21 18:39:21 EDT 2025 Wed Jul 02 06:36:23 EDT 2025 Mon Jul 21 12:06:07 EDT 2025 Thu Jan 02 22:53:09 EST 2025 Thu Apr 24 23:05:33 EDT 2025 Tue Jul 01 00:55:22 EDT 2025 Fri Feb 21 02:39:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Attribution: http://creativecommons.org/licenses/by Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c546t-f3b248c4d6694cd6697162fe22dee2e594263d8e01d499d331636842b5db4e463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7343-5361 0000-0002-8150-5785 0000-0001-7924-702X 0000-0001-9943-4578 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-21822-z |
PMID | 36352045 |
PQID | 2735170747 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c41bf091282b4be1ab265b16a403609d pubmedcentral_primary_oai_pubmedcentral_nih_gov_9646748 hal_primary_oai_HAL_hal_03880836v1 proquest_miscellaneous_2735170747 pubmed_primary_36352045 crossref_primary_10_1038_s41598_022_21822_z crossref_citationtrail_10_1038_s41598_022_21822_z springer_journals_10_1038_s41598_022_21822_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-09 |
PublicationDateYYYYMMDD | 2022-11-09 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Rasti (CR37) 2019; 9 Hunter (CR54) 2007; 9 Hegde, Prasad, Hebbar, Singh (CR17) 2019; 39 Berg (CR27) 2019; 16 CR38 Nassar, Blanpain (CR2) 2016; 11 Ossinger (CR13) 2020; 331 Soetje, Fuellekrug, Haffner, Ziegler (CR18) 2020; 11 Selinummi (CR8) 2009; 4 Couturier (CR42) 2020; 11 CR30 Lugagne (CR12) 2018; 8 Kim (CR19) 2020; 10 Chen, Ishwaran (CR28) 2012; 99 Otsu (CR26) 1979; 9 Ahmad (CR33) 2014; 141 Liao (CR39) 2021; 4 Patel (CR40) 2014; 344 D’Argenio (CR9) 2018; 7 CR5 Blasi (CR35) 2016; 7 Maslova (CR32) 2020; 117 CR49 CR47 CR46 Edlund (CR10) 2021; 18 CR45 Pastrana, Silva-Vargas, Doetsch (CR3) 2011; 8 Schnell, Dijk, Sjollema, Giepmans (CR6) 2012; 9 CR41 Anagnostidis (CR15) 2020; 20 Chen, Zhang, Yoon (CR16) 2020; 92 Greca (CR20) 2021; 16 Goodarzi (CR23) 2021; 21 Riordon, Sovilj, Sanner, Sinton, Young (CR11) 2019; 37 Singh (CR34) 2003; 63 Eulenberg (CR29) 2017; 8 Verduijn, Van der Meeren, Krysko, Skirtach (CR21) 2021; 7 CR55 Talukdar (CR44) 2018; 115 CR53 CR52 Lathia, Mack, Mulkearns-Hubert, Valentim, Rich (CR4) 2015; 29 CR50 Riba, Schoendube, Zimmermann, Koltay, Zengerle (CR36) 2020; 10 Dirkse (CR1) 2019; 10 Waisman (CR22) 2019; 12 Joy, Libby, McDevitt (CR31) 2021; 16 Couturier (CR43) 2020; 11 Wei, Roberts (CR14) 2018; 8 Coelho (CR48) 2013; 1 CR25 Chiang, Wu, Tseng, Huang (CR7) 2018; 93 CR24 Harris (CR51) 2020; 585 J Riba (21822_CR36) 2020; 10 21822_CR46 21822_CR45 21822_CR41 L Wei (21822_CR14) 2018; 8 CP Couturier (21822_CR43) 2020; 11 S Talukdar (21822_CR44) 2018; 115 JD Lathia (21822_CR4) 2015; 29 21822_CR49 N Otsu (21822_CR26) 1979; 9 21822_CR47 V Anagnostidis (21822_CR15) 2020; 20 J-B Lugagne (21822_CR12) 2018; 8 LP Coelho (21822_CR48) 2013; 1 S Goodarzi (21822_CR23) 2021; 21 ADL Greca (21822_CR20) 2021; 16 T Blasi (21822_CR35) 2016; 7 A Ossinger (21822_CR13) 2020; 331 J Verduijn (21822_CR21) 2021; 7 SK Singh (21822_CR34) 2003; 63 J Selinummi (21822_CR8) 2009; 4 SM Ahmad (21822_CR33) 2014; 141 21822_CR55 21822_CR53 21822_CR52 JD Hunter (21822_CR54) 2007; 9 21822_CR50 P Eulenberg (21822_CR29) 2017; 8 S Berg (21822_CR27) 2019; 16 A Maslova (21822_CR32) 2020; 117 CP Couturier (21822_CR42) 2020; 11 B Soetje (21822_CR18) 2020; 11 Q Liao (21822_CR39) 2021; 4 U Schnell (21822_CR6) 2012; 9 Y-G Kim (21822_CR19) 2020; 10 21822_CR24 D Nassar (21822_CR2) 2016; 11 A Waisman (21822_CR22) 2019; 12 V D’Argenio (21822_CR9) 2018; 7 21822_CR25 P Rasti (21822_CR37) 2019; 9 21822_CR5 X Chen (21822_CR28) 2012; 99 21822_CR30 E Pastrana (21822_CR3) 2011; 8 RB Hegde (21822_CR17) 2019; 39 C Edlund (21822_CR10) 2021; 18 Y-C Chen (21822_CR16) 2020; 92 CR Harris (21822_CR51) 2020; 585 21822_CR38 AP Patel (21822_CR40) 2014; 344 P-J Chiang (21822_CR7) 2018; 93 J Riordon (21822_CR11) 2019; 37 A Dirkse (21822_CR1) 2019; 10 DA Joy (21822_CR31) 2021; 16 |
References_xml | – ident: CR45 – volume: 7 start-page: 10256 year: 2016 ident: CR35 article-title: Label-free cell cycle analysis for high-throughput imaging flow cytometry publication-title: Nat. Commun. doi: 10.1038/ncomms10256 – ident: CR49 – volume: 4 year: 2009 ident: CR8 article-title: Bright field microscopy as an alternative to whole cell fluorescence in automated analysis of macrophage images publication-title: PLoS ONE doi: 10.1371/journal.pone.0007497 – volume: 39 start-page: 382 year: 2019 end-page: 392 ident: CR17 article-title: Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2019.01.005 – volume: 11 start-page: 47 year: 2016 end-page: 76 ident: CR2 article-title: Cancer stem cells: basic concepts and therapeutic implications publication-title: Annu. Rev. Pathol.: Mech. Dis. doi: 10.1146/annurev-pathol-012615-044438 – volume: 10 start-page: 21899 year: 2020 ident: CR19 article-title: Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections publication-title: Sci. Rep. doi: 10.1038/s41598-020-78129-0 – volume: 115 start-page: 5768 year: 2018 end-page: 5773 ident: CR44 article-title: MDA-9/syntenin regulates protective autophagy in anoikis-resistant glioma stem cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1721650115 – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: CR54 article-title: Matplotlib: a 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – ident: CR25 – volume: 9 start-page: 152 year: 2012 end-page: 158 ident: CR6 article-title: Immunolabeling artifacts and the need for live-cell imaging publication-title: Nat. Methods doi: 10.1038/nmeth.1855 – volume: 7 start-page: 8 year: 2018 ident: CR9 article-title: The high-throughput analyses era: are we ready for the data struggle? publication-title: High Throughput doi: 10.3390/ht7010008 – volume: 10 start-page: 1193 year: 2020 ident: CR36 article-title: Single-cell dispensing and ‘real-time’ cell classification using convolutional neural networks for higher efficiency in single-cell cloning publication-title: Sci. Rep. doi: 10.1038/s41598-020-57900-3 – volume: 8 start-page: 11455 year: 2018 ident: CR12 article-title: Identification of individual cells from z-stacks of bright-field microscopy images publication-title: Sci. Rep. doi: 10.1038/s41598-018-29647-5 – ident: CR46 – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: CR26 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – volume: 20 start-page: 889 year: 2020 end-page: 900 ident: CR15 article-title: Deep learning guided image-based droplet sorting for on-demand selection and analysis of single cells and 3D cell cultures publication-title: Lab Chip doi: 10.1039/D0LC00055H – volume: 99 start-page: 323 year: 2012 end-page: 329 ident: CR28 article-title: Random forests for genomic data analysis publication-title: Genomics doi: 10.1016/j.ygeno.2012.04.003 – ident: CR50 – volume: 9 start-page: 20010 year: 2019 ident: CR37 article-title: Machine learning-based classification of the health state of mice colon in cancer study from confocal laser endomicroscopy publication-title: Sci. Rep. doi: 10.1038/s41598-019-56583-9 – volume: 16 year: 2021 ident: CR20 article-title: Celldeath: a tool for detection of cell death in transmitted light microscopy images by deep learning-based visual recognition publication-title: PLoS ONE doi: 10.1371/journal.pone.0253666 – ident: CR5 – volume: 63 start-page: 5821 year: 2003 end-page: 5828 ident: CR34 article-title: Identification of a cancer stem cell in human brain tumors publication-title: Cancer Res. – volume: 29 start-page: 1203 year: 2015 end-page: 1217 ident: CR4 article-title: Cancer stem cells in glioblastoma publication-title: Genes Dev. doi: 10.1101/gad.261982.115 – volume: 10 start-page: 1787 year: 2019 ident: CR1 article-title: Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment publication-title: Nat. Commun. doi: 10.1038/s41467-019-09853-z – volume: 12 start-page: 845 year: 2019 end-page: 859 ident: CR22 article-title: Deep learning neural networks highly predict very early onset of pluripotent stem cell differentiation publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2019.02.004 – volume: 1 year: 2013 ident: CR48 article-title: Mahotas: open source software for scriptable computer vision publication-title: J. Open Res. Softw. doi: 10.5334/jors.ac – volume: 141 start-page: 878 year: 2014 end-page: 888 ident: CR33 article-title: Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification publication-title: Development doi: 10.1242/dev.101709 – ident: CR47 – volume: 16 start-page: 1226 year: 2019 end-page: 1232 ident: CR27 article-title: Ilastik: interactive machine learning for (bio)image analysis publication-title: Nat. Methods doi: 10.1038/s41592-019-0582-9 – volume: 8 start-page: 463 year: 2017 ident: CR29 article-title: Reconstructing cell cycle and disease progression using deep learning publication-title: Nat. Commun. doi: 10.1038/s41467-017-00623-3 – volume: 4 start-page: 1 year: 2021 end-page: 9 ident: CR39 article-title: Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring publication-title: Commun Biol doi: 10.1038/s42003-021-01937-1 – volume: 11 start-page: 248 year: 2020 ident: CR18 article-title: Application and comparison of supervised learning strategies to classify polarity of epithelial cell spheroids in 3D culture publication-title: Front. Genet. doi: 10.3389/fgene.2020.00248 – ident: CR53 – ident: CR30 – volume: 331 year: 2020 ident: CR13 article-title: A rapid and accurate method to quantify neurite outgrowth from cell and tissue cultures: two image analytic approaches using adaptive thresholds or machine learning publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.108522 – volume: 344 start-page: 1396 year: 2014 end-page: 1401 ident: CR40 article-title: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma publication-title: Science doi: 10.1126/science.1254257 – volume: 21 start-page: 2495 year: 2021 end-page: 2510 ident: CR23 article-title: Quantifying nanotherapeutic penetration using a hydrogel-based microsystem as a new 3D in vitro platform publication-title: Lab Chip doi: 10.1039/D1LC00192B – volume: 37 start-page: 310 year: 2019 end-page: 324 ident: CR11 article-title: Deep learning with microfluidics for biotechnology publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.08.005 – volume: 93 start-page: 1004 year: 2018 end-page: 1018 ident: CR7 article-title: Automated bright field segmentation of cells and vacuoles using image processing technique publication-title: Cytometry A doi: 10.1002/cyto.a.23595 – volume: 92 start-page: 7717 year: 2020 end-page: 7724 ident: CR16 article-title: Early prediction of single-cell derived sphere formation rate using convolutional neural network image analysis publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c00710 – volume: 11 start-page: 1 year: 2020 end-page: 19 ident: CR43 article-title: Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy publication-title: Nat. Commun. – volume: 18 start-page: 1 year: 2021 end-page: 8 ident: CR10 article-title: LIVECell: a large-scale dataset for label-free live cell segmentation publication-title: Nat. Methods doi: 10.1038/s41592-021-01249-6 – volume: 8 start-page: 7313 year: 2018 ident: CR14 article-title: Neural network control of focal position during time-lapse microscopy of cells publication-title: Sci. Rep. doi: 10.1038/s41598-018-25458-w – volume: 11 start-page: 3406 year: 2020 ident: CR42 article-title: Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy publication-title: Nat. Commun. doi: 10.1038/s41467-020-17186-5 – volume: 16 start-page: 1317 year: 2021 end-page: 1330 ident: CR31 article-title: Deep neural net tracking of human pluripotent stem cells reveals intrinsic behaviors directing morphogenesis publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2021.04.008 – ident: CR38 – ident: CR52 – volume: 8 start-page: 486 year: 2011 end-page: 498 ident: CR3 article-title: Eyes wide open: a critical review of sphere-formation as an assay for stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.04.007 – volume: 7 start-page: 1 year: 2021 end-page: 10 ident: CR21 article-title: Deep learning with digital holographic microscopy discriminates apoptosis and necroptosis publication-title: Cell Death Discov. doi: 10.1038/s41420-021-00616-8 – ident: CR55 – volume: 117 start-page: 25655 year: 2020 end-page: 25666 ident: CR32 article-title: Deep learning of immune cell differentiation publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2011795117 – ident: CR41 – ident: CR24 – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: CR51 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 7 start-page: 8 year: 2018 ident: 21822_CR9 publication-title: High Throughput doi: 10.3390/ht7010008 – volume: 21 start-page: 2495 year: 2021 ident: 21822_CR23 publication-title: Lab Chip doi: 10.1039/D1LC00192B – volume: 16 year: 2021 ident: 21822_CR20 publication-title: PLoS ONE doi: 10.1371/journal.pone.0253666 – ident: 21822_CR52 doi: 10.1038/s41592-019-0686-2 – volume: 37 start-page: 310 year: 2019 ident: 21822_CR11 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.08.005 – volume: 117 start-page: 25655 year: 2020 ident: 21822_CR32 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2011795117 – volume: 10 start-page: 21899 year: 2020 ident: 21822_CR19 publication-title: Sci. Rep. doi: 10.1038/s41598-020-78129-0 – ident: 21822_CR38 doi: 10.1088/0954-898X_5_4_006 – volume: 11 start-page: 248 year: 2020 ident: 21822_CR18 publication-title: Front. Genet. doi: 10.3389/fgene.2020.00248 – volume: 39 start-page: 382 year: 2019 ident: 21822_CR17 publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2019.01.005 – volume: 11 start-page: 1 year: 2020 ident: 21822_CR43 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13993-7 – volume: 11 start-page: 47 year: 2016 ident: 21822_CR2 publication-title: Annu. Rev. Pathol.: Mech. Dis. doi: 10.1146/annurev-pathol-012615-044438 – volume: 10 start-page: 1193 year: 2020 ident: 21822_CR36 publication-title: Sci. Rep. doi: 10.1038/s41598-020-57900-3 – volume: 99 start-page: 323 year: 2012 ident: 21822_CR28 publication-title: Genomics doi: 10.1016/j.ygeno.2012.04.003 – volume: 344 start-page: 1396 year: 2014 ident: 21822_CR40 publication-title: Science doi: 10.1126/science.1254257 – ident: 21822_CR55 – volume: 9 start-page: 62 year: 1979 ident: 21822_CR26 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – volume: 8 start-page: 11455 year: 2018 ident: 21822_CR12 publication-title: Sci. Rep. doi: 10.1038/s41598-018-29647-5 – volume: 115 start-page: 5768 year: 2018 ident: 21822_CR44 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1721650115 – volume: 331 year: 2020 ident: 21822_CR13 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.108522 – volume: 10 start-page: 1787 year: 2019 ident: 21822_CR1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09853-z – volume: 9 start-page: 152 year: 2012 ident: 21822_CR6 publication-title: Nat. Methods doi: 10.1038/nmeth.1855 – ident: 21822_CR49 – volume: 63 start-page: 5821 year: 2003 ident: 21822_CR34 publication-title: Cancer Res. – ident: 21822_CR24 – volume: 4 year: 2009 ident: 21822_CR8 publication-title: PLoS ONE doi: 10.1371/journal.pone.0007497 – volume: 7 start-page: 1 year: 2021 ident: 21822_CR21 publication-title: Cell Death Discov. doi: 10.1038/s41420-021-00616-8 – volume: 16 start-page: 1317 year: 2021 ident: 21822_CR31 publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2021.04.008 – volume: 29 start-page: 1203 year: 2015 ident: 21822_CR4 publication-title: Genes Dev. doi: 10.1101/gad.261982.115 – ident: 21822_CR25 doi: 10.1109/CVPR.2009.5206848 – volume: 12 start-page: 845 year: 2019 ident: 21822_CR22 publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2019.02.004 – volume: 141 start-page: 878 year: 2014 ident: 21822_CR33 publication-title: Development doi: 10.1242/dev.101709 – volume: 93 start-page: 1004 year: 2018 ident: 21822_CR7 publication-title: Cytometry A doi: 10.1002/cyto.a.23595 – volume: 8 start-page: 486 year: 2011 ident: 21822_CR3 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.04.007 – volume: 9 start-page: 90 year: 2007 ident: 21822_CR54 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 92 start-page: 7717 year: 2020 ident: 21822_CR16 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c00710 – volume: 16 start-page: 1226 year: 2019 ident: 21822_CR27 publication-title: Nat. Methods doi: 10.1038/s41592-019-0582-9 – volume: 20 start-page: 889 year: 2020 ident: 21822_CR15 publication-title: Lab Chip doi: 10.1039/D0LC00055H – volume: 585 start-page: 357 year: 2020 ident: 21822_CR51 publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 11 start-page: 3406 year: 2020 ident: 21822_CR42 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17186-5 – ident: 21822_CR5 doi: 10.1002/bies.201700003 – volume: 8 start-page: 7313 year: 2018 ident: 21822_CR14 publication-title: Sci. Rep. doi: 10.1038/s41598-018-25458-w – volume: 1 year: 2013 ident: 21822_CR48 publication-title: J. Open Res. Softw. doi: 10.5334/jors.ac – ident: 21822_CR30 doi: 10.3389/fncel.2020.00171 – volume: 8 start-page: 463 year: 2017 ident: 21822_CR29 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00623-3 – volume: 4 start-page: 1 year: 2021 ident: 21822_CR39 publication-title: Commun Biol doi: 10.1038/s42003-021-01937-1 – ident: 21822_CR53 doi: 10.25080/Majora-92bf1922-00a – volume: 18 start-page: 1 year: 2021 ident: 21822_CR10 publication-title: Nat. Methods doi: 10.1038/s41592-021-01249-6 – ident: 21822_CR46 doi: 10.14440/jbm.2014.36 – ident: 21822_CR45 doi: 10.3390/cancers12102853 – volume: 9 start-page: 20010 year: 2019 ident: 21822_CR37 publication-title: Sci. Rep. doi: 10.1038/s41598-019-56583-9 – ident: 21822_CR47 – ident: 21822_CR50 doi: 10.21105/joss.03021 – ident: 21822_CR41 doi: 10.1016/j.cell.2019.06.024 – volume: 7 start-page: 10256 year: 2016 ident: 21822_CR35 publication-title: Nat. Commun. doi: 10.1038/ncomms10256 |
SSID | ssj0000529419 |
Score | 2.4172342 |
Snippet | The detection of cancer stem-like cells (CSCs) is mainly based on molecular markers or functional tests giving a posteriori results. Therefore label-free and... Abstract The detection of cancer stem-like cells (CSCs) is mainly based on molecular markers or functional tests giving a posteriori results. Therefore... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19066 |
SubjectTerms | 631/114/1564 639/166/985 639/705/1042 Algorithms Cancer Cellular Biology Computer Science Humanities and Social Sciences Humans Image Processing Image Processing, Computer-Assisted - methods Life Sciences Machine Learning multidisciplinary Neoplasms Neural Networks, Computer Science Science (multidisciplinary) Subcellular Processes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEG_CSwZxA6sbe-LEx4KoFgScqNSbtY5tWhFl0e62UvvrmXGyq4ZK5cIlB8dxom_Gnpl4_A3AW-WNqVQdJCJ6iU3S0pJpkD74FkNUoVlkts_vZn6EX46r4yulvjgnbKAHHoDbb7H0iYwahQYefSwXXpnKl2aBtPbObODVl25fCaYGVm9lsbTjKZmZbvbXZKn4NBnFXkxaruTlxBJlwn6yLyecDnnd17yeMvnXvmk2R4f34O7oR4qD4fvvw63YP4DbQ2XJi4fw-VtOkoxirArxU7K5CiLETc696sUyCVKA2Mm0ilG0LPyVYFZn2Z3-oobYdSKRI_oIjg4__fg4l2PVBNlWaDYyaa-wIaCNsdjylUmiUlQqxKhiZZmiPTRxVgaKdoLW5JHxZpyvgseIRj-GvX7Zx6cgatVakmFbh-TRpORrQ_FFhZgycR8WUG4RdO1IKc6VLTqXt7Z14wbUHaHuMurusoB3u2d-D4QaN_b-wILZ9WQy7NxAKuJGFXH_UpEC3pBYJ2PMD746bstcOI0252UBr7dSdzTDGOVFH5dna0cOXlXWXGiggCeDFuzG0uSvMaF_AfVEPyYvm97pT08yi7c1udBLAe-3muTG5WN9AyDP_gcgz-GO4onAf8ftC9jbrM7iS_KtNv5VnkZ_AGIyG5Y priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGJiReJr7pGKgg3iDimrhp-3hDTMcJeIFJe4suTbJNVL3p7jaJ_fXYaXtSGZrESx_SJK1sJ7Zj52eAd9JqncvCCUS0AsugREWqQVhna3ReunIR0T6_69kJzk_z0x2Qw12YmLQfIS3jNj1kh31ck6Lhy2DkOjHmuBQ392CPodpJtvem0_mP-fZkhWNXmFX9DZmJKv8xeKSFIlg_6ZZzToW8bWfeTpf8K2YaVdHxQ9jvbch02v31I9jx7WO431WV_P0EvnyLCZI-7StCnAlWVS51fhPzrtp0GVJivm9EWHmf1sz4VcqIzqK5-EUNvmnSQEboUzg5_vzz00z0FRNEnaPeiKCsxJKIrHWFNT8ZICp4KZ330ucVw7O70k8yR56OU4qsMQ7E2dxZ9KjVM9htl61_AWkh64r4VxcuWNQh2EKTb5EjhgjahwlkAwVN3cOJc1WLxsSwtipNR3VDVDeR6uYmgffbMZcdmMadvY-YMdueDIQdG5arM9MLhqkxs4FsHvIcLVqfLazUuc30Akk1TyqXwFti62iO2fSr4baIg1MqfZ0l8GbguqHVxVRetH55tTZk3OVZwUUGEnjeScF2LkW2GoP5J1CM5GP0sfGb9uI8InhXOhZ5SeDDIEmm3zrWdxDk4P-6v4QHkkWez8CrQ9jdrK78K7KgNvZ1v2T-AC27E0E priority: 102 providerName: Springer Nature |
Title | Machine learning-based detection of label-free cancer stem-like cell fate |
URI | https://link.springer.com/article/10.1038/s41598-022-21822-z https://www.ncbi.nlm.nih.gov/pubmed/36352045 https://www.proquest.com/docview/2735170747 https://hal.science/hal-03880836 https://pubmed.ncbi.nlm.nih.gov/PMC9646748 https://doaj.org/article/c41bf091282b4be1ab265b16a403609d |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9swFL30g8FextZ9eR_BHXvbtNWyLNsPY6ShJQtrGdsCeRORJbVlxtmcdKz99btXtgNuS5_6koBiO3B0L_dcSzoH4C3XUiY8NUwIoZnIXMxyLA1MG10IY7nJ5l7t81iOp2IyS2Yb0NkdtQAub2ztyE9qWpcf_v25-IwJ_6k5Mp59XGIRooNi2FaRHjlnl5uwjZUpJUeDo5buN1rfPBdR3p6dufnWXn3yMv5YdU5pk-R1Bnp9I-WV1VRfpA4fwoOWXYbDJhwewYatduBe4zd58Ri-HPmtkzZsvSJOGBUxExq78juyqnDhQgwLWzJXWxsWFBJ1SFrPrDz7hQO2LEOH9PQJTA8Pfo7GrPVSYEUi5Iq5WHORIfxS5qKgT5KOcpZzYy23SU7C7Saze5HBHsjEMfI0WqLTidHCChk_ha1qUdnnEKa8yHFmi9Q4LaRzOpXYdSRCOC_nJwKIOgRV0QqNk99FqfyCd5ypBnWFqCuPuroM4N36nt-NzMatV-_TxKyvJIlsP7CoT1SbcaoQkXbIhrCn1ELbaK65THQk5wKL9l5uAniD09p7xnj4VdGYV8jJYvk3CmC3m3WFeUcozyu7OF8qpH1JlJL9QADPmihYPytGFkcy_wGkvfjo_Vn_l-rs1Gt759LbvwTwvosk1eXELYC8uAtAXsJ9TolA78zzV7C1qs_ta2RcKz2AzXSWDmB7OJz8mOD3_sHxt-84OpKjgX-LMfCJ9h-lQCmn |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgQXxJvwDIgbWGzsiZMcy4pqC9ueWqk3ax3bbUWURbtbJPrrmXGSlUJRJS45OLYTzYw9n-3xNwAfpNU6l4UTiGgFlkGJilyDsM7W6Lx05SKyfR7p2Ql-O81Pd0AOd2Fi0H6ktIzT9BAd9nlNjoYvg9HSiTnHpbi6BbcJa2u25KmebvdV-OQKs6q_HzNR5T-ajnxQpOonz3LOgZDXUeb1YMm_TkyjI9p_APd7BJnudf_8EHZ8-wjudDklfz-Gg8MYHunTPh_EmWBH5VLnNzHqqk2XISXV-0aElfdpzWpfpcznLJqLH1TgmyYNBEGfwMn-1-PpTPT5EkSdo96IoKzEkkSsdYU1P5keKngpnffS5xWTs7vSTzJH6xynFGExPoazubPoUaunsNsuW_8c0kLWFWmvLlywqEOwhaaVRY4YImUfJpANEjR1TybOOS0aEw-1VWk6qRuSuolSN1cJfNy2-dlRadxY-wsrZluTabBjwXJ1ZnqzMDVmNhDioXWjReuzhZU6t5leIDnmSeUSeE9qHfUx25sbLossOKXSv7IE3g1aNzS2WMqL1i8v14agXZ4VnGIggWedFWz7UoTUmMo_gWJkH6OPjd-0F-eRv7vSMcVLAp8GSzL9xLG-QSAv_q_6W7g7Oz6cm_nB0feXcE-y-fNuePUKdjerS_-asNTGvomD5w-tYRTV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrUBcEG_CMyBuYNg4Eyc5Lo_VdikVElTqzVrHdlsRZavdLRL99cw4yUqhqBKXHBzHiWbGmW_s8TcAr6VRKpO5FYhoBBY-FSW5BmGsqdA6aYtFYPs8ULNDnB9lRzug-rMwIWk_UFqG33SfHfZ-TY6GD4NR6MSc41JcvDuz_hrsEt5OcAS7k8n8-3y7usL7V5iU3SmZcVr8Y4CBJwqE_eRfTjgd8jLWvJwy-de-aXBH09twq8OR8aT98juw45q7cL2tLPn7Hux9DUmSLu6qQhwLdlc2tm4Tcq-aeOljMgBXC79yLq5Y-auYWZ1FffqTGlxdx56A6H04nH7-8XEmuqoJospQbYRPjcSCBK1UiRVfmSTKOymtc9JlJVO028KNE0vRjk1TQmS8GWcya9ChSh_AqFk27hHEuaxK0mGVW29QeW9yRfFFhugDcR9GkPQS1FVHKc6VLWodtrbTQrdS1yR1HaSuLyJ4s33mrCXUuLL3B1bMtieTYYeG5epYd8ahK0yMJ9xD0aNB45KFkSoziVoguedxaSN4RWodjDGb7GtuC1w4Rap-JRG87LWuaYaxlBeNW56vNQG8LMm50EAED1sr2I6VEl5jQv8I8oF9DF42vNOcngQW71KFQi8RvO0tSXe_j_UVAnn8f91fwI1vn6Z6f-_gyxO4Kdn6eUm8fAqjzercPSNAtTHPu9nzBzzLFzk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+detection+of+label-free+cancer+stem-like+cell+fate&rft.jtitle=Scientific+reports&rft.au=Alexis+J.+Chambost&rft.au=Nabila+Berabez&rft.au=Olivier+Cochet-Escartin&rft.au=Fran%C3%A7ois+Ducray&rft.date=2022-11-09&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41598-022-21822-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c41bf091282b4be1ab265b16a403609d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |