Dinitrogen Cleavage and Hydrogenation by a Trinuclear Titanium Polyhydride Complex
Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N=N triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the re...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 340; no. 6140; pp. 1549 - 1552 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Association for the Advancement of Science
28.06.2013
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N=N triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogénation at ambient temperature and pressure. By ¹H and ¹⁵N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N₂) reduction proceeds sequentially through scission of a N₂ molecule bonded to three Ti atoms in a μ-η¹:η²:η²-end-on-side-on fashion to give a μ₂-N/μ₃-N dinitrido species, followed by intramolecular hydrogen migration from Ti to the μ₂-N nitrido unit. |
---|---|
AbstractList | A century after its discovery, the Haber Bosch process is still used to produce ammonia from nitrogen for fertilizer. Nonetheless, the process requires high temperature and pressure, and chemists continue to look for synthetic analogs to microbial nitrogenase enzymes, which have managed to slice through the N2 triple bond under ambient conditions for millennia. Most efforts in this vein have relied on a boost from the reducing power of alkali metals. Shima et al. (p. 1549; see the Perspective by Fryzuk) instead explored the reactivity of a titanium hydride cluster, which cleanly slices through N2 at room temperature and incorporates the separated N atoms into its framework. Though ammonia was not produced, the system offers hope in the search for mild nitrogen reduction catalysts. [PUBLICATION ABSTRACT] Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N≡N triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogenation at ambient temperature and pressure. By 1H and 15N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N2) reduction proceeds sequentially through scission of a N2 molecule bonded to three Ti atoms in a μ-η1:η2:η2-end-on-side-on fashion to give a μ2-N/μ3-N dinitrido species, followed by intramolecular hydrogen migration from Ti to the μ2-N nitrido unit. [PUBLICATION ABSTRACT] Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N≡N triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogenation at ambient temperature and pressure. By (1)H and (15)N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N2) reduction proceeds sequentially through scission of a N2 molecule bonded to three Ti atoms in a μ-η(1):η(2):η(2)-end-on-side-on fashion to give a μ2-N/μ3-N dinitrido species, followed by intramolecular hydrogen migration from Ti to the μ2-N nitrido unit. Titanium Cleaver A century after its discovery, the Haber Bosch process is still used to produce ammonia from nitrogen for fertilizer. Nonetheless, the process requires high temperature and pressure, and chemists continue to look for synthetic analogs to microbial nitrogenase enzymes, which have managed to slice through the N2 triple bond under ambient conditions for millennia. Most efforts in this vein have relied on a boost from the reducing power of alkali metals. Shima et al. (p. 1549; see the Perspective by Fryzuk) instead explored the reactivity of a titanium hydride cluster, which cleanly slices through N ₂ at room temperature and incorporates the separated N atoms into its framework. Though ammonia was not produced, the system offers hope in the search for mild nitrogen reduction catalysts. Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N≡N triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogenation at ambient temperature and pressure. By (1)H and (15)N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N2) reduction proceeds sequentially through scission of a N2 molecule bonded to three Ti atoms in a μ-η(1):η(2):η(2)-end-on-side-on fashion to give a μ2-N/μ3-N dinitrido species, followed by intramolecular hydrogen migration from Ti to the μ2-N nitrido unit.Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N≡N triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogenation at ambient temperature and pressure. By (1)H and (15)N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N2) reduction proceeds sequentially through scission of a N2 molecule bonded to three Ti atoms in a μ-η(1):η(2):η(2)-end-on-side-on fashion to give a μ2-N/μ3-N dinitrido species, followed by intramolecular hydrogen migration from Ti to the μ2-N nitrido unit. Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N=N triple bond and forming an N-H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogénation at ambient temperature and pressure. By ¹H and ¹⁵N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N₂) reduction proceeds sequentially through scission of a N₂ molecule bonded to three Ti atoms in a μ-η¹:η²:η²-end-on-side-on fashion to give a μ₂-N/μ₃-N dinitrido species, followed by intramolecular hydrogen migration from Ti to the μ₂-N nitrido unit. Titanium CleaverA century after its discovery, the Haber Bosch process is still used to produce ammonia from nitrogen for fertilizer. Nonetheless, the process requires high temperature and pressure, and chemists continue to look for synthetic analogs to microbial nitrogenase enzymes, which have managed to slice through the N2 triple bond under ambient conditions for millennia. Most efforts in this vein have relied on a boost from the reducing power of alkali metals. Shima et al. (p. 1549; see the Perspective by Fryzuk) instead explored the reactivity of a titanium hydride cluster, which cleanly slices through N2 at room temperature and incorporates the separated N atoms into its framework. Though ammonia was not produced, the system offers hope in the search for mild nitrogen reduction catalysts. A century after its discovery, the Haber Bosch process is still used to produce ammonia from nitrogen for fertilizer. Nonetheless, the process requires high temperature and pressure, and chemists continue to look for synthetic analogs to microbial nitrogenase enzymes, which have managed to slice through the N2 triple bond under ambient conditions for millennia. Most efforts in this vein have relied on a boost from the reducing power of alkali metals. Shima et al. (p. 1549 ; see the Perspective by Fryzuk ) instead explored the reactivity of a titanium hydride cluster, which cleanly slices through N 2 at room temperature and incorporates the separated N atoms into its framework. Though ammonia was not produced, the system offers hope in the search for mild nitrogen reduction catalysts. The collective reactivity of three hydride-bridged titanium centers cleaves dinitrogen under mild conditions. [Also see Perspective by Fryzuk ] Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N≡N triple bond and forming an N–H bond. This has spurred investigations of the reactivity of molecular multimetallic hydrides with dinitrogen. We report here the reaction of a trinuclear titanium polyhydride complex with dinitrogen, which induces dinitrogen cleavage and partial hydrogenation at ambient temperature and pressure. By 1 H and 15 N nuclear magnetic resonance, x-ray crystallographic, and computational studies of some key reaction steps and products, we have determined that the dinitrogen (N 2 ) reduction proceeds sequentially through scission of a N 2 molecule bonded to three Ti atoms in a μ-η 1 :η 2 :η 2 -end-on-side-on fashion to give a μ 2 -N/μ 3 -N dinitrido species, followed by intramolecular hydrogen migration from Ti to the μ 2 -N nitrido unit. |
Author | Hou, Zhaomin Kang, Xiaohui Hu, Shaowei Luo, Yi Shima, Takanori Luo, Gen |
Author_xml | – sequence: 1 givenname: Takanori surname: Shima fullname: Shima, Takanori – sequence: 2 givenname: Shaowei surname: Hu fullname: Hu, Shaowei – sequence: 3 givenname: Gen surname: Luo fullname: Luo, Gen – sequence: 4 givenname: Xiaohui surname: Kang fullname: Kang, Xiaohui – sequence: 5 givenname: Yi surname: Luo fullname: Luo, Yi – sequence: 6 givenname: Zhaomin surname: Hou fullname: Hou, Zhaomin |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27784764$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23812710$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ttrFDEUB-AgLXZbffZJGRDBl2lzm1wey3ppoVCR9TlkMmdrlplkTWbE_e_NdqcKhdKnQPL9Qk7OOUVHIQZA6A3B54RQcZGdh-DgnFCmhGAv0IJg3dSaYnaEFhgzUSssmxN0mvMG43Km2Ut0UjShkuAF-v7JBz-meAehWvZgf9s7qGzoqqtdd79rRx9D1e4qW62SD5MrKFUrP9rgp6H6Fvvdz0J9B9UyDtse_rxCx2vbZ3g9r2fox5fPq-VVfXP79Xp5eVO7houx7tYgFVUtJrgVQIXjtgWuNaGaiaYlggNwrqxQbSeEY7Zg3jFMLSbOgmZn6OPh3m2KvybIoxl8dtD3NkCcsqGlXiY5JfJZShRWWOuGiucpk4zz8t_7B7x_RDdxSqHUvFeUEM7u1btZTe0AndkmP9i0Mw89KODDDGx2tl8nG5zP_52UikvBi2sOzqWYc4K1caUL-_aMyfreEGz2M2HmmTDzTJTcxaPcw9VPJ94eEps8xvSPc6KVEpywv3egwYU |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1039_D3DT03454B crossref_primary_10_1021_acs_inorgchem_1c03120 crossref_primary_10_1002_ciuz_201490000 crossref_primary_10_3390_catal10050590 crossref_primary_10_1002_anie_202012198 crossref_primary_10_1039_C9CY01894H crossref_primary_10_1021_acscatal_9b01551 crossref_primary_10_1021_acs_inorgchem_9b01075 crossref_primary_10_1016_j_bbabio_2015_10_001 crossref_primary_10_1021_jacs_8b11198 crossref_primary_10_1021_jacs_7b11660 crossref_primary_10_1002_anie_202209122 crossref_primary_10_1002_chem_201604612 crossref_primary_10_1002_chem_202003134 crossref_primary_10_1002_asia_202200991 crossref_primary_10_1021_jacs_3c08715 crossref_primary_10_1021_acs_inorgchem_2c01267 crossref_primary_10_1021_acs_jpclett_6b01178 crossref_primary_10_1039_C7SC00840F crossref_primary_10_1021_acs_organomet_7b00641 crossref_primary_10_1002_anie_201607426 crossref_primary_10_1039_C4DT01035C crossref_primary_10_1002_ange_201905299 crossref_primary_10_1021_acs_chemrev_0c00042 crossref_primary_10_1038_s41557_021_00852_6 crossref_primary_10_1021_jacs_1c05389 crossref_primary_10_1039_C6TA09275F crossref_primary_10_1039_C5SC00545K crossref_primary_10_1021_acs_inorgchem_3c00043 crossref_primary_10_1021_jacs_7b06634 crossref_primary_10_1007_s10562_021_03750_1 crossref_primary_10_1073_pnas_1605512113 crossref_primary_10_1021_ic5015972 crossref_primary_10_1002_tcr_201600025 crossref_primary_10_1021_acs_inorgchem_0c00550 crossref_primary_10_1038_ncomms4737 crossref_primary_10_1021_om500393n crossref_primary_10_1021_acs_organomet_9b00263 crossref_primary_10_1021_acs_organomet_7b00763 crossref_primary_10_1021_acs_chemrev_0c00958 crossref_primary_10_1021_acs_organomet_7b00526 crossref_primary_10_1039_C5TA06540B crossref_primary_10_1039_C9TA02947H crossref_primary_10_1080_00958972_2018_1515429 crossref_primary_10_1021_acs_chemrev_9b00705 crossref_primary_10_1016_j_jorganchem_2013_11_024 crossref_primary_10_1038_s41570_017_0026 crossref_primary_10_1021_jacs_4c12421 crossref_primary_10_1002_anie_202218606 crossref_primary_10_1016_j_inoche_2020_108286 crossref_primary_10_1021_jacs_9b04293 crossref_primary_10_1016_j_catcom_2014_09_034 crossref_primary_10_1002_chem_201803451 crossref_primary_10_1246_bcsj_20170197 crossref_primary_10_7566_JPSJ_89_051014 crossref_primary_10_1038_s41586_024_07694_5 crossref_primary_10_1021_acs_inorgchem_7b02546 crossref_primary_10_1039_D3TA05857C crossref_primary_10_1002_ange_201608262 crossref_primary_10_1021_acs_inorgchem_1c03152 crossref_primary_10_1149_1945_7111_acd02d crossref_primary_10_1021_acsomega_4c03076 crossref_primary_10_1016_j_jssc_2023_124079 crossref_primary_10_1063_5_0077183 crossref_primary_10_1039_D1NJ01290H crossref_primary_10_1039_C6DT01857B crossref_primary_10_1002_anie_202106025 crossref_primary_10_1002_ange_201800203 crossref_primary_10_1016_j_jorganchem_2018_08_015 crossref_primary_10_1021_acscatal_0c02680 crossref_primary_10_14233_ajchem_2022_23693 crossref_primary_10_1021_ja512491v crossref_primary_10_1002_aenm_202300722 crossref_primary_10_1038_nchem_2595 crossref_primary_10_1134_S0022476616010066 crossref_primary_10_1002_anie_201802576 crossref_primary_10_1021_acscatal_6b01940 crossref_primary_10_1002_ejic_201600135 crossref_primary_10_1021_acscatal_3c02068 crossref_primary_10_1039_D0CC03816D crossref_primary_10_1039_C4CC07262F crossref_primary_10_1021_acsomega_2c02138 crossref_primary_10_1021_ja502759d crossref_primary_10_1093_nsr_nwac144 crossref_primary_10_1002_anie_201903969 crossref_primary_10_1021_jacs_0c06118 crossref_primary_10_1038_nchem_2840 crossref_primary_10_1021_jacs_0c02021 crossref_primary_10_1002_ange_202015183 crossref_primary_10_1002_chem_201504660 crossref_primary_10_1021_acs_nanolett_5b00290 crossref_primary_10_1002_chem_201702925 crossref_primary_10_1002_chem_201900599 crossref_primary_10_1039_c3cc46946h crossref_primary_10_1039_D3QI01911J crossref_primary_10_1016_j_checat_2021_08_006 crossref_primary_10_1002_ejic_201700784 crossref_primary_10_1002_anie_201800203 crossref_primary_10_1038_s41467_018_05758_5 crossref_primary_10_1007_s13361_019_02226_2 crossref_primary_10_1021_jacs_8b03755 crossref_primary_10_1002_anie_202205805 crossref_primary_10_1021_jacs_0c02939 crossref_primary_10_1002_cphc_202200627 crossref_primary_10_1021_acscatal_7b01624 crossref_primary_10_1021_cr500208k crossref_primary_10_1002_chem_202402390 crossref_primary_10_1021_acs_organomet_7b00443 crossref_primary_10_1038_s41557_018_0195_4 crossref_primary_10_2320_materia_60_169 crossref_primary_10_1021_acs_inorgchem_5b00881 crossref_primary_10_1021_acs_inorgchem_9b03733 crossref_primary_10_1021_acs_organomet_2c00609 crossref_primary_10_1021_jacs_0c08785 crossref_primary_10_1039_C5DT02836A crossref_primary_10_1016_j_jallcom_2018_01_362 crossref_primary_10_1039_C9GC01010F crossref_primary_10_1002_cphc_201700665 crossref_primary_10_1021_acs_organomet_6b00018 crossref_primary_10_1016_j_chempr_2022_03_005 crossref_primary_10_1016_j_poly_2023_116548 crossref_primary_10_1021_jacs_5b02579 crossref_primary_10_1039_C4CC09563D crossref_primary_10_1039_D2CP02248F crossref_primary_10_1038_nature13624 crossref_primary_10_1002_hlca_202100197 crossref_primary_10_1021_jacs_4c18416 crossref_primary_10_1093_bulcsj_uoae041 crossref_primary_10_1002_anie_202305462 crossref_primary_10_1016_j_apcatb_2016_07_025 crossref_primary_10_1021_acsomega_3c03456 crossref_primary_10_1021_acs_organomet_7b00231 crossref_primary_10_1021_jacs_6b13323 crossref_primary_10_1002_cphc_202300961 crossref_primary_10_1021_acs_organomet_4c00488 crossref_primary_10_1002_ange_202205805 crossref_primary_10_1002_cphc_202300723 crossref_primary_10_1002_solr_202000487 crossref_primary_10_1039_D4CC03866E crossref_primary_10_1021_acs_inorgchem_0c01754 crossref_primary_10_1038_s41467_017_01607_z crossref_primary_10_1039_D4TA04256E crossref_primary_10_1021_jacs_6b02433 crossref_primary_10_1021_ja5044243 crossref_primary_10_1021_jacs_9b03168 crossref_primary_10_1021_jacs_4c13439 crossref_primary_10_1039_C7GC03007J crossref_primary_10_1039_D2CC06681E crossref_primary_10_1039_C8DT00998H crossref_primary_10_1002_anie_201902195 crossref_primary_10_1002_ange_202305462 crossref_primary_10_1021_acs_organomet_7b00581 crossref_primary_10_1016_j_checat_2021_08_014 crossref_primary_10_3390_ijms23136976 crossref_primary_10_1039_C5OB01738F crossref_primary_10_1021_acs_accounts_1c00076 crossref_primary_10_1002_ange_201307097 crossref_primary_10_1021_acs_jpca_9b05890 crossref_primary_10_1021_acs_orglett_8b00200 crossref_primary_10_1002_ange_201903969 crossref_primary_10_1002_ejic_201901295 crossref_primary_10_1039_C6SC03422E crossref_primary_10_1021_jacs_0c10403 crossref_primary_10_1021_jacs_5b04853 crossref_primary_10_1039_D0CC03274C crossref_primary_10_1126_science_1240365 crossref_primary_10_1002_ejic_201901290 crossref_primary_10_1021_acs_inorgchem_2c02881 crossref_primary_10_1002_anie_201307097 crossref_primary_10_1021_jacs_3c01497 crossref_primary_10_1021_acs_est_2c07968 crossref_primary_10_5059_yukigoseikyokaishi_76_346 crossref_primary_10_1016_j_apcatb_2017_10_028 crossref_primary_10_1002_ange_201902195 crossref_primary_10_1039_D2CS00582D crossref_primary_10_1002_nadc_201490084 crossref_primary_10_1016_j_xcrp_2022_100779 crossref_primary_10_1002_chem_201700152 crossref_primary_10_1039_C7CC07726B crossref_primary_10_1002_ange_202106025 crossref_primary_10_1002_zaac_201400117 crossref_primary_10_1021_acs_jpclett_0c00302 crossref_primary_10_1021_acs_inorgchem_0c02586 crossref_primary_10_1002_anie_201916171 crossref_primary_10_1021_jacs_6b03545 crossref_primary_10_1039_D2CP03346A crossref_primary_10_1002_chem_201402824 crossref_primary_10_1039_D2SC02530B crossref_primary_10_1002_ange_201802576 crossref_primary_10_3389_fchem_2022_1051496 crossref_primary_10_1021_om501171w crossref_primary_10_1016_j_jechem_2022_04_011 crossref_primary_10_1021_acs_jpcb_5b05385 crossref_primary_10_1149_1945_7111_ab6ee9 crossref_primary_10_1021_acs_chemrev_9b00638 crossref_primary_10_1021_acs_organomet_7b00487 crossref_primary_10_1002_ejic_202300254 crossref_primary_10_1002_ange_202405494 crossref_primary_10_1007_s11426_023_1724_4 crossref_primary_10_1002_chem_202002200 crossref_primary_10_1002_anie_202015183 crossref_primary_10_1039_C4RA14692A crossref_primary_10_1039_C9CC09354K crossref_primary_10_1021_jacs_7b08891 crossref_primary_10_1021_acs_organomet_1c00094 crossref_primary_10_1021_ja410925g crossref_primary_10_1038_s41467_018_04213_9 crossref_primary_10_1039_D3EY00301A crossref_primary_10_1016_j_comptc_2016_09_022 crossref_primary_10_1016_j_mtcomm_2024_109431 crossref_primary_10_1021_jacs_2c01851 crossref_primary_10_1021_acs_inorgchem_9b01805 crossref_primary_10_1002_cphc_201900279 crossref_primary_10_1038_s41467_018_05630_6 crossref_primary_10_1021_jacs_6b09789 crossref_primary_10_1016_j_colsurfa_2021_126744 crossref_primary_10_1021_acs_organomet_5b00968 crossref_primary_10_1021_jacs_6b04778 crossref_primary_10_1021_jacs_3c00626 crossref_primary_10_1002_anie_201608262 crossref_primary_10_1007_s12209_020_00243_x crossref_primary_10_1016_j_jcat_2023_04_020 crossref_primary_10_1021_acscatal_0c02606 crossref_primary_10_1002_zaac_201400337 crossref_primary_10_1039_D0CS00229A crossref_primary_10_1016_j_chempr_2019_07_021 crossref_primary_10_1038_ncomms10902 crossref_primary_10_1073_pnas_1913664116 crossref_primary_10_1021_jacs_3c07254 crossref_primary_10_1039_D0NJ04743K crossref_primary_10_1039_D3DT03984F crossref_primary_10_1002_adts_201900205 crossref_primary_10_1021_acs_chemrev_0c01071 crossref_primary_10_1016_j_greenca_2024_08_002 crossref_primary_10_1021_jacs_4c02905 crossref_primary_10_3390_catal14110816 crossref_primary_10_1021_acs_inorgchem_4c02272 crossref_primary_10_2208_jscejer_73_III_475 crossref_primary_10_1002_ejic_201402706 crossref_primary_10_1021_acs_inorgchem_4c02391 crossref_primary_10_1002_ange_202209122 crossref_primary_10_1002_chem_201404794 crossref_primary_10_1021_acs_jpclett_1c01633 crossref_primary_10_1016_j_chempr_2021_08_021 crossref_primary_10_1002_aenm_201800124 crossref_primary_10_1002_ejic_201901130 crossref_primary_10_1039_D1MA00814E crossref_primary_10_1021_acs_inorgchem_7b01607 crossref_primary_10_5059_yukigoseikyokaishi_72_529 crossref_primary_10_1002_chem_201900083 crossref_primary_10_1002_asia_202201236 crossref_primary_10_1021_acs_organomet_9b00637 crossref_primary_10_1002_anie_202204544 crossref_primary_10_1002_anie_202405494 crossref_primary_10_1039_D4DT01786B crossref_primary_10_1021_jacs_0c05788 crossref_primary_10_1038_ncomms11335 crossref_primary_10_1038_s41929_021_00698_8 crossref_primary_10_1039_C7CP01694H crossref_primary_10_1039_C7DT01063J crossref_primary_10_1039_D3DT04241C crossref_primary_10_1007_s12274_020_2863_0 crossref_primary_10_1021_acs_jpcc_1c09529 crossref_primary_10_1021_om500086u crossref_primary_10_1039_D3SC05447K crossref_primary_10_1021_acs_macromol_6b00083 crossref_primary_10_1021_jacs_3c05525 crossref_primary_10_1002_chem_202000104 crossref_primary_10_1039_c3nj00686g crossref_primary_10_1016_j_ccr_2022_214766 crossref_primary_10_1021_jacs_1c10018 crossref_primary_10_1002_ange_202012198 crossref_primary_10_1002_ange_201916171 crossref_primary_10_1002_ange_201607426 crossref_primary_10_1021_om400920x crossref_primary_10_1002_ange_202218606 crossref_primary_10_1021_jacs_8b13341 crossref_primary_10_1002_ange_201701504 crossref_primary_10_1002_anie_202114242 crossref_primary_10_1002_celc_201700557 crossref_primary_10_1021_acs_organomet_3c00077 crossref_primary_10_1016_j_poly_2015_10_005 crossref_primary_10_1002_ijch_201700062 crossref_primary_10_1002_adma_202408434 crossref_primary_10_1016_j_cej_2024_150356 crossref_primary_10_1039_D2DT03291K crossref_primary_10_5059_yukigoseikyokaishi_78_575 crossref_primary_10_1002_asia_202100394 crossref_primary_10_1002_anie_201905299 crossref_primary_10_1016_j_ijhydene_2019_12_190 crossref_primary_10_1021_jacs_1c08609 crossref_primary_10_1016_j_ccr_2017_08_009 crossref_primary_10_1021_acs_accounts_5b00219 crossref_primary_10_1002_anie_201604812 crossref_primary_10_1021_jacs_9b09540 crossref_primary_10_1002_ange_202404601 crossref_primary_10_1039_D4SC01136H crossref_primary_10_1039_C8SC02380H crossref_primary_10_1039_D0CP06208A crossref_primary_10_1039_D1DT03852D crossref_primary_10_6023_A22100425 crossref_primary_10_1002_ange_202204544 crossref_primary_10_1021_acs_inorgchem_4c01428 crossref_primary_10_1002_ange_202114242 crossref_primary_10_1021_jacs_1c09489 crossref_primary_10_1021_jacs_6b12861 crossref_primary_10_1002_chem_201703153 crossref_primary_10_1021_acs_jpca_1c03106 crossref_primary_10_1002_asia_201900010 crossref_primary_10_1021_jacs_7b01965 crossref_primary_10_1016_j_enchem_2019_100011 crossref_primary_10_1039_C7MH00557A crossref_primary_10_1002_anie_201701504 crossref_primary_10_1021_acs_organomet_5b00779 crossref_primary_10_1002_ange_201604812 crossref_primary_10_1021_acs_organomet_2c00668 crossref_primary_10_1002_zaac_201400126 crossref_primary_10_1039_C6CC06752B crossref_primary_10_1039_D2DT03320H crossref_primary_10_1021_acs_inorgchem_0c03520 crossref_primary_10_1002_anie_202404601 crossref_primary_10_1021_acs_organomet_5b00771 crossref_primary_10_1039_D0DT01341B crossref_primary_10_1039_D4DT00563E crossref_primary_10_1016_j_jorganchem_2015_10_009 crossref_primary_10_1021_acs_jpclett_2c00850 crossref_primary_10_1073_pnas_1814610115 crossref_primary_10_1002_zaac_201800181 |
Cites_doi | 10.1126/science.1106435 10.1126/science.275.5305.1445 10.1021/om034147l 10.1126/science.268.5212.861 10.1002/anie.200800480 10.1002/anie.200301553 10.1007/BF00528565 10.1007/BF01112983 10.1016/0009-2614(93)89068-S 10.1073/pnas.0603978103 10.1021/cr60316a001 10.1126/science.1214025 10.1126/science.1085326 10.1002/anie.200903648 10.1038/nchem.906 10.1002/chem.201002998 10.1038/nchem.595 10.1080/00268979300103121 10.1126/science.1143078 10.1021/cr950055x 10.1021/om400012a 10.1021/cr020610c 10.1016/j.jorganchem.2004.05.053 10.1016/0010-8545(95)01139-G 10.1016/S0022-328X(03)00559-X 10.1021/cr950057h 10.1002/ejic.200700085 10.1021/ja2042595 10.1126/science.1211906 10.1021/cr00036a008 10.1021/om300156z 10.1002/anie.200703336 10.1002/anie.200705246 10.1007/BF01114537 10.1021/cr9500545 10.1021/ja9943288 10.1002/anie.198907541 10.1126/science.1206445 10.1038/nature02274 10.1021/ja046047s 10.1039/b922853e 10.1021/ja982377z |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Association for the Advancement of Science 2014 INIST-CNRS Copyright © 2013, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2013 American Association for the Advancement of Science – notice: 2014 INIST-CNRS – notice: Copyright © 2013, American Association for the Advancement of Science |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1126/science.1238663 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database MEDLINE AGRICOLA MEDLINE - Academic Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Chemistry |
EISSN | 1095-9203 |
EndPage | 1552 |
ExternalDocumentID | 3007230051 23812710 27784764 10_1126_science_1238663 41988641 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 4.4 4R4 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~KM ~ZZ AAYXX AGFXO ALIPV CITATION .GJ .GO 0-V 186 3EH 41~ 42X 692 79B 7X7 7XC 88E 88I 8AF 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8GL 8WZ 97F A6W AADHG AAFWJ AAKAS ABDPE ABJCF ABUWG ACQAM ACTDY ADBBV ADZCM AEUYN AFKRA AFQQW AJUXI ARALO ARAPS ATCPS AZQEC BBNVY BBWZM BCU BEC BENPR BGLVJ BHPHI BKNYI BKSAR BPHCQ BVXVI C2- CCPQU CJNVE D0S D1I D1J D1K DWQXO D~A EAU EGS EWM EX3 FYUFA GICCO GNUQQ GUQSH HCIFZ HGD HMCUK HQ3 HTVGU HVGLF IAG IBG IEP IER IPC IQODW ISN ITC J5H K6- K9- KB. KQ8 L6V LK5 LK8 LPU M0K M0R M1P M2O M2P M2Q M7P M7R M7S N4W OK1 P62 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PPXIY PQEDU PQGLB PROAC PSQYO PTHSS PV9 PYCSY QS- R05 RNS RZL SJFOW SKT UBY UHU UKHRP VOH WOQ WOW X7L XIH XKJ XOL YJ6 YXB ZCG ZGI ZVL ZVM ZXP ZY4 ~G0 ~H1 CGR CUY CVF ECM EIF GX1 NPM UIG YCJ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c546t-dfe7828b010b6e26c4abe499129365b164ee448a68bd66c3a8284d302a01cae93 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 05:20:24 EDT 2025 Tue Aug 05 09:35:01 EDT 2025 Fri Jul 11 03:17:49 EDT 2025 Fri Jul 25 19:11:35 EDT 2025 Thu Apr 03 07:03:19 EDT 2025 Mon Jul 21 09:16:54 EDT 2025 Tue Jul 01 00:47:16 EDT 2025 Thu Apr 24 22:51:38 EDT 2025 Sun Aug 24 12:10:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6140 |
Keywords | Titanium Complexes Transition element complexes Trinuclear complex Organometallic compound Enzymatic catalysis Activation Nitrogen Chemical reactivity Hydrogenation Chemical reaction kinetics Hydrido complex |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c546t-dfe7828b010b6e26c4abe499129365b164ee448a68bd66c3a8284d302a01cae93 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 23812710 |
PQID | 1372114339 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2000374217 proquest_miscellaneous_1808099526 proquest_miscellaneous_1373441239 proquest_journals_1372114339 pubmed_primary_23812710 pascalfrancis_primary_27784764 crossref_citationtrail_10_1126_science_1238663 crossref_primary_10_1126_science_1238663 jstor_primary_41988641 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-28 |
PublicationDateYYYYMMDD | 2013-06-28 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2013 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_51_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 23812704 - Science. 2013 Jun 28;340(6140):1530-1 |
References_xml | – ident: e_1_3_2_10_2 doi: 10.1126/science.1106435 – ident: e_1_3_2_16_2 doi: 10.1126/science.275.5305.1445 – ident: e_1_3_2_33_2 doi: 10.1021/om034147l – ident: e_1_3_2_23_2 doi: 10.1126/science.268.5212.861 – ident: e_1_3_2_9_2 doi: 10.1002/anie.200800480 – ident: e_1_3_2_51_2 – ident: e_1_3_2_11_2 doi: 10.1002/anie.200301553 – ident: e_1_3_2_43_2 – ident: e_1_3_2_46_2 doi: 10.1007/BF00528565 – ident: e_1_3_2_47_2 doi: 10.1007/BF01112983 – ident: e_1_3_2_50_2 doi: 10.1016/0009-2614(93)89068-S – ident: e_1_3_2_5_2 doi: 10.1073/pnas.0603978103 – ident: e_1_3_2_12_2 doi: 10.1021/cr60316a001 – ident: e_1_3_2_8_2 doi: 10.1126/science.1214025 – ident: e_1_3_2_24_2 doi: 10.1126/science.1085326 – ident: e_1_3_2_42_2 – ident: e_1_3_2_21_2 doi: 10.1002/anie.200903648 – ident: e_1_3_2_25_2 doi: 10.1038/nchem.906 – ident: e_1_3_2_30_2 doi: 10.1002/chem.201002998 – ident: e_1_3_2_28_2 doi: 10.1038/nchem.595 – ident: e_1_3_2_49_2 doi: 10.1080/00268979300103121 – ident: e_1_3_2_39_2 doi: 10.1126/science.1143078 – ident: e_1_3_2_2_2 doi: 10.1021/cr950055x – ident: e_1_3_2_31_2 doi: 10.1021/om400012a – ident: e_1_3_2_15_2 doi: 10.1021/cr020610c – ident: e_1_3_2_45_2 – ident: e_1_3_2_19_2 doi: 10.1016/j.jorganchem.2004.05.053 – ident: e_1_3_2_14_2 doi: 10.1016/0010-8545(95)01139-G – ident: e_1_3_2_41_2 doi: 10.1016/S0022-328X(03)00559-X – ident: e_1_3_2_3_2 doi: 10.1021/cr950057h – ident: e_1_3_2_29_2 doi: 10.1002/ejic.200700085 – ident: e_1_3_2_37_2 doi: 10.1021/ja2042595 – ident: e_1_3_2_22_2 doi: 10.1126/science.1211906 – ident: e_1_3_2_13_2 doi: 10.1021/cr00036a008 – ident: e_1_3_2_35_2 doi: 10.1021/om300156z – ident: e_1_3_2_27_2 doi: 10.1002/anie.200703336 – ident: e_1_3_2_44_2 – ident: e_1_3_2_6_2 doi: 10.1002/anie.200705246 – ident: e_1_3_2_48_2 doi: 10.1007/BF01114537 – ident: e_1_3_2_4_2 doi: 10.1021/cr9500545 – ident: e_1_3_2_17_2 doi: 10.1021/ja9943288 – ident: e_1_3_2_34_2 doi: 10.1002/anie.198907541 – ident: e_1_3_2_7_2 doi: 10.1126/science.1206445 – ident: e_1_3_2_18_2 doi: 10.1038/nature02274 – ident: e_1_3_2_20_2 doi: 10.1021/ja046047s – ident: e_1_3_2_26_2 doi: 10.1039/b922853e – ident: e_1_3_2_36_2 doi: 10.1021/ja982377z – reference: 23812704 - Science. 2013 Jun 28;340(6140):1530-1 |
SSID | ssj0009593 |
Score | 2.564117 |
Snippet | Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N=N triple bond and... A century after its discovery, the Haber Bosch process is still used to produce ammonia from nitrogen for fertilizer. Nonetheless, the process requires high... Both the Haber-Bosch and biological ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong N≡N triple bond and... Titanium CleaverA century after its discovery, the Haber Bosch process is still used to produce ammonia from nitrogen for fertilizer. Nonetheless, the process... Titanium Cleaver A century after its discovery, the Haber Bosch process is still used to produce ammonia from nitrogen for fertilizer. Nonetheless, the process... |
SourceID | proquest pubmed pascalfrancis crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1549 |
SubjectTerms | Alkali metals Aluminum Ambient temperature Ammonia Atoms Catalysis Catalysts Chemical bonding Chemical reactions Chemistry chemists Climate Crystallography Crystallography, X-Ray Enzymes Exact sciences and technology General and physical chemistry High temperature Hydrides Hydrogen bonds Hydrogenation Hydrogenolysis Ligands Magnetic Resonance Spectroscopy Molecular chemistry Molecules Nitrogen Nitrogen - chemistry nitrogen fertilizers nitrogenase NMR Nuclear magnetic resonance Protons Reactivity Reduction Searching slicing Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Titanium Titanium - chemistry Veins |
Title | Dinitrogen Cleavage and Hydrogenation by a Trinuclear Titanium Polyhydride Complex |
URI | https://www.jstor.org/stable/41988641 https://www.ncbi.nlm.nih.gov/pubmed/23812710 https://www.proquest.com/docview/1372114339 https://www.proquest.com/docview/1373441239 https://www.proquest.com/docview/1808099526 https://www.proquest.com/docview/2000374217 |
Volume | 340 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swELayVpP2Mq3durF1lSftoVNFFAy48Jj-iKIp66SNSHlDBoyCmkFFQjf21--MDThSM3V7QZE5QpTv7rg7zt8h9JH7iSOcnhn7KSQo4IVNL3Vd008ZE_xRMW2GwXy5odO583nhLgaDO61rqdpEw_j3g_tK_gdVWANcxS7Zf0C2-1JYgM-ALxwBYTg-CuOrDAyyLOD82eWKs3vRfyMK4dM6aVYluBBgsrOgzHJBXcxKgAcCwkw0wBerelmL-eq88Qsr_kuPVVuzhxi0e6-jodk1KI5lG0HbVaAu00oM35fZjyZGDdgty4sy63WpKb4uWfGTd4uzqpDF-r4_QNW0FxkrllWmFyqaoRHtxm_lfBX3se58bUnWpLQMYoWR5k0FfZz2ZBZscQ97fW1OJR_Cs9ijymtu8WvffA0n89ksDK4XwRO0TyCxAM-4P764upjsJGpWdFDaRqv2BluRjGxmFZ21bA3GlcqpKLvTliZ8CV6g5yrvwGOpRAdowPND9FROIq0P0YFCbY1PFRH5p5foW69fuNUvDPqFt_QLRzVmuNcv3OoX1vQLK_16heaT6-ByaqoZHGbsOnRjJimHGNKLIG2PKCc0dljEIUsWYSJ1I0i2OYcMn1EvSiiNbQbCTmKPCBtZMeO-fYT28iLnbxB2o5QDwBbhEFN68EWpnxBqW5wz10ntyEDD9v8MY0VQL-akrMImUSU0VACECgADnXYX3Elult2iRw1AnZxj-Z5HHctAJ1uIdQKgHeDDqGOg4xbCUJn-OrRsUThxbNs30IfuNDhm8baN5byoGhkbcg3yVxnB6ur7LqG7ZYjkiCLWuYFeSxXqfyTE2wRyhLePuMM79Ky3ymO0tykr_h4C6k10omzgD-Q0zUg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dinitrogen+Cleavage+and+Hydrogenation+by+a+Trinuclear+Titanium+Polyhydride+Complex&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Shima%2C+Takanori&rft.au=Hu%2C+Shaowei&rft.au=Luo%2C+Gen&rft.au=Kang%2C+Xiaohui&rft.date=2013-06-28&rft.issn=0036-8075&rft.volume=340&rft.issue=6140&rft.spage=1549&rft.epage=1552&rft_id=info:doi/10.1126%2Fscience.1238663&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |