Dinitrogen Cleavage and Hydrogenation by a Trinuclear Titanium Polyhydride Complex

Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N=N triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the re...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 340; no. 6140; pp. 1549 - 1552
Main Authors Shima, Takanori, Hu, Shaowei, Luo, Gen, Kang, Xiaohui, Luo, Yi, Hou, Zhaomin
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 28.06.2013
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N=N triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogénation at ambient temperature and pressure. By ¹H and ¹⁵N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N₂) reduction proceeds sequentially through scission of a N₂ molecule bonded to three Ti atoms in a μ-η¹:η²:η²-end-on-side-on fashion to give a μ₂-N/μ₃-N dinitrido species, followed by intramolecular hydrogen migration from Ti to the μ₂-N nitrido unit.
AbstractList A century after its discovery, the Haber Bosch process is still used to produce ammonia from nitrogen for fertilizer. Nonetheless, the process requires high temperature and pressure, and chemists continue to look for synthetic analogs to microbial nitrogenase enzymes, which have managed to slice through the N2 triple bond under ambient conditions for millennia. Most efforts in this vein have relied on a boost from the reducing power of alkali metals. Shima et al. (p. 1549; see the Perspective by Fryzuk) instead explored the reactivity of a titanium hydride cluster, which cleanly slices through N2 at room temperature and incorporates the separated N atoms into its framework. Though ammonia was not produced, the system offers hope in the search for mild nitrogen reduction catalysts. [PUBLICATION ABSTRACT] Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N≡N triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogenation at ambient temperature and pressure. By 1H and 15N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N2) reduction proceeds sequentially through scission of a N2 molecule bonded to three Ti atoms in a μ-η1:η2:η2-end-on-side-on fashion to give a μ2-N/μ3-N dinitrido species, followed by intramolecular hydrogen migration from Ti to the μ2-N nitrido unit. [PUBLICATION ABSTRACT]
Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N≡N triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogenation at ambient temperature and pressure. By (1)H and (15)N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N2) reduction proceeds sequentially through scission of a N2 molecule bonded to three Ti atoms in a μ-η(1):η(2):η(2)-end-on-side-on fashion to give a μ2-N/μ3-N dinitrido species, followed by intramolecular hydrogen migration from Ti to the μ2-N nitrido unit.
Titanium Cleaver A century after its discovery, the Haber Bosch process is still used to produce ammonia from nitrogen for fertilizer. Nonetheless, the process requires high temperature and pressure, and chemists continue to look for synthetic analogs to microbial nitrogenase enzymes, which have managed to slice through the N2 triple bond under ambient conditions for millennia. Most efforts in this vein have relied on a boost from the reducing power of alkali metals. Shima et al. (p. 1549; see the Perspective by Fryzuk) instead explored the reactivity of a titanium hydride cluster, which cleanly slices through N ₂ at room temperature and incorporates the separated N atoms into its framework. Though ammonia was not produced, the system offers hope in the search for mild nitrogen reduction catalysts.
Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N≡N triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogenation at ambient temperature and pressure. By (1)H and (15)N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N2) reduction proceeds sequentially through scission of a N2 molecule bonded to three Ti atoms in a μ-η(1):η(2):η(2)-end-on-side-on fashion to give a μ2-N/μ3-N dinitrido species, followed by intramolecular hydrogen migration from Ti to the μ2-N nitrido unit.Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N≡N triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogenation at ambient temperature and pressure. By (1)H and (15)N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N2) reduction proceeds sequentially through scission of a N2 molecule bonded to three Ti atoms in a μ-η(1):η(2):η(2)-end-on-side-on fashion to give a μ2-N/μ3-N dinitrido species, followed by intramolecular hydrogen migration from Ti to the μ2-N nitrido unit.
Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N=N triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogénation at ambient temperature and pressure. By ¹H and ¹⁵N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N₂) reduction proceeds sequentially through scission of a N₂ molecule bonded to three Ti atoms in a μ-η¹:η²:η²-end-on-side-on fashion to give a μ₂-N/μ₃-N dinitrido species, followed by intramolecular hydrogen migration from Ti to the μ₂-N nitrido unit.
Titanium CleaverA century after its discovery, the Haber Bosch process is still used to produce ammonia from nitrogen for fertilizer. Nonetheless, the process requires high temperature and pressure, and chemists continue to look for synthetic analogs to microbial nitrogenase enzymes, which have managed to slice through the N2 triple bond under ambient conditions for millennia. Most efforts in this vein have relied on a boost from the reducing power of alkali metals. Shima et al. (p. 1549; see the Perspective by Fryzuk) instead explored the reactivity of a titanium hydride cluster, which cleanly slices through N2 at room temperature and incorporates the separated N atoms into its framework. Though ammonia was not produced, the system offers hope in the search for mild nitrogen reduction catalysts.
A century after its discovery, the Haber Bosch process is still used to produce ammonia from nitrogen for fertilizer. Nonetheless, the process requires high temperature and pressure, and chemists continue to look for synthetic analogs to microbial nitrogenase enzymes, which have managed to slice through the N2 triple bond under ambient conditions for millennia. Most efforts in this vein have relied on a boost from the reducing power of alkali metals. Shima et al. (p. 1549 ; see the Perspective by Fryzuk ) instead explored the reactivity of a titanium hydride cluster, which cleanly slices through N 2 at room temperature and incorporates the separated N atoms into its framework. Though ammonia was not produced, the system offers hope in the search for mild nitrogen reduction catalysts. The collective reactivity of three hydride-bridged titanium centers cleaves dinitrogen under mild conditions. [Also see Perspective by Fryzuk ] Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N≡N triple bond and forming an N–H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogenation at ambient temperature and pressure. By 1 H and 15 N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N 2 ) reduction proceeds sequentially through scission of a N 2 molecule bonded to three Ti atoms in a μ-η 1 :η 2 :η 2 -end-on-side-on fashion to give a μ 2 -N/μ 3 -N dinitrido species, followed by intramolecular hydrogen migration from Ti to the μ 2 -N nitrido unit.
Author Hou, Zhaomin
Kang, Xiaohui
Hu, Shaowei
Luo, Yi
Shima, Takanori
Luo, Gen
Author_xml – sequence: 1
  givenname: Takanori
  surname: Shima
  fullname: Shima, Takanori
– sequence: 2
  givenname: Shaowei
  surname: Hu
  fullname: Hu, Shaowei
– sequence: 3
  givenname: Gen
  surname: Luo
  fullname: Luo, Gen
– sequence: 4
  givenname: Xiaohui
  surname: Kang
  fullname: Kang, Xiaohui
– sequence: 5
  givenname: Yi
  surname: Luo
  fullname: Luo, Yi
– sequence: 6
  givenname: Zhaomin
  surname: Hou
  fullname: Hou, Zhaomin
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27784764$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23812710$$D View this record in MEDLINE/PubMed
BookMark eNqF0ttrFDEUB-AgLXZbffZJGRDBl2lzm1wey3ppoVCR9TlkMmdrlplkTWbE_e_NdqcKhdKnQPL9Qk7OOUVHIQZA6A3B54RQcZGdh-DgnFCmhGAv0IJg3dSaYnaEFhgzUSssmxN0mvMG43Km2Ut0UjShkuAF-v7JBz-meAehWvZgf9s7qGzoqqtdd79rRx9D1e4qW62SD5MrKFUrP9rgp6H6Fvvdz0J9B9UyDtse_rxCx2vbZ3g9r2fox5fPq-VVfXP79Xp5eVO7houx7tYgFVUtJrgVQIXjtgWuNaGaiaYlggNwrqxQbSeEY7Zg3jFMLSbOgmZn6OPh3m2KvybIoxl8dtD3NkCcsqGlXiY5JfJZShRWWOuGiucpk4zz8t_7B7x_RDdxSqHUvFeUEM7u1btZTe0AndkmP9i0Mw89KODDDGx2tl8nG5zP_52UikvBi2sOzqWYc4K1caUL-_aMyfreEGz2M2HmmTDzTJTcxaPcw9VPJ94eEps8xvSPc6KVEpywv3egwYU
CODEN SCIEAS
CitedBy_id crossref_primary_10_1039_D3DT03454B
crossref_primary_10_1021_acs_inorgchem_1c03120
crossref_primary_10_1002_ciuz_201490000
crossref_primary_10_3390_catal10050590
crossref_primary_10_1002_anie_202012198
crossref_primary_10_1039_C9CY01894H
crossref_primary_10_1021_acscatal_9b01551
crossref_primary_10_1021_acs_inorgchem_9b01075
crossref_primary_10_1016_j_bbabio_2015_10_001
crossref_primary_10_1021_jacs_8b11198
crossref_primary_10_1021_jacs_7b11660
crossref_primary_10_1002_anie_202209122
crossref_primary_10_1002_chem_201604612
crossref_primary_10_1002_chem_202003134
crossref_primary_10_1002_asia_202200991
crossref_primary_10_1021_jacs_3c08715
crossref_primary_10_1021_acs_inorgchem_2c01267
crossref_primary_10_1021_acs_jpclett_6b01178
crossref_primary_10_1039_C7SC00840F
crossref_primary_10_1021_acs_organomet_7b00641
crossref_primary_10_1002_anie_201607426
crossref_primary_10_1039_C4DT01035C
crossref_primary_10_1002_ange_201905299
crossref_primary_10_1021_acs_chemrev_0c00042
crossref_primary_10_1038_s41557_021_00852_6
crossref_primary_10_1021_jacs_1c05389
crossref_primary_10_1039_C6TA09275F
crossref_primary_10_1039_C5SC00545K
crossref_primary_10_1021_acs_inorgchem_3c00043
crossref_primary_10_1021_jacs_7b06634
crossref_primary_10_1007_s10562_021_03750_1
crossref_primary_10_1073_pnas_1605512113
crossref_primary_10_1021_ic5015972
crossref_primary_10_1002_tcr_201600025
crossref_primary_10_1021_acs_inorgchem_0c00550
crossref_primary_10_1038_ncomms4737
crossref_primary_10_1021_om500393n
crossref_primary_10_1021_acs_organomet_9b00263
crossref_primary_10_1021_acs_organomet_7b00763
crossref_primary_10_1021_acs_chemrev_0c00958
crossref_primary_10_1021_acs_organomet_7b00526
crossref_primary_10_1039_C5TA06540B
crossref_primary_10_1039_C9TA02947H
crossref_primary_10_1080_00958972_2018_1515429
crossref_primary_10_1021_acs_chemrev_9b00705
crossref_primary_10_1016_j_jorganchem_2013_11_024
crossref_primary_10_1038_s41570_017_0026
crossref_primary_10_1021_jacs_4c12421
crossref_primary_10_1002_anie_202218606
crossref_primary_10_1016_j_inoche_2020_108286
crossref_primary_10_1021_jacs_9b04293
crossref_primary_10_1016_j_catcom_2014_09_034
crossref_primary_10_1002_chem_201803451
crossref_primary_10_1246_bcsj_20170197
crossref_primary_10_7566_JPSJ_89_051014
crossref_primary_10_1038_s41586_024_07694_5
crossref_primary_10_1021_acs_inorgchem_7b02546
crossref_primary_10_1039_D3TA05857C
crossref_primary_10_1002_ange_201608262
crossref_primary_10_1021_acs_inorgchem_1c03152
crossref_primary_10_1149_1945_7111_acd02d
crossref_primary_10_1021_acsomega_4c03076
crossref_primary_10_1016_j_jssc_2023_124079
crossref_primary_10_1063_5_0077183
crossref_primary_10_1039_D1NJ01290H
crossref_primary_10_1039_C6DT01857B
crossref_primary_10_1002_anie_202106025
crossref_primary_10_1002_ange_201800203
crossref_primary_10_1016_j_jorganchem_2018_08_015
crossref_primary_10_1021_acscatal_0c02680
crossref_primary_10_14233_ajchem_2022_23693
crossref_primary_10_1021_ja512491v
crossref_primary_10_1002_aenm_202300722
crossref_primary_10_1038_nchem_2595
crossref_primary_10_1134_S0022476616010066
crossref_primary_10_1002_anie_201802576
crossref_primary_10_1021_acscatal_6b01940
crossref_primary_10_1002_ejic_201600135
crossref_primary_10_1021_acscatal_3c02068
crossref_primary_10_1039_D0CC03816D
crossref_primary_10_1039_C4CC07262F
crossref_primary_10_1021_acsomega_2c02138
crossref_primary_10_1021_ja502759d
crossref_primary_10_1093_nsr_nwac144
crossref_primary_10_1002_anie_201903969
crossref_primary_10_1021_jacs_0c06118
crossref_primary_10_1038_nchem_2840
crossref_primary_10_1021_jacs_0c02021
crossref_primary_10_1002_ange_202015183
crossref_primary_10_1002_chem_201504660
crossref_primary_10_1021_acs_nanolett_5b00290
crossref_primary_10_1002_chem_201702925
crossref_primary_10_1002_chem_201900599
crossref_primary_10_1039_c3cc46946h
crossref_primary_10_1039_D3QI01911J
crossref_primary_10_1016_j_checat_2021_08_006
crossref_primary_10_1002_ejic_201700784
crossref_primary_10_1002_anie_201800203
crossref_primary_10_1038_s41467_018_05758_5
crossref_primary_10_1007_s13361_019_02226_2
crossref_primary_10_1021_jacs_8b03755
crossref_primary_10_1002_anie_202205805
crossref_primary_10_1021_jacs_0c02939
crossref_primary_10_1002_cphc_202200627
crossref_primary_10_1021_acscatal_7b01624
crossref_primary_10_1021_cr500208k
crossref_primary_10_1002_chem_202402390
crossref_primary_10_1021_acs_organomet_7b00443
crossref_primary_10_1038_s41557_018_0195_4
crossref_primary_10_2320_materia_60_169
crossref_primary_10_1021_acs_inorgchem_5b00881
crossref_primary_10_1021_acs_inorgchem_9b03733
crossref_primary_10_1021_acs_organomet_2c00609
crossref_primary_10_1021_jacs_0c08785
crossref_primary_10_1039_C5DT02836A
crossref_primary_10_1016_j_jallcom_2018_01_362
crossref_primary_10_1039_C9GC01010F
crossref_primary_10_1002_cphc_201700665
crossref_primary_10_1021_acs_organomet_6b00018
crossref_primary_10_1016_j_chempr_2022_03_005
crossref_primary_10_1016_j_poly_2023_116548
crossref_primary_10_1021_jacs_5b02579
crossref_primary_10_1039_C4CC09563D
crossref_primary_10_1039_D2CP02248F
crossref_primary_10_1038_nature13624
crossref_primary_10_1002_hlca_202100197
crossref_primary_10_1021_jacs_4c18416
crossref_primary_10_1093_bulcsj_uoae041
crossref_primary_10_1002_anie_202305462
crossref_primary_10_1016_j_apcatb_2016_07_025
crossref_primary_10_1021_acsomega_3c03456
crossref_primary_10_1021_acs_organomet_7b00231
crossref_primary_10_1021_jacs_6b13323
crossref_primary_10_1002_cphc_202300961
crossref_primary_10_1021_acs_organomet_4c00488
crossref_primary_10_1002_ange_202205805
crossref_primary_10_1002_cphc_202300723
crossref_primary_10_1002_solr_202000487
crossref_primary_10_1039_D4CC03866E
crossref_primary_10_1021_acs_inorgchem_0c01754
crossref_primary_10_1038_s41467_017_01607_z
crossref_primary_10_1039_D4TA04256E
crossref_primary_10_1021_jacs_6b02433
crossref_primary_10_1021_ja5044243
crossref_primary_10_1021_jacs_9b03168
crossref_primary_10_1021_jacs_4c13439
crossref_primary_10_1039_C7GC03007J
crossref_primary_10_1039_D2CC06681E
crossref_primary_10_1039_C8DT00998H
crossref_primary_10_1002_anie_201902195
crossref_primary_10_1002_ange_202305462
crossref_primary_10_1021_acs_organomet_7b00581
crossref_primary_10_1016_j_checat_2021_08_014
crossref_primary_10_3390_ijms23136976
crossref_primary_10_1039_C5OB01738F
crossref_primary_10_1021_acs_accounts_1c00076
crossref_primary_10_1002_ange_201307097
crossref_primary_10_1021_acs_jpca_9b05890
crossref_primary_10_1021_acs_orglett_8b00200
crossref_primary_10_1002_ange_201903969
crossref_primary_10_1002_ejic_201901295
crossref_primary_10_1039_C6SC03422E
crossref_primary_10_1021_jacs_0c10403
crossref_primary_10_1021_jacs_5b04853
crossref_primary_10_1039_D0CC03274C
crossref_primary_10_1126_science_1240365
crossref_primary_10_1002_ejic_201901290
crossref_primary_10_1021_acs_inorgchem_2c02881
crossref_primary_10_1002_anie_201307097
crossref_primary_10_1021_jacs_3c01497
crossref_primary_10_1021_acs_est_2c07968
crossref_primary_10_5059_yukigoseikyokaishi_76_346
crossref_primary_10_1016_j_apcatb_2017_10_028
crossref_primary_10_1002_ange_201902195
crossref_primary_10_1039_D2CS00582D
crossref_primary_10_1002_nadc_201490084
crossref_primary_10_1016_j_xcrp_2022_100779
crossref_primary_10_1002_chem_201700152
crossref_primary_10_1039_C7CC07726B
crossref_primary_10_1002_ange_202106025
crossref_primary_10_1002_zaac_201400117
crossref_primary_10_1021_acs_jpclett_0c00302
crossref_primary_10_1021_acs_inorgchem_0c02586
crossref_primary_10_1002_anie_201916171
crossref_primary_10_1021_jacs_6b03545
crossref_primary_10_1039_D2CP03346A
crossref_primary_10_1002_chem_201402824
crossref_primary_10_1039_D2SC02530B
crossref_primary_10_1002_ange_201802576
crossref_primary_10_3389_fchem_2022_1051496
crossref_primary_10_1021_om501171w
crossref_primary_10_1016_j_jechem_2022_04_011
crossref_primary_10_1021_acs_jpcb_5b05385
crossref_primary_10_1149_1945_7111_ab6ee9
crossref_primary_10_1021_acs_chemrev_9b00638
crossref_primary_10_1021_acs_organomet_7b00487
crossref_primary_10_1002_ejic_202300254
crossref_primary_10_1002_ange_202405494
crossref_primary_10_1007_s11426_023_1724_4
crossref_primary_10_1002_chem_202002200
crossref_primary_10_1002_anie_202015183
crossref_primary_10_1039_C4RA14692A
crossref_primary_10_1039_C9CC09354K
crossref_primary_10_1021_jacs_7b08891
crossref_primary_10_1021_acs_organomet_1c00094
crossref_primary_10_1021_ja410925g
crossref_primary_10_1038_s41467_018_04213_9
crossref_primary_10_1039_D3EY00301A
crossref_primary_10_1016_j_comptc_2016_09_022
crossref_primary_10_1016_j_mtcomm_2024_109431
crossref_primary_10_1021_jacs_2c01851
crossref_primary_10_1021_acs_inorgchem_9b01805
crossref_primary_10_1002_cphc_201900279
crossref_primary_10_1038_s41467_018_05630_6
crossref_primary_10_1021_jacs_6b09789
crossref_primary_10_1016_j_colsurfa_2021_126744
crossref_primary_10_1021_acs_organomet_5b00968
crossref_primary_10_1021_jacs_6b04778
crossref_primary_10_1021_jacs_3c00626
crossref_primary_10_1002_anie_201608262
crossref_primary_10_1007_s12209_020_00243_x
crossref_primary_10_1016_j_jcat_2023_04_020
crossref_primary_10_1021_acscatal_0c02606
crossref_primary_10_1002_zaac_201400337
crossref_primary_10_1039_D0CS00229A
crossref_primary_10_1016_j_chempr_2019_07_021
crossref_primary_10_1038_ncomms10902
crossref_primary_10_1073_pnas_1913664116
crossref_primary_10_1021_jacs_3c07254
crossref_primary_10_1039_D0NJ04743K
crossref_primary_10_1039_D3DT03984F
crossref_primary_10_1002_adts_201900205
crossref_primary_10_1021_acs_chemrev_0c01071
crossref_primary_10_1016_j_greenca_2024_08_002
crossref_primary_10_1021_jacs_4c02905
crossref_primary_10_3390_catal14110816
crossref_primary_10_1021_acs_inorgchem_4c02272
crossref_primary_10_2208_jscejer_73_III_475
crossref_primary_10_1002_ejic_201402706
crossref_primary_10_1021_acs_inorgchem_4c02391
crossref_primary_10_1002_ange_202209122
crossref_primary_10_1002_chem_201404794
crossref_primary_10_1021_acs_jpclett_1c01633
crossref_primary_10_1016_j_chempr_2021_08_021
crossref_primary_10_1002_aenm_201800124
crossref_primary_10_1002_ejic_201901130
crossref_primary_10_1039_D1MA00814E
crossref_primary_10_1021_acs_inorgchem_7b01607
crossref_primary_10_5059_yukigoseikyokaishi_72_529
crossref_primary_10_1002_chem_201900083
crossref_primary_10_1002_asia_202201236
crossref_primary_10_1021_acs_organomet_9b00637
crossref_primary_10_1002_anie_202204544
crossref_primary_10_1002_anie_202405494
crossref_primary_10_1039_D4DT01786B
crossref_primary_10_1021_jacs_0c05788
crossref_primary_10_1038_ncomms11335
crossref_primary_10_1038_s41929_021_00698_8
crossref_primary_10_1039_C7CP01694H
crossref_primary_10_1039_C7DT01063J
crossref_primary_10_1039_D3DT04241C
crossref_primary_10_1007_s12274_020_2863_0
crossref_primary_10_1021_acs_jpcc_1c09529
crossref_primary_10_1021_om500086u
crossref_primary_10_1039_D3SC05447K
crossref_primary_10_1021_acs_macromol_6b00083
crossref_primary_10_1021_jacs_3c05525
crossref_primary_10_1002_chem_202000104
crossref_primary_10_1039_c3nj00686g
crossref_primary_10_1016_j_ccr_2022_214766
crossref_primary_10_1021_jacs_1c10018
crossref_primary_10_1002_ange_202012198
crossref_primary_10_1002_ange_201916171
crossref_primary_10_1002_ange_201607426
crossref_primary_10_1021_om400920x
crossref_primary_10_1002_ange_202218606
crossref_primary_10_1021_jacs_8b13341
crossref_primary_10_1002_ange_201701504
crossref_primary_10_1002_anie_202114242
crossref_primary_10_1002_celc_201700557
crossref_primary_10_1021_acs_organomet_3c00077
crossref_primary_10_1016_j_poly_2015_10_005
crossref_primary_10_1002_ijch_201700062
crossref_primary_10_1002_adma_202408434
crossref_primary_10_1016_j_cej_2024_150356
crossref_primary_10_1039_D2DT03291K
crossref_primary_10_5059_yukigoseikyokaishi_78_575
crossref_primary_10_1002_asia_202100394
crossref_primary_10_1002_anie_201905299
crossref_primary_10_1016_j_ijhydene_2019_12_190
crossref_primary_10_1021_jacs_1c08609
crossref_primary_10_1016_j_ccr_2017_08_009
crossref_primary_10_1021_acs_accounts_5b00219
crossref_primary_10_1002_anie_201604812
crossref_primary_10_1021_jacs_9b09540
crossref_primary_10_1002_ange_202404601
crossref_primary_10_1039_D4SC01136H
crossref_primary_10_1039_C8SC02380H
crossref_primary_10_1039_D0CP06208A
crossref_primary_10_1039_D1DT03852D
crossref_primary_10_6023_A22100425
crossref_primary_10_1002_ange_202204544
crossref_primary_10_1021_acs_inorgchem_4c01428
crossref_primary_10_1002_ange_202114242
crossref_primary_10_1021_jacs_1c09489
crossref_primary_10_1021_jacs_6b12861
crossref_primary_10_1002_chem_201703153
crossref_primary_10_1021_acs_jpca_1c03106
crossref_primary_10_1002_asia_201900010
crossref_primary_10_1021_jacs_7b01965
crossref_primary_10_1016_j_enchem_2019_100011
crossref_primary_10_1039_C7MH00557A
crossref_primary_10_1002_anie_201701504
crossref_primary_10_1021_acs_organomet_5b00779
crossref_primary_10_1002_ange_201604812
crossref_primary_10_1021_acs_organomet_2c00668
crossref_primary_10_1002_zaac_201400126
crossref_primary_10_1039_C6CC06752B
crossref_primary_10_1039_D2DT03320H
crossref_primary_10_1021_acs_inorgchem_0c03520
crossref_primary_10_1002_anie_202404601
crossref_primary_10_1021_acs_organomet_5b00771
crossref_primary_10_1039_D0DT01341B
crossref_primary_10_1039_D4DT00563E
crossref_primary_10_1016_j_jorganchem_2015_10_009
crossref_primary_10_1021_acs_jpclett_2c00850
crossref_primary_10_1073_pnas_1814610115
crossref_primary_10_1002_zaac_201800181
Cites_doi 10.1126/science.1106435
10.1126/science.275.5305.1445
10.1021/om034147l
10.1126/science.268.5212.861
10.1002/anie.200800480
10.1002/anie.200301553
10.1007/BF00528565
10.1007/BF01112983
10.1016/0009-2614(93)89068-S
10.1073/pnas.0603978103
10.1021/cr60316a001
10.1126/science.1214025
10.1126/science.1085326
10.1002/anie.200903648
10.1038/nchem.906
10.1002/chem.201002998
10.1038/nchem.595
10.1080/00268979300103121
10.1126/science.1143078
10.1021/cr950055x
10.1021/om400012a
10.1021/cr020610c
10.1016/j.jorganchem.2004.05.053
10.1016/0010-8545(95)01139-G
10.1016/S0022-328X(03)00559-X
10.1021/cr950057h
10.1002/ejic.200700085
10.1021/ja2042595
10.1126/science.1211906
10.1021/cr00036a008
10.1021/om300156z
10.1002/anie.200703336
10.1002/anie.200705246
10.1007/BF01114537
10.1021/cr9500545
10.1021/ja9943288
10.1002/anie.198907541
10.1126/science.1206445
10.1038/nature02274
10.1021/ja046047s
10.1039/b922853e
10.1021/ja982377z
ContentType Journal Article
Copyright Copyright © 2013 American Association for the Advancement of Science
2014 INIST-CNRS
Copyright © 2013, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2013 American Association for the Advancement of Science
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013, American Association for the Advancement of Science
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1126/science.1238663
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
MEDLINE
AGRICOLA
MEDLINE - Academic

Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Chemistry
EISSN 1095-9203
EndPage 1552
ExternalDocumentID 3007230051
23812710
27784764
10_1126_science_1238663
41988641
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
4.4
4R4
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~KM
~ZZ
AAYXX
AGFXO
ALIPV
CITATION
.GJ
.GO
0-V
186
3EH
41~
42X
692
79B
7X7
7XC
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AADHG
AAFWJ
AAKAS
ABDPE
ABJCF
ABUWG
ACQAM
ACTDY
ADBBV
ADZCM
AEUYN
AFKRA
AFQQW
AJUXI
ARALO
ARAPS
ATCPS
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C2-
CCPQU
CJNVE
D0S
D1I
D1J
D1K
DWQXO
D~A
EAU
EGS
EWM
EX3
FYUFA
GICCO
GNUQQ
GUQSH
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HVGLF
IAG
IBG
IEP
IER
IPC
IQODW
ISN
ITC
J5H
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
LPU
M0K
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
OK1
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQEDU
PQGLB
PROAC
PSQYO
PTHSS
PV9
PYCSY
QS-
R05
RNS
RZL
SJFOW
SKT
UBY
UHU
UKHRP
VOH
WOQ
WOW
X7L
XIH
XKJ
XOL
YJ6
YXB
ZCG
ZGI
ZVL
ZVM
ZXP
ZY4
~G0
~H1
CGR
CUY
CVF
ECM
EIF
GX1
NPM
UIG
YCJ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c546t-dfe7828b010b6e26c4abe499129365b164ee448a68bd66c3a8284d302a01cae93
ISSN 0036-8075
1095-9203
IngestDate Fri Jul 11 05:20:24 EDT 2025
Tue Aug 05 09:35:01 EDT 2025
Fri Jul 11 03:17:49 EDT 2025
Fri Jul 25 19:11:35 EDT 2025
Thu Apr 03 07:03:19 EDT 2025
Mon Jul 21 09:16:54 EDT 2025
Tue Jul 01 00:47:16 EDT 2025
Thu Apr 24 22:51:38 EDT 2025
Sun Aug 24 12:10:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6140
Keywords Titanium Complexes
Transition element complexes
Trinuclear complex
Organometallic compound
Enzymatic catalysis
Activation
Nitrogen
Chemical reactivity
Hydrogenation
Chemical reaction kinetics
Hydrido complex
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c546t-dfe7828b010b6e26c4abe499129365b164ee448a68bd66c3a8284d302a01cae93
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 23812710
PQID 1372114339
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_2000374217
proquest_miscellaneous_1808099526
proquest_miscellaneous_1373441239
proquest_journals_1372114339
pubmed_primary_23812710
pascalfrancis_primary_27784764
crossref_citationtrail_10_1126_science_1238663
crossref_primary_10_1126_science_1238663
jstor_primary_41988641
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-28
PublicationDateYYYYMMDD 2013-06-28
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-28
  day: 28
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2013
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_51_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
23812704 - Science. 2013 Jun 28;340(6140):1530-1
References_xml – ident: e_1_3_2_10_2
  doi: 10.1126/science.1106435
– ident: e_1_3_2_16_2
  doi: 10.1126/science.275.5305.1445
– ident: e_1_3_2_33_2
  doi: 10.1021/om034147l
– ident: e_1_3_2_23_2
  doi: 10.1126/science.268.5212.861
– ident: e_1_3_2_9_2
  doi: 10.1002/anie.200800480
– ident: e_1_3_2_51_2
– ident: e_1_3_2_11_2
  doi: 10.1002/anie.200301553
– ident: e_1_3_2_43_2
– ident: e_1_3_2_46_2
  doi: 10.1007/BF00528565
– ident: e_1_3_2_47_2
  doi: 10.1007/BF01112983
– ident: e_1_3_2_50_2
  doi: 10.1016/0009-2614(93)89068-S
– ident: e_1_3_2_5_2
  doi: 10.1073/pnas.0603978103
– ident: e_1_3_2_12_2
  doi: 10.1021/cr60316a001
– ident: e_1_3_2_8_2
  doi: 10.1126/science.1214025
– ident: e_1_3_2_24_2
  doi: 10.1126/science.1085326
– ident: e_1_3_2_42_2
– ident: e_1_3_2_21_2
  doi: 10.1002/anie.200903648
– ident: e_1_3_2_25_2
  doi: 10.1038/nchem.906
– ident: e_1_3_2_30_2
  doi: 10.1002/chem.201002998
– ident: e_1_3_2_28_2
  doi: 10.1038/nchem.595
– ident: e_1_3_2_49_2
  doi: 10.1080/00268979300103121
– ident: e_1_3_2_39_2
  doi: 10.1126/science.1143078
– ident: e_1_3_2_2_2
  doi: 10.1021/cr950055x
– ident: e_1_3_2_31_2
  doi: 10.1021/om400012a
– ident: e_1_3_2_15_2
  doi: 10.1021/cr020610c
– ident: e_1_3_2_45_2
– ident: e_1_3_2_19_2
  doi: 10.1016/j.jorganchem.2004.05.053
– ident: e_1_3_2_14_2
  doi: 10.1016/0010-8545(95)01139-G
– ident: e_1_3_2_41_2
  doi: 10.1016/S0022-328X(03)00559-X
– ident: e_1_3_2_3_2
  doi: 10.1021/cr950057h
– ident: e_1_3_2_29_2
  doi: 10.1002/ejic.200700085
– ident: e_1_3_2_37_2
  doi: 10.1021/ja2042595
– ident: e_1_3_2_22_2
  doi: 10.1126/science.1211906
– ident: e_1_3_2_13_2
  doi: 10.1021/cr00036a008
– ident: e_1_3_2_35_2
  doi: 10.1021/om300156z
– ident: e_1_3_2_27_2
  doi: 10.1002/anie.200703336
– ident: e_1_3_2_44_2
– ident: e_1_3_2_6_2
  doi: 10.1002/anie.200705246
– ident: e_1_3_2_48_2
  doi: 10.1007/BF01114537
– ident: e_1_3_2_4_2
  doi: 10.1021/cr9500545
– ident: e_1_3_2_17_2
  doi: 10.1021/ja9943288
– ident: e_1_3_2_34_2
  doi: 10.1002/anie.198907541
– ident: e_1_3_2_7_2
  doi: 10.1126/science.1206445
– ident: e_1_3_2_18_2
  doi: 10.1038/nature02274
– ident: e_1_3_2_20_2
  doi: 10.1021/ja046047s
– ident: e_1_3_2_26_2
  doi: 10.1039/b922853e
– ident: e_1_3_2_36_2
  doi: 10.1021/ja982377z
– reference: 23812704 - Science. 2013 Jun 28;340(6140):1530-1
SSID ssj0009593
Score 2.564117
Snippet Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N=N triple bond and...
A century after its discovery, the Haber Bosch process is still used to produce ammonia from nitrogen for fertilizer. Nonetheless, the process requires high...
Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N≡N triple bond and...
Titanium CleaverA century after its discovery, the Haber Bosch process is still used to produce ammonia from nitrogen for fertilizer. Nonetheless, the process...
Titanium Cleaver A century after its discovery, the Haber Bosch process is still used to produce ammonia from nitrogen for fertilizer. Nonetheless, the process...
SourceID proquest
pubmed
pascalfrancis
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1549
SubjectTerms Alkali metals
Aluminum
Ambient temperature
Ammonia
Atoms
Catalysis
Catalysts
Chemical bonding
Chemical reactions
Chemistry
chemists
Climate
Crystallography
Crystallography, X-Ray
Enzymes
Exact sciences and technology
General and physical chemistry
High temperature
Hydrides
Hydrogen bonds
Hydrogenation
Hydrogenolysis
Ligands
Magnetic Resonance Spectroscopy
Molecular chemistry
Molecules
Nitrogen
Nitrogen - chemistry
nitrogen fertilizers
nitrogenase
NMR
Nuclear magnetic resonance
Protons
Reactivity
Reduction
Searching
slicing
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Titanium
Titanium - chemistry
Veins
Title Dinitrogen Cleavage and Hydrogenation by a Trinuclear Titanium Polyhydride Complex
URI https://www.jstor.org/stable/41988641
https://www.ncbi.nlm.nih.gov/pubmed/23812710
https://www.proquest.com/docview/1372114339
https://www.proquest.com/docview/1373441239
https://www.proquest.com/docview/1808099526
https://www.proquest.com/docview/2000374217
Volume 340
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swELayVpP2Mq3durF1lSftoVNFFAy48Jj-iKIp66SNSHlDBoyCmkFFQjf21--MDThSM3V7QZE5QpTv7rg7zt8h9JH7iSOcnhn7KSQo4IVNL3Vd008ZE_xRMW2GwXy5odO583nhLgaDO61rqdpEw_j3g_tK_gdVWANcxS7Zf0C2-1JYgM-ALxwBYTg-CuOrDAyyLOD82eWKs3vRfyMK4dM6aVYluBBgsrOgzHJBXcxKgAcCwkw0wBerelmL-eq88Qsr_kuPVVuzhxi0e6-jodk1KI5lG0HbVaAu00oM35fZjyZGDdgty4sy63WpKb4uWfGTd4uzqpDF-r4_QNW0FxkrllWmFyqaoRHtxm_lfBX3se58bUnWpLQMYoWR5k0FfZz2ZBZscQ97fW1OJR_Cs9ijymtu8WvffA0n89ksDK4XwRO0TyCxAM-4P764upjsJGpWdFDaRqv2BluRjGxmFZ21bA3GlcqpKLvTliZ8CV6g5yrvwGOpRAdowPND9FROIq0P0YFCbY1PFRH5p5foW69fuNUvDPqFt_QLRzVmuNcv3OoX1vQLK_16heaT6-ByaqoZHGbsOnRjJimHGNKLIG2PKCc0dljEIUsWYSJ1I0i2OYcMn1EvSiiNbQbCTmKPCBtZMeO-fYT28iLnbxB2o5QDwBbhEFN68EWpnxBqW5wz10ntyEDD9v8MY0VQL-akrMImUSU0VACECgADnXYX3Elult2iRw1AnZxj-Z5HHctAJ1uIdQKgHeDDqGOg4xbCUJn-OrRsUThxbNs30IfuNDhm8baN5byoGhkbcg3yVxnB6ur7LqG7ZYjkiCLWuYFeSxXqfyTE2wRyhLePuMM79Ky3ymO0tykr_h4C6k10omzgD-Q0zUg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dinitrogen+Cleavage+and+Hydrogenation+by+a+Trinuclear+Titanium+Polyhydride+Complex&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Shima%2C+Takanori&rft.au=Hu%2C+Shaowei&rft.au=Luo%2C+Gen&rft.au=Kang%2C+Xiaohui&rft.date=2013-06-28&rft.issn=0036-8075&rft.volume=340&rft.issue=6140&rft.spage=1549&rft.epage=1552&rft_id=info:doi/10.1126%2Fscience.1238663&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon