Circular RNA Expression: Its Potential Regulation and Function
In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and ar...
Saved in:
Published in | Trends in genetics Vol. 32; no. 5; pp. 309 - 316 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and are spliced at canonical splice sites. This feature of gene expression was first recognized in humans and mouse, but it quickly emerged that it was common across essentially all eukaryotes studied by molecular biologists. CircRNA abundance, and even which alternatively spliced circRNA isoforms are expressed, varies by cell type and can exceed the abundance of the traditional linear mRNA or ncRNA transcript. CircRNAs are enriched in the brain and increase in abundance during fetal development. Together, these features raise fundamental questions regarding the regulation of circRNA in cis and in trans, and its function.
Many circRNAs have recently been discovered and characterized.
Recently, much light has been shed on the regulation and function of circRNAs
CircRNA has been posited to function as a miRNA or RNA-binding protein sponge. However, a general function has not been identified.
Developmental regulation of circRNA and enrichment in the nervous system are an emerging theme shared by circRNAs across the metazoan lineage, from flies to humans.
CircRNAs can be joined by 3′–5′ linkages, containing only exonic sequence; 2′–5′ linkages (intronic lariats); or 3′–5′ linkages that contain retained intronic sequences. |
---|---|
AbstractList | In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and are spliced at canonical splice sites. This feature of gene expression was first recognized in humans and mouse, but it quickly emerged that it was common across essentially all eukaryotes studied by molecular biologists. CircRNA abundance, and even which alternatively spliced circRNA isoforms are expressed, varies by cell type and can exceed the abundance of the traditional linear mRNA or ncRNA transcript. CircRNAs are enriched in the brain and increase in abundance during fetal development. Together, these features raise fundamental questions regarding the regulation of circRNA in cis and in trans, and its function.In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and are spliced at canonical splice sites. This feature of gene expression was first recognized in humans and mouse, but it quickly emerged that it was common across essentially all eukaryotes studied by molecular biologists. CircRNA abundance, and even which alternatively spliced circRNA isoforms are expressed, varies by cell type and can exceed the abundance of the traditional linear mRNA or ncRNA transcript. CircRNAs are enriched in the brain and increase in abundance during fetal development. Together, these features raise fundamental questions regarding the regulation of circRNA in cis and in trans, and its function. In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and are spliced at canonical splice sites. This feature of gene expression was first recognized in humans and mouse, but it quickly emerged that it was common across essentially all eukaryotes studied by molecular biologists. CircRNA abundance, and even which alternatively spliced circRNA isoforms are expressed, varies by cell type and can exceed the abundance of the traditional linear mRNA or ncRNA transcript. CircRNAs are enriched in the brain and increase in abundance during fetal development. Together, these features raise fundamental questions regarding the regulation of circRNA in cis and in trans, and its function. Many circRNAs have recently been discovered and characterized. Recently, much light has been shed on the regulation and function of circRNAs CircRNA has been posited to function as a miRNA or RNA-binding protein sponge. However, a general function has not been identified. Developmental regulation of circRNA and enrichment in the nervous system are an emerging theme shared by circRNAs across the metazoan lineage, from flies to humans. CircRNAs can be joined by 3′–5′ linkages, containing only exonic sequence; 2′–5′ linkages (intronic lariats); or 3′–5′ linkages that contain retained intronic sequences. In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and are spliced at canonical splice sites. This feature of gene expression was first recognized in humans and mouse, but it quickly emerged that it was common across essentially all eukaryotes studied by molecular biologists. CircRNA abundance, and even which alternatively spliced circRNA isoforms are expressed, varies by cell type and can exceed the abundance of the traditional linear mRNA or ncRNA transcript. CircRNAs are enriched in the brain and increase in abundance during fetal development. Together, these features raise fundamental questions regarding the regulation of circRNA in cis and in trans , and its function. In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and are spliced at canonical splice sites. This feature of gene expression was first recognized in humans and mouse, but it quickly emerged that it was common across essentially all eukaryotes studied by molecular biologists. CircRNA abundance, and even which alternatively spliced circRNA isoforms are expressed, varies by cell type and can exceed the abundance of the traditional linear mRNA or ncRNA transcript. CircRNAs are enriched in the brain and increase in abundance during fetal development. Together, these features raise fundamental questions regarding the regulation of circRNA in cis and in trans, and its function. |
Author | Salzman, Julia |
AuthorAffiliation | 1 Department of Biochemistry and Stanford Cancer Institute, Stanford University, Stanford, CA, USA |
AuthorAffiliation_xml | – name: 1 Department of Biochemistry and Stanford Cancer Institute, Stanford University, Stanford, CA, USA |
Author_xml | – sequence: 1 givenname: Julia surname: Salzman fullname: Salzman, Julia email: Julia.salzman@stanford.edu organization: Department of Biochemistry and Stanford Cancer Institute, Stanford University, Stanford, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27050930$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1v1DAQ9aGIfsAP4IJy5LJhHMeOA9JK1aqFShWgAueR49iLl6y92ElF_z0OWyqoROFiezTvvRnPm2Ny4IM3hDyjUFKg4uWmHN26rPKzBFYCVAfkKAdy0fKKH5LjlDYAwBvGH5PDqgEOLYMjsly5qKdBxeLq3Wlx9n0XTUou-FfFxZiKD2E0fnRqKK7MOqPGnCmU74vzyes5eEIeWTUk8_T2PiGfz88-rd4uLt-_uVidXi40r8WYT9bQSkmqmBZVrZmAvgZrFa1brqgQumedbCrbSdrZHFkuOLCON1aK3tbshCz3urup25pe566iGnAX3VbFGwzK4Z8Z777gOlxj3daybWUWeHErEMO3yaQRty5pMwzKmzAlpI1sWgmC0v-B1iC5qHmGPv-9rbt-fs03A-geoGNIKRp7B6GAs2-4wewbzr4hMMy-ZU5zj6Pd-HP0-WdueJD5es802YprZyIm7YzXpnfR6BH74B5kL--x9eC802r4am5M2oQp-uwxUkwVAn6ct2teLiryYrGqzQLt3wX-UfwHbm7bdg |
CitedBy_id | crossref_primary_10_1155_2022_4542487 crossref_primary_10_3390_cells11182791 crossref_primary_10_1155_2022_9461054 crossref_primary_10_1016_j_actbio_2022_01_020 crossref_primary_10_12677_ACM_2024_142573 crossref_primary_10_1038_s41598_023_40393_1 crossref_primary_10_1016_j_prp_2019_152620 crossref_primary_10_1515_med_2023_0751 crossref_primary_10_1016_j_neuroscience_2020_09_009 crossref_primary_10_1186_s12957_022_02777_x crossref_primary_10_1016_j_bej_2022_108386 crossref_primary_10_1016_j_neuroscience_2021_12_037 crossref_primary_10_1021_acs_jproteome_7b00519 crossref_primary_10_1002_jcla_23603 crossref_primary_10_1016_j_cotox_2019_02_008 crossref_primary_10_1038_s41467_020_20459_8 crossref_primary_10_1016_j_omtn_2021_01_032 crossref_primary_10_3389_fonc_2021_712145 crossref_primary_10_1080_0886022X_2023_2261552 crossref_primary_10_1016_j_bbrc_2018_02_036 crossref_primary_10_1002_elps_202400067 crossref_primary_10_1002_jcp_29165 crossref_primary_10_1016_j_prp_2024_155488 crossref_primary_10_62347_MYMM7384 crossref_primary_10_1016_j_ejphar_2022_174915 crossref_primary_10_2174_1389200224666230202155414 crossref_primary_10_1016_j_plantsci_2023_111828 crossref_primary_10_2217_epi_2022_0111 crossref_primary_10_1186_s13018_021_02323_7 crossref_primary_10_1016_j_jtbi_2017_02_024 crossref_primary_10_1016_j_biopha_2018_12_044 crossref_primary_10_1016_j_ijbiomac_2024_139305 crossref_primary_10_1038_s41419_023_06389_5 crossref_primary_10_3892_mmr_2019_10032 crossref_primary_10_3390_genes9030118 crossref_primary_10_1016_j_bbrc_2022_03_041 crossref_primary_10_2147_CMAR_S291218 crossref_primary_10_1186_s12864_022_08820_1 crossref_primary_10_1155_2022_2775433 crossref_primary_10_1186_s12943_019_1078_z crossref_primary_10_1016_j_biocel_2019_105621 crossref_primary_10_1007_s10792_024_03276_6 crossref_primary_10_1016_j_gendis_2020_11_014 crossref_primary_10_1089_ars_2017_7126 crossref_primary_10_1080_08916934_2022_2037129 crossref_primary_10_1155_2021_6724854 crossref_primary_10_3390_ijms22041857 crossref_primary_10_1038_s41467_023_38232_y crossref_primary_10_2147_CMAR_S280315 crossref_primary_10_1155_2021_6688629 crossref_primary_10_18632_aging_203740 crossref_primary_10_3390_biom13071101 crossref_primary_10_1016_j_semcancer_2018_12_002 crossref_primary_10_1073_pnas_2420383122 crossref_primary_10_3390_cells8090960 crossref_primary_10_18632_aging_203988 crossref_primary_10_3390_ijms21103666 crossref_primary_10_1002_jcp_29009 crossref_primary_10_1111_imm_12940 crossref_primary_10_1038_s41467_017_00690_6 crossref_primary_10_1007_s00441_017_2762_1 crossref_primary_10_1002_jcla_23625 crossref_primary_10_1126_sciadv_abb7426 crossref_primary_10_1186_s13287_022_03150_1 crossref_primary_10_1089_dna_2020_5994 crossref_primary_10_3390_molecules26041155 crossref_primary_10_1186_s13008_023_00084_9 crossref_primary_10_1515_jpem_2024_0449 crossref_primary_10_1007_s12672_024_01198_4 crossref_primary_10_1016_j_ygeno_2021_03_026 crossref_primary_10_3390_molecules21111451 crossref_primary_10_1097_MD_0000000000037813 crossref_primary_10_1186_s12943_021_01358_y crossref_primary_10_3390_ijms21186975 crossref_primary_10_1016_j_brainresbull_2024_110922 crossref_primary_10_1093_bib_bbac472 crossref_primary_10_1155_2022_3676685 crossref_primary_10_1007_s13273_023_00396_5 crossref_primary_10_1016_j_ncrna_2018_05_002 crossref_primary_10_3389_fgene_2023_1290420 crossref_primary_10_1080_21655979_2022_2054753 crossref_primary_10_2217_epi_2018_0023 crossref_primary_10_1007_s12640_022_00525_3 crossref_primary_10_1016_j_biopha_2024_117480 crossref_primary_10_1016_j_ygeno_2020_09_055 crossref_primary_10_3389_fgene_2021_663091 crossref_primary_10_3389_fgene_2021_696948 crossref_primary_10_1186_s12931_018_0962_1 crossref_primary_10_1002_jcsm_12859 crossref_primary_10_1186_s12935_021_02351_7 crossref_primary_10_1002_cbin_11532 crossref_primary_10_1371_journal_ppat_1009438 crossref_primary_10_1038_s41598_019_53063_y crossref_primary_10_3390_cancers12030629 crossref_primary_10_1016_j_rbmo_2024_104375 crossref_primary_10_3389_fcell_2023_1267792 crossref_primary_10_3389_pore_2022_1610037 crossref_primary_10_1016_j_canlet_2017_05_025 crossref_primary_10_1111_1759_7714_14820 crossref_primary_10_1631_jzus_B2200211 crossref_primary_10_1007_s10142_023_01197_8 crossref_primary_10_1177_1010428317704175 crossref_primary_10_1007_s12033_023_00658_6 crossref_primary_10_1007_s12374_024_09451_7 crossref_primary_10_1016_j_lfs_2023_121367 crossref_primary_10_1186_s12943_022_01606_9 crossref_primary_10_1002_ctm2_70100 crossref_primary_10_1038_s41419_024_06888_z crossref_primary_10_1080_21655979_2021_1960769 crossref_primary_10_1186_s12864_018_4660_7 crossref_primary_10_4081_ejh_2024_4063 crossref_primary_10_1002_ame2_12208 crossref_primary_10_1038_s41598_020_78469_x crossref_primary_10_14302_issn_2832_5311_jpcd_18_1955 crossref_primary_10_3390_cancers16050978 crossref_primary_10_3389_fgene_2019_00083 crossref_primary_10_3389_fphar_2018_00846 crossref_primary_10_1111_bph_13958 crossref_primary_10_1080_15384101_2021_1874684 crossref_primary_10_1155_2021_8388512 crossref_primary_10_3389_fonc_2025_1535929 crossref_primary_10_3390_genes15070958 crossref_primary_10_1080_00365521_2017_1365168 crossref_primary_10_1155_2021_8379962 crossref_primary_10_3390_biom11121755 crossref_primary_10_3390_v15081697 crossref_primary_10_1002_wrna_1385 crossref_primary_10_1016_j_clim_2023_109766 crossref_primary_10_3892_ijo_2019_4904 crossref_primary_10_1002_wrna_1386 crossref_primary_10_1038_s41467_024_51041_1 crossref_primary_10_1186_s40249_023_01121_z crossref_primary_10_1080_21655979_2022_2049026 crossref_primary_10_3390_ani11020558 crossref_primary_10_1002_jcla_23300 crossref_primary_10_1007_s12038_021_00152_8 crossref_primary_10_1155_2021_7608178 crossref_primary_10_1002_jcla_23788 crossref_primary_10_1016_j_ejmech_2020_112758 crossref_primary_10_1007_s12253_019_00716_y crossref_primary_10_1002_jcp_27041 crossref_primary_10_3389_fgene_2022_842509 crossref_primary_10_1016_j_gene_2020_145153 crossref_primary_10_1080_15384047_2019_1617563 crossref_primary_10_3390_cells9071574 crossref_primary_10_3892_ijmm_2023_5282 crossref_primary_10_7554_eLife_58478 crossref_primary_10_1007_s10067_023_06560_5 crossref_primary_10_1016_j_lfs_2020_117363 crossref_primary_10_1111_jcmm_15943 crossref_primary_10_3389_fgene_2023_970465 crossref_primary_10_3389_fonc_2020_596623 crossref_primary_10_1016_j_drudis_2024_104066 crossref_primary_10_3390_ijms21010293 crossref_primary_10_1016_j_exer_2022_109179 crossref_primary_10_1186_s12916_020_01898_y crossref_primary_10_1186_s12943_021_01453_0 crossref_primary_10_18632_aging_102405 crossref_primary_10_1155_2021_5510869 crossref_primary_10_3389_fmed_2021_761724 crossref_primary_10_1016_j_pharmthera_2020_107715 crossref_primary_10_3390_cells9061544 crossref_primary_10_3390_ijms19072001 crossref_primary_10_3390_genes13040663 crossref_primary_10_1186_s12950_023_00355_w crossref_primary_10_3389_fmicb_2021_742984 crossref_primary_10_3389_fmolb_2021_693477 crossref_primary_10_1165_rcmb_2021_0379OC crossref_primary_10_1080_15476286_2017_1317911 crossref_primary_10_18632_aging_204215 crossref_primary_10_1186_s12943_020_01253_y crossref_primary_10_1101_gr_255463_119 crossref_primary_10_3390_cells9081841 crossref_primary_10_1038_s42003_024_06055_2 crossref_primary_10_2217_epi_2020_0291 crossref_primary_10_1093_bib_bbx089 crossref_primary_10_1155_2024_6647810 crossref_primary_10_1080_15384101_2020_1814026 crossref_primary_10_1038_s41392_021_00788_w crossref_primary_10_3390_cancers12092462 crossref_primary_10_1007_s13273_022_00292_4 crossref_primary_10_1371_journal_ppat_1010972 crossref_primary_10_1016_j_ijbiomac_2024_134018 crossref_primary_10_1016_j_lfs_2020_118157 crossref_primary_10_3389_fmolb_2022_915993 crossref_primary_10_1016_j_biopha_2022_113863 crossref_primary_10_1016_j_omtn_2022_08_012 crossref_primary_10_1080_15384101_2021_1878327 crossref_primary_10_3389_fcell_2021_684125 crossref_primary_10_3389_fimmu_2024_1486476 crossref_primary_10_1080_21655979_2021_1918992 crossref_primary_10_1016_j_ymthe_2021_11_004 crossref_primary_10_1186_s12935_020_01648_3 crossref_primary_10_1016_j_gene_2018_07_037 crossref_primary_10_1002_mco2_283 crossref_primary_10_1016_j_omtn_2018_10_008 crossref_primary_10_1089_gtmb_2024_0337 crossref_primary_10_1016_j_bbadis_2024_167036 crossref_primary_10_1016_j_neubiorev_2022_104596 crossref_primary_10_1080_08916934_2021_1894417 crossref_primary_10_1186_s12864_021_08110_2 crossref_primary_10_2147_CMAR_S289775 crossref_primary_10_1007_s12192_020_01111_2 crossref_primary_10_4093_dmj_2019_0151 crossref_primary_10_1016_j_bbrc_2022_02_087 crossref_primary_10_1186_s12935_021_02149_7 crossref_primary_10_3892_ol_2022_13306 crossref_primary_10_1002_ddr_21864 crossref_primary_10_1155_2022_2818433 crossref_primary_10_1097_WNR_0000000000001326 crossref_primary_10_3389_fonc_2021_666340 crossref_primary_10_7555_JBR_33_20190063 crossref_primary_10_1038_s41419_021_03915_1 crossref_primary_10_3389_fphys_2020_00899 crossref_primary_10_1080_15384101_2018_1515553 crossref_primary_10_1016_j_ebiom_2017_09_015 crossref_primary_10_1016_j_jpha_2024_02_001 crossref_primary_10_1016_j_semcdb_2017_11_012 crossref_primary_10_1016_j_virusres_2021_198385 crossref_primary_10_1093_nar_gkw1201 crossref_primary_10_1016_j_phrs_2022_106582 crossref_primary_10_1164_rccm_202108_1905LE crossref_primary_10_3390_ijms20122855 crossref_primary_10_3389_fcell_2021_627439 crossref_primary_10_1007_s10528_024_10855_w crossref_primary_10_1016_j_jbc_2021_101199 crossref_primary_10_1002_ctm2_636 crossref_primary_10_3892_ol_2020_11547 crossref_primary_10_1080_21691401_2019_1593999 crossref_primary_10_3389_fgene_2022_897440 crossref_primary_10_1038_s41598_023_41028_1 crossref_primary_10_1186_s12935_021_02001_y crossref_primary_10_2147_OTT_S270747 crossref_primary_10_1002_mc_22950 crossref_primary_10_18632_oncotarget_18671 crossref_primary_10_1016_j_celrep_2023_113314 crossref_primary_10_1016_j_procbio_2023_05_024 crossref_primary_10_3389_fmicb_2020_588009 crossref_primary_10_1038_s41419_024_06698_3 crossref_primary_10_3390_ncrna8050069 crossref_primary_10_3389_fphar_2019_00428 crossref_primary_10_1186_s11658_021_00270_z crossref_primary_10_2147_PGPM_S394757 crossref_primary_10_1002_cam4_2584 crossref_primary_10_1016_j_numecd_2023_05_007 crossref_primary_10_1093_nar_gkac1129 crossref_primary_10_1002_jcb_27695 crossref_primary_10_1016_j_gpb_2016_12_005 crossref_primary_10_3389_froh_2025_1423226 crossref_primary_10_5114_aoms_174052 crossref_primary_10_1016_j_chembiol_2023_08_010 crossref_primary_10_1016_j_csbj_2018_10_010 crossref_primary_10_1007_s40620_021_01118_7 crossref_primary_10_1007_s13273_023_00410_w crossref_primary_10_1016_j_ncrna_2024_02_015 crossref_primary_10_1016_j_acthis_2020_151506 crossref_primary_10_1186_s13048_020_00709_5 crossref_primary_10_2147_OTT_S234230 crossref_primary_10_1002_jcb_26492 crossref_primary_10_1038_s41375_018_0033_0 crossref_primary_10_1016_j_bbrc_2020_12_018 crossref_primary_10_1097_ICO_0000000000002089 crossref_primary_10_1134_S1068162022020042 crossref_primary_10_1155_2020_3589871 crossref_primary_10_3389_fgene_2021_679446 crossref_primary_10_1016_j_gene_2019_144286 crossref_primary_10_1007_s10142_024_01509_6 crossref_primary_10_1002_mc_22976 crossref_primary_10_1016_j_amjms_2023_11_001 crossref_primary_10_3390_ijms23073647 crossref_primary_10_3390_ncrna10010013 crossref_primary_10_1016_j_biocel_2021_105968 crossref_primary_10_1016_j_pneurobio_2016_11_001 crossref_primary_10_3389_fncel_2017_00354 crossref_primary_10_1016_j_bbrc_2019_06_087 crossref_primary_10_1038_s41419_020_03334_8 crossref_primary_10_1186_s12935_019_0926_7 crossref_primary_10_2217_epi_2020_0385 crossref_primary_10_1111_jnc_15198 crossref_primary_10_1007_s10528_021_10168_2 crossref_primary_10_1515_biol_2022_0040 crossref_primary_10_18632_aging_102932 crossref_primary_10_1038_s41598_017_13885_0 crossref_primary_10_1038_s41598_017_08806_0 crossref_primary_10_1016_j_molcel_2021_11_032 crossref_primary_10_1016_j_amjms_2020_08_008 crossref_primary_10_3389_fcell_2023_1249174 crossref_primary_10_1093_bfgp_elab014 crossref_primary_10_1101_cshperspect_a032680 crossref_primary_10_1155_2022_3902832 crossref_primary_10_1016_j_domaniend_2019_106401 crossref_primary_10_1016_j_jare_2023_11_034 crossref_primary_10_1089_gtmb_2020_0034 crossref_primary_10_1186_s12935_023_03128_w crossref_primary_10_1038_s41422_020_0279_8 crossref_primary_10_1097_MD_0000000000025888 crossref_primary_10_3390_genes13050885 crossref_primary_10_1186_s12967_022_03527_z crossref_primary_10_1111_1759_7714_14191 crossref_primary_10_18632_aging_103244 crossref_primary_10_1002_ctm2_683 crossref_primary_10_1038_s41598_022_06556_2 crossref_primary_10_3389_fimmu_2022_927811 crossref_primary_10_1080_21655979_2021_1999370 crossref_primary_10_1002_jcb_29672 crossref_primary_10_1007_s00018_022_04552_3 crossref_primary_10_1016_j_fertnstert_2019_02_023 crossref_primary_10_1002_ctm2_565 crossref_primary_10_1002_dmrr_70006 crossref_primary_10_1016_j_cellsig_2022_110471 crossref_primary_10_1016_j_ncrna_2022_03_001 crossref_primary_10_1093_molehr_gaab020 crossref_primary_10_1016_j_intimp_2023_110979 crossref_primary_10_1186_s13045_017_0422_2 crossref_primary_10_1016_j_ncrna_2022_11_004 crossref_primary_10_1080_13813455_2021_1933047 crossref_primary_10_17816_RCF204335_384 crossref_primary_10_1007_s00439_017_1809_4 crossref_primary_10_1146_annurev_biochem_013118_111042 crossref_primary_10_2147_OTT_S241347 crossref_primary_10_18632_oncotarget_22846 crossref_primary_10_1007_s11892_021_01378_4 crossref_primary_10_1016_j_ccell_2019_12_007 crossref_primary_10_1155_2020_8834359 crossref_primary_10_1016_j_cbpc_2025_110121 crossref_primary_10_3389_fmolb_2017_00038 crossref_primary_10_1002_jbt_23264 crossref_primary_10_1007_s00425_020_03544_6 crossref_primary_10_1016_j_canlet_2017_07_002 crossref_primary_10_1111_cbdd_14407 crossref_primary_10_3389_fcell_2020_579945 crossref_primary_10_1002_jgm_3256 crossref_primary_10_2147_CMAR_S267927 crossref_primary_10_1186_s12885_019_5593_5 crossref_primary_10_1016_j_omtn_2020_09_001 crossref_primary_10_1002_2211_5463_13297 crossref_primary_10_1002_prm2_12127 crossref_primary_10_1016_j_trecan_2018_09_009 crossref_primary_10_1155_2021_3997045 crossref_primary_10_1016_j_heliyon_2023_e17366 crossref_primary_10_1080_02699052_2023_2237890 crossref_primary_10_1016_j_burns_2021_12_013 crossref_primary_10_1097_MD_0000000000027122 crossref_primary_10_1007_s12041_023_01442_w crossref_primary_10_1080_15384101_2021_2015671 crossref_primary_10_1007_s00705_021_05190_z crossref_primary_10_1097_SHK_0000000000002163 crossref_primary_10_1158_0008_5472_CAN_16_2634 crossref_primary_10_1186_s13287_021_02187_y crossref_primary_10_1016_j_celrep_2021_109439 crossref_primary_10_3389_fgene_2020_591806 crossref_primary_10_1080_21655979_2021_1921553 crossref_primary_10_1039_C8MT00207J crossref_primary_10_3892_ol_2019_10908 crossref_primary_10_3389_fimmu_2019_03129 crossref_primary_10_1002_jgm_3365 crossref_primary_10_1186_s12943_019_1081_4 crossref_primary_10_1155_2022_4203161 crossref_primary_10_1371_journal_pone_0209829 crossref_primary_10_1016_j_ijbiomac_2025_141572 crossref_primary_10_1016_j_talanta_2021_123066 crossref_primary_10_3389_fonc_2022_1077118 crossref_primary_10_18632_aging_103257 crossref_primary_10_1186_s12935_021_01964_2 crossref_primary_10_1016_j_yexmp_2021_104637 crossref_primary_10_3892_mmr_2019_10811 crossref_primary_10_1002_jbt_23286 crossref_primary_10_18632_aging_104107 crossref_primary_10_1089_gtmb_2020_0079 crossref_primary_10_3390_v10110591 crossref_primary_10_1038_s41598_019_45427_1 crossref_primary_10_3892_mmr_2017_6916 crossref_primary_10_3390_ijms24032582 crossref_primary_10_1002_wrna_1750 crossref_primary_10_1007_s42764_022_00091_0 crossref_primary_10_1128_JVI_02145_20 crossref_primary_10_1186_s12864_017_4335_9 crossref_primary_10_3389_fgene_2022_823517 crossref_primary_10_1073_pnas_1814874116 crossref_primary_10_1002_mc_23402 crossref_primary_10_1113_JP273129 crossref_primary_10_1007_s12672_023_00679_2 crossref_primary_10_1111_cpr_12614 crossref_primary_10_1136_gutjnl_2024_333522 crossref_primary_10_1002_advs_202206732 crossref_primary_10_1007_s11033_023_08628_6 crossref_primary_10_1016_j_fsi_2022_07_008 crossref_primary_10_1186_s12885_024_12943_x crossref_primary_10_2142_biophys_57_005 crossref_primary_10_1038_s41573_023_00859_3 crossref_primary_10_1136_jitc_2023_008040 crossref_primary_10_2217_epi_2019_0382 crossref_primary_10_1016_j_jaci_2021_10_041 crossref_primary_10_1186_s13018_021_02604_1 crossref_primary_10_3892_ijo_2017_4162 crossref_primary_10_1007_s12031_022_02018_6 crossref_primary_10_1016_j_mce_2018_10_023 crossref_primary_10_1007_s10528_022_10316_2 crossref_primary_10_1016_j_omtn_2020_09_034 crossref_primary_10_3390_biomedicines10123013 crossref_primary_10_1038_s41598_019_48471_z crossref_primary_10_2174_0929867330666230531095850 crossref_primary_10_1007_s00018_021_03823_9 crossref_primary_10_1042_BSR20193436 crossref_primary_10_3390_cells9081806 crossref_primary_10_1007_s12094_023_03182_w crossref_primary_10_1038_s41419_021_03472_7 crossref_primary_10_3892_br_2020_1278 crossref_primary_10_1016_j_atherosclerosis_2020_02_017 crossref_primary_10_1016_j_bbrc_2023_08_037 crossref_primary_10_1093_narcan_zcad021 crossref_primary_10_1016_j_omtn_2024_102128 crossref_primary_10_2217_bmm_2023_0369 crossref_primary_10_1155_2020_1584052 crossref_primary_10_2147_OTT_S246957 crossref_primary_10_1038_nrgastro_2017_169 crossref_primary_10_3389_fgene_2020_556712 crossref_primary_10_1016_j_rvsc_2022_09_036 crossref_primary_10_1002_mrd_23715 crossref_primary_10_1007_s00404_019_05122_y crossref_primary_10_3389_fonc_2020_590627 crossref_primary_10_1097_FJC_0000000000001063 crossref_primary_10_1016_j_bbadis_2016_12_018 crossref_primary_10_1038_s41420_022_01062_w crossref_primary_10_1016_j_bbrc_2017_03_028 crossref_primary_10_1007_s00109_017_1603_8 crossref_primary_10_1097_SHK_0000000000002364 crossref_primary_10_1186_s12943_022_01556_2 crossref_primary_10_3390_ijms21030792 crossref_primary_10_3390_genes7120116 crossref_primary_10_3390_ncrna7020024 crossref_primary_10_1007_s11033_019_04937_x crossref_primary_10_1038_s41576_021_00436_7 crossref_primary_10_1159_000529207 crossref_primary_10_1007_s10142_024_01386_z crossref_primary_10_1186_s12885_020_06794_5 crossref_primary_10_1111_1759_7714_15215 crossref_primary_10_1007_s10142_025_01530_3 crossref_primary_10_1007_s00592_019_01448_w crossref_primary_10_3892_etm_2022_11169 crossref_primary_10_1155_2020_3501451 crossref_primary_10_1080_21655979_2021_1916276 crossref_primary_10_3389_fmicb_2017_01720 crossref_primary_10_1016_j_ydbio_2016_11_013 crossref_primary_10_1080_15384101_2018_1526599 crossref_primary_10_1080_15476286_2021_1950465 crossref_primary_10_1016_j_biocel_2020_105719 crossref_primary_10_1155_2023_8845152 crossref_primary_10_4251_wjgo_v11_i10_909 crossref_primary_10_1016_j_biopha_2020_110251 crossref_primary_10_1007_s12035_020_01878_6 crossref_primary_10_3390_ijms242417561 crossref_primary_10_1155_2021_2408384 crossref_primary_10_1155_2021_8833098 crossref_primary_10_1016_j_lfs_2021_119039 crossref_primary_10_1016_j_omtn_2021_05_022 crossref_primary_10_1515_med_2022_0542 crossref_primary_10_3389_fcell_2020_00278 crossref_primary_10_1186_s12870_019_1712_3 crossref_primary_10_1097_CM9_0000000000000908 crossref_primary_10_1002_cam4_1613 crossref_primary_10_1080_15476286_2019_1672514 crossref_primary_10_1111_nep_14115 crossref_primary_10_3892_mmr_2021_12293 crossref_primary_10_1016_j_postharvbio_2017_10_013 crossref_primary_10_1016_j_reth_2021_09_006 crossref_primary_10_1186_s12935_021_01749_7 crossref_primary_10_1016_j_bcp_2023_115451 crossref_primary_10_1007_s13562_024_00889_x crossref_primary_10_1038_bcj_2016_81 crossref_primary_10_1038_s41598_024_76940_7 crossref_primary_10_1080_02713683_2021_1925697 crossref_primary_10_3389_fimmu_2022_879487 crossref_primary_10_1089_gtmb_2021_0173 crossref_primary_10_1186_s12864_020_6462_y crossref_primary_10_1016_j_gene_2020_145066 crossref_primary_10_1016_j_gene_2020_145068 crossref_primary_10_3390_ijms21041398 crossref_primary_10_3892_mmr_2019_9905 crossref_primary_10_1186_s13048_018_0381_4 crossref_primary_10_18632_oncotarget_21238 crossref_primary_10_4103_1673_5374_369115 crossref_primary_10_1042_BST20160131 crossref_primary_10_3389_fdmed_2021_799716 crossref_primary_10_1002_ajmg_c_31833 crossref_primary_10_3389_fcell_2021_811666 crossref_primary_10_3390_cancers15225351 crossref_primary_10_1002_cbin_11502 crossref_primary_10_3892_mmr_2020_10910 crossref_primary_10_1097_MD_0000000000036908 crossref_primary_10_1038_s41590_018_0302_0 crossref_primary_10_2147_JHC_S317256 crossref_primary_10_1093_biomethods_bpab016 crossref_primary_10_3389_fcell_2021_783322 crossref_primary_10_23736_S0026_4806_20_06639_2 crossref_primary_10_1016_j_ymthe_2022_01_012 crossref_primary_10_1002_jcla_23330 crossref_primary_10_1002_wrna_1697 crossref_primary_10_1038_s41380_025_02925_1 crossref_primary_10_1080_02713683_2022_2025845 crossref_primary_10_1097_FJC_0000000000000841 crossref_primary_10_1111_odi_14070 crossref_primary_10_1186_s12943_020_01203_8 crossref_primary_10_1155_2021_6653387 crossref_primary_10_1038_s41392_019_0092_3 crossref_primary_10_3748_wjg_v25_i41_6273 crossref_primary_10_1002_kjm2_12868 crossref_primary_10_1155_2021_6945046 crossref_primary_10_1080_21655979_2022_2061304 crossref_primary_10_1016_j_exer_2022_109264 crossref_primary_10_3389_fcell_2020_569977 crossref_primary_10_3389_fcell_2021_660853 crossref_primary_10_1186_s12868_022_00745_5 crossref_primary_10_1007_s10517_018_4084_z crossref_primary_10_3389_fonc_2021_653717 crossref_primary_10_1002_wrna_1584 crossref_primary_10_1097_MD_0000000000016072 crossref_primary_10_5582_irdr_2018_01013 crossref_primary_10_1016_j_yexcr_2019_111799 crossref_primary_10_3390_ijms23031413 crossref_primary_10_1080_10409238_2023_2185764 crossref_primary_10_1016_j_gene_2019_05_054 crossref_primary_10_3389_fphys_2023_1158839 crossref_primary_10_1016_j_diabres_2023_110739 crossref_primary_10_3389_fnint_2021_758340 crossref_primary_10_1016_j_tig_2022_05_002 crossref_primary_10_1124_jpet_121_000518 crossref_primary_10_3389_fnagi_2021_691512 crossref_primary_10_1016_j_heliyon_2023_e18626 crossref_primary_10_3389_fneur_2022_889855 crossref_primary_10_1016_j_ymthe_2019_05_011 crossref_primary_10_3389_fimmu_2023_1075970 crossref_primary_10_1002_ijc_34040 crossref_primary_10_1016_j_diff_2021_04_002 crossref_primary_10_1016_j_expneurol_2018_12_003 crossref_primary_10_1080_15476286_2018_1564462 crossref_primary_10_1016_j_bbagrm_2018_06_009 crossref_primary_10_1038_s41419_021_03777_7 crossref_primary_10_1097_HRP_0000000000000206 crossref_primary_10_1515_jib_2019_0027 crossref_primary_10_1038_s41419_021_04464_3 crossref_primary_10_1080_10495398_2022_2118130 crossref_primary_10_3390_cells11213460 crossref_primary_10_1016_j_ab_2021_114354 crossref_primary_10_1007_s13770_020_00270_8 crossref_primary_10_3390_biom14020158 crossref_primary_10_1016_j_lfs_2020_117888 crossref_primary_10_2217_epi_2018_0135 crossref_primary_10_1080_15476286_2019_1574162 crossref_primary_10_1016_j_cca_2021_03_010 crossref_primary_10_1186_s12864_024_10290_6 crossref_primary_10_3389_fimmu_2022_951561 crossref_primary_10_3390_ijms231911908 crossref_primary_10_1007_s11064_023_04077_6 crossref_primary_10_1186_s13045_022_01235_1 crossref_primary_10_1016_j_gene_2023_147733 crossref_primary_10_1016_j_heliyon_2023_e20649 crossref_primary_10_1093_abbs_gmab058 crossref_primary_10_1186_s40709_021_00135_8 crossref_primary_10_1002_jmv_27734 crossref_primary_10_1002_wrna_1538 crossref_primary_10_1016_j_yexcr_2018_05_002 crossref_primary_10_1097_JP9_0000000000000087 crossref_primary_10_1016_j_lfs_2024_122715 crossref_primary_10_3389_fgene_2024_1429411 crossref_primary_10_3389_fgene_2022_1006307 crossref_primary_10_3724_SP_J_1249_2022_03262 crossref_primary_10_1016_j_pcad_2021_07_005 crossref_primary_10_1002_wrna_1775 crossref_primary_10_1111_1751_2980_12966 crossref_primary_10_23736_S0031_0808_20_03957_9 crossref_primary_10_1016_j_cbd_2021_100863 crossref_primary_10_1016_j_bbrc_2020_03_084 crossref_primary_10_3389_fcell_2021_595156 crossref_primary_10_3390_biom13010018 crossref_primary_10_3390_cancers13194848 crossref_primary_10_1186_s12957_021_02373_5 crossref_primary_10_1186_s12943_022_01598_6 crossref_primary_10_3892_ol_2021_13174 crossref_primary_10_1016_S2095_3119_18_61976_8 crossref_primary_10_1002_wrna_1427 crossref_primary_10_3389_fonc_2021_733745 crossref_primary_10_1186_s12957_022_02503_7 crossref_primary_10_5582_bst_2022_01304 crossref_primary_10_1186_s13073_019_0663_5 crossref_primary_10_1016_j_virusres_2021_198502 crossref_primary_10_1016_j_placenta_2020_12_003 crossref_primary_10_2139_ssrn_3864033 crossref_primary_10_3892_or_2021_8152 crossref_primary_10_1080_00365513_2019_1674004 crossref_primary_10_3390_ijms23031111 crossref_primary_10_1080_10409238_2016_1276882 crossref_primary_10_1155_2020_2419163 crossref_primary_10_3389_fcell_2022_789073 crossref_primary_10_1038_s41598_018_37037_0 crossref_primary_10_1089_cbr_2020_4044 crossref_primary_10_18632_aging_202900 crossref_primary_10_3390_cancers13143395 crossref_primary_10_1016_j_psj_2022_101734 crossref_primary_10_1186_s12920_022_01163_6 crossref_primary_10_1007_s00018_024_05148_9 crossref_primary_10_1002_dmrr_3394 crossref_primary_10_1007_s10120_023_01392_3 crossref_primary_10_1007_s10142_022_00862_8 crossref_primary_10_1016_j_expneurol_2024_114882 crossref_primary_10_37349_emed_2024_00264 crossref_primary_10_1186_s13075_022_02732_x crossref_primary_10_1002_jcla_24487 crossref_primary_10_1128_JVI_02296_20 crossref_primary_10_3389_fimmu_2022_1005307 crossref_primary_10_1111_adb_13071 crossref_primary_10_1007_s42535_024_00868_6 crossref_primary_10_1111_1753_0407_13471 crossref_primary_10_1016_j_yjmcc_2017_06_015 |
Cites_doi | 10.1261/rna.052282.115 10.1016/j.cell.2014.07.012 10.1186/s12864-015-1603-4 10.1261/rna.047126.114 10.1101/gad.270421.115 10.1146/annurev.genet.40.110405.090625 10.1016/0092-8674(93)90279-Y 10.1016/S0092-8674(00)80878-8 10.1074/jbc.274.12.8153 10.1038/nature11993 10.7150/jca.11997 10.1371/journal.pone.0090859 10.1016/j.celrep.2014.12.019 10.1182/blood-2015-06-649434 10.1186/s13059-015-0690-5 10.1016/j.molcel.2014.08.019 10.1002/j.1460-2075.1992.tb05148.x 10.1038/nature11928 10.1093/nar/24.6.1015 10.1016/j.cell.2014.09.001 10.1038/nrg3847 10.1016/j.jmb.2015.02.018 10.1038/nn.3975 10.1016/0092-8674(91)90244-S 10.1371/journal.pone.0030733 10.1101/gad.247361.114 10.1016/j.cell.2015.02.014 10.1186/s13059-014-0409-z 10.1242/dev.124.21.4321 10.1038/280339a0 10.1371/journal.pone.0141214 10.1016/j.molcel.2013.08.017 10.1186/1479-7364-8-3 10.1038/nrm3967 10.1074/jbc.M606744200 10.1016/j.celrep.2014.12.002 10.1038/cr.2015.82 10.1038/emboj.2011.359 10.1038/nbt.1883 10.1186/s13059-015-0801-3 10.1371/journal.pgen.1003777 10.1016/j.molcel.2015.03.027 10.1073/pnas.1403244111 10.1038/nbt.2890 10.7554/eLife.07540 10.1101/gad.187278.112 10.1016/j.celrep.2014.10.062 10.1371/journal.pgen.1001233 10.1128/MCB.17.6.2985 10.1146/annurev.physiol.60.1.497 10.1101/gad.251926.114 10.1371/journal.pbio.1001156 10.1095/biolreprod57.5.1128 10.1038/348450a0 10.1128/MCB.17.2.809 10.1093/jhered/esj037 10.1261/rna.035667.112 10.1093/hmg/1.5.345 10.1073/pnas.0136770100 |
ContentType | Journal Article |
Copyright | 2016 Copyright © 2016. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2016 – notice: Copyright © 2016. Published by Elsevier Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
DOI | 10.1016/j.tig.2016.03.002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EndPage | 316 |
ExternalDocumentID | PMC4948998 27050930 10_1016_j_tig_2016_03_002 S0168952516000329 1_s2_0_S0168952516000329 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R00 CA168987 – fundername: NIGMS NIH HHS grantid: R01 GM116847 |
GroupedDBID | --- --K --M -DZ -RU -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5VS 7-5 71M 85S 8P~ 9JM 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABDPE ABFNM ABFRF ABGSF ABLJU ABMAC ABUDA ABXDB ACDAQ ACGFO ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE ADUVX ADVLN ADXHL AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D0L DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HZ~ IH2 IHE J1W K-O KOM LX3 M41 MO0 MVM N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SSU SSZ T5K TN5 UQL WH7 WUQ Y6R Z5R ZCA ZCG ZGI ~G- ~KM 1RT AACTN AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AFCTW AFMIJ AJBFU DOVZS EFLBG G8K XFK ZA5 AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c546t-c53712a81a3c624c360d40ffa1495a166cd3b872fb81bf6cdf56503b57f86df43 |
IEDL.DBID | .~1 |
ISSN | 0168-9525 |
IngestDate | Thu Aug 21 18:45:58 EDT 2025 Fri Jul 11 16:20:03 EDT 2025 Fri Jul 11 03:22:10 EDT 2025 Thu Apr 03 07:09:11 EDT 2025 Tue Jul 01 01:43:35 EDT 2025 Thu Apr 24 23:00:39 EDT 2025 Fri Feb 23 02:22:40 EST 2024 Tue Feb 25 19:59:48 EST 2025 Tue Aug 26 19:58:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | RNA circRNA circular RNA RNA splicing |
Language | English |
License | Copyright © 2016. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c546t-c53712a81a3c624c360d40ffa1495a166cd3b872fb81bf6cdf56503b57f86df43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 27050930 |
PQID | 1784085645 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4948998 proquest_miscellaneous_1787980611 proquest_miscellaneous_1784085645 pubmed_primary_27050930 crossref_primary_10_1016_j_tig_2016_03_002 crossref_citationtrail_10_1016_j_tig_2016_03_002 elsevier_sciencedirect_doi_10_1016_j_tig_2016_03_002 elsevier_clinicalkeyesjournals_1_s2_0_S0168952516000329 elsevier_clinicalkey_doi_10_1016_j_tig_2016_03_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in genetics |
PublicationTitleAlternate | Trends Genet |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Vincent, Deutscher (bib0475) 2006; 281 Coca-Prados, Hsu (bib0380) 1979; 280 Dichmann, Harland (bib0485) 2012; 26 Saad (bib0395) 1992; 1 Conn (bib0370) 2015; 160 Grabherr (bib0460) 2011; 29 Hooper (bib0455) 2014; 8 Koopman (bib0420) 1990; 348 Starke (bib0550) 2015; 10 Begemann (bib0590) 1997; 124 Peng (bib0465) 2015; 6 Kelly (bib0530) 2015; 427 Guo (bib0430) 2014; 15 Broadbent (bib0345) 2015; 16 Hansen (bib0410) 2011; 30 Szabo (bib0350) 2015; 16 Yang (bib0610) 2015 Lu (bib0340) 2015; 21 Li (bib0605) 2015; 25 Ashwal-Fluss (bib0360) 2014; 56 Lasda, Parker (bib0320) 2014; 20 Nigro (bib0385) 1991; 64 Lewis (bib0495) 2003; 100 Dolci (bib0560) 1997; 57 Zlotorynski (bib0500) 2015; 16 Schmucker (bib0510) 2000; 101 Cocquerelle (bib0390) 1992; 11 Boutz (bib0490) 2015; 29 Kramer (bib0375) 2015; 29 Barrett (bib0555) 2015; 4 Nam (bib0440) 1997; 17 Capel (bib0435) 1993; 73 Zhang (bib0505) 2013; 51 Hansen (bib0425) 2013; 495 Westholm (bib0595) 2014; 9 Thu (bib0520) 2014; 158 You (bib0575) 2015; 18 Memczak (bib0565) 2015; 10 Veno (bib0580) 2015; 16 Rybak-Wolf (bib0585) 2015; 58 Salzman (bib0355) 2013; 9 Jeck (bib0330) 2013; 19 Westholm (bib0365) 2014; 9 Salzman (bib0310) 2012; 7 Rodriguez-Trelles (bib0480) 2006; 40 Jeck, Sharpless (bib0315) 2014; 32 Alhasan (bib0600) 2015; 127 Wang (bib0335) 2014; 9 Lytton, Li (bib0450) 1999; 274 Capel (bib0535) 1998; 60 Bailleul (bib0400) 1996; 24 Memczak (bib0325) 2013; 495 Zaphiropoulos (bib0405) 1997 Salzman (bib0470) 2011; 9 Burd (bib0415) 2010; 6 Zhang (bib0570) 2014; 159 Ivanov (bib0540) 2015; 10 Treutlein (bib0515) 2014; 111 Lokody (bib0525) 2014; 15 Liang, Wilusz (bib0545) 2014; 28 Houseley (bib0445) 2006; 97 Starke (10.1016/j.tig.2016.03.002_bib0550) 2015; 10 Nam (10.1016/j.tig.2016.03.002_bib0440) 1997; 17 Treutlein (10.1016/j.tig.2016.03.002_bib0515) 2014; 111 Zhang (10.1016/j.tig.2016.03.002_bib0570) 2014; 159 Zaphiropoulos (10.1016/j.tig.2016.03.002_bib0405) 1997 Cocquerelle (10.1016/j.tig.2016.03.002_bib0390) 1992; 11 Koopman (10.1016/j.tig.2016.03.002_bib0420) 1990; 348 Lewis (10.1016/j.tig.2016.03.002_bib0495) 2003; 100 Alhasan (10.1016/j.tig.2016.03.002_bib0600) 2015; 127 Coca-Prados (10.1016/j.tig.2016.03.002_bib0380) 1979; 280 Burd (10.1016/j.tig.2016.03.002_bib0415) 2010; 6 Hansen (10.1016/j.tig.2016.03.002_bib0410) 2011; 30 Conn (10.1016/j.tig.2016.03.002_bib0370) 2015; 160 Zlotorynski (10.1016/j.tig.2016.03.002_bib0500) 2015; 16 Liang (10.1016/j.tig.2016.03.002_bib0545) 2014; 28 Salzman (10.1016/j.tig.2016.03.002_bib0310) 2012; 7 Lasda (10.1016/j.tig.2016.03.002_bib0320) 2014; 20 Veno (10.1016/j.tig.2016.03.002_bib0580) 2015; 16 Begemann (10.1016/j.tig.2016.03.002_bib0590) 1997; 124 Rodriguez-Trelles (10.1016/j.tig.2016.03.002_bib0480) 2006; 40 Schmucker (10.1016/j.tig.2016.03.002_bib0510) 2000; 101 Lokody (10.1016/j.tig.2016.03.002_bib0525) 2014; 15 Broadbent (10.1016/j.tig.2016.03.002_bib0345) 2015; 16 Lu (10.1016/j.tig.2016.03.002_bib0340) 2015; 21 Salzman (10.1016/j.tig.2016.03.002_bib0470) 2011; 9 Nigro (10.1016/j.tig.2016.03.002_bib0385) 1991; 64 Yang (10.1016/j.tig.2016.03.002_bib0610) 2015 Bailleul (10.1016/j.tig.2016.03.002_bib0400) 1996; 24 Li (10.1016/j.tig.2016.03.002_bib0605) 2015; 25 Szabo (10.1016/j.tig.2016.03.002_bib0350) 2015; 16 Kramer (10.1016/j.tig.2016.03.002_bib0375) 2015; 29 Ashwal-Fluss (10.1016/j.tig.2016.03.002_bib0360) 2014; 56 You (10.1016/j.tig.2016.03.002_bib0575) 2015; 18 Boutz (10.1016/j.tig.2016.03.002_bib0490) 2015; 29 Salzman (10.1016/j.tig.2016.03.002_bib0355) 2013; 9 Capel (10.1016/j.tig.2016.03.002_bib0535) 1998; 60 Kelly (10.1016/j.tig.2016.03.002_bib0530) 2015; 427 Thu (10.1016/j.tig.2016.03.002_bib0520) 2014; 158 Wang (10.1016/j.tig.2016.03.002_bib0335) 2014; 9 Westholm (10.1016/j.tig.2016.03.002_bib0365) 2014; 9 Dichmann (10.1016/j.tig.2016.03.002_bib0485) 2012; 26 Memczak (10.1016/j.tig.2016.03.002_bib0565) 2015; 10 Hooper (10.1016/j.tig.2016.03.002_bib0455) 2014; 8 Zhang (10.1016/j.tig.2016.03.002_bib0505) 2013; 51 Westholm (10.1016/j.tig.2016.03.002_bib0595) 2014; 9 Jeck (10.1016/j.tig.2016.03.002_bib0315) 2014; 32 Houseley (10.1016/j.tig.2016.03.002_bib0445) 2006; 97 Guo (10.1016/j.tig.2016.03.002_bib0430) 2014; 15 Barrett (10.1016/j.tig.2016.03.002_bib0555) 2015; 4 Memczak (10.1016/j.tig.2016.03.002_bib0325) 2013; 495 Lytton (10.1016/j.tig.2016.03.002_bib0450) 1999; 274 Saad (10.1016/j.tig.2016.03.002_bib0395) 1992; 1 Hansen (10.1016/j.tig.2016.03.002_bib0425) 2013; 495 Dolci (10.1016/j.tig.2016.03.002_bib0560) 1997; 57 Peng (10.1016/j.tig.2016.03.002_bib0465) 2015; 6 Rybak-Wolf (10.1016/j.tig.2016.03.002_bib0585) 2015; 58 Vincent (10.1016/j.tig.2016.03.002_bib0475) 2006; 281 Jeck (10.1016/j.tig.2016.03.002_bib0330) 2013; 19 Grabherr (10.1016/j.tig.2016.03.002_bib0460) 2011; 29 Ivanov (10.1016/j.tig.2016.03.002_bib0540) 2015; 10 Capel (10.1016/j.tig.2016.03.002_bib0435) 1993; 73 26464523 - RNA. 2015 Dec;21(12):2076-87 1303213 - Hum Mol Genet. 1992 Aug;1(5):345-6 21151960 - PLoS Genet. 2010 Dec 02;6(12):e1001233 7684656 - Cell. 1993 Jun 4;73(5):1019-30 10075718 - J Biol Chem. 1999 Mar 19;274(12):8153-60 17094737 - Annu Rev Genet. 2006;40:47-76 25070500 - Genome Biol. 2014 Jul 29;15(7):409 22319583 - PLoS One. 2012;7(2):e30733 25171406 - Cell. 2014 Aug 28;158(5):1045-59 26660425 - Blood. 2016 Mar 3;127(9):e1-e11 24039610 - PLoS Genet. 2013;9(9):e1003777 25544350 - Cell Rep. 2014 Dec 11;9(5):1966-80 25561496 - Genes Dev. 2015 Jan 1;29(1):63-80 23249747 - RNA. 2013 Feb;19(2):141-57 25404635 - RNA. 2014 Dec;20(12):1829-42 21964070 - EMBO J. 2011 Sep 30;30(21):4414-22 26138677 - Cell Res. 2015 Aug;25(8):981-4 16714427 - J Hered. 2006 May-Jun;97(3):253-60 21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52 16893880 - J Biol Chem. 2006 Oct 6;281(40):29769-75 25558066 - Cell Rep. 2015 Jan 13;10(2):170-7 25543144 - Cell Rep. 2015 Jan 6;10(1):103-11 9369180 - Biol Reprod. 1997 Nov;57(5):1128-35 1339341 - EMBO J. 1992 Mar;11(3):1095-8 26450910 - Genes Dev. 2015 Oct 15;29(20):2168-82 25242144 - Mol Cell. 2014 Oct 2;56(1):55-66 25728652 - J Mol Biol. 2015 Jul 31;427(15):2414-7 24639501 - Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1291-9 9558474 - Annu Rev Physiol. 1998;60:497-523 26485708 - PLoS One. 2015 Oct 20;10(10):e0141214 25714049 - Nat Neurosci. 2015 Apr;18(4):603-10 24811520 - Nat Biotechnol. 2014 May;32(5):453-61 9001235 - Mol Cell Biol. 1997 Feb;17(2):809-18 24609083 - PLoS One. 2014 Mar 07;9(6):e90859 26541409 - Genome Biol. 2015 Nov 05;16:245 1991322 - Cell. 1991 Feb 8;64(3):607-13 25714680 - Nat Rev Mol Cell Biol. 2015 Apr;16(4):206 9334280 - Development. 1997 Nov;124(21):4321-31 25281217 - Genes Dev. 2014 Oct 15;28(20):2233-47 22713872 - Genes Dev. 2012 Jun 15;26(12):1351-63 460409 - Nature. 1979 Jul 26;280(5720):339-40 23446348 - Nature. 2013 Mar 21;495(7441):333-8 26076956 - Genome Biol. 2015 Jun 16;16:126 26657152 - Oncogene. 2016 Jul 28;35(30):3919-31 25921068 - Mol Cell. 2015 Jun 4;58(5):870-85 24447644 - Hum Genomics. 2014 Jan 21;8:3 25242744 - Cell. 2014 Sep 25;159(1):134-47 10892653 - Cell. 2000 Jun 9;101(6):671-84 9154796 - Mol Cell Biol. 1997 Jun;17(6):2985-93 26057830 - Elife. 2015 Jun 09;4:e07540 26070627 - BMC Genomics. 2015 Jun 13;16:454 8604331 - Nucleic Acids Res. 1996 Mar 15;24(6):1015-9 24035497 - Mol Cell. 2013 Sep 26;51(6):792-806 25324005 - Nat Rev Genet. 2014 Nov;15(11):706 12502788 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):189-92 2247150 - Nature. 1990 Nov 29;348(6300):450-2 23446346 - Nature. 2013 Mar 21;495(7441):384-8 25768908 - Cell. 2015 Mar 12;160(6):1125-34 26000048 - J Cancer. 2015 May 01;6(6):555-67 21949640 - PLoS Biol. 2011 Sep;9(9):e1001156 |
References_xml | – volume: 159 start-page: 134 year: 2014 end-page: 147 ident: bib0570 article-title: Complementary sequence-mediated exon circularization publication-title: Cell – volume: 19 start-page: 141 year: 2013 end-page: 157 ident: bib0330 article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats publication-title: RNA – volume: 6 start-page: 555 year: 2015 end-page: 567 ident: bib0465 article-title: Hypothesis: artifacts, including spurious chimeric RNAs with a short homologous sequence, caused by consecutive reverse transcriptions and endogenous random primers publication-title: J. Cancer – volume: 25 start-page: 981 year: 2015 end-page: 984 ident: bib0605 article-title: Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis publication-title: Cell Res. – volume: 57 start-page: 1128 year: 1997 end-page: 1135 ident: bib0560 article-title: Identification of a promoter region generating Sry circular transcripts both in germ cells from male adult mice and in male mouse embryonal gonads publication-title: Biol. Reprod. – volume: 73 start-page: 1019 year: 1993 end-page: 1030 ident: bib0435 article-title: Circular transcripts of the testis-determining gene Sry in adult mouse testis publication-title: Cell – volume: 20 start-page: 1829 year: 2014 end-page: 1842 ident: bib0320 article-title: Circular RNAs: diversity of form and function publication-title: RNA – volume: 427 start-page: 2414 year: 2015 end-page: 2417 ident: bib0530 article-title: Exon skipping is correlated with exon circularization publication-title: J. Mol. Biol. – volume: 101 start-page: 671 year: 2000 end-page: 684 ident: bib0510 article-title: Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity publication-title: Cell – volume: 21 start-page: 2076 year: 2015 end-page: 2087 ident: bib0340 article-title: Transcriptome-wide investigation of circular RNAs in rice publication-title: RNA – volume: 24 start-page: 1015 year: 1996 end-page: 1019 ident: bib0400 article-title: During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles publication-title: Nucleic Acids Res. – volume: 10 start-page: 170 year: 2015 end-page: 177 ident: bib0540 article-title: Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals publication-title: Cell Rep. – volume: 26 start-page: 1351 year: 2012 end-page: 1363 ident: bib0485 article-title: fus/TLS orchestrates splicing of developmental regulators during gastrulation publication-title: Genes Dev. – volume: 280 start-page: 339 year: 1979 end-page: 340 ident: bib0380 article-title: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells publication-title: Nature – volume: 29 start-page: 644 year: 2011 end-page: 652 ident: bib0460 article-title: Full-length transcriptome assembly from RNA-Seq data without a reference genome publication-title: Nat. Biotechnol. – volume: 160 start-page: 1125 year: 2015 end-page: 1134 ident: bib0370 article-title: The RNA binding protein quaking regulates formation of circRNAs publication-title: Cell – volume: 6 start-page: e1001233 year: 2010 ident: bib0415 article-title: Expression of linear and novel circular forms of an INK4/ARF-associated non–coding RNA correlates with atherosclerosis risk publication-title: PLoS Genet. – volume: 111 start-page: E1291 year: 2014 end-page: E1299 ident: bib0515 article-title: Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 274 start-page: 8153 year: 1999 end-page: 8160 ident: bib0450 article-title: A circularized sodium-calcium exchanger exon 2 transcript publication-title: J. Biol. Chem. – volume: 58 start-page: 870 year: 2015 end-page: 885 ident: bib0585 article-title: Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed publication-title: Mol. Cell – volume: 97 start-page: 253 year: 2006 end-page: 260 ident: bib0445 article-title: Noncanonical RNAs from transcripts of the publication-title: J. Heredity – volume: 495 start-page: 333 year: 2013 end-page: 338 ident: bib0325 article-title: Circular RNAs are a large class of animal RNAs with regulatory potency publication-title: Nature – volume: 40 start-page: 47 year: 2006 end-page: 76 ident: bib0480 article-title: Origins and evolution of spliceosomal introns publication-title: Annu. Rev. Genet. – volume: 158 start-page: 1045 year: 2014 end-page: 1059 ident: bib0520 article-title: Single-cell identity generated by combinatorial homophilic interactions between alpha, beta, and gamma protocadherins publication-title: Cell – volume: 10 start-page: 103 year: 2015 end-page: 111 ident: bib0550 article-title: Exon circularization requires canonical splice signals publication-title: Cell Rep. – volume: 28 start-page: 2233 year: 2014 end-page: 2247 ident: bib0545 article-title: Short intronic repeat sequences facilitate circular RNA production publication-title: Genes Dev. – volume: 64 start-page: 607 year: 1991 end-page: 613 ident: bib0385 article-title: Scrambled exons publication-title: Cell – volume: 495 start-page: 384 year: 2013 end-page: 388 ident: bib0425 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature – volume: 11 start-page: 1095 year: 1992 end-page: 1098 ident: bib0390 article-title: Splicing with inverted order of exons occurs proximal to large introns publication-title: EMBO J. – volume: 8 start-page: 3 year: 2014 ident: bib0455 article-title: A survey of software for genome-wide discovery of differential splicing in RNA-Seq data publication-title: Hum. Genomics – volume: 9 start-page: 1966 year: 2014 end-page: 1980 ident: bib0595 article-title: Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation publication-title: Cell Rep. – volume: 56 start-page: 55 year: 2014 end-page: 66 ident: bib0360 article-title: circRNA biogenesis competes with pre-mRNA splicing publication-title: Mol. Cell – volume: 9 start-page: e1003777 year: 2013 ident: bib0355 article-title: Cell-type specific regulation of circular RNA expression publication-title: PLoS Genet. – start-page: 2985 year: 1997 end-page: 2993 ident: bib0405 article-title: Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis publication-title: Mol. Cell. Biol. – volume: 29 start-page: 63 year: 2015 end-page: 80 ident: bib0490 article-title: Detained introns are a novel, widespread class of post-transcriptionally spliced introns publication-title: Genes Dev. – volume: 127 start-page: e1 year: 2015 end-page: e11 ident: bib0600 article-title: Circular RNA enrichment in platelets is a signature of transcriptome degradation publication-title: Blood – volume: 4 start-page: e07540 year: 2015 ident: bib0555 article-title: Circular RNA biogenesis can proceed through an exon-containing lariat precursor publication-title: Elife – volume: 100 start-page: 189 year: 2003 end-page: 192 ident: bib0495 article-title: Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans publication-title: Proc. Natl. Acad. Sci. U.S.A. – year: 2015 ident: bib0610 article-title: Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis publication-title: Oncogene – volume: 1 start-page: 345 year: 1992 end-page: 346 ident: bib0395 article-title: A 3′ consensus splice mutation in the human dystrophin gene detected by a screening for intra-exonic deletions publication-title: Hum. Mol. Genet. – volume: 10 start-page: e0141214 year: 2015 ident: bib0565 article-title: Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood publication-title: PLoS ONE – volume: 281 start-page: 29769 year: 2006 end-page: 29775 ident: bib0475 article-title: Substrate recognition and catalysis by the exoribonuclease RNase R publication-title: J. Biol. Chem. – volume: 7 start-page: e30733 year: 2012 ident: bib0310 article-title: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types publication-title: PLoS ONE – volume: 9 start-page: e1001156 year: 2011 ident: bib0470 article-title: ESRRA-C11orf20 is a recurrent gene fusion in serous ovarian carcinoma publication-title: PLoS Biol. – volume: 60 start-page: 497 year: 1998 end-page: 523 ident: bib0535 article-title: Sex in the 90s: SRY and the switch to the male pathway publication-title: Annu. Rev. Physiol. – volume: 16 start-page: 206 year: 2015 ident: bib0500 article-title: Non-coding RNA: circular RNAs promote transcription publication-title: Nat. Rev. Mol. Cell Biol. – volume: 124 start-page: 4321 year: 1997 end-page: 4331 ident: bib0590 article-title: muscleblind, a gene required for photoreceptor differentiation in Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing proteins publication-title: Development – volume: 16 start-page: 245 year: 2015 ident: bib0580 article-title: Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development publication-title: Genome Biol. – volume: 30 start-page: 4414 year: 2011 end-page: 4422 ident: bib0410 article-title: miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA publication-title: EMBO J. – volume: 15 start-page: 409 year: 2014 ident: bib0430 article-title: Expanded identification and characterization of mammalian circular RNAs publication-title: Genome Biol. – volume: 29 start-page: 2168 year: 2015 end-page: 2182 ident: bib0375 article-title: Combinatorial control of publication-title: Genes Dev. – volume: 17 start-page: 809 year: 1997 end-page: 818 ident: bib0440 article-title: Severe growth defect in a publication-title: Mol. Cell. Biol. – volume: 9 start-page: e90859 year: 2014 ident: bib0335 article-title: Circular RNA is expressed across the eukaryotic tree of life publication-title: PLoS ONE – volume: 16 start-page: 454 year: 2015 ident: bib0345 article-title: Strand-specific RNA sequencing in publication-title: BMC Genomics – volume: 51 start-page: 792 year: 2013 end-page: 806 ident: bib0505 article-title: Circular intronic long noncoding RNAs publication-title: Mol. Cell – volume: 18 start-page: 603 year: 2015 end-page: 610 ident: bib0575 article-title: Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity publication-title: Nat. Neurosci. – volume: 15 start-page: 706 year: 2014 ident: bib0525 article-title: Alternative splicing: characterizing cell fate publication-title: Nat. Rev. Genet. – volume: 16 start-page: 126 year: 2015 ident: bib0350 article-title: Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development publication-title: Genome Biol. – volume: 348 start-page: 450 year: 1990 end-page: 452 ident: bib0420 article-title: Expression of a candidate sex-determining gene during mouse testis differentiation publication-title: Nature – volume: 32 start-page: 453 year: 2014 end-page: 461 ident: bib0315 article-title: Detecting and characterizing circular RNAs publication-title: Nat. Biotechnol. – volume: 9 start-page: 1966 year: 2014 end-page: 1980 ident: bib0365 article-title: Genome-wide analysis of publication-title: Cell Rep. – volume: 21 start-page: 2076 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0340 article-title: Transcriptome-wide investigation of circular RNAs in rice publication-title: RNA doi: 10.1261/rna.052282.115 – volume: 158 start-page: 1045 year: 2014 ident: 10.1016/j.tig.2016.03.002_bib0520 article-title: Single-cell identity generated by combinatorial homophilic interactions between alpha, beta, and gamma protocadherins publication-title: Cell doi: 10.1016/j.cell.2014.07.012 – volume: 16 start-page: 454 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0345 article-title: Strand-specific RNA sequencing in Plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA publication-title: BMC Genomics doi: 10.1186/s12864-015-1603-4 – volume: 20 start-page: 1829 year: 2014 ident: 10.1016/j.tig.2016.03.002_bib0320 article-title: Circular RNAs: diversity of form and function publication-title: RNA doi: 10.1261/rna.047126.114 – volume: 29 start-page: 2168 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0375 article-title: Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins publication-title: Genes Dev. doi: 10.1101/gad.270421.115 – volume: 40 start-page: 47 year: 2006 ident: 10.1016/j.tig.2016.03.002_bib0480 article-title: Origins and evolution of spliceosomal introns publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.40.110405.090625 – volume: 73 start-page: 1019 year: 1993 ident: 10.1016/j.tig.2016.03.002_bib0435 article-title: Circular transcripts of the testis-determining gene Sry in adult mouse testis publication-title: Cell doi: 10.1016/0092-8674(93)90279-Y – volume: 101 start-page: 671 year: 2000 ident: 10.1016/j.tig.2016.03.002_bib0510 article-title: Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity publication-title: Cell doi: 10.1016/S0092-8674(00)80878-8 – volume: 274 start-page: 8153 year: 1999 ident: 10.1016/j.tig.2016.03.002_bib0450 article-title: A circularized sodium-calcium exchanger exon 2 transcript publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.12.8153 – volume: 495 start-page: 384 year: 2013 ident: 10.1016/j.tig.2016.03.002_bib0425 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature doi: 10.1038/nature11993 – volume: 6 start-page: 555 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0465 article-title: Hypothesis: artifacts, including spurious chimeric RNAs with a short homologous sequence, caused by consecutive reverse transcriptions and endogenous random primers publication-title: J. Cancer doi: 10.7150/jca.11997 – volume: 9 start-page: e90859 year: 2014 ident: 10.1016/j.tig.2016.03.002_bib0335 article-title: Circular RNA is expressed across the eukaryotic tree of life publication-title: PLoS ONE doi: 10.1371/journal.pone.0090859 – volume: 10 start-page: 170 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0540 article-title: Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.12.019 – volume: 127 start-page: e1 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0600 article-title: Circular RNA enrichment in platelets is a signature of transcriptome degradation publication-title: Blood doi: 10.1182/blood-2015-06-649434 – volume: 16 start-page: 126 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0350 article-title: Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development publication-title: Genome Biol. doi: 10.1186/s13059-015-0690-5 – volume: 56 start-page: 55 year: 2014 ident: 10.1016/j.tig.2016.03.002_bib0360 article-title: circRNA biogenesis competes with pre-mRNA splicing publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.08.019 – volume: 11 start-page: 1095 year: 1992 ident: 10.1016/j.tig.2016.03.002_bib0390 article-title: Splicing with inverted order of exons occurs proximal to large introns publication-title: EMBO J. doi: 10.1002/j.1460-2075.1992.tb05148.x – volume: 495 start-page: 333 year: 2013 ident: 10.1016/j.tig.2016.03.002_bib0325 article-title: Circular RNAs are a large class of animal RNAs with regulatory potency publication-title: Nature doi: 10.1038/nature11928 – volume: 24 start-page: 1015 year: 1996 ident: 10.1016/j.tig.2016.03.002_bib0400 article-title: During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles publication-title: Nucleic Acids Res. doi: 10.1093/nar/24.6.1015 – volume: 159 start-page: 134 year: 2014 ident: 10.1016/j.tig.2016.03.002_bib0570 article-title: Complementary sequence-mediated exon circularization publication-title: Cell doi: 10.1016/j.cell.2014.09.001 – volume: 15 start-page: 706 year: 2014 ident: 10.1016/j.tig.2016.03.002_bib0525 article-title: Alternative splicing: characterizing cell fate publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3847 – volume: 427 start-page: 2414 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0530 article-title: Exon skipping is correlated with exon circularization publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2015.02.018 – volume: 18 start-page: 603 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0575 article-title: Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity publication-title: Nat. Neurosci. doi: 10.1038/nn.3975 – volume: 64 start-page: 607 year: 1991 ident: 10.1016/j.tig.2016.03.002_bib0385 article-title: Scrambled exons publication-title: Cell doi: 10.1016/0092-8674(91)90244-S – volume: 7 start-page: e30733 year: 2012 ident: 10.1016/j.tig.2016.03.002_bib0310 article-title: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types publication-title: PLoS ONE doi: 10.1371/journal.pone.0030733 – volume: 29 start-page: 63 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0490 article-title: Detained introns are a novel, widespread class of post-transcriptionally spliced introns publication-title: Genes Dev. doi: 10.1101/gad.247361.114 – volume: 160 start-page: 1125 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0370 article-title: The RNA binding protein quaking regulates formation of circRNAs publication-title: Cell doi: 10.1016/j.cell.2015.02.014 – volume: 15 start-page: 409 year: 2014 ident: 10.1016/j.tig.2016.03.002_bib0430 article-title: Expanded identification and characterization of mammalian circular RNAs publication-title: Genome Biol. doi: 10.1186/s13059-014-0409-z – volume: 124 start-page: 4321 year: 1997 ident: 10.1016/j.tig.2016.03.002_bib0590 article-title: muscleblind, a gene required for photoreceptor differentiation in Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing proteins publication-title: Development doi: 10.1242/dev.124.21.4321 – volume: 280 start-page: 339 year: 1979 ident: 10.1016/j.tig.2016.03.002_bib0380 article-title: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells publication-title: Nature doi: 10.1038/280339a0 – volume: 10 start-page: e0141214 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0565 article-title: Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood publication-title: PLoS ONE doi: 10.1371/journal.pone.0141214 – volume: 51 start-page: 792 year: 2013 ident: 10.1016/j.tig.2016.03.002_bib0505 article-title: Circular intronic long noncoding RNAs publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.08.017 – volume: 8 start-page: 3 year: 2014 ident: 10.1016/j.tig.2016.03.002_bib0455 article-title: A survey of software for genome-wide discovery of differential splicing in RNA-Seq data publication-title: Hum. Genomics doi: 10.1186/1479-7364-8-3 – volume: 16 start-page: 206 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0500 article-title: Non-coding RNA: circular RNAs promote transcription publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3967 – volume: 281 start-page: 29769 year: 2006 ident: 10.1016/j.tig.2016.03.002_bib0475 article-title: Substrate recognition and catalysis by the exoribonuclease RNase R publication-title: J. Biol. Chem. doi: 10.1074/jbc.M606744200 – volume: 10 start-page: 103 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0550 article-title: Exon circularization requires canonical splice signals publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.12.002 – volume: 25 start-page: 981 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0605 article-title: Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis publication-title: Cell Res. doi: 10.1038/cr.2015.82 – volume: 30 start-page: 4414 year: 2011 ident: 10.1016/j.tig.2016.03.002_bib0410 article-title: miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA publication-title: EMBO J. doi: 10.1038/emboj.2011.359 – volume: 29 start-page: 644 year: 2011 ident: 10.1016/j.tig.2016.03.002_bib0460 article-title: Full-length transcriptome assembly from RNA-Seq data without a reference genome publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1883 – volume: 16 start-page: 245 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0580 article-title: Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development publication-title: Genome Biol. doi: 10.1186/s13059-015-0801-3 – volume: 9 start-page: e1003777 year: 2013 ident: 10.1016/j.tig.2016.03.002_bib0355 article-title: Cell-type specific regulation of circular RNA expression publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003777 – volume: 58 start-page: 870 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0585 article-title: Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.03.027 – volume: 111 start-page: E1291 year: 2014 ident: 10.1016/j.tig.2016.03.002_bib0515 article-title: Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1403244111 – volume: 32 start-page: 453 year: 2014 ident: 10.1016/j.tig.2016.03.002_bib0315 article-title: Detecting and characterizing circular RNAs publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2890 – volume: 4 start-page: e07540 year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0555 article-title: Circular RNA biogenesis can proceed through an exon-containing lariat precursor publication-title: Elife doi: 10.7554/eLife.07540 – volume: 26 start-page: 1351 year: 2012 ident: 10.1016/j.tig.2016.03.002_bib0485 article-title: fus/TLS orchestrates splicing of developmental regulators during gastrulation publication-title: Genes Dev. doi: 10.1101/gad.187278.112 – volume: 9 start-page: 1966 year: 2014 ident: 10.1016/j.tig.2016.03.002_bib0595 article-title: Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.10.062 – volume: 6 start-page: e1001233 year: 2010 ident: 10.1016/j.tig.2016.03.002_bib0415 article-title: Expression of linear and novel circular forms of an INK4/ARF-associated non–coding RNA correlates with atherosclerosis risk publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001233 – start-page: 2985 year: 1997 ident: 10.1016/j.tig.2016.03.002_bib0405 article-title: Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.17.6.2985 – volume: 60 start-page: 497 year: 1998 ident: 10.1016/j.tig.2016.03.002_bib0535 article-title: Sex in the 90s: SRY and the switch to the male pathway publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.60.1.497 – volume: 28 start-page: 2233 year: 2014 ident: 10.1016/j.tig.2016.03.002_bib0545 article-title: Short intronic repeat sequences facilitate circular RNA production publication-title: Genes Dev. doi: 10.1101/gad.251926.114 – volume: 9 start-page: e1001156 year: 2011 ident: 10.1016/j.tig.2016.03.002_bib0470 article-title: ESRRA-C11orf20 is a recurrent gene fusion in serous ovarian carcinoma publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001156 – volume: 57 start-page: 1128 year: 1997 ident: 10.1016/j.tig.2016.03.002_bib0560 article-title: Identification of a promoter region generating Sry circular transcripts both in germ cells from male adult mice and in male mouse embryonal gonads publication-title: Biol. Reprod. doi: 10.1095/biolreprod57.5.1128 – volume: 9 start-page: 1966 year: 2014 ident: 10.1016/j.tig.2016.03.002_bib0365 article-title: Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.10.062 – year: 2015 ident: 10.1016/j.tig.2016.03.002_bib0610 article-title: Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis publication-title: Oncogene – volume: 348 start-page: 450 year: 1990 ident: 10.1016/j.tig.2016.03.002_bib0420 article-title: Expression of a candidate sex-determining gene during mouse testis differentiation publication-title: Nature doi: 10.1038/348450a0 – volume: 17 start-page: 809 year: 1997 ident: 10.1016/j.tig.2016.03.002_bib0440 article-title: Severe growth defect in a Schizosaccharomyces pombe mutant defective in intron lariat degradation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.17.2.809 – volume: 97 start-page: 253 year: 2006 ident: 10.1016/j.tig.2016.03.002_bib0445 article-title: Noncanonical RNAs from transcripts of the Drosophila muscleblind gene publication-title: J. Heredity doi: 10.1093/jhered/esj037 – volume: 19 start-page: 141 year: 2013 ident: 10.1016/j.tig.2016.03.002_bib0330 article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats publication-title: RNA doi: 10.1261/rna.035667.112 – volume: 1 start-page: 345 year: 1992 ident: 10.1016/j.tig.2016.03.002_bib0395 article-title: A 3′ consensus splice mutation in the human dystrophin gene detected by a screening for intra-exonic deletions publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/1.5.345 – volume: 100 start-page: 189 year: 2003 ident: 10.1016/j.tig.2016.03.002_bib0495 article-title: Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0136770100 – reference: 9154796 - Mol Cell Biol. 1997 Jun;17(6):2985-93 – reference: 21151960 - PLoS Genet. 2010 Dec 02;6(12):e1001233 – reference: 25543144 - Cell Rep. 2015 Jan 6;10(1):103-11 – reference: 12502788 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):189-92 – reference: 26485708 - PLoS One. 2015 Oct 20;10(10):e0141214 – reference: 21964070 - EMBO J. 2011 Sep 30;30(21):4414-22 – reference: 460409 - Nature. 1979 Jul 26;280(5720):339-40 – reference: 26138677 - Cell Res. 2015 Aug;25(8):981-4 – reference: 24039610 - PLoS Genet. 2013;9(9):e1003777 – reference: 8604331 - Nucleic Acids Res. 1996 Mar 15;24(6):1015-9 – reference: 26541409 - Genome Biol. 2015 Nov 05;16:245 – reference: 9001235 - Mol Cell Biol. 1997 Feb;17(2):809-18 – reference: 25242744 - Cell. 2014 Sep 25;159(1):134-47 – reference: 1303213 - Hum Mol Genet. 1992 Aug;1(5):345-6 – reference: 10892653 - Cell. 2000 Jun 9;101(6):671-84 – reference: 26657152 - Oncogene. 2016 Jul 28;35(30):3919-31 – reference: 26464523 - RNA. 2015 Dec;21(12):2076-87 – reference: 25728652 - J Mol Biol. 2015 Jul 31;427(15):2414-7 – reference: 26000048 - J Cancer. 2015 May 01;6(6):555-67 – reference: 25561496 - Genes Dev. 2015 Jan 1;29(1):63-80 – reference: 23446348 - Nature. 2013 Mar 21;495(7441):333-8 – reference: 21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52 – reference: 25714049 - Nat Neurosci. 2015 Apr;18(4):603-10 – reference: 26057830 - Elife. 2015 Jun 09;4:e07540 – reference: 25544350 - Cell Rep. 2014 Dec 11;9(5):1966-80 – reference: 24609083 - PLoS One. 2014 Mar 07;9(6):e90859 – reference: 23446346 - Nature. 2013 Mar 21;495(7441):384-8 – reference: 24811520 - Nat Biotechnol. 2014 May;32(5):453-61 – reference: 17094737 - Annu Rev Genet. 2006;40:47-76 – reference: 25921068 - Mol Cell. 2015 Jun 4;58(5):870-85 – reference: 25404635 - RNA. 2014 Dec;20(12):1829-42 – reference: 24639501 - Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1291-9 – reference: 10075718 - J Biol Chem. 1999 Mar 19;274(12):8153-60 – reference: 26450910 - Genes Dev. 2015 Oct 15;29(20):2168-82 – reference: 9334280 - Development. 1997 Nov;124(21):4321-31 – reference: 1339341 - EMBO J. 1992 Mar;11(3):1095-8 – reference: 25768908 - Cell. 2015 Mar 12;160(6):1125-34 – reference: 23249747 - RNA. 2013 Feb;19(2):141-57 – reference: 25281217 - Genes Dev. 2014 Oct 15;28(20):2233-47 – reference: 16714427 - J Hered. 2006 May-Jun;97(3):253-60 – reference: 25714680 - Nat Rev Mol Cell Biol. 2015 Apr;16(4):206 – reference: 25070500 - Genome Biol. 2014 Jul 29;15(7):409 – reference: 26070627 - BMC Genomics. 2015 Jun 13;16:454 – reference: 25171406 - Cell. 2014 Aug 28;158(5):1045-59 – reference: 25324005 - Nat Rev Genet. 2014 Nov;15(11):706 – reference: 9369180 - Biol Reprod. 1997 Nov;57(5):1128-35 – reference: 16893880 - J Biol Chem. 2006 Oct 6;281(40):29769-75 – reference: 26660425 - Blood. 2016 Mar 3;127(9):e1-e11 – reference: 9558474 - Annu Rev Physiol. 1998;60:497-523 – reference: 22319583 - PLoS One. 2012;7(2):e30733 – reference: 1991322 - Cell. 1991 Feb 8;64(3):607-13 – reference: 24447644 - Hum Genomics. 2014 Jan 21;8:3 – reference: 26076956 - Genome Biol. 2015 Jun 16;16:126 – reference: 21949640 - PLoS Biol. 2011 Sep;9(9):e1001156 – reference: 25242144 - Mol Cell. 2014 Oct 2;56(1):55-66 – reference: 25558066 - Cell Rep. 2015 Jan 13;10(2):170-7 – reference: 24035497 - Mol Cell. 2013 Sep 26;51(6):792-806 – reference: 2247150 - Nature. 1990 Nov 29;348(6300):450-2 – reference: 22713872 - Genes Dev. 2012 Jun 15;26(12):1351-63 – reference: 7684656 - Cell. 1993 Jun 4;73(5):1019-30 |
SSID | ssj0005735 |
Score | 2.6576967 |
SecondaryResourceType | review_article |
Snippet | In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 309 |
SubjectTerms | circRNA circular RNA Gene Expression Regulation Humans Medical Education RNA RNA - biosynthesis RNA - genetics RNA splicing RNA Splicing - genetics |
Title | Circular RNA Expression: Its Potential Regulation and Function |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0168952516000329 https://www.clinicalkey.es/playcontent/1-s2.0-S0168952516000329 https://dx.doi.org/10.1016/j.tig.2016.03.002 https://www.ncbi.nlm.nih.gov/pubmed/27050930 https://www.proquest.com/docview/1784085645 https://www.proquest.com/docview/1787980611 https://pubmed.ncbi.nlm.nih.gov/PMC4948998 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB-OE8UX0fNrTz0q-CTUTdM0SX0QluWWPeUWOT24t9CmqVake9z24Hzxb3emSZdbT1fwpZBm0rTTycyE_GYG4FXCq4TbPIsLW_JYoE2PCy2KmKHtY5JVZZVQoPDxQs5Pxfuz7GwHpkMsDMEqg-73Or3X1uHOOHBzfN4040_orOg8Q_ssybHnFMQnhCIpf_PzGsxD-SKbSBwT9XCy2WO8uuYLobukz3PK_2abbvqev0Mor9mk2X24F5zJaOLf9wHsuHYPbvvykj_24M5xODh_CO-mzUWPOI1OFpPo8CrAX9u30VG3ij4uOwIN4aNOfGl67ImKtopmaPWo8QhOZ4efp_M4lE6IbSZkh9dUJbzQSZFayYVNke2C1XVBG6IikdJWaakVr0t0W2ts1ejYsbTMVK1lVYv0Mey2y9Y9hchVeY57PltaUQvtXF45UkoataTLdSZGwAamGRvyilN5i-9mAJB9M8hnQ3w2LDXI5xG8Xg8590k1thHz4U-YIVoU9ZtBlb9tkPrTILcKK3RlErPihpkbUjQCsR65IYj_mvDlICQGFyiduhStW17iREpTFjkpsq00KtfoWiUjeOIFa80YrihFT8rwkzZEbk1ACcI3e9rma58onFL_4HZ6__8-6RncpZZHdz6H3e7i0r1AD6wrD_oldgC3Jkcf5otfFVst3A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTsBeEAzGymeQeEKKmjiO4_CAVFWrWrZWaGzS3izHcSAIpdOaSfDfc1c7hTIoEi-REvvycTnfneWffwfwOmZlzEyehtoULOQY00MtuQ4jjH2RiMqijGmj8GwuJuf8_UV6sQOjbi8MwSq973c-feWt_ZWB1-bgsq4HHzFZkXmK8VlQYs_yW7BL7FRpD3aH0-PJ_CfSI3N1NrF_SALd4uYK5tXWnwjgJRzVKftbeLqZfv6OovwlLI3vwz2fTwZD98oPYMc2-3DbVZj8vg93Zn7t_CG8G9VXK9BpcDofBkffPAK2eRtM22XwYdESbghvdeqq02NLoJsyGGPgo5NHcD4-OhtNQl89ITQpFy0ekyxmWsY6MYJxk6DmeVRVmuZEOhbClEkhM1YVmLlWeFZhbhclRZpVUpQVTw6g1ywaewiBLfMcp32mMLzi0tq8tOSXJDpKm8uU9yHqlKaMpxanChdfVYch-6JQz4r0rKJEoZ778GYtcul4NbZ1Zt2fUN2GUXRxCr3-NqHsT0J26QfpUsVqyVSkbhhSH_hacsMW__XAV52RKByjtPCiG7u4xgdlkojkBE-39slyidlV3IfHzrDWimEZsfQkEX7ShsmtOxBH-GZLU39ecYUT-w_OqJ_83ye9hLuTs9mJOpnOj5_CHrU4sOcz6LVX1_Y5JmRt8cIPuB9XLDCN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circular+RNA+Expression%3A+Its+Potential+Regulation+and+Function&rft.jtitle=Trends+in+genetics&rft.au=Salzman%2C+Julia&rft.date=2016-05-01&rft.issn=0168-9525&rft_id=info:doi/10.1016%2Fj.tig.2016.03.002&rft.externalDBID=ECK1-s2.0-S0168952516000329&rft.externalDocID=1_s2_0_S0168952516000329 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9525&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9525&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9525&client=summon |