Current and Future Use of Artificial Intelligence in Electrocardiography

Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnorma...

Full description

Saved in:
Bibliographic Details
Published inJournal of cardiovascular development and disease Vol. 10; no. 4; p. 175
Main Authors Martínez-Sellés, Manuel, Marina-Breysse, Manuel
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias, sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or patients when significant changes occur according to timing, duration, and situation; (4) signal processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimizing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In the future, AI is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed.
AbstractList Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias, sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or patients when significant changes occur according to timing, duration, and situation; (4) signal processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimizing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In the future, AI is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed.
Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias, sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or patients when significant changes occur according to timing, duration, and situation; (4) signal processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimizing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In the future, AI is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed.Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias, sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or patients when significant changes occur according to timing, duration, and situation; (4) signal processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimizing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In the future, AI is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed.
Audience Academic
Author Marina-Breysse, Manuel
Martínez-Sellés, Manuel
AuthorAffiliation 6 Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Myocardial Pathophysiology Area, 28029 Madrid, Spain
4 Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
3 Facultad de Ciencias de la Salud, Universidad Europea, Villaviciosa de Odón, 28670 Madrid, Spain
5 IDOVEN Research, 28013 Madrid, Spain
1 Cardiology Department, Hospital General Universitario Gregorio Marañón, Calle Doctor Esquerdo, 46, 28007 Madrid, Spain
2 Centro de Investigación Biomédica en Red—Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain; m@idoven.ai
AuthorAffiliation_xml – name: 4 Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
– name: 2 Centro de Investigación Biomédica en Red—Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain; m@idoven.ai
– name: 5 IDOVEN Research, 28013 Madrid, Spain
– name: 6 Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Myocardial Pathophysiology Area, 28029 Madrid, Spain
– name: 1 Cardiology Department, Hospital General Universitario Gregorio Marañón, Calle Doctor Esquerdo, 46, 28007 Madrid, Spain
– name: 3 Facultad de Ciencias de la Salud, Universidad Europea, Villaviciosa de Odón, 28670 Madrid, Spain
Author_xml – sequence: 1
  givenname: Manuel
  orcidid: 0000-0003-0289-6229
  surname: Martínez-Sellés
  fullname: Martínez-Sellés, Manuel
– sequence: 2
  givenname: Manuel
  surname: Marina-Breysse
  fullname: Marina-Breysse, Manuel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37103054$$D View this record in MEDLINE/PubMed
BookMark eNptkkFvGyEQhVGVqknc3HquVuqlhzodYHdZTpVlJY2lSL00Z8QOsMFag8vuVsq_L46T1I4iDsDwzWPmac7JSYjBEvKJwiXnEr6v0RgKUAIV1Ttyxjg0c16y6uTgfEouhmENADTfgLIP5JQLChyq8ozcLKeUbBgLHUxxPY1TssXdYIvoikUavfPodV-swmj73nc2oC18KK56i2OKqJPxsUt6e__wkbx3uh_sxdM-I3fXV7-XN_PbXz9Xy8XtHKuyHucopUMnjDTAG1M3ptVQlmApOoccDUXDDaOA2CKghApRMK2F0EZAC5zPyGqva6Jeq23yG50eVNRePQZi6pTOhWNvlRBcGCacE21TSilyukDDwFpWtcw0WevHXms7tRtrMPuQdH8kevwS_L3q4l9FgZZVLSErfH1SSPHPZIdRbfyA2SsdbJwGxRqopaybXMqMfHmFruOUQvbqkapKgKb-T3U6d-CDi_lj3ImqhahoIxhlZaYu36DyMnbjMY-I8zl-lPD5sNOXFp8HIQPf9gCmOAzJuheEgtqNmjoctYyzVzj6UY8-7nzy_dtJ_wD-4NUg
CitedBy_id crossref_primary_10_17827_aktd_1439689
crossref_primary_10_1055_a_2163_2586
crossref_primary_10_1080_22423982_2024_2438429
crossref_primary_10_2196_60697
crossref_primary_10_31083_j_rcm2409265
crossref_primary_10_34172_hpp_2023_22
crossref_primary_10_3390_jpm14060559
crossref_primary_10_2147_AMEP_S469116
crossref_primary_10_1109_JSEN_2024_3424901
crossref_primary_10_3390_jcm13247691
crossref_primary_10_3390_medicina61010085
crossref_primary_10_1055_a_2359_0809
crossref_primary_10_1080_14796678_2024_2348898
crossref_primary_10_7759_cureus_48670
crossref_primary_10_3390_s24061883
crossref_primary_10_1016_j_jrras_2024_101012
crossref_primary_10_3390_healthcare11212906
crossref_primary_10_1007_s11886_024_02062_1
crossref_primary_10_3390_jcm13174979
crossref_primary_10_7759_cureus_70369
crossref_primary_10_3390_bioengineering11030222
crossref_primary_10_3390_diagnostics14111103
crossref_primary_10_3390_bioengineering11121239
crossref_primary_10_12968_hmed_2024_0847
crossref_primary_10_3390_diagnostics14171839
Cites_doi 10.1088/1361-6579/ac08e6
10.1007/s10916-009-9355-9
10.3390/diagnostics12030654
10.1093/ehjdh/ztac072
10.1161/01.CIR.101.23.e215
10.22489/CinC.2017.065-469
10.1088/1361-6579/ac79fd
10.1016/j.compbiomed.2018.06.002
10.1186/s12911-021-01453-6
10.1161/CIRCULATIONAHA.120.047829
10.3389/fnins.2023.1153386
10.1093/eurheartj/ehaa1065
10.3390/s21124105
10.1371/journal.pone.0216756
10.1016/j.artmed.2007.04.001
10.1109/JBHI.2018.2871510
10.1097/MAT.0000000000001218
10.1093/ehjdh/ztac013
10.14309/ajg.0000000000001617
10.1016/j.resuscitation.2019.06.206
10.1093/ehjdh/ztab080
10.1109/ICMLA51294.2020.00176
10.3390/s20195606
10.1016/j.jacep.2022.09.011
10.1016/j.jelectrocard.2022.10.010
10.1161/JAHA.122.026974
10.1016/j.mayocp.2021.04.023
10.1161/CIRCHEARTFAILURE.119.006513
10.1016/j.artmed.2022.102289
10.1093/ehjqcco/qcab037
10.1016/j.compbiomed.2017.08.022
10.1038/s41591-022-02053-1
10.3390/e22060595
10.31661/jbpe.v0i0.1235
10.1016/S0140-6736(19)31721-0
10.1007/s13246-020-00964-2
10.1016/j.cvdhj.2022.04.001
10.1038/s41746-021-00550-0
10.1161/01.CIR.41.4.667
10.1161/JAHA.120.019065
10.15420/cfr.2019.14
10.1016/j.isci.2020.100886
10.1136/bmjhci-2021-100323
10.3389/fdgth.2020.584555
10.1093/eurheartj/ehab588
10.1016/j.isci.2021.102373
10.1161/JAHA.122.026196
10.1161/CIRCOUTCOMES.118.005289
10.1088/1361-6579/ac6f40
10.1038/s41598-023-28325-5
10.1016/j.jelectrocard.2020.02.008
10.1088/1361-6579/ac6e55
10.1001/jamacardio.2018.0136
10.1016/j.cjca.2020.02.096
10.1016/j.mayocp.2021.05.027
10.1016/j.hroo.2022.02.004
10.1016/j.ijcard.2015.03.074
10.1016/j.ins.2023.01.055
10.1109/TBME.2021.3135622
10.1016/j.hrthm.2020.02.015
10.1088/1361-6579/ac70a4
10.1016/j.jacc.2022.01.005
10.1016/j.jelectrocard.2021.10.009
10.1109/TBME.2016.2539421
10.1016/j.jelectrocard.2006.02.002
10.1001/jamacardio.2021.2746
10.3390/jpm12050764
10.1161/JAHA.122.026067
10.3389/fcvm.2022.1001982
10.1161/CIRCULATIONAHA.121.057869
10.1093/europace/euaa377
10.3390/electronics9010135
10.1016/j.ijcard.2015.02.014
10.1161/JAHA.119.013748
10.1038/s41591-018-0240-2
10.1038/s41598-022-24254-x
10.3389/frsip.2022.866047
10.1093/ehjdh/ztac025
10.1038/s41598-021-86013-8
10.1038/s41591-020-0870-z
10.1016/j.amjmed.2013.10.003
10.1161/JAHA.119.014717
10.1007/s13534-021-00184-x
10.1088/1361-6579/abc960
10.1038/s41440-020-00592-z
10.3390/s20102875
10.1038/s41591-018-0268-3
10.1038/s41467-020-15432-4
10.3390/s21206848
10.1038/s41598-020-77599-6
10.1371/journal.pone.0150144
10.1016/j.amjcard.2021.06.021
10.1016/j.artmed.2020.101856
10.1101/2020.08.11.20172601
10.1016/j.ijcard.2021.01.002
10.1016/j.jelectrocard.2021.06.006
10.1093/cvr/cvab341
10.1016/S2589-7500(20)30108-4
10.1016/j.jelectrocard.2007.03.008
10.1007/s11517-018-1815-2
10.3390/jpm12050700
10.1038/s41598-020-65105-x
10.3390/e22070733
10.1161/JAHA.121.023222
10.1016/j.cvdhj.2021.08.002
10.3390/s22249872
10.1016/j.cvdhj.2022.07.071
10.2215/CJN.09420818
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/jcdd10040175
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


PubMed
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2308-3425
ExternalDocumentID oai_doaj_org_article_7737d27ff7b84997b037cd20ee25b2d8
PMC10145690
A751872124
37103054
10_3390_jcdd10040175
Genre Journal Article
Review
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GrantInformation_xml – fundername: European Union
  grantid: 965286
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AADQD
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
CCPQU
CITATION
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
ITC
KQ8
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
NPM
PMFND
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c546t-c99fcf7d9d038d68dba0440e1cffc3cd1cd3d210ccbc0c905cc72aa77ad70b033
IEDL.DBID DOA
ISSN 2308-3425
IngestDate Wed Aug 27 01:28:27 EDT 2025
Thu Aug 21 18:37:55 EDT 2025
Fri Jul 11 07:36:36 EDT 2025
Mon Jun 30 04:00:39 EDT 2025
Tue Jun 17 21:26:13 EDT 2025
Tue Jun 10 20:50:28 EDT 2025
Thu Jan 02 22:53:12 EST 2025
Thu Apr 24 23:04:13 EDT 2025
Tue Jul 01 01:48:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords deep learning
cost effectiveness
diagnosis
machine learning
prognosis
artificial intelligence
electrocardiography
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-c99fcf7d9d038d68dba0440e1cffc3cd1cd3d210ccbc0c905cc72aa77ad70b033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0289-6229
OpenAccessLink https://doaj.org/article/7737d27ff7b84997b037cd20ee25b2d8
PMID 37103054
PQID 2806540086
PQPubID 5046891
ParticipantIDs doaj_primary_oai_doaj_org_article_7737d27ff7b84997b037cd20ee25b2d8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10145690
proquest_miscellaneous_2806996877
proquest_journals_2806540086
gale_infotracmisc_A751872124
gale_infotracacademiconefile_A751872124
pubmed_primary_37103054
crossref_primary_10_3390_jcdd10040175
crossref_citationtrail_10_3390_jcdd10040175
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of cardiovascular development and disease
PublicationTitleAlternate J Cardiovasc Dev Dis
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kwon (ref_60) 2020; 59
Shrivastava (ref_92) 2021; 155
Shah (ref_33) 2007; 40
Anh (ref_67) 2006; 39
Jing (ref_58) 2022; 146
Liu (ref_50) 2023; 13
Choi (ref_89) 2022; 3
Maille (ref_75) 2021; 331
Hatem (ref_94) 2021; 118
Gustafsson (ref_101) 2022; 12
Lin (ref_72) 2022; 5
Antoniades (ref_103) 2021; 42
Goldberger (ref_112) 2000; 101
Mazidi (ref_76) 2022; 12
Bollepalli (ref_84) 2021; 10
Shen (ref_36) 2023; 21
Tison (ref_93) 2022; 79
Attia (ref_95) 2021; 96
Yamaguchi (ref_110) 2021; 44
Jo (ref_21) 2021; 67
Ren (ref_47) 2023; 17
Sabut (ref_34) 2021; 44
Puszkarski (ref_31) 2022; 43
Frohnert (ref_12) 1970; 41
Ganti (ref_107) 2022; 11
Alday (ref_46) 2020; 41
Su (ref_102) 2021; 11
Zhang (ref_62) 2021; 24
Kwon (ref_59) 2020; 9
Wilson (ref_5) 2021; 28
Reyna (ref_48) 2021; 48
Teplitzky (ref_4) 2020; 17
Cho (ref_100) 2020; 10
Quintanilla (ref_69) 2018; 88
Acharya (ref_30) 2017; 89
Chen (ref_111) 2020; 23
Ribeiro (ref_25) 2020; 11
Lip (ref_66) 2021; 8
Stehlik (ref_71) 2020; 13
Srivastava (ref_3) 2022; 43
Xu (ref_28) 2022; 43
Mannhart (ref_79) 2023; 9
McLaren (ref_97) 2023; 76
Kwon (ref_90) 2020; 2
Makimoto (ref_61) 2020; 10
ref_81
ref_80
Rogovoy (ref_74) 2019; 8
ref_87
Zhu (ref_27) 2021; 42
ref_86
ref_85
Li (ref_10) 2016; 64
Sayantan (ref_17) 2018; 56
Reyna (ref_49) 2022; 43
Ahn (ref_91) 2021; 117
Sivanandarajah (ref_108) 2022; 3
Irusta (ref_39) 2019; 142
Bachtiger (ref_104) 2020; 6
Asirvatham (ref_20) 2019; 394
Attia (ref_53) 2022; 28
Tison (ref_82) 2018; 3
Harmon (ref_109) 2021; 2
Oh (ref_18) 2018; 102
Li (ref_14) 2021; 21
Raghunath (ref_65) 2021; 143
Ariza (ref_98) 2021; 69
ref_54
Badertscher (ref_32) 2022; 3
Cho (ref_52) 2020; 67
Abdou (ref_77) 2022; 2
Zhang (ref_15) 2020; 106
Grogan (ref_56) 2021; 96
Hughes (ref_24) 2021; 6
Tison (ref_57) 2019; 12
Akbilgic (ref_70) 2021; 2
ref_63
Attia (ref_51) 2019; 25
Alzueta (ref_64) 2019; 22
Malik (ref_9) 2021; 69
Calvo (ref_68) 2015; 186
Hannun (ref_22) 2019; 25
Haseena (ref_16) 2009; 35
Quartieri (ref_11) 2022; 3
Fiorina (ref_29) 2022; 11
ref_35
Raghunath (ref_73) 2020; 26
Lou (ref_88) 2022; 4
Chang (ref_23) 2020; 37
ref_38
Prifti (ref_96) 2021; 42
Taggar (ref_19) 2015; 184
Rudolph (ref_55) 2021; 2
ref_106
ref_105
Somani (ref_1) 2021; 23
Xu (ref_26) 2018; 23
ref_45
ref_44
Cascella (ref_37) 2021; 10
ref_43
ref_41
ref_40
Deevi (ref_83) 2021; 11
Akoum (ref_6) 2019; 14
Barrett (ref_78) 2014; 127
Gong (ref_42) 2023; 626
Averbuch (ref_2) 2022; 3
Ahsan (ref_13) 2022; 128
Exarchos (ref_8) 2007; 40
Chen (ref_99) 2022; 9
ref_7
References_xml – volume: 42
  start-page: 065008
  year: 2021
  ident: ref_27
  article-title: Identification of 27 abnormalities from multi-lead ECG signals: An ensembled SE_ResNet framework with Sign Loss function
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ac08e6
– volume: 35
  start-page: 179
  year: 2009
  ident: ref_16
  article-title: Fuzzy Clustered Probabilistic and Multi Layered Feed Forward Neural Networks for Electrocardiogram Arrhythmia Classification
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-009-9355-9
– ident: ref_54
  doi: 10.3390/diagnostics12030654
– volume: 4
  start-page: 22
  year: 2022
  ident: ref_88
  article-title: Development and validation of a dynamic deep learning algorithm using electrocardiogram to predict dyskalaemias in patients with multiple visits
  publication-title: Eur. Heart J. -Digit. Health
  doi: 10.1093/ehjdh/ztac072
– volume: 101
  start-page: e215
  year: 2000
  ident: ref_112
  article-title: PhysioBank, Phys-ioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref_44
  doi: 10.22489/CinC.2017.065-469
– volume: 43
  start-page: 084001
  year: 2022
  ident: ref_49
  article-title: Issues in the automated classification of multilead ecgs using heterogeneous labels and populations
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ac79fd
– volume: 102
  start-page: 278
  year: 2018
  ident: ref_18
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.06.002
– volume: 21
  start-page: 99
  year: 2021
  ident: ref_14
  article-title: A particle swarm optimization improved BP neural network intelligent model for electrocardiogram classification
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-021-01453-6
– volume: 143
  start-page: 1287
  year: 2021
  ident: ref_65
  article-title: Deep Neural Networks Can Predict New-Onset Atrial Fibrillation From the 12-Lead ECG and Help Identify Those at Risk of Atrial Fibrillation–Related Stroke
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.120.047829
– volume: 17
  start-page: 1153386
  year: 2023
  ident: ref_47
  article-title: Dynamic ECG signal quality evaluation based on persistent homology and GoogLeNet method
  publication-title: Front Neurosci.
  doi: 10.3389/fnins.2023.1153386
– volume: 42
  start-page: 732
  year: 2021
  ident: ref_103
  article-title: The year in cardiovascular medicine 2020: Digital health and innovation
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehaa1065
– ident: ref_41
  doi: 10.3390/s21124105
– ident: ref_40
  doi: 10.1371/journal.pone.0216756
– volume: 40
  start-page: 187
  year: 2007
  ident: ref_8
  article-title: A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2007.04.001
– volume: 23
  start-page: 1574
  year: 2018
  ident: ref_26
  article-title: Towards End-to-End ECG Classification with Raw Signal Extraction and Deep Neural Networks
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2871510
– volume: 67
  start-page: 314
  year: 2020
  ident: ref_52
  article-title: Artificial Intelligence Algorithm for Screening Heart Failure with Reduced Ejection Fraction Using Electrocardiography
  publication-title: ASAIO J.
  doi: 10.1097/MAT.0000000000001218
– volume: 3
  start-page: 255
  year: 2022
  ident: ref_89
  article-title: Electrocardiographic biomarker based on machine learning for detecting overt hyperthyroidism
  publication-title: Eur. Heart J. -Digit. Health
  doi: 10.1093/ehjdh/ztac013
– volume: 117
  start-page: 424
  year: 2021
  ident: ref_91
  article-title: Development of the AI-Cirrhosis-ECG Score: An Electrocardiogram-Based Deep Learning Model in Cirrhosis
  publication-title: Am. J. Gastroenterol.
  doi: 10.14309/ajg.0000000000001617
– volume: 142
  start-page: e85
  year: 2019
  ident: ref_39
  article-title: Deep learning approach for a shock advise algorithm using short electrocardiogram analysis intervals
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2019.06.206
– volume: 2
  start-page: 626
  year: 2021
  ident: ref_70
  article-title: ECG-AI: Electrocardiographic artificial intelligence model for prediction of heart failure
  publication-title: Eur. Heart J. -Digit. Health
  doi: 10.1093/ehjdh/ztab080
– ident: ref_86
  doi: 10.1109/ICMLA51294.2020.00176
– ident: ref_105
  doi: 10.3390/s20195606
– volume: 9
  start-page: 232
  year: 2023
  ident: ref_79
  article-title: Clinical Validation of 5 Direct-to-Consumer Wearable Smart Devices to Detect Atrial Fibrillation
  publication-title: JACC Clin. Electrophysiol.
  doi: 10.1016/j.jacep.2022.09.011
– volume: 76
  start-page: 39
  year: 2023
  ident: ref_97
  article-title: Kenichi Harumi Plenary Address at Annual Meeting of the International Society of Computers in Electrocardiology: “What Should ECG Deep Learning Focus on? The diagnosis of acute coronary occlusion!”
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2022.10.010
– volume: 21
  start-page: e026974
  year: 2023
  ident: ref_36
  article-title: Convolution Neural Network Algorithm for Shockable Arrhythmia Classification Within a Digitally Connected Automated External Defibrillator
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.122.026974
– volume: 96
  start-page: 2768
  year: 2021
  ident: ref_56
  article-title: Artificial Intelligence–Enhanced Electrocardiogram for the Early Detection of Cardiac Amyloidosis
  publication-title: Mayo Clin. Proc.
  doi: 10.1016/j.mayocp.2021.04.023
– volume: 13
  start-page: e006513
  year: 2020
  ident: ref_71
  article-title: Continuous Wearable Monitoring Analytics Predict Heart Failure Hospitalization
  publication-title: Circ. Heart Fail.
  doi: 10.1161/CIRCHEARTFAILURE.119.006513
– volume: 128
  start-page: 102289
  year: 2022
  ident: ref_13
  article-title: Machine learning-based heart disease diagnosis: A systematic literature review
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2022.102289
– volume: 8
  start-page: 548
  year: 2021
  ident: ref_66
  article-title: Improving dynamic stroke risk prediction in non-anticoagulated patients with and without atrial fibrillation: Comparing common clinical risk scores and machine learning algorithms
  publication-title: Eur. Heart J. -Qual. Care Clin. Outcomes
  doi: 10.1093/ehjqcco/qcab037
– volume: 89
  start-page: 389
  year: 2017
  ident: ref_30
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.08.022
– volume: 28
  start-page: 2497
  year: 2022
  ident: ref_53
  article-title: Prospective evaluation of smartwatch-enabled detection of left ventricular dysfunction
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-02053-1
– ident: ref_43
  doi: 10.3390/e22060595
– volume: 12
  start-page: 61
  year: 2022
  ident: ref_76
  article-title: Premature Ventricular Contraction (PVC) Detection System Based on Tunable Q-Factor Wavelet Transform
  publication-title: J. Biomed. Phys. Eng.
  doi: 10.31661/jbpe.v0i0.1235
– volume: 394
  start-page: 861
  year: 2019
  ident: ref_20
  article-title: An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)31721-0
– volume: 44
  start-page: 135
  year: 2021
  ident: ref_34
  article-title: Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-020-00964-2
– volume: 3
  start-page: 136
  year: 2022
  ident: ref_108
  article-title: Is machine learning the future for atrial fibrillation screening?
  publication-title: Cardiovasc. Digit. Health J.
  doi: 10.1016/j.cvdhj.2022.04.001
– volume: 22
  start-page: 704
  year: 2019
  ident: ref_64
  article-title: Personalized monitoring of electrical remodelling during atrial fibrillation progression via remote transmissions from implantable devices
  publication-title: Europace
– volume: 5
  start-page: 8
  year: 2022
  ident: ref_72
  article-title: Point-of-care artificial intelligence-enabled ECG for dyskalemia: A retrospective cohort analysis for accuracy and outcome prediction
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-021-00550-0
– volume: 41
  start-page: 667
  year: 1970
  ident: ref_12
  article-title: Statistical Investigation of Correlations Between Serum Potassium Levels and Electrocardiographic Findings in Patients on Intermittent Hemodialysis Therapy
  publication-title: Circulation
  doi: 10.1161/01.CIR.41.4.667
– volume: 10
  start-page: e019065
  year: 2021
  ident: ref_37
  article-title: Deep Neural Network Approach for Continuous ECG-Based Automated External Defibrillator Shock Advisory System During Cardiopulmonary Resuscitation
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.120.019065
– volume: 6
  start-page: e11
  year: 2020
  ident: ref_104
  article-title: Artificial Intelligence, Data Sensors and Interconnectivity: Future Opportunities for Heart Failure
  publication-title: Card. Fail. Rev.
  doi: 10.15420/cfr.2019.14
– volume: 23
  start-page: 100886
  year: 2020
  ident: ref_111
  article-title: Detection and Classification of Cardiac Arrhythmias by a Challenge-Best Deep Learning Neural Network Model
  publication-title: iScience
  doi: 10.1016/j.isci.2020.100886
– volume: 28
  start-page: e100323
  year: 2021
  ident: ref_5
  article-title: Artificial intelligence projects in healthcare: 10 practical tips for success in a clinical environment
  publication-title: BMJ Health Care Inform.
  doi: 10.1136/bmjhci-2021-100323
– volume: 2
  start-page: 584555
  year: 2021
  ident: ref_55
  article-title: Identifying Heart Failure in ECG Data with Artificial Intelligence—A Meta-Analysis
  publication-title: Front. Digit. Health
  doi: 10.3389/fdgth.2020.584555
– volume: 42
  start-page: 3948
  year: 2021
  ident: ref_96
  article-title: Deep learning analysis of electrocardiogram for risk prediction of drug-induced arrhythmias and diagnosis of long QT syndrome
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehab588
– volume: 24
  start-page: 102373
  year: 2021
  ident: ref_62
  article-title: Interpretable deep learning for automatic diagnosis of 12-lead electrocardiogram
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102373
– volume: 11
  start-page: e026196
  year: 2022
  ident: ref_29
  article-title: Evaluation of an Ambulatory ECG Analysis Platform Using Deep Neural Networks in Routine Clinical Practice
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.122.026196
– volume: 12
  start-page: e005289
  year: 2019
  ident: ref_57
  article-title: Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery
  publication-title: Circ. Cardiovasc. Qual. Outcomes
  doi: 10.1161/CIRCOUTCOMES.118.005289
– volume: 43
  start-page: 064005
  year: 2022
  ident: ref_3
  article-title: A deep residual inception network with channel attention modules for multi-label cardiac abnormality detection from reduced-lead ECG
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ac6f40
– volume: 13
  start-page: 2556
  year: 2023
  ident: ref_50
  article-title: Left ventricular hypertrophy detection using electrocardiographic signal
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-28325-5
– volume: 59
  start-page: 151
  year: 2020
  ident: ref_60
  article-title: Artificial intelligence for detecting mitral regurgitation using electrocardiography
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2020.02.008
– volume: 43
  start-page: 064006
  year: 2022
  ident: ref_31
  article-title: Comparison of neural basis expansion analysis for interpretable time series (N-BEATS) and recurrent neural networks for heart dysfunction classification
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ac6e55
– volume: 3
  start-page: 409
  year: 2018
  ident: ref_82
  article-title: Passive Detection of Atrial Fibrillation Using a Commercially Available Smartwatch
  publication-title: JAMA Cardiol.
  doi: 10.1001/jamacardio.2018.0136
– volume: 37
  start-page: 94
  year: 2020
  ident: ref_23
  article-title: Usefulness of Machine Learning-Based Detection and Classification of Cardiac Arrhythmias With 12-Lead Electrocardiograms
  publication-title: Can. J. Cardiol.
  doi: 10.1016/j.cjca.2020.02.096
– volume: 96
  start-page: 2081
  year: 2021
  ident: ref_95
  article-title: Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram
  publication-title: Mayo Clin. Proc.
  doi: 10.1016/j.mayocp.2021.05.027
– volume: 3
  start-page: 208
  year: 2022
  ident: ref_32
  article-title: Clinical validation of a novel smartwatch for automated detection of atrial fibrillation
  publication-title: Heart Rhythm. O2
  doi: 10.1016/j.hroo.2022.02.004
– volume: 186
  start-page: 250
  year: 2015
  ident: ref_68
  article-title: Spectral analysis-based risk score enables early prediction of mortality and cerebral performance in patients undergoing therapeutic hypothermia for ventricular fibrillation and comatose status
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2015.03.074
– volume: 626
  start-page: 754
  year: 2023
  ident: ref_42
  article-title: Transfer learning based deep network for signal restoration and rhythm analysis during cardiopulmonary resuscitation using only the ECG waveform
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.01.055
– volume: 69
  start-page: 1788
  year: 2021
  ident: ref_9
  article-title: Real-Time Patient-Specific ECG Classification by 1D Self-Operational Neural Networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3135622
– volume: 17
  start-page: 881
  year: 2020
  ident: ref_4
  article-title: Deep learning for comprehensive ECG annotation
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2020.02.015
– volume: 48
  start-page: 1
  year: 2021
  ident: ref_48
  article-title: Will Two Do? Varying Dimensions in Electrocardiography: The PhysioNet/Computing in Cardiology Challenge 2021
  publication-title: Comput. Cardiol.
– volume: 43
  start-page: 074002
  year: 2022
  ident: ref_28
  article-title: Abnormality classification from electrocardiograms with various lead combinations
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ac70a4
– volume: 79
  start-page: 1032
  year: 2022
  ident: ref_93
  article-title: Assessment of Disease Status and Treatment Response with Artificial Intelligence−Enhanced Electrocardiography in Obstructive Hypertrophic Cardiomyopathy
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2022.01.005
– volume: 69
  start-page: 140
  year: 2021
  ident: ref_98
  article-title: Rational and design of ST-segment elevation not associated with acute cardiac necrosis (LESTONNAC). A prospective registry for validation of a deep learning system assisted by artificial intelligence
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2021.10.009
– volume: 64
  start-page: 78
  year: 2016
  ident: ref_10
  article-title: High-Performance Personalized Heartbeat Classification Model for Long-Term ECG Signal
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2539421
– volume: 39
  start-page: 343
  year: 2006
  ident: ref_67
  article-title: Accuracy of electrocardiogram interpretation by cardiologists in the setting of incorrect computer analysis
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2006.02.002
– volume: 6
  start-page: 1285
  year: 2021
  ident: ref_24
  article-title: Performance of a Convolutional Neural Network and Explainability Technique for 12-Lead Electrocardiogram Interpretation
  publication-title: JAMA Cardiol.
  doi: 10.1001/jamacardio.2021.2746
– ident: ref_35
  doi: 10.3390/jpm12050764
– volume: 11
  start-page: e026067
  year: 2022
  ident: ref_107
  article-title: Wearable Seismocardiography-Based Assessment of Stroke Volume in Congenital Heart Disease
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.122.026067
– volume: 9
  start-page: 1001982
  year: 2022
  ident: ref_99
  article-title: Artificial intelligence-assisted remote detection of ST-elevation myocardial infarction using a mini-12-lead electrocardiogram device in prehospital ambulance care
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2022.1001982
– ident: ref_87
– volume: 146
  start-page: 36
  year: 2022
  ident: ref_58
  article-title: rECHOmmend: An ECG-Based Machine Learning Approach for Identifying Patients at Increased Risk of Undiagnosed Structural Heart Disease Detectable by Echocardiography
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.121.057869
– volume: 23
  start-page: 1179
  year: 2021
  ident: ref_1
  article-title: Deep learning and the electrocardiogram: Review of the current state-of-the-art
  publication-title: Europace
  doi: 10.1093/europace/euaa377
– ident: ref_85
  doi: 10.3390/electronics9010135
– volume: 184
  start-page: 175
  year: 2015
  ident: ref_19
  article-title: Accuracy of methods for diagnosing atrial fibrillation using 12-lead ECG: A systematic review and meta-analysis
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2015.02.014
– volume: 8
  start-page: e013748
  year: 2019
  ident: ref_74
  article-title: Hemodialysis Procedure–Associated Autonomic Imbalance and Cardiac Arrhythmias: Insights From Continuous 14-Day ECG Monitoring
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.119.013748
– volume: 25
  start-page: 70
  year: 2019
  ident: ref_51
  article-title: Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0240-2
– volume: 12
  start-page: 19615
  year: 2022
  ident: ref_101
  article-title: Development and validation of deep learning ECG-based prediction of myocardial infarction in emergency department patients
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-24254-x
– volume: 2
  start-page: 866047
  year: 2022
  ident: ref_77
  article-title: Horizons in Single-Lead ECG Analysis from Devices to Data
  publication-title: Front. Signal Process.
  doi: 10.3389/frsip.2022.866047
– volume: 3
  start-page: 311
  year: 2022
  ident: ref_2
  article-title: Applications of artificial intelligence and machine learning in heart failure
  publication-title: Eur. Heart J. -Digit. Health
  doi: 10.1093/ehjdh/ztac025
– volume: 11
  start-page: 6358
  year: 2021
  ident: ref_102
  article-title: A modified cardiac triage strategy reduces door to ECG time in patients with ST elevation myocardial infarction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-86013-8
– volume: 26
  start-page: 886
  year: 2020
  ident: ref_73
  article-title: Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0870-z
– volume: 127
  start-page: 95.e11
  year: 2014
  ident: ref_78
  article-title: Comparison of 24-hour Holter Monitoring with 14-day Novel Adhesive Patch Electrocardiographic Monitoring
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2013.10.003
– volume: 9
  start-page: e014717
  year: 2020
  ident: ref_59
  article-title: Deep Learning–Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.119.014717
– volume: 11
  start-page: 69
  year: 2021
  ident: ref_83
  article-title: HeartNetEC: A deep representation learning approach for ECG beat classification
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-021-00184-x
– volume: 41
  start-page: 124003
  year: 2020
  ident: ref_46
  article-title: Classification of 12-lead ECGs: The PhysioNet/Computing in Cardiology Challenge 2020
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/abc960
– volume: 44
  start-page: 571
  year: 2021
  ident: ref_110
  article-title: Electrocardiogram findings at the initiation of hemodialysis and types of subsequent cardiovascular events
  publication-title: Hypertens. Res.
  doi: 10.1038/s41440-020-00592-z
– volume: 88
  start-page: 460
  year: 2018
  ident: ref_69
  article-title: Early prognostic value of an Algorithm based on spectral Variables of Ventricular fibrillAtion from the EKG of patients with suddEn cardiac death: A multicentre observational study (AWAKE)
  publication-title: Arch. Cardiol. Mex.
– ident: ref_38
  doi: 10.3390/s20102875
– volume: 25
  start-page: 65
  year: 2019
  ident: ref_22
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0268-3
– volume: 11
  start-page: 1760
  year: 2020
  ident: ref_25
  article-title: Automatic diagnosis of the 12-lead ECG using a deep neural network
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15432-4
– ident: ref_63
  doi: 10.3390/s21206848
– volume: 10
  start-page: 20495
  year: 2020
  ident: ref_100
  article-title: Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-77599-6
– ident: ref_80
  doi: 10.1371/journal.pone.0150144
– volume: 155
  start-page: 121
  year: 2021
  ident: ref_92
  article-title: Artificial Intelligence-Enabled Electrocardiography to Screen Patients with Dilated Cardiomyopathy
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2021.06.021
– volume: 106
  start-page: 101856
  year: 2020
  ident: ref_15
  article-title: ECG-based multi-class arrhythmia detection using spatio-temporal attention-based convolutional recurrent neural network
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101856
– ident: ref_45
  doi: 10.1101/2020.08.11.20172601
– volume: 331
  start-page: 333
  year: 2021
  ident: ref_75
  article-title: Smartwatch Electrocardiogram and Artificial Intelligence for Assessing Cardiac-Rhythm Safety of Drug Therapy in the COVID-19 Pandemic. The QT-logs study
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2021.01.002
– volume: 67
  start-page: 124
  year: 2021
  ident: ref_21
  article-title: Detection and classification of arrhythmia using an explainable deep learning model
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2021.06.006
– volume: 118
  start-page: e4
  year: 2021
  ident: ref_94
  article-title: Atrial fibrillation and stroke: Are we looking in the right direction?
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvab341
– volume: 2
  start-page: e358
  year: 2020
  ident: ref_90
  article-title: A deep learning algorithm to detect anaemia with ECGs: A retrospective, multicentre study
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(20)30108-4
– volume: 40
  start-page: 385
  year: 2007
  ident: ref_33
  article-title: Errors in the computerized electrocardiogram interpretation of cardiac rhythm
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2007.03.008
– volume: 56
  start-page: 1887
  year: 2018
  ident: ref_17
  article-title: Classification of ECG beats using deep belief network and active learning
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-018-1815-2
– ident: ref_7
  doi: 10.3390/jpm12050700
– volume: 10
  start-page: 8445
  year: 2020
  ident: ref_61
  article-title: Performance of a convolutional neural network derived from an ECG database in recognizing myocardial infarction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-65105-x
– ident: ref_81
  doi: 10.3390/e22070733
– volume: 10
  start-page: e023222
  year: 2021
  ident: ref_84
  article-title: Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.121.023222
– volume: 2
  start-page: 282
  year: 2021
  ident: ref_109
  article-title: Diagnosis and treatment of new heart failure with reduced ejection fraction by the artificial intelligence–enhanced electrocardiogram
  publication-title: Cardiovasc. Digit. Health J.
  doi: 10.1016/j.cvdhj.2021.08.002
– ident: ref_106
  doi: 10.3390/s22249872
– volume: 3
  start-page: 201
  year: 2022
  ident: ref_11
  article-title: Artificial intelligence augments detection accuracy of cardiac insertable cardiac monitors: Results from a pilot prospective observational study
  publication-title: Cardiovasc. Digit. Health J.
  doi: 10.1016/j.cvdhj.2022.07.071
– volume: 14
  start-page: 549
  year: 2019
  ident: ref_6
  article-title: Rates of Cardiac Rhythm Abnormalities in Patients with CKD and Diabetes
  publication-title: Clin. J. Am. Soc. Nephrol.
  doi: 10.2215/CJN.09420818
SSID ssj0001342012
Score 2.447543
SecondaryResourceType review_article
Snippet Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 175
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Automation
Cardiac arrhythmia
Cardiology
Cardiovascular agents
Classification
deep learning
diagnosis
Electrocardiogram
Electrocardiography
Emergency medical care
Heart
Heart beat
Learning strategies
machine learning
Neural networks
Performance evaluation
prognosis
Review
Software
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgL4k1KQUYCcUBRvXaSSU6ooK4WpHJipb1FztiGVigp3e3_74zj3W6E4BqPIz9mbI9n_H1CvCu1J39tVuSkTjov0Lu8tuS1hsYUTlmwSvNr5LPv1WJZfFuVq3Thtk5plds1MS7UbkC-Iz-OEcCCT-CfLv_kzBrF0dVEoXFX3GPoMtZqWMHtHYspaH_TY767Ie_--AKdY4w00sNyshNFwP6_l-W9fWmaM7m3Cc0fiYfp9ChPxul-LO74_om4f5bi40_FIsEtSds7OY9wIXK59nIIsc6IFiG_7sFwyvNeno5UOBhTU0cE62diOT_98WWRJ66EHMui2uTYNAEDuMYpU7uqdp1lMmk_wxDQoJuhM47cO8QOFTaqRARtLYB1oDplzHNx0A-9fykkFXhtNTLFXVEhdL4OJF_NKqydDioTH7fj1mICEmc-i98tORQ8yu3-KGfi_U76cgTQ-IfcZ56CnQzDXscPw9XPNllRC2DAaQgBuppcNaCGAzqtvNdlp12diQ88gS0bJzUJbXpjQB1jmKv2hINM5PPqIhNHE0kyKpwWb1WgTUa9bm9VMBNvd8VckxPVej9cjzLkQtYAmXgxasyuSwaY062kn9cTXZr0eVrSn_-KkN-RUblq1OH_2_VKPNB0CBszi47Ewebq2r-mQ9OmexMt4wZ4yhb6
  priority: 102
  providerName: ProQuest
Title Current and Future Use of Artificial Intelligence in Electrocardiography
URI https://www.ncbi.nlm.nih.gov/pubmed/37103054
https://www.proquest.com/docview/2806540086
https://www.proquest.com/docview/2806996877
https://pubmed.ncbi.nlm.nih.gov/PMC10145690
https://doaj.org/article/7737d27ff7b84997b037cd20ee25b2d8
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEB70BPFFPH9d9W6poPgg5bJJ2mkf72SXVbhDxIV9K-kkwRPpHt7e_-8k6S0tIr742kxKMpnp5Gsm3wC8LaVjvDbXBZuTLDQ5W9SGUatvlLbCoBEy3Ea-uKxWa_15U25Gpb5CTliiB06KO0VUaCV6j13Nu3PshEKyUjgny07aeM2XY94ITMW_K0pzZJMp010xrj_9QdYGdjS2wHISgyJV_58f5FFEmmZLjsLP8gk8HvaN-Vka7yHcc_1TeHgxnIw_g9VAtJSb3ubLSBSSr29cvvWxT-KJyD-NCDjzqz5fpCI4FJNSE3f1c1gvF98-roqhSkJBpa52BTWNJ4-2sULVtqptZ0IZaTcn70mRnZNVloEdUUeCGlESoTQG0VgUrE31Ag76be-OIOcGJ42kUNxOV4Sdqz3LV_OKaiu9yODDnd5aGijEQyWLny1DiaDldqzlDN7tpa8TdcZf5M7DEuxlAuF1fMBm0A5m0P7LDDJ4HxawDW7JQyIz3C7giQWCq_YsHC8x2pU6g-OJJLsTTZvvTKAd3PmmjcfPOsC_DN7sm0PPkKLWu-1tkmHwWCNm8DJZzH5KCkM1t5JfXk9saTLnaUt_9T2SfcdaylUjXv0PLb2GR5I3aSnz6BgOdr9u3QlvqnbdDO7jBmfw4Hxx-eXrLHrTb0XWIds
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXxLuBAkai4oCiep2HkwNCBbrapd2eutLeTDK2oQglpbsV4k_xG5mxk-1GCG69xuPIj_GMxx5_H2OvMmkxXhulMaqTjFOwJi4qjFpdmaRGVKoSkl4jz07yyTz9tMgWW-x3_xaG0ip7m-gNtWmBzsj3_Q1gSjvwd-c_YmKNotvVnkIjqMWR_fUTQ7bl2-lHnN89KceHpx8mcccqEEOW5qsYytKBU6Y0IilMXpi6ItplOwLnIAEzApMYDIQAahBQigxAyapSqjJK1IIOQNHk30DHKyjYUwt1daaTpOhPZcivT5JS7H8DYwiTDfU-G3g-TxDwtxvY8IPDHM0Npze-y-50u1V-ENTrHtuyzX12c9bdxz9gkw7eiVeN4WMPT8LnS8tb5-sEdAo-3YD95GcNPwzUO-BTYQNi9kM2v5ZRfMS2m7axO4xjgZWVBKLUS3NQtS0cyuejHAojnYjYm37cNHTA5cSf8V1jAEOjrDdHOWJ7a-nzANjxD7n3NAVrGYLZ9h_aiy-6W7VaqUQZqZxTdYGhocKGKzBSWCuzWpoiYq9pAjUZA2wSVN2bBuwYwWrpA7rUwhhbphHbHUjiIoZhca8CujMiS32l8hF7uS6mmpQY19j2MshgyFooFbHHQWPWXUoUcchl-PNioEuDPg9LmrOvHmLcMzjnpXjy_3a9YLcmp7NjfTw9OXrKbkvcAIaspl22vbq4tM9ww7aqn_tVwtnn616WfwCAbVZl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqVRxQbwxFDASFQdkZbN-rH1AqKWJEkqjChGpN7Oe3S1FyC5NKsRf49cx40caC8Gt1-w42sc8dnZnvw_gVSwt5WujKCB1kkGE1gSppqzVZWFkhFZaSH6NfDxPpovow2l8ugW_u7cwXFbZ-cTaUZsK-Yx8WN8ARrwDH7q2LOLkcPLu4kfADFJ809rRaTQqcmR__aT0bfl2dkhrvSflZPz5_TRoGQYCjKNkFWCWOXTKZEaEqUlSU2imYLYjdA5DNCM0oaGkCLFAgZmIEZXUWiltlCgEH4aS-99WnBUNYPtgPD_5dH3CE0YUXWVTbR-GmRh-Q2MYoY2sIO7FwZou4O-gsBEV-xWbGyFwcgdut3tXf79RtruwZct7sHPc3s7fh2kL9uTr0viTGqzEXyytX7n6mwarwp9tgID656U_boh4sC6MbfCzH8DiRubxIQzKqrSPwacGK7VEJtiLElSFTR3JJ6MEUyOd8OBNN285tjDmzKbxPad0hmc535xlD_bW0hcNfMc_5A54CdYyDLpd_1BdnuWtDedKhcpI5ZwqUkoUFXVcoZHCWhkX0qQevOYFzNk1UJdQty8caGAMspXv8xUXZdwy8mC3J0kmjf3mTgXy1qUs82sD8ODlupm_5DK50lZXjQwlsKlSHjxqNGY9pFAxo1xMf572dKk35n5Lef61Bhyv-ZyTTDz5f79ewA6ZZP5xNj96Crck7QabEqddGKwur-wz2r2tiuetmfjw5aYt8w8S_FwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+and+Future+Use+of+Artificial+Intelligence+in+Electrocardiography&rft.jtitle=Journal+of+cardiovascular+development+and+disease&rft.au=Mart%C3%ADnez-Sell%C3%A9s%2C+Manuel&rft.au=Marina-Breysse%2C+Manuel&rft.date=2023-04-01&rft.issn=2308-3425&rft.eissn=2308-3425&rft.volume=10&rft.issue=4&rft.spage=175&rft_id=info:doi/10.3390%2Fjcdd10040175&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jcdd10040175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2308-3425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2308-3425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2308-3425&client=summon