Current and Future Use of Artificial Intelligence in Electrocardiography
Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnorma...
Saved in:
Published in | Journal of cardiovascular development and disease Vol. 10; no. 4; p. 175 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.04.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias, sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or patients when significant changes occur according to timing, duration, and situation; (4) signal processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimizing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In the future, AI is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed. |
---|---|
AbstractList | Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias, sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or patients when significant changes occur according to timing, duration, and situation; (4) signal processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimizing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In the future, AI is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed. Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias, sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or patients when significant changes occur according to timing, duration, and situation; (4) signal processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimizing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In the future, AI is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed.Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias, sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or patients when significant changes occur according to timing, duration, and situation; (4) signal processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimizing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In the future, AI is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed. |
Audience | Academic |
Author | Marina-Breysse, Manuel Martínez-Sellés, Manuel |
AuthorAffiliation | 6 Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Myocardial Pathophysiology Area, 28029 Madrid, Spain 4 Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain 3 Facultad de Ciencias de la Salud, Universidad Europea, Villaviciosa de Odón, 28670 Madrid, Spain 5 IDOVEN Research, 28013 Madrid, Spain 1 Cardiology Department, Hospital General Universitario Gregorio Marañón, Calle Doctor Esquerdo, 46, 28007 Madrid, Spain 2 Centro de Investigación Biomédica en Red—Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain; m@idoven.ai |
AuthorAffiliation_xml | – name: 4 Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain – name: 2 Centro de Investigación Biomédica en Red—Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain; m@idoven.ai – name: 5 IDOVEN Research, 28013 Madrid, Spain – name: 6 Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Myocardial Pathophysiology Area, 28029 Madrid, Spain – name: 1 Cardiology Department, Hospital General Universitario Gregorio Marañón, Calle Doctor Esquerdo, 46, 28007 Madrid, Spain – name: 3 Facultad de Ciencias de la Salud, Universidad Europea, Villaviciosa de Odón, 28670 Madrid, Spain |
Author_xml | – sequence: 1 givenname: Manuel orcidid: 0000-0003-0289-6229 surname: Martínez-Sellés fullname: Martínez-Sellés, Manuel – sequence: 2 givenname: Manuel surname: Marina-Breysse fullname: Marina-Breysse, Manuel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37103054$$D View this record in MEDLINE/PubMed |
BookMark | eNptkkFvGyEQhVGVqknc3HquVuqlhzodYHdZTpVlJY2lSL00Z8QOsMFag8vuVsq_L46T1I4iDsDwzWPmac7JSYjBEvKJwiXnEr6v0RgKUAIV1Ttyxjg0c16y6uTgfEouhmENADTfgLIP5JQLChyq8ozcLKeUbBgLHUxxPY1TssXdYIvoikUavfPodV-swmj73nc2oC18KK56i2OKqJPxsUt6e__wkbx3uh_sxdM-I3fXV7-XN_PbXz9Xy8XtHKuyHucopUMnjDTAG1M3ptVQlmApOoccDUXDDaOA2CKghApRMK2F0EZAC5zPyGqva6Jeq23yG50eVNRePQZi6pTOhWNvlRBcGCacE21TSilyukDDwFpWtcw0WevHXms7tRtrMPuQdH8kevwS_L3q4l9FgZZVLSErfH1SSPHPZIdRbfyA2SsdbJwGxRqopaybXMqMfHmFruOUQvbqkapKgKb-T3U6d-CDi_lj3ImqhahoIxhlZaYu36DyMnbjMY-I8zl-lPD5sNOXFp8HIQPf9gCmOAzJuheEgtqNmjoctYyzVzj6UY8-7nzy_dtJ_wD-4NUg |
CitedBy_id | crossref_primary_10_17827_aktd_1439689 crossref_primary_10_1055_a_2163_2586 crossref_primary_10_1080_22423982_2024_2438429 crossref_primary_10_2196_60697 crossref_primary_10_31083_j_rcm2409265 crossref_primary_10_34172_hpp_2023_22 crossref_primary_10_3390_jpm14060559 crossref_primary_10_2147_AMEP_S469116 crossref_primary_10_1109_JSEN_2024_3424901 crossref_primary_10_3390_jcm13247691 crossref_primary_10_3390_medicina61010085 crossref_primary_10_1055_a_2359_0809 crossref_primary_10_1080_14796678_2024_2348898 crossref_primary_10_7759_cureus_48670 crossref_primary_10_3390_s24061883 crossref_primary_10_1016_j_jrras_2024_101012 crossref_primary_10_3390_healthcare11212906 crossref_primary_10_1007_s11886_024_02062_1 crossref_primary_10_3390_jcm13174979 crossref_primary_10_7759_cureus_70369 crossref_primary_10_3390_bioengineering11030222 crossref_primary_10_3390_diagnostics14111103 crossref_primary_10_3390_bioengineering11121239 crossref_primary_10_12968_hmed_2024_0847 crossref_primary_10_3390_diagnostics14171839 |
Cites_doi | 10.1088/1361-6579/ac08e6 10.1007/s10916-009-9355-9 10.3390/diagnostics12030654 10.1093/ehjdh/ztac072 10.1161/01.CIR.101.23.e215 10.22489/CinC.2017.065-469 10.1088/1361-6579/ac79fd 10.1016/j.compbiomed.2018.06.002 10.1186/s12911-021-01453-6 10.1161/CIRCULATIONAHA.120.047829 10.3389/fnins.2023.1153386 10.1093/eurheartj/ehaa1065 10.3390/s21124105 10.1371/journal.pone.0216756 10.1016/j.artmed.2007.04.001 10.1109/JBHI.2018.2871510 10.1097/MAT.0000000000001218 10.1093/ehjdh/ztac013 10.14309/ajg.0000000000001617 10.1016/j.resuscitation.2019.06.206 10.1093/ehjdh/ztab080 10.1109/ICMLA51294.2020.00176 10.3390/s20195606 10.1016/j.jacep.2022.09.011 10.1016/j.jelectrocard.2022.10.010 10.1161/JAHA.122.026974 10.1016/j.mayocp.2021.04.023 10.1161/CIRCHEARTFAILURE.119.006513 10.1016/j.artmed.2022.102289 10.1093/ehjqcco/qcab037 10.1016/j.compbiomed.2017.08.022 10.1038/s41591-022-02053-1 10.3390/e22060595 10.31661/jbpe.v0i0.1235 10.1016/S0140-6736(19)31721-0 10.1007/s13246-020-00964-2 10.1016/j.cvdhj.2022.04.001 10.1038/s41746-021-00550-0 10.1161/01.CIR.41.4.667 10.1161/JAHA.120.019065 10.15420/cfr.2019.14 10.1016/j.isci.2020.100886 10.1136/bmjhci-2021-100323 10.3389/fdgth.2020.584555 10.1093/eurheartj/ehab588 10.1016/j.isci.2021.102373 10.1161/JAHA.122.026196 10.1161/CIRCOUTCOMES.118.005289 10.1088/1361-6579/ac6f40 10.1038/s41598-023-28325-5 10.1016/j.jelectrocard.2020.02.008 10.1088/1361-6579/ac6e55 10.1001/jamacardio.2018.0136 10.1016/j.cjca.2020.02.096 10.1016/j.mayocp.2021.05.027 10.1016/j.hroo.2022.02.004 10.1016/j.ijcard.2015.03.074 10.1016/j.ins.2023.01.055 10.1109/TBME.2021.3135622 10.1016/j.hrthm.2020.02.015 10.1088/1361-6579/ac70a4 10.1016/j.jacc.2022.01.005 10.1016/j.jelectrocard.2021.10.009 10.1109/TBME.2016.2539421 10.1016/j.jelectrocard.2006.02.002 10.1001/jamacardio.2021.2746 10.3390/jpm12050764 10.1161/JAHA.122.026067 10.3389/fcvm.2022.1001982 10.1161/CIRCULATIONAHA.121.057869 10.1093/europace/euaa377 10.3390/electronics9010135 10.1016/j.ijcard.2015.02.014 10.1161/JAHA.119.013748 10.1038/s41591-018-0240-2 10.1038/s41598-022-24254-x 10.3389/frsip.2022.866047 10.1093/ehjdh/ztac025 10.1038/s41598-021-86013-8 10.1038/s41591-020-0870-z 10.1016/j.amjmed.2013.10.003 10.1161/JAHA.119.014717 10.1007/s13534-021-00184-x 10.1088/1361-6579/abc960 10.1038/s41440-020-00592-z 10.3390/s20102875 10.1038/s41591-018-0268-3 10.1038/s41467-020-15432-4 10.3390/s21206848 10.1038/s41598-020-77599-6 10.1371/journal.pone.0150144 10.1016/j.amjcard.2021.06.021 10.1016/j.artmed.2020.101856 10.1101/2020.08.11.20172601 10.1016/j.ijcard.2021.01.002 10.1016/j.jelectrocard.2021.06.006 10.1093/cvr/cvab341 10.1016/S2589-7500(20)30108-4 10.1016/j.jelectrocard.2007.03.008 10.1007/s11517-018-1815-2 10.3390/jpm12050700 10.1038/s41598-020-65105-x 10.3390/e22070733 10.1161/JAHA.121.023222 10.1016/j.cvdhj.2021.08.002 10.3390/s22249872 10.1016/j.cvdhj.2022.07.071 10.2215/CJN.09420818 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/jcdd10040175 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2308-3425 |
ExternalDocumentID | oai_doaj_org_article_7737d27ff7b84997b037cd20ee25b2d8 PMC10145690 A751872124 37103054 10_3390_jcdd10040175 |
Genre | Journal Article Review |
GeographicLocations | Spain |
GeographicLocations_xml | – name: Spain |
GrantInformation_xml | – fundername: European Union grantid: 965286 |
GroupedDBID | 53G 5VS 7X7 8FI 8FJ AADQD AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR CCPQU CITATION EMOBN FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR ITC KQ8 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY RPM UKHRP NPM PMFND 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c546t-c99fcf7d9d038d68dba0440e1cffc3cd1cd3d210ccbc0c905cc72aa77ad70b033 |
IEDL.DBID | DOA |
ISSN | 2308-3425 |
IngestDate | Wed Aug 27 01:28:27 EDT 2025 Thu Aug 21 18:37:55 EDT 2025 Fri Jul 11 07:36:36 EDT 2025 Mon Jun 30 04:00:39 EDT 2025 Tue Jun 17 21:26:13 EDT 2025 Tue Jun 10 20:50:28 EDT 2025 Thu Jan 02 22:53:12 EST 2025 Thu Apr 24 23:04:13 EDT 2025 Tue Jul 01 01:48:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | deep learning cost effectiveness diagnosis machine learning prognosis artificial intelligence electrocardiography |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c546t-c99fcf7d9d038d68dba0440e1cffc3cd1cd3d210ccbc0c905cc72aa77ad70b033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0289-6229 |
OpenAccessLink | https://doaj.org/article/7737d27ff7b84997b037cd20ee25b2d8 |
PMID | 37103054 |
PQID | 2806540086 |
PQPubID | 5046891 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7737d27ff7b84997b037cd20ee25b2d8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10145690 proquest_miscellaneous_2806996877 proquest_journals_2806540086 gale_infotracmisc_A751872124 gale_infotracacademiconefile_A751872124 pubmed_primary_37103054 crossref_primary_10_3390_jcdd10040175 crossref_citationtrail_10_3390_jcdd10040175 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of cardiovascular development and disease |
PublicationTitleAlternate | J Cardiovasc Dev Dis |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kwon (ref_60) 2020; 59 Shrivastava (ref_92) 2021; 155 Shah (ref_33) 2007; 40 Anh (ref_67) 2006; 39 Jing (ref_58) 2022; 146 Liu (ref_50) 2023; 13 Choi (ref_89) 2022; 3 Maille (ref_75) 2021; 331 Hatem (ref_94) 2021; 118 Gustafsson (ref_101) 2022; 12 Lin (ref_72) 2022; 5 Antoniades (ref_103) 2021; 42 Goldberger (ref_112) 2000; 101 Mazidi (ref_76) 2022; 12 Bollepalli (ref_84) 2021; 10 Shen (ref_36) 2023; 21 Tison (ref_93) 2022; 79 Attia (ref_95) 2021; 96 Yamaguchi (ref_110) 2021; 44 Jo (ref_21) 2021; 67 Ren (ref_47) 2023; 17 Sabut (ref_34) 2021; 44 Puszkarski (ref_31) 2022; 43 Frohnert (ref_12) 1970; 41 Ganti (ref_107) 2022; 11 Alday (ref_46) 2020; 41 Su (ref_102) 2021; 11 Zhang (ref_62) 2021; 24 Kwon (ref_59) 2020; 9 Wilson (ref_5) 2021; 28 Reyna (ref_48) 2021; 48 Teplitzky (ref_4) 2020; 17 Cho (ref_100) 2020; 10 Quintanilla (ref_69) 2018; 88 Acharya (ref_30) 2017; 89 Chen (ref_111) 2020; 23 Ribeiro (ref_25) 2020; 11 Lip (ref_66) 2021; 8 Stehlik (ref_71) 2020; 13 Srivastava (ref_3) 2022; 43 Xu (ref_28) 2022; 43 Mannhart (ref_79) 2023; 9 McLaren (ref_97) 2023; 76 Kwon (ref_90) 2020; 2 Makimoto (ref_61) 2020; 10 ref_81 ref_80 Rogovoy (ref_74) 2019; 8 ref_87 Zhu (ref_27) 2021; 42 ref_86 ref_85 Li (ref_10) 2016; 64 Sayantan (ref_17) 2018; 56 Reyna (ref_49) 2022; 43 Ahn (ref_91) 2021; 117 Sivanandarajah (ref_108) 2022; 3 Irusta (ref_39) 2019; 142 Bachtiger (ref_104) 2020; 6 Asirvatham (ref_20) 2019; 394 Attia (ref_53) 2022; 28 Tison (ref_82) 2018; 3 Harmon (ref_109) 2021; 2 Oh (ref_18) 2018; 102 Li (ref_14) 2021; 21 Raghunath (ref_65) 2021; 143 Ariza (ref_98) 2021; 69 ref_54 Badertscher (ref_32) 2022; 3 Cho (ref_52) 2020; 67 Abdou (ref_77) 2022; 2 Zhang (ref_15) 2020; 106 Grogan (ref_56) 2021; 96 Hughes (ref_24) 2021; 6 Tison (ref_57) 2019; 12 Akbilgic (ref_70) 2021; 2 ref_63 Attia (ref_51) 2019; 25 Alzueta (ref_64) 2019; 22 Malik (ref_9) 2021; 69 Calvo (ref_68) 2015; 186 Hannun (ref_22) 2019; 25 Haseena (ref_16) 2009; 35 Quartieri (ref_11) 2022; 3 Fiorina (ref_29) 2022; 11 ref_35 Raghunath (ref_73) 2020; 26 Lou (ref_88) 2022; 4 Chang (ref_23) 2020; 37 ref_38 Prifti (ref_96) 2021; 42 Taggar (ref_19) 2015; 184 Rudolph (ref_55) 2021; 2 ref_106 ref_105 Somani (ref_1) 2021; 23 Xu (ref_26) 2018; 23 ref_45 ref_44 Cascella (ref_37) 2021; 10 ref_43 ref_41 ref_40 Deevi (ref_83) 2021; 11 Akoum (ref_6) 2019; 14 Barrett (ref_78) 2014; 127 Gong (ref_42) 2023; 626 Averbuch (ref_2) 2022; 3 Ahsan (ref_13) 2022; 128 Exarchos (ref_8) 2007; 40 Chen (ref_99) 2022; 9 ref_7 |
References_xml | – volume: 42 start-page: 065008 year: 2021 ident: ref_27 article-title: Identification of 27 abnormalities from multi-lead ECG signals: An ensembled SE_ResNet framework with Sign Loss function publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ac08e6 – volume: 35 start-page: 179 year: 2009 ident: ref_16 article-title: Fuzzy Clustered Probabilistic and Multi Layered Feed Forward Neural Networks for Electrocardiogram Arrhythmia Classification publication-title: J. Med. Syst. doi: 10.1007/s10916-009-9355-9 – ident: ref_54 doi: 10.3390/diagnostics12030654 – volume: 4 start-page: 22 year: 2022 ident: ref_88 article-title: Development and validation of a dynamic deep learning algorithm using electrocardiogram to predict dyskalaemias in patients with multiple visits publication-title: Eur. Heart J. -Digit. Health doi: 10.1093/ehjdh/ztac072 – volume: 101 start-page: e215 year: 2000 ident: ref_112 article-title: PhysioBank, Phys-ioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – ident: ref_44 doi: 10.22489/CinC.2017.065-469 – volume: 43 start-page: 084001 year: 2022 ident: ref_49 article-title: Issues in the automated classification of multilead ecgs using heterogeneous labels and populations publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ac79fd – volume: 102 start-page: 278 year: 2018 ident: ref_18 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.06.002 – volume: 21 start-page: 99 year: 2021 ident: ref_14 article-title: A particle swarm optimization improved BP neural network intelligent model for electrocardiogram classification publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-021-01453-6 – volume: 143 start-page: 1287 year: 2021 ident: ref_65 article-title: Deep Neural Networks Can Predict New-Onset Atrial Fibrillation From the 12-Lead ECG and Help Identify Those at Risk of Atrial Fibrillation–Related Stroke publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.120.047829 – volume: 17 start-page: 1153386 year: 2023 ident: ref_47 article-title: Dynamic ECG signal quality evaluation based on persistent homology and GoogLeNet method publication-title: Front Neurosci. doi: 10.3389/fnins.2023.1153386 – volume: 42 start-page: 732 year: 2021 ident: ref_103 article-title: The year in cardiovascular medicine 2020: Digital health and innovation publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehaa1065 – ident: ref_41 doi: 10.3390/s21124105 – ident: ref_40 doi: 10.1371/journal.pone.0216756 – volume: 40 start-page: 187 year: 2007 ident: ref_8 article-title: A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2007.04.001 – volume: 23 start-page: 1574 year: 2018 ident: ref_26 article-title: Towards End-to-End ECG Classification with Raw Signal Extraction and Deep Neural Networks publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2871510 – volume: 67 start-page: 314 year: 2020 ident: ref_52 article-title: Artificial Intelligence Algorithm for Screening Heart Failure with Reduced Ejection Fraction Using Electrocardiography publication-title: ASAIO J. doi: 10.1097/MAT.0000000000001218 – volume: 3 start-page: 255 year: 2022 ident: ref_89 article-title: Electrocardiographic biomarker based on machine learning for detecting overt hyperthyroidism publication-title: Eur. Heart J. -Digit. Health doi: 10.1093/ehjdh/ztac013 – volume: 117 start-page: 424 year: 2021 ident: ref_91 article-title: Development of the AI-Cirrhosis-ECG Score: An Electrocardiogram-Based Deep Learning Model in Cirrhosis publication-title: Am. J. Gastroenterol. doi: 10.14309/ajg.0000000000001617 – volume: 142 start-page: e85 year: 2019 ident: ref_39 article-title: Deep learning approach for a shock advise algorithm using short electrocardiogram analysis intervals publication-title: Resuscitation doi: 10.1016/j.resuscitation.2019.06.206 – volume: 2 start-page: 626 year: 2021 ident: ref_70 article-title: ECG-AI: Electrocardiographic artificial intelligence model for prediction of heart failure publication-title: Eur. Heart J. -Digit. Health doi: 10.1093/ehjdh/ztab080 – ident: ref_86 doi: 10.1109/ICMLA51294.2020.00176 – ident: ref_105 doi: 10.3390/s20195606 – volume: 9 start-page: 232 year: 2023 ident: ref_79 article-title: Clinical Validation of 5 Direct-to-Consumer Wearable Smart Devices to Detect Atrial Fibrillation publication-title: JACC Clin. Electrophysiol. doi: 10.1016/j.jacep.2022.09.011 – volume: 76 start-page: 39 year: 2023 ident: ref_97 article-title: Kenichi Harumi Plenary Address at Annual Meeting of the International Society of Computers in Electrocardiology: “What Should ECG Deep Learning Focus on? The diagnosis of acute coronary occlusion!” publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2022.10.010 – volume: 21 start-page: e026974 year: 2023 ident: ref_36 article-title: Convolution Neural Network Algorithm for Shockable Arrhythmia Classification Within a Digitally Connected Automated External Defibrillator publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.122.026974 – volume: 96 start-page: 2768 year: 2021 ident: ref_56 article-title: Artificial Intelligence–Enhanced Electrocardiogram for the Early Detection of Cardiac Amyloidosis publication-title: Mayo Clin. Proc. doi: 10.1016/j.mayocp.2021.04.023 – volume: 13 start-page: e006513 year: 2020 ident: ref_71 article-title: Continuous Wearable Monitoring Analytics Predict Heart Failure Hospitalization publication-title: Circ. Heart Fail. doi: 10.1161/CIRCHEARTFAILURE.119.006513 – volume: 128 start-page: 102289 year: 2022 ident: ref_13 article-title: Machine learning-based heart disease diagnosis: A systematic literature review publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2022.102289 – volume: 8 start-page: 548 year: 2021 ident: ref_66 article-title: Improving dynamic stroke risk prediction in non-anticoagulated patients with and without atrial fibrillation: Comparing common clinical risk scores and machine learning algorithms publication-title: Eur. Heart J. -Qual. Care Clin. Outcomes doi: 10.1093/ehjqcco/qcab037 – volume: 89 start-page: 389 year: 2017 ident: ref_30 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.08.022 – volume: 28 start-page: 2497 year: 2022 ident: ref_53 article-title: Prospective evaluation of smartwatch-enabled detection of left ventricular dysfunction publication-title: Nat. Med. doi: 10.1038/s41591-022-02053-1 – ident: ref_43 doi: 10.3390/e22060595 – volume: 12 start-page: 61 year: 2022 ident: ref_76 article-title: Premature Ventricular Contraction (PVC) Detection System Based on Tunable Q-Factor Wavelet Transform publication-title: J. Biomed. Phys. Eng. doi: 10.31661/jbpe.v0i0.1235 – volume: 394 start-page: 861 year: 2019 ident: ref_20 article-title: An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction publication-title: Lancet doi: 10.1016/S0140-6736(19)31721-0 – volume: 44 start-page: 135 year: 2021 ident: ref_34 article-title: Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-020-00964-2 – volume: 3 start-page: 136 year: 2022 ident: ref_108 article-title: Is machine learning the future for atrial fibrillation screening? publication-title: Cardiovasc. Digit. Health J. doi: 10.1016/j.cvdhj.2022.04.001 – volume: 22 start-page: 704 year: 2019 ident: ref_64 article-title: Personalized monitoring of electrical remodelling during atrial fibrillation progression via remote transmissions from implantable devices publication-title: Europace – volume: 5 start-page: 8 year: 2022 ident: ref_72 article-title: Point-of-care artificial intelligence-enabled ECG for dyskalemia: A retrospective cohort analysis for accuracy and outcome prediction publication-title: NPJ Digit. Med. doi: 10.1038/s41746-021-00550-0 – volume: 41 start-page: 667 year: 1970 ident: ref_12 article-title: Statistical Investigation of Correlations Between Serum Potassium Levels and Electrocardiographic Findings in Patients on Intermittent Hemodialysis Therapy publication-title: Circulation doi: 10.1161/01.CIR.41.4.667 – volume: 10 start-page: e019065 year: 2021 ident: ref_37 article-title: Deep Neural Network Approach for Continuous ECG-Based Automated External Defibrillator Shock Advisory System During Cardiopulmonary Resuscitation publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.120.019065 – volume: 6 start-page: e11 year: 2020 ident: ref_104 article-title: Artificial Intelligence, Data Sensors and Interconnectivity: Future Opportunities for Heart Failure publication-title: Card. Fail. Rev. doi: 10.15420/cfr.2019.14 – volume: 23 start-page: 100886 year: 2020 ident: ref_111 article-title: Detection and Classification of Cardiac Arrhythmias by a Challenge-Best Deep Learning Neural Network Model publication-title: iScience doi: 10.1016/j.isci.2020.100886 – volume: 28 start-page: e100323 year: 2021 ident: ref_5 article-title: Artificial intelligence projects in healthcare: 10 practical tips for success in a clinical environment publication-title: BMJ Health Care Inform. doi: 10.1136/bmjhci-2021-100323 – volume: 2 start-page: 584555 year: 2021 ident: ref_55 article-title: Identifying Heart Failure in ECG Data with Artificial Intelligence—A Meta-Analysis publication-title: Front. Digit. Health doi: 10.3389/fdgth.2020.584555 – volume: 42 start-page: 3948 year: 2021 ident: ref_96 article-title: Deep learning analysis of electrocardiogram for risk prediction of drug-induced arrhythmias and diagnosis of long QT syndrome publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehab588 – volume: 24 start-page: 102373 year: 2021 ident: ref_62 article-title: Interpretable deep learning for automatic diagnosis of 12-lead electrocardiogram publication-title: iScience doi: 10.1016/j.isci.2021.102373 – volume: 11 start-page: e026196 year: 2022 ident: ref_29 article-title: Evaluation of an Ambulatory ECG Analysis Platform Using Deep Neural Networks in Routine Clinical Practice publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.122.026196 – volume: 12 start-page: e005289 year: 2019 ident: ref_57 article-title: Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery publication-title: Circ. Cardiovasc. Qual. Outcomes doi: 10.1161/CIRCOUTCOMES.118.005289 – volume: 43 start-page: 064005 year: 2022 ident: ref_3 article-title: A deep residual inception network with channel attention modules for multi-label cardiac abnormality detection from reduced-lead ECG publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ac6f40 – volume: 13 start-page: 2556 year: 2023 ident: ref_50 article-title: Left ventricular hypertrophy detection using electrocardiographic signal publication-title: Sci. Rep. doi: 10.1038/s41598-023-28325-5 – volume: 59 start-page: 151 year: 2020 ident: ref_60 article-title: Artificial intelligence for detecting mitral regurgitation using electrocardiography publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2020.02.008 – volume: 43 start-page: 064006 year: 2022 ident: ref_31 article-title: Comparison of neural basis expansion analysis for interpretable time series (N-BEATS) and recurrent neural networks for heart dysfunction classification publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ac6e55 – volume: 3 start-page: 409 year: 2018 ident: ref_82 article-title: Passive Detection of Atrial Fibrillation Using a Commercially Available Smartwatch publication-title: JAMA Cardiol. doi: 10.1001/jamacardio.2018.0136 – volume: 37 start-page: 94 year: 2020 ident: ref_23 article-title: Usefulness of Machine Learning-Based Detection and Classification of Cardiac Arrhythmias With 12-Lead Electrocardiograms publication-title: Can. J. Cardiol. doi: 10.1016/j.cjca.2020.02.096 – volume: 96 start-page: 2081 year: 2021 ident: ref_95 article-title: Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram publication-title: Mayo Clin. Proc. doi: 10.1016/j.mayocp.2021.05.027 – volume: 3 start-page: 208 year: 2022 ident: ref_32 article-title: Clinical validation of a novel smartwatch for automated detection of atrial fibrillation publication-title: Heart Rhythm. O2 doi: 10.1016/j.hroo.2022.02.004 – volume: 186 start-page: 250 year: 2015 ident: ref_68 article-title: Spectral analysis-based risk score enables early prediction of mortality and cerebral performance in patients undergoing therapeutic hypothermia for ventricular fibrillation and comatose status publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2015.03.074 – volume: 626 start-page: 754 year: 2023 ident: ref_42 article-title: Transfer learning based deep network for signal restoration and rhythm analysis during cardiopulmonary resuscitation using only the ECG waveform publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.01.055 – volume: 69 start-page: 1788 year: 2021 ident: ref_9 article-title: Real-Time Patient-Specific ECG Classification by 1D Self-Operational Neural Networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3135622 – volume: 17 start-page: 881 year: 2020 ident: ref_4 article-title: Deep learning for comprehensive ECG annotation publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2020.02.015 – volume: 48 start-page: 1 year: 2021 ident: ref_48 article-title: Will Two Do? Varying Dimensions in Electrocardiography: The PhysioNet/Computing in Cardiology Challenge 2021 publication-title: Comput. Cardiol. – volume: 43 start-page: 074002 year: 2022 ident: ref_28 article-title: Abnormality classification from electrocardiograms with various lead combinations publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ac70a4 – volume: 79 start-page: 1032 year: 2022 ident: ref_93 article-title: Assessment of Disease Status and Treatment Response with Artificial Intelligence−Enhanced Electrocardiography in Obstructive Hypertrophic Cardiomyopathy publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2022.01.005 – volume: 69 start-page: 140 year: 2021 ident: ref_98 article-title: Rational and design of ST-segment elevation not associated with acute cardiac necrosis (LESTONNAC). A prospective registry for validation of a deep learning system assisted by artificial intelligence publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2021.10.009 – volume: 64 start-page: 78 year: 2016 ident: ref_10 article-title: High-Performance Personalized Heartbeat Classification Model for Long-Term ECG Signal publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2539421 – volume: 39 start-page: 343 year: 2006 ident: ref_67 article-title: Accuracy of electrocardiogram interpretation by cardiologists in the setting of incorrect computer analysis publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2006.02.002 – volume: 6 start-page: 1285 year: 2021 ident: ref_24 article-title: Performance of a Convolutional Neural Network and Explainability Technique for 12-Lead Electrocardiogram Interpretation publication-title: JAMA Cardiol. doi: 10.1001/jamacardio.2021.2746 – ident: ref_35 doi: 10.3390/jpm12050764 – volume: 11 start-page: e026067 year: 2022 ident: ref_107 article-title: Wearable Seismocardiography-Based Assessment of Stroke Volume in Congenital Heart Disease publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.122.026067 – volume: 9 start-page: 1001982 year: 2022 ident: ref_99 article-title: Artificial intelligence-assisted remote detection of ST-elevation myocardial infarction using a mini-12-lead electrocardiogram device in prehospital ambulance care publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2022.1001982 – ident: ref_87 – volume: 146 start-page: 36 year: 2022 ident: ref_58 article-title: rECHOmmend: An ECG-Based Machine Learning Approach for Identifying Patients at Increased Risk of Undiagnosed Structural Heart Disease Detectable by Echocardiography publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.121.057869 – volume: 23 start-page: 1179 year: 2021 ident: ref_1 article-title: Deep learning and the electrocardiogram: Review of the current state-of-the-art publication-title: Europace doi: 10.1093/europace/euaa377 – ident: ref_85 doi: 10.3390/electronics9010135 – volume: 184 start-page: 175 year: 2015 ident: ref_19 article-title: Accuracy of methods for diagnosing atrial fibrillation using 12-lead ECG: A systematic review and meta-analysis publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2015.02.014 – volume: 8 start-page: e013748 year: 2019 ident: ref_74 article-title: Hemodialysis Procedure–Associated Autonomic Imbalance and Cardiac Arrhythmias: Insights From Continuous 14-Day ECG Monitoring publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.119.013748 – volume: 25 start-page: 70 year: 2019 ident: ref_51 article-title: Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram publication-title: Nat. Med. doi: 10.1038/s41591-018-0240-2 – volume: 12 start-page: 19615 year: 2022 ident: ref_101 article-title: Development and validation of deep learning ECG-based prediction of myocardial infarction in emergency department patients publication-title: Sci. Rep. doi: 10.1038/s41598-022-24254-x – volume: 2 start-page: 866047 year: 2022 ident: ref_77 article-title: Horizons in Single-Lead ECG Analysis from Devices to Data publication-title: Front. Signal Process. doi: 10.3389/frsip.2022.866047 – volume: 3 start-page: 311 year: 2022 ident: ref_2 article-title: Applications of artificial intelligence and machine learning in heart failure publication-title: Eur. Heart J. -Digit. Health doi: 10.1093/ehjdh/ztac025 – volume: 11 start-page: 6358 year: 2021 ident: ref_102 article-title: A modified cardiac triage strategy reduces door to ECG time in patients with ST elevation myocardial infarction publication-title: Sci. Rep. doi: 10.1038/s41598-021-86013-8 – volume: 26 start-page: 886 year: 2020 ident: ref_73 article-title: Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network publication-title: Nat. Med. doi: 10.1038/s41591-020-0870-z – volume: 127 start-page: 95.e11 year: 2014 ident: ref_78 article-title: Comparison of 24-hour Holter Monitoring with 14-day Novel Adhesive Patch Electrocardiographic Monitoring publication-title: Am. J. Med. doi: 10.1016/j.amjmed.2013.10.003 – volume: 9 start-page: e014717 year: 2020 ident: ref_59 article-title: Deep Learning–Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.119.014717 – volume: 11 start-page: 69 year: 2021 ident: ref_83 article-title: HeartNetEC: A deep representation learning approach for ECG beat classification publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-021-00184-x – volume: 41 start-page: 124003 year: 2020 ident: ref_46 article-title: Classification of 12-lead ECGs: The PhysioNet/Computing in Cardiology Challenge 2020 publication-title: Physiol. Meas. doi: 10.1088/1361-6579/abc960 – volume: 44 start-page: 571 year: 2021 ident: ref_110 article-title: Electrocardiogram findings at the initiation of hemodialysis and types of subsequent cardiovascular events publication-title: Hypertens. Res. doi: 10.1038/s41440-020-00592-z – volume: 88 start-page: 460 year: 2018 ident: ref_69 article-title: Early prognostic value of an Algorithm based on spectral Variables of Ventricular fibrillAtion from the EKG of patients with suddEn cardiac death: A multicentre observational study (AWAKE) publication-title: Arch. Cardiol. Mex. – ident: ref_38 doi: 10.3390/s20102875 – volume: 25 start-page: 65 year: 2019 ident: ref_22 article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network publication-title: Nat. Med. doi: 10.1038/s41591-018-0268-3 – volume: 11 start-page: 1760 year: 2020 ident: ref_25 article-title: Automatic diagnosis of the 12-lead ECG using a deep neural network publication-title: Nat. Commun. doi: 10.1038/s41467-020-15432-4 – ident: ref_63 doi: 10.3390/s21206848 – volume: 10 start-page: 20495 year: 2020 ident: ref_100 article-title: Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography publication-title: Sci. Rep. doi: 10.1038/s41598-020-77599-6 – ident: ref_80 doi: 10.1371/journal.pone.0150144 – volume: 155 start-page: 121 year: 2021 ident: ref_92 article-title: Artificial Intelligence-Enabled Electrocardiography to Screen Patients with Dilated Cardiomyopathy publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2021.06.021 – volume: 106 start-page: 101856 year: 2020 ident: ref_15 article-title: ECG-based multi-class arrhythmia detection using spatio-temporal attention-based convolutional recurrent neural network publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2020.101856 – ident: ref_45 doi: 10.1101/2020.08.11.20172601 – volume: 331 start-page: 333 year: 2021 ident: ref_75 article-title: Smartwatch Electrocardiogram and Artificial Intelligence for Assessing Cardiac-Rhythm Safety of Drug Therapy in the COVID-19 Pandemic. The QT-logs study publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2021.01.002 – volume: 67 start-page: 124 year: 2021 ident: ref_21 article-title: Detection and classification of arrhythmia using an explainable deep learning model publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2021.06.006 – volume: 118 start-page: e4 year: 2021 ident: ref_94 article-title: Atrial fibrillation and stroke: Are we looking in the right direction? publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvab341 – volume: 2 start-page: e358 year: 2020 ident: ref_90 article-title: A deep learning algorithm to detect anaemia with ECGs: A retrospective, multicentre study publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(20)30108-4 – volume: 40 start-page: 385 year: 2007 ident: ref_33 article-title: Errors in the computerized electrocardiogram interpretation of cardiac rhythm publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2007.03.008 – volume: 56 start-page: 1887 year: 2018 ident: ref_17 article-title: Classification of ECG beats using deep belief network and active learning publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-018-1815-2 – ident: ref_7 doi: 10.3390/jpm12050700 – volume: 10 start-page: 8445 year: 2020 ident: ref_61 article-title: Performance of a convolutional neural network derived from an ECG database in recognizing myocardial infarction publication-title: Sci. Rep. doi: 10.1038/s41598-020-65105-x – ident: ref_81 doi: 10.3390/e22070733 – volume: 10 start-page: e023222 year: 2021 ident: ref_84 article-title: Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.121.023222 – volume: 2 start-page: 282 year: 2021 ident: ref_109 article-title: Diagnosis and treatment of new heart failure with reduced ejection fraction by the artificial intelligence–enhanced electrocardiogram publication-title: Cardiovasc. Digit. Health J. doi: 10.1016/j.cvdhj.2021.08.002 – ident: ref_106 doi: 10.3390/s22249872 – volume: 3 start-page: 201 year: 2022 ident: ref_11 article-title: Artificial intelligence augments detection accuracy of cardiac insertable cardiac monitors: Results from a pilot prospective observational study publication-title: Cardiovasc. Digit. Health J. doi: 10.1016/j.cvdhj.2022.07.071 – volume: 14 start-page: 549 year: 2019 ident: ref_6 article-title: Rates of Cardiac Rhythm Abnormalities in Patients with CKD and Diabetes publication-title: Clin. J. Am. Soc. Nephrol. doi: 10.2215/CJN.09420818 |
SSID | ssj0001342012 |
Score | 2.447543 |
SecondaryResourceType | review_article |
Snippet | Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 175 |
SubjectTerms | Accuracy Algorithms Artificial intelligence Automation Cardiac arrhythmia Cardiology Cardiovascular agents Classification deep learning diagnosis Electrocardiogram Electrocardiography Emergency medical care Heart Heart beat Learning strategies machine learning Neural networks Performance evaluation prognosis Review Software |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgL4k1KQUYCcUBRvXaSSU6ooK4WpHJipb1FztiGVigp3e3_74zj3W6E4BqPIz9mbI9n_H1CvCu1J39tVuSkTjov0Lu8tuS1hsYUTlmwSvNr5LPv1WJZfFuVq3Thtk5plds1MS7UbkC-Iz-OEcCCT-CfLv_kzBrF0dVEoXFX3GPoMtZqWMHtHYspaH_TY767Ie_--AKdY4w00sNyshNFwP6_l-W9fWmaM7m3Cc0fiYfp9ChPxul-LO74_om4f5bi40_FIsEtSds7OY9wIXK59nIIsc6IFiG_7sFwyvNeno5UOBhTU0cE62diOT_98WWRJ66EHMui2uTYNAEDuMYpU7uqdp1lMmk_wxDQoJuhM47cO8QOFTaqRARtLYB1oDplzHNx0A-9fykkFXhtNTLFXVEhdL4OJF_NKqydDioTH7fj1mICEmc-i98tORQ8yu3-KGfi_U76cgTQ-IfcZ56CnQzDXscPw9XPNllRC2DAaQgBuppcNaCGAzqtvNdlp12diQ88gS0bJzUJbXpjQB1jmKv2hINM5PPqIhNHE0kyKpwWb1WgTUa9bm9VMBNvd8VckxPVej9cjzLkQtYAmXgxasyuSwaY062kn9cTXZr0eVrSn_-KkN-RUblq1OH_2_VKPNB0CBszi47Ewebq2r-mQ9OmexMt4wZ4yhb6 priority: 102 providerName: ProQuest |
Title | Current and Future Use of Artificial Intelligence in Electrocardiography |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37103054 https://www.proquest.com/docview/2806540086 https://www.proquest.com/docview/2806996877 https://pubmed.ncbi.nlm.nih.gov/PMC10145690 https://doaj.org/article/7737d27ff7b84997b037cd20ee25b2d8 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEB70BPFFPH9d9W6poPgg5bJJ2mkf72SXVbhDxIV9K-kkwRPpHt7e_-8k6S0tIr742kxKMpnp5Gsm3wC8LaVjvDbXBZuTLDQ5W9SGUatvlLbCoBEy3Ea-uKxWa_15U25Gpb5CTliiB06KO0VUaCV6j13Nu3PshEKyUjgny07aeM2XY94ITMW_K0pzZJMp010xrj_9QdYGdjS2wHISgyJV_58f5FFEmmZLjsLP8gk8HvaN-Vka7yHcc_1TeHgxnIw_g9VAtJSb3ubLSBSSr29cvvWxT-KJyD-NCDjzqz5fpCI4FJNSE3f1c1gvF98-roqhSkJBpa52BTWNJ4-2sULVtqptZ0IZaTcn70mRnZNVloEdUUeCGlESoTQG0VgUrE31Ag76be-OIOcGJ42kUNxOV4Sdqz3LV_OKaiu9yODDnd5aGijEQyWLny1DiaDldqzlDN7tpa8TdcZf5M7DEuxlAuF1fMBm0A5m0P7LDDJ4HxawDW7JQyIz3C7giQWCq_YsHC8x2pU6g-OJJLsTTZvvTKAd3PmmjcfPOsC_DN7sm0PPkKLWu-1tkmHwWCNm8DJZzH5KCkM1t5JfXk9saTLnaUt_9T2SfcdaylUjXv0PLb2GR5I3aSnz6BgOdr9u3QlvqnbdDO7jBmfw4Hxx-eXrLHrTb0XWIds |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXxLuBAkai4oCiep2HkwNCBbrapd2eutLeTDK2oQglpbsV4k_xG5mxk-1GCG69xuPIj_GMxx5_H2OvMmkxXhulMaqTjFOwJi4qjFpdmaRGVKoSkl4jz07yyTz9tMgWW-x3_xaG0ip7m-gNtWmBzsj3_Q1gSjvwd-c_YmKNotvVnkIjqMWR_fUTQ7bl2-lHnN89KceHpx8mcccqEEOW5qsYytKBU6Y0IilMXpi6ItplOwLnIAEzApMYDIQAahBQigxAyapSqjJK1IIOQNHk30DHKyjYUwt1daaTpOhPZcivT5JS7H8DYwiTDfU-G3g-TxDwtxvY8IPDHM0Npze-y-50u1V-ENTrHtuyzX12c9bdxz9gkw7eiVeN4WMPT8LnS8tb5-sEdAo-3YD95GcNPwzUO-BTYQNi9kM2v5ZRfMS2m7axO4xjgZWVBKLUS3NQtS0cyuejHAojnYjYm37cNHTA5cSf8V1jAEOjrDdHOWJ7a-nzANjxD7n3NAVrGYLZ9h_aiy-6W7VaqUQZqZxTdYGhocKGKzBSWCuzWpoiYq9pAjUZA2wSVN2bBuwYwWrpA7rUwhhbphHbHUjiIoZhca8CujMiS32l8hF7uS6mmpQY19j2MshgyFooFbHHQWPWXUoUcchl-PNioEuDPg9LmrOvHmLcMzjnpXjy_3a9YLcmp7NjfTw9OXrKbkvcAIaspl22vbq4tM9ww7aqn_tVwtnn616WfwCAbVZl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqVRxQbwxFDASFQdkZbN-rH1AqKWJEkqjChGpN7Oe3S1FyC5NKsRf49cx40caC8Gt1-w42sc8dnZnvw_gVSwt5WujKCB1kkGE1gSppqzVZWFkhFZaSH6NfDxPpovow2l8ugW_u7cwXFbZ-cTaUZsK-Yx8WN8ARrwDH7q2LOLkcPLu4kfADFJ809rRaTQqcmR__aT0bfl2dkhrvSflZPz5_TRoGQYCjKNkFWCWOXTKZEaEqUlSU2imYLYjdA5DNCM0oaGkCLFAgZmIEZXUWiltlCgEH4aS-99WnBUNYPtgPD_5dH3CE0YUXWVTbR-GmRh-Q2MYoY2sIO7FwZou4O-gsBEV-xWbGyFwcgdut3tXf79RtruwZct7sHPc3s7fh2kL9uTr0viTGqzEXyytX7n6mwarwp9tgID656U_boh4sC6MbfCzH8DiRubxIQzKqrSPwacGK7VEJtiLElSFTR3JJ6MEUyOd8OBNN285tjDmzKbxPad0hmc535xlD_bW0hcNfMc_5A54CdYyDLpd_1BdnuWtDedKhcpI5ZwqUkoUFXVcoZHCWhkX0qQevOYFzNk1UJdQty8caGAMspXv8xUXZdwy8mC3J0kmjf3mTgXy1qUs82sD8ODlupm_5DK50lZXjQwlsKlSHjxqNGY9pFAxo1xMf572dKk35n5Lef61Bhyv-ZyTTDz5f79ewA6ZZP5xNj96Crck7QabEqddGKwur-wz2r2tiuetmfjw5aYt8w8S_FwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+and+Future+Use+of+Artificial+Intelligence+in+Electrocardiography&rft.jtitle=Journal+of+cardiovascular+development+and+disease&rft.au=Mart%C3%ADnez-Sell%C3%A9s%2C+Manuel&rft.au=Marina-Breysse%2C+Manuel&rft.date=2023-04-01&rft.issn=2308-3425&rft.eissn=2308-3425&rft.volume=10&rft.issue=4&rft.spage=175&rft_id=info:doi/10.3390%2Fjcdd10040175&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jcdd10040175 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2308-3425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2308-3425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2308-3425&client=summon |