Circular RNA Expression: Its Potential Regulation and Function

In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and ar...

Full description

Saved in:
Bibliographic Details
Published inTrends in genetics Vol. 32; no. 5; pp. 309 - 316
Main Author Salzman, Julia
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and are spliced at canonical splice sites. This feature of gene expression was first recognized in humans and mouse, but it quickly emerged that it was common across essentially all eukaryotes studied by molecular biologists. CircRNA abundance, and even which alternatively spliced circRNA isoforms are expressed, varies by cell type and can exceed the abundance of the traditional linear mRNA or ncRNA transcript. CircRNAs are enriched in the brain and increase in abundance during fetal development. Together, these features raise fundamental questions regarding the regulation of circRNA in cis and in trans, and its function. Many circRNAs have recently been discovered and characterized. Recently, much light has been shed on the regulation and function of circRNAs CircRNA has been posited to function as a miRNA or RNA-binding protein sponge. However, a general function has not been identified. Developmental regulation of circRNA and enrichment in the nervous system are an emerging theme shared by circRNAs across the metazoan lineage, from flies to humans. CircRNAs can be joined by 3′–5′ linkages, containing only exonic sequence; 2′–5′ linkages (intronic lariats); or 3′–5′ linkages that contain retained intronic sequences.
AbstractList In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and are spliced at canonical splice sites. This feature of gene expression was first recognized in humans and mouse, but it quickly emerged that it was common across essentially all eukaryotes studied by molecular biologists. CircRNA abundance, and even which alternatively spliced circRNA isoforms are expressed, varies by cell type and can exceed the abundance of the traditional linear mRNA or ncRNA transcript. CircRNAs are enriched in the brain and increase in abundance during fetal development. Together, these features raise fundamental questions regarding the regulation of circRNA in cis and in trans, and its function.In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and are spliced at canonical splice sites. This feature of gene expression was first recognized in humans and mouse, but it quickly emerged that it was common across essentially all eukaryotes studied by molecular biologists. CircRNA abundance, and even which alternatively spliced circRNA isoforms are expressed, varies by cell type and can exceed the abundance of the traditional linear mRNA or ncRNA transcript. CircRNAs are enriched in the brain and increase in abundance during fetal development. Together, these features raise fundamental questions regarding the regulation of circRNA in cis and in trans, and its function.
In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and are spliced at canonical splice sites. This feature of gene expression was first recognized in humans and mouse, but it quickly emerged that it was common across essentially all eukaryotes studied by molecular biologists. CircRNA abundance, and even which alternatively spliced circRNA isoforms are expressed, varies by cell type and can exceed the abundance of the traditional linear mRNA or ncRNA transcript. CircRNAs are enriched in the brain and increase in abundance during fetal development. Together, these features raise fundamental questions regarding the regulation of circRNA in cis and in trans, and its function. Many circRNAs have recently been discovered and characterized. Recently, much light has been shed on the regulation and function of circRNAs CircRNA has been posited to function as a miRNA or RNA-binding protein sponge. However, a general function has not been identified. Developmental regulation of circRNA and enrichment in the nervous system are an emerging theme shared by circRNAs across the metazoan lineage, from flies to humans. CircRNAs can be joined by 3′–5′ linkages, containing only exonic sequence; 2′–5′ linkages (intronic lariats); or 3′–5′ linkages that contain retained intronic sequences.
In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and are spliced at canonical splice sites. This feature of gene expression was first recognized in humans and mouse, but it quickly emerged that it was common across essentially all eukaryotes studied by molecular biologists. CircRNA abundance, and even which alternatively spliced circRNA isoforms are expressed, varies by cell type and can exceed the abundance of the traditional linear mRNA or ncRNA transcript. CircRNAs are enriched in the brain and increase in abundance during fetal development. Together, these features raise fundamental questions regarding the regulation of circRNA in cis and in trans , and its function.
In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and are spliced at canonical splice sites. This feature of gene expression was first recognized in humans and mouse, but it quickly emerged that it was common across essentially all eukaryotes studied by molecular biologists. CircRNA abundance, and even which alternatively spliced circRNA isoforms are expressed, varies by cell type and can exceed the abundance of the traditional linear mRNA or ncRNA transcript. CircRNAs are enriched in the brain and increase in abundance during fetal development. Together, these features raise fundamental questions regarding the regulation of circRNA in cis and in trans, and its function.
Author Salzman, Julia
AuthorAffiliation 1 Department of Biochemistry and Stanford Cancer Institute, Stanford University, Stanford, CA, USA
AuthorAffiliation_xml – name: 1 Department of Biochemistry and Stanford Cancer Institute, Stanford University, Stanford, CA, USA
Author_xml – sequence: 1
  givenname: Julia
  surname: Salzman
  fullname: Salzman, Julia
  email: Julia.salzman@stanford.edu
  organization: Department of Biochemistry and Stanford Cancer Institute, Stanford University, Stanford, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27050930$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQ9aGIfsAP4IJy5LJhHMeOA9JK1aqFShWgAueR49iLl6y92ElF_z0OWyqoROFiezTvvRnPm2Ny4IM3hDyjUFKg4uWmHN26rPKzBFYCVAfkKAdy0fKKH5LjlDYAwBvGH5PDqgEOLYMjsly5qKdBxeLq3Wlx9n0XTUou-FfFxZiKD2E0fnRqKK7MOqPGnCmU74vzyes5eEIeWTUk8_T2PiGfz88-rd4uLt-_uVidXi40r8WYT9bQSkmqmBZVrZmAvgZrFa1brqgQumedbCrbSdrZHFkuOLCON1aK3tbshCz3urup25pe566iGnAX3VbFGwzK4Z8Z777gOlxj3daybWUWeHErEMO3yaQRty5pMwzKmzAlpI1sWgmC0v-B1iC5qHmGPv-9rbt-fs03A-geoGNIKRp7B6GAs2-4wewbzr4hMMy-ZU5zj6Pd-HP0-WdueJD5es802YprZyIm7YzXpnfR6BH74B5kL--x9eC802r4am5M2oQp-uwxUkwVAn6ct2teLiryYrGqzQLt3wX-UfwHbm7bdg
CitedBy_id crossref_primary_10_1155_2022_4542487
crossref_primary_10_3390_cells11182791
crossref_primary_10_1155_2022_9461054
crossref_primary_10_1016_j_actbio_2022_01_020
crossref_primary_10_12677_ACM_2024_142573
crossref_primary_10_1038_s41598_023_40393_1
crossref_primary_10_1016_j_prp_2019_152620
crossref_primary_10_1515_med_2023_0751
crossref_primary_10_1016_j_neuroscience_2020_09_009
crossref_primary_10_1186_s12957_022_02777_x
crossref_primary_10_1016_j_bej_2022_108386
crossref_primary_10_1016_j_neuroscience_2021_12_037
crossref_primary_10_1021_acs_jproteome_7b00519
crossref_primary_10_1002_jcla_23603
crossref_primary_10_1016_j_cotox_2019_02_008
crossref_primary_10_1038_s41467_020_20459_8
crossref_primary_10_1016_j_omtn_2021_01_032
crossref_primary_10_3389_fonc_2021_712145
crossref_primary_10_1080_0886022X_2023_2261552
crossref_primary_10_1016_j_bbrc_2018_02_036
crossref_primary_10_1002_elps_202400067
crossref_primary_10_1002_jcp_29165
crossref_primary_10_1016_j_prp_2024_155488
crossref_primary_10_62347_MYMM7384
crossref_primary_10_1016_j_ejphar_2022_174915
crossref_primary_10_2174_1389200224666230202155414
crossref_primary_10_1016_j_plantsci_2023_111828
crossref_primary_10_2217_epi_2022_0111
crossref_primary_10_1186_s13018_021_02323_7
crossref_primary_10_1016_j_jtbi_2017_02_024
crossref_primary_10_1016_j_biopha_2018_12_044
crossref_primary_10_1016_j_ijbiomac_2024_139305
crossref_primary_10_1038_s41419_023_06389_5
crossref_primary_10_3892_mmr_2019_10032
crossref_primary_10_3390_genes9030118
crossref_primary_10_1016_j_bbrc_2022_03_041
crossref_primary_10_2147_CMAR_S291218
crossref_primary_10_1186_s12864_022_08820_1
crossref_primary_10_1155_2022_2775433
crossref_primary_10_1186_s12943_019_1078_z
crossref_primary_10_1016_j_biocel_2019_105621
crossref_primary_10_1007_s10792_024_03276_6
crossref_primary_10_1016_j_gendis_2020_11_014
crossref_primary_10_1089_ars_2017_7126
crossref_primary_10_1080_08916934_2022_2037129
crossref_primary_10_1155_2021_6724854
crossref_primary_10_3390_ijms22041857
crossref_primary_10_1038_s41467_023_38232_y
crossref_primary_10_2147_CMAR_S280315
crossref_primary_10_1155_2021_6688629
crossref_primary_10_18632_aging_203740
crossref_primary_10_3390_biom13071101
crossref_primary_10_1016_j_semcancer_2018_12_002
crossref_primary_10_1073_pnas_2420383122
crossref_primary_10_3390_cells8090960
crossref_primary_10_18632_aging_203988
crossref_primary_10_3390_ijms21103666
crossref_primary_10_1002_jcp_29009
crossref_primary_10_1111_imm_12940
crossref_primary_10_1038_s41467_017_00690_6
crossref_primary_10_1007_s00441_017_2762_1
crossref_primary_10_1002_jcla_23625
crossref_primary_10_1126_sciadv_abb7426
crossref_primary_10_1186_s13287_022_03150_1
crossref_primary_10_1089_dna_2020_5994
crossref_primary_10_3390_molecules26041155
crossref_primary_10_1186_s13008_023_00084_9
crossref_primary_10_1515_jpem_2024_0449
crossref_primary_10_1007_s12672_024_01198_4
crossref_primary_10_1016_j_ygeno_2021_03_026
crossref_primary_10_3390_molecules21111451
crossref_primary_10_1097_MD_0000000000037813
crossref_primary_10_1186_s12943_021_01358_y
crossref_primary_10_3390_ijms21186975
crossref_primary_10_1016_j_brainresbull_2024_110922
crossref_primary_10_1093_bib_bbac472
crossref_primary_10_1155_2022_3676685
crossref_primary_10_1007_s13273_023_00396_5
crossref_primary_10_1016_j_ncrna_2018_05_002
crossref_primary_10_3389_fgene_2023_1290420
crossref_primary_10_1080_21655979_2022_2054753
crossref_primary_10_2217_epi_2018_0023
crossref_primary_10_1007_s12640_022_00525_3
crossref_primary_10_1016_j_biopha_2024_117480
crossref_primary_10_1016_j_ygeno_2020_09_055
crossref_primary_10_3389_fgene_2021_663091
crossref_primary_10_3389_fgene_2021_696948
crossref_primary_10_1186_s12931_018_0962_1
crossref_primary_10_1002_jcsm_12859
crossref_primary_10_1186_s12935_021_02351_7
crossref_primary_10_1002_cbin_11532
crossref_primary_10_1371_journal_ppat_1009438
crossref_primary_10_1038_s41598_019_53063_y
crossref_primary_10_3390_cancers12030629
crossref_primary_10_1016_j_rbmo_2024_104375
crossref_primary_10_3389_fcell_2023_1267792
crossref_primary_10_3389_pore_2022_1610037
crossref_primary_10_1016_j_canlet_2017_05_025
crossref_primary_10_1111_1759_7714_14820
crossref_primary_10_1631_jzus_B2200211
crossref_primary_10_1007_s10142_023_01197_8
crossref_primary_10_1177_1010428317704175
crossref_primary_10_1007_s12033_023_00658_6
crossref_primary_10_1007_s12374_024_09451_7
crossref_primary_10_1016_j_lfs_2023_121367
crossref_primary_10_1186_s12943_022_01606_9
crossref_primary_10_1002_ctm2_70100
crossref_primary_10_1038_s41419_024_06888_z
crossref_primary_10_1080_21655979_2021_1960769
crossref_primary_10_1186_s12864_018_4660_7
crossref_primary_10_4081_ejh_2024_4063
crossref_primary_10_1002_ame2_12208
crossref_primary_10_1038_s41598_020_78469_x
crossref_primary_10_14302_issn_2832_5311_jpcd_18_1955
crossref_primary_10_3390_cancers16050978
crossref_primary_10_3389_fgene_2019_00083
crossref_primary_10_3389_fphar_2018_00846
crossref_primary_10_1111_bph_13958
crossref_primary_10_1080_15384101_2021_1874684
crossref_primary_10_1155_2021_8388512
crossref_primary_10_3389_fonc_2025_1535929
crossref_primary_10_3390_genes15070958
crossref_primary_10_1080_00365521_2017_1365168
crossref_primary_10_1155_2021_8379962
crossref_primary_10_3390_biom11121755
crossref_primary_10_3390_v15081697
crossref_primary_10_1002_wrna_1385
crossref_primary_10_1016_j_clim_2023_109766
crossref_primary_10_3892_ijo_2019_4904
crossref_primary_10_1002_wrna_1386
crossref_primary_10_1038_s41467_024_51041_1
crossref_primary_10_1186_s40249_023_01121_z
crossref_primary_10_1080_21655979_2022_2049026
crossref_primary_10_3390_ani11020558
crossref_primary_10_1002_jcla_23300
crossref_primary_10_1007_s12038_021_00152_8
crossref_primary_10_1155_2021_7608178
crossref_primary_10_1002_jcla_23788
crossref_primary_10_1016_j_ejmech_2020_112758
crossref_primary_10_1007_s12253_019_00716_y
crossref_primary_10_1002_jcp_27041
crossref_primary_10_3389_fgene_2022_842509
crossref_primary_10_1016_j_gene_2020_145153
crossref_primary_10_1080_15384047_2019_1617563
crossref_primary_10_3390_cells9071574
crossref_primary_10_3892_ijmm_2023_5282
crossref_primary_10_7554_eLife_58478
crossref_primary_10_1007_s10067_023_06560_5
crossref_primary_10_1016_j_lfs_2020_117363
crossref_primary_10_1111_jcmm_15943
crossref_primary_10_3389_fgene_2023_970465
crossref_primary_10_3389_fonc_2020_596623
crossref_primary_10_1016_j_drudis_2024_104066
crossref_primary_10_3390_ijms21010293
crossref_primary_10_1016_j_exer_2022_109179
crossref_primary_10_1186_s12916_020_01898_y
crossref_primary_10_1186_s12943_021_01453_0
crossref_primary_10_18632_aging_102405
crossref_primary_10_1155_2021_5510869
crossref_primary_10_3389_fmed_2021_761724
crossref_primary_10_1016_j_pharmthera_2020_107715
crossref_primary_10_3390_cells9061544
crossref_primary_10_3390_ijms19072001
crossref_primary_10_3390_genes13040663
crossref_primary_10_1186_s12950_023_00355_w
crossref_primary_10_3389_fmicb_2021_742984
crossref_primary_10_3389_fmolb_2021_693477
crossref_primary_10_1165_rcmb_2021_0379OC
crossref_primary_10_1080_15476286_2017_1317911
crossref_primary_10_18632_aging_204215
crossref_primary_10_1186_s12943_020_01253_y
crossref_primary_10_1101_gr_255463_119
crossref_primary_10_3390_cells9081841
crossref_primary_10_1038_s42003_024_06055_2
crossref_primary_10_2217_epi_2020_0291
crossref_primary_10_1093_bib_bbx089
crossref_primary_10_1155_2024_6647810
crossref_primary_10_1080_15384101_2020_1814026
crossref_primary_10_1038_s41392_021_00788_w
crossref_primary_10_3390_cancers12092462
crossref_primary_10_1007_s13273_022_00292_4
crossref_primary_10_1371_journal_ppat_1010972
crossref_primary_10_1016_j_ijbiomac_2024_134018
crossref_primary_10_1016_j_lfs_2020_118157
crossref_primary_10_3389_fmolb_2022_915993
crossref_primary_10_1016_j_biopha_2022_113863
crossref_primary_10_1016_j_omtn_2022_08_012
crossref_primary_10_1080_15384101_2021_1878327
crossref_primary_10_3389_fcell_2021_684125
crossref_primary_10_3389_fimmu_2024_1486476
crossref_primary_10_1080_21655979_2021_1918992
crossref_primary_10_1016_j_ymthe_2021_11_004
crossref_primary_10_1186_s12935_020_01648_3
crossref_primary_10_1016_j_gene_2018_07_037
crossref_primary_10_1002_mco2_283
crossref_primary_10_1016_j_omtn_2018_10_008
crossref_primary_10_1089_gtmb_2024_0337
crossref_primary_10_1016_j_bbadis_2024_167036
crossref_primary_10_1016_j_neubiorev_2022_104596
crossref_primary_10_1080_08916934_2021_1894417
crossref_primary_10_1186_s12864_021_08110_2
crossref_primary_10_2147_CMAR_S289775
crossref_primary_10_1007_s12192_020_01111_2
crossref_primary_10_4093_dmj_2019_0151
crossref_primary_10_1016_j_bbrc_2022_02_087
crossref_primary_10_1186_s12935_021_02149_7
crossref_primary_10_3892_ol_2022_13306
crossref_primary_10_1002_ddr_21864
crossref_primary_10_1155_2022_2818433
crossref_primary_10_1097_WNR_0000000000001326
crossref_primary_10_3389_fonc_2021_666340
crossref_primary_10_7555_JBR_33_20190063
crossref_primary_10_1038_s41419_021_03915_1
crossref_primary_10_3389_fphys_2020_00899
crossref_primary_10_1080_15384101_2018_1515553
crossref_primary_10_1016_j_ebiom_2017_09_015
crossref_primary_10_1016_j_jpha_2024_02_001
crossref_primary_10_1016_j_semcdb_2017_11_012
crossref_primary_10_1016_j_virusres_2021_198385
crossref_primary_10_1093_nar_gkw1201
crossref_primary_10_1016_j_phrs_2022_106582
crossref_primary_10_1164_rccm_202108_1905LE
crossref_primary_10_3390_ijms20122855
crossref_primary_10_3389_fcell_2021_627439
crossref_primary_10_1007_s10528_024_10855_w
crossref_primary_10_1016_j_jbc_2021_101199
crossref_primary_10_1002_ctm2_636
crossref_primary_10_3892_ol_2020_11547
crossref_primary_10_1080_21691401_2019_1593999
crossref_primary_10_3389_fgene_2022_897440
crossref_primary_10_1038_s41598_023_41028_1
crossref_primary_10_1186_s12935_021_02001_y
crossref_primary_10_2147_OTT_S270747
crossref_primary_10_1002_mc_22950
crossref_primary_10_18632_oncotarget_18671
crossref_primary_10_1016_j_celrep_2023_113314
crossref_primary_10_1016_j_procbio_2023_05_024
crossref_primary_10_3389_fmicb_2020_588009
crossref_primary_10_1038_s41419_024_06698_3
crossref_primary_10_3390_ncrna8050069
crossref_primary_10_3389_fphar_2019_00428
crossref_primary_10_1186_s11658_021_00270_z
crossref_primary_10_2147_PGPM_S394757
crossref_primary_10_1002_cam4_2584
crossref_primary_10_1016_j_numecd_2023_05_007
crossref_primary_10_1093_nar_gkac1129
crossref_primary_10_1002_jcb_27695
crossref_primary_10_1016_j_gpb_2016_12_005
crossref_primary_10_3389_froh_2025_1423226
crossref_primary_10_5114_aoms_174052
crossref_primary_10_1016_j_chembiol_2023_08_010
crossref_primary_10_1016_j_csbj_2018_10_010
crossref_primary_10_1007_s40620_021_01118_7
crossref_primary_10_1007_s13273_023_00410_w
crossref_primary_10_1016_j_ncrna_2024_02_015
crossref_primary_10_1016_j_acthis_2020_151506
crossref_primary_10_1186_s13048_020_00709_5
crossref_primary_10_2147_OTT_S234230
crossref_primary_10_1002_jcb_26492
crossref_primary_10_1038_s41375_018_0033_0
crossref_primary_10_1016_j_bbrc_2020_12_018
crossref_primary_10_1097_ICO_0000000000002089
crossref_primary_10_1134_S1068162022020042
crossref_primary_10_1155_2020_3589871
crossref_primary_10_3389_fgene_2021_679446
crossref_primary_10_1016_j_gene_2019_144286
crossref_primary_10_1007_s10142_024_01509_6
crossref_primary_10_1002_mc_22976
crossref_primary_10_1016_j_amjms_2023_11_001
crossref_primary_10_3390_ijms23073647
crossref_primary_10_3390_ncrna10010013
crossref_primary_10_1016_j_biocel_2021_105968
crossref_primary_10_1016_j_pneurobio_2016_11_001
crossref_primary_10_3389_fncel_2017_00354
crossref_primary_10_1016_j_bbrc_2019_06_087
crossref_primary_10_1038_s41419_020_03334_8
crossref_primary_10_1186_s12935_019_0926_7
crossref_primary_10_2217_epi_2020_0385
crossref_primary_10_1111_jnc_15198
crossref_primary_10_1007_s10528_021_10168_2
crossref_primary_10_1515_biol_2022_0040
crossref_primary_10_18632_aging_102932
crossref_primary_10_1038_s41598_017_13885_0
crossref_primary_10_1038_s41598_017_08806_0
crossref_primary_10_1016_j_molcel_2021_11_032
crossref_primary_10_1016_j_amjms_2020_08_008
crossref_primary_10_3389_fcell_2023_1249174
crossref_primary_10_1093_bfgp_elab014
crossref_primary_10_1101_cshperspect_a032680
crossref_primary_10_1155_2022_3902832
crossref_primary_10_1016_j_domaniend_2019_106401
crossref_primary_10_1016_j_jare_2023_11_034
crossref_primary_10_1089_gtmb_2020_0034
crossref_primary_10_1186_s12935_023_03128_w
crossref_primary_10_1038_s41422_020_0279_8
crossref_primary_10_1097_MD_0000000000025888
crossref_primary_10_3390_genes13050885
crossref_primary_10_1186_s12967_022_03527_z
crossref_primary_10_1111_1759_7714_14191
crossref_primary_10_18632_aging_103244
crossref_primary_10_1002_ctm2_683
crossref_primary_10_1038_s41598_022_06556_2
crossref_primary_10_3389_fimmu_2022_927811
crossref_primary_10_1080_21655979_2021_1999370
crossref_primary_10_1002_jcb_29672
crossref_primary_10_1007_s00018_022_04552_3
crossref_primary_10_1016_j_fertnstert_2019_02_023
crossref_primary_10_1002_ctm2_565
crossref_primary_10_1002_dmrr_70006
crossref_primary_10_1016_j_cellsig_2022_110471
crossref_primary_10_1016_j_ncrna_2022_03_001
crossref_primary_10_1093_molehr_gaab020
crossref_primary_10_1016_j_intimp_2023_110979
crossref_primary_10_1186_s13045_017_0422_2
crossref_primary_10_1016_j_ncrna_2022_11_004
crossref_primary_10_1080_13813455_2021_1933047
crossref_primary_10_17816_RCF204335_384
crossref_primary_10_1007_s00439_017_1809_4
crossref_primary_10_1146_annurev_biochem_013118_111042
crossref_primary_10_2147_OTT_S241347
crossref_primary_10_18632_oncotarget_22846
crossref_primary_10_1007_s11892_021_01378_4
crossref_primary_10_1016_j_ccell_2019_12_007
crossref_primary_10_1155_2020_8834359
crossref_primary_10_1016_j_cbpc_2025_110121
crossref_primary_10_3389_fmolb_2017_00038
crossref_primary_10_1002_jbt_23264
crossref_primary_10_1007_s00425_020_03544_6
crossref_primary_10_1016_j_canlet_2017_07_002
crossref_primary_10_1111_cbdd_14407
crossref_primary_10_3389_fcell_2020_579945
crossref_primary_10_1002_jgm_3256
crossref_primary_10_2147_CMAR_S267927
crossref_primary_10_1186_s12885_019_5593_5
crossref_primary_10_1016_j_omtn_2020_09_001
crossref_primary_10_1002_2211_5463_13297
crossref_primary_10_1002_prm2_12127
crossref_primary_10_1016_j_trecan_2018_09_009
crossref_primary_10_1155_2021_3997045
crossref_primary_10_1016_j_heliyon_2023_e17366
crossref_primary_10_1080_02699052_2023_2237890
crossref_primary_10_1016_j_burns_2021_12_013
crossref_primary_10_1097_MD_0000000000027122
crossref_primary_10_1007_s12041_023_01442_w
crossref_primary_10_1080_15384101_2021_2015671
crossref_primary_10_1007_s00705_021_05190_z
crossref_primary_10_1097_SHK_0000000000002163
crossref_primary_10_1158_0008_5472_CAN_16_2634
crossref_primary_10_1186_s13287_021_02187_y
crossref_primary_10_1016_j_celrep_2021_109439
crossref_primary_10_3389_fgene_2020_591806
crossref_primary_10_1080_21655979_2021_1921553
crossref_primary_10_1039_C8MT00207J
crossref_primary_10_3892_ol_2019_10908
crossref_primary_10_3389_fimmu_2019_03129
crossref_primary_10_1002_jgm_3365
crossref_primary_10_1186_s12943_019_1081_4
crossref_primary_10_1155_2022_4203161
crossref_primary_10_1371_journal_pone_0209829
crossref_primary_10_1016_j_ijbiomac_2025_141572
crossref_primary_10_1016_j_talanta_2021_123066
crossref_primary_10_3389_fonc_2022_1077118
crossref_primary_10_18632_aging_103257
crossref_primary_10_1186_s12935_021_01964_2
crossref_primary_10_1016_j_yexmp_2021_104637
crossref_primary_10_3892_mmr_2019_10811
crossref_primary_10_1002_jbt_23286
crossref_primary_10_18632_aging_104107
crossref_primary_10_1089_gtmb_2020_0079
crossref_primary_10_3390_v10110591
crossref_primary_10_1038_s41598_019_45427_1
crossref_primary_10_3892_mmr_2017_6916
crossref_primary_10_3390_ijms24032582
crossref_primary_10_1002_wrna_1750
crossref_primary_10_1007_s42764_022_00091_0
crossref_primary_10_1128_JVI_02145_20
crossref_primary_10_1186_s12864_017_4335_9
crossref_primary_10_3389_fgene_2022_823517
crossref_primary_10_1073_pnas_1814874116
crossref_primary_10_1002_mc_23402
crossref_primary_10_1113_JP273129
crossref_primary_10_1007_s12672_023_00679_2
crossref_primary_10_1111_cpr_12614
crossref_primary_10_1136_gutjnl_2024_333522
crossref_primary_10_1002_advs_202206732
crossref_primary_10_1007_s11033_023_08628_6
crossref_primary_10_1016_j_fsi_2022_07_008
crossref_primary_10_1186_s12885_024_12943_x
crossref_primary_10_2142_biophys_57_005
crossref_primary_10_1038_s41573_023_00859_3
crossref_primary_10_1136_jitc_2023_008040
crossref_primary_10_2217_epi_2019_0382
crossref_primary_10_1016_j_jaci_2021_10_041
crossref_primary_10_1186_s13018_021_02604_1
crossref_primary_10_3892_ijo_2017_4162
crossref_primary_10_1007_s12031_022_02018_6
crossref_primary_10_1016_j_mce_2018_10_023
crossref_primary_10_1007_s10528_022_10316_2
crossref_primary_10_1016_j_omtn_2020_09_034
crossref_primary_10_3390_biomedicines10123013
crossref_primary_10_1038_s41598_019_48471_z
crossref_primary_10_2174_0929867330666230531095850
crossref_primary_10_1007_s00018_021_03823_9
crossref_primary_10_1042_BSR20193436
crossref_primary_10_3390_cells9081806
crossref_primary_10_1007_s12094_023_03182_w
crossref_primary_10_1038_s41419_021_03472_7
crossref_primary_10_3892_br_2020_1278
crossref_primary_10_1016_j_atherosclerosis_2020_02_017
crossref_primary_10_1016_j_bbrc_2023_08_037
crossref_primary_10_1093_narcan_zcad021
crossref_primary_10_1016_j_omtn_2024_102128
crossref_primary_10_2217_bmm_2023_0369
crossref_primary_10_1155_2020_1584052
crossref_primary_10_2147_OTT_S246957
crossref_primary_10_1038_nrgastro_2017_169
crossref_primary_10_3389_fgene_2020_556712
crossref_primary_10_1016_j_rvsc_2022_09_036
crossref_primary_10_1002_mrd_23715
crossref_primary_10_1007_s00404_019_05122_y
crossref_primary_10_3389_fonc_2020_590627
crossref_primary_10_1097_FJC_0000000000001063
crossref_primary_10_1016_j_bbadis_2016_12_018
crossref_primary_10_1038_s41420_022_01062_w
crossref_primary_10_1016_j_bbrc_2017_03_028
crossref_primary_10_1007_s00109_017_1603_8
crossref_primary_10_1097_SHK_0000000000002364
crossref_primary_10_1186_s12943_022_01556_2
crossref_primary_10_3390_ijms21030792
crossref_primary_10_3390_genes7120116
crossref_primary_10_3390_ncrna7020024
crossref_primary_10_1007_s11033_019_04937_x
crossref_primary_10_1038_s41576_021_00436_7
crossref_primary_10_1159_000529207
crossref_primary_10_1007_s10142_024_01386_z
crossref_primary_10_1186_s12885_020_06794_5
crossref_primary_10_1111_1759_7714_15215
crossref_primary_10_1007_s10142_025_01530_3
crossref_primary_10_1007_s00592_019_01448_w
crossref_primary_10_3892_etm_2022_11169
crossref_primary_10_1155_2020_3501451
crossref_primary_10_1080_21655979_2021_1916276
crossref_primary_10_3389_fmicb_2017_01720
crossref_primary_10_1016_j_ydbio_2016_11_013
crossref_primary_10_1080_15384101_2018_1526599
crossref_primary_10_1080_15476286_2021_1950465
crossref_primary_10_1016_j_biocel_2020_105719
crossref_primary_10_1155_2023_8845152
crossref_primary_10_4251_wjgo_v11_i10_909
crossref_primary_10_1016_j_biopha_2020_110251
crossref_primary_10_1007_s12035_020_01878_6
crossref_primary_10_3390_ijms242417561
crossref_primary_10_1155_2021_2408384
crossref_primary_10_1155_2021_8833098
crossref_primary_10_1016_j_lfs_2021_119039
crossref_primary_10_1016_j_omtn_2021_05_022
crossref_primary_10_1515_med_2022_0542
crossref_primary_10_3389_fcell_2020_00278
crossref_primary_10_1186_s12870_019_1712_3
crossref_primary_10_1097_CM9_0000000000000908
crossref_primary_10_1002_cam4_1613
crossref_primary_10_1080_15476286_2019_1672514
crossref_primary_10_1111_nep_14115
crossref_primary_10_3892_mmr_2021_12293
crossref_primary_10_1016_j_postharvbio_2017_10_013
crossref_primary_10_1016_j_reth_2021_09_006
crossref_primary_10_1186_s12935_021_01749_7
crossref_primary_10_1016_j_bcp_2023_115451
crossref_primary_10_1007_s13562_024_00889_x
crossref_primary_10_1038_bcj_2016_81
crossref_primary_10_1038_s41598_024_76940_7
crossref_primary_10_1080_02713683_2021_1925697
crossref_primary_10_3389_fimmu_2022_879487
crossref_primary_10_1089_gtmb_2021_0173
crossref_primary_10_1186_s12864_020_6462_y
crossref_primary_10_1016_j_gene_2020_145066
crossref_primary_10_1016_j_gene_2020_145068
crossref_primary_10_3390_ijms21041398
crossref_primary_10_3892_mmr_2019_9905
crossref_primary_10_1186_s13048_018_0381_4
crossref_primary_10_18632_oncotarget_21238
crossref_primary_10_4103_1673_5374_369115
crossref_primary_10_1042_BST20160131
crossref_primary_10_3389_fdmed_2021_799716
crossref_primary_10_1002_ajmg_c_31833
crossref_primary_10_3389_fcell_2021_811666
crossref_primary_10_3390_cancers15225351
crossref_primary_10_1002_cbin_11502
crossref_primary_10_3892_mmr_2020_10910
crossref_primary_10_1097_MD_0000000000036908
crossref_primary_10_1038_s41590_018_0302_0
crossref_primary_10_2147_JHC_S317256
crossref_primary_10_1093_biomethods_bpab016
crossref_primary_10_3389_fcell_2021_783322
crossref_primary_10_23736_S0026_4806_20_06639_2
crossref_primary_10_1016_j_ymthe_2022_01_012
crossref_primary_10_1002_jcla_23330
crossref_primary_10_1002_wrna_1697
crossref_primary_10_1038_s41380_025_02925_1
crossref_primary_10_1080_02713683_2022_2025845
crossref_primary_10_1097_FJC_0000000000000841
crossref_primary_10_1111_odi_14070
crossref_primary_10_1186_s12943_020_01203_8
crossref_primary_10_1155_2021_6653387
crossref_primary_10_1038_s41392_019_0092_3
crossref_primary_10_3748_wjg_v25_i41_6273
crossref_primary_10_1002_kjm2_12868
crossref_primary_10_1155_2021_6945046
crossref_primary_10_1080_21655979_2022_2061304
crossref_primary_10_1016_j_exer_2022_109264
crossref_primary_10_3389_fcell_2020_569977
crossref_primary_10_3389_fcell_2021_660853
crossref_primary_10_1186_s12868_022_00745_5
crossref_primary_10_1007_s10517_018_4084_z
crossref_primary_10_3389_fonc_2021_653717
crossref_primary_10_1002_wrna_1584
crossref_primary_10_1097_MD_0000000000016072
crossref_primary_10_5582_irdr_2018_01013
crossref_primary_10_1016_j_yexcr_2019_111799
crossref_primary_10_3390_ijms23031413
crossref_primary_10_1080_10409238_2023_2185764
crossref_primary_10_1016_j_gene_2019_05_054
crossref_primary_10_3389_fphys_2023_1158839
crossref_primary_10_1016_j_diabres_2023_110739
crossref_primary_10_3389_fnint_2021_758340
crossref_primary_10_1016_j_tig_2022_05_002
crossref_primary_10_1124_jpet_121_000518
crossref_primary_10_3389_fnagi_2021_691512
crossref_primary_10_1016_j_heliyon_2023_e18626
crossref_primary_10_3389_fneur_2022_889855
crossref_primary_10_1016_j_ymthe_2019_05_011
crossref_primary_10_3389_fimmu_2023_1075970
crossref_primary_10_1002_ijc_34040
crossref_primary_10_1016_j_diff_2021_04_002
crossref_primary_10_1016_j_expneurol_2018_12_003
crossref_primary_10_1080_15476286_2018_1564462
crossref_primary_10_1016_j_bbagrm_2018_06_009
crossref_primary_10_1038_s41419_021_03777_7
crossref_primary_10_1097_HRP_0000000000000206
crossref_primary_10_1515_jib_2019_0027
crossref_primary_10_1038_s41419_021_04464_3
crossref_primary_10_1080_10495398_2022_2118130
crossref_primary_10_3390_cells11213460
crossref_primary_10_1016_j_ab_2021_114354
crossref_primary_10_1007_s13770_020_00270_8
crossref_primary_10_3390_biom14020158
crossref_primary_10_1016_j_lfs_2020_117888
crossref_primary_10_2217_epi_2018_0135
crossref_primary_10_1080_15476286_2019_1574162
crossref_primary_10_1016_j_cca_2021_03_010
crossref_primary_10_1186_s12864_024_10290_6
crossref_primary_10_3389_fimmu_2022_951561
crossref_primary_10_3390_ijms231911908
crossref_primary_10_1007_s11064_023_04077_6
crossref_primary_10_1186_s13045_022_01235_1
crossref_primary_10_1016_j_gene_2023_147733
crossref_primary_10_1016_j_heliyon_2023_e20649
crossref_primary_10_1093_abbs_gmab058
crossref_primary_10_1186_s40709_021_00135_8
crossref_primary_10_1002_jmv_27734
crossref_primary_10_1002_wrna_1538
crossref_primary_10_1016_j_yexcr_2018_05_002
crossref_primary_10_1097_JP9_0000000000000087
crossref_primary_10_1016_j_lfs_2024_122715
crossref_primary_10_3389_fgene_2024_1429411
crossref_primary_10_3389_fgene_2022_1006307
crossref_primary_10_3724_SP_J_1249_2022_03262
crossref_primary_10_1016_j_pcad_2021_07_005
crossref_primary_10_1002_wrna_1775
crossref_primary_10_1111_1751_2980_12966
crossref_primary_10_23736_S0031_0808_20_03957_9
crossref_primary_10_1016_j_cbd_2021_100863
crossref_primary_10_1016_j_bbrc_2020_03_084
crossref_primary_10_3389_fcell_2021_595156
crossref_primary_10_3390_biom13010018
crossref_primary_10_3390_cancers13194848
crossref_primary_10_1186_s12957_021_02373_5
crossref_primary_10_1186_s12943_022_01598_6
crossref_primary_10_3892_ol_2021_13174
crossref_primary_10_1016_S2095_3119_18_61976_8
crossref_primary_10_1002_wrna_1427
crossref_primary_10_3389_fonc_2021_733745
crossref_primary_10_1186_s12957_022_02503_7
crossref_primary_10_5582_bst_2022_01304
crossref_primary_10_1186_s13073_019_0663_5
crossref_primary_10_1016_j_virusres_2021_198502
crossref_primary_10_1016_j_placenta_2020_12_003
crossref_primary_10_2139_ssrn_3864033
crossref_primary_10_3892_or_2021_8152
crossref_primary_10_1080_00365513_2019_1674004
crossref_primary_10_3390_ijms23031111
crossref_primary_10_1080_10409238_2016_1276882
crossref_primary_10_1155_2020_2419163
crossref_primary_10_3389_fcell_2022_789073
crossref_primary_10_1038_s41598_018_37037_0
crossref_primary_10_1089_cbr_2020_4044
crossref_primary_10_18632_aging_202900
crossref_primary_10_3390_cancers13143395
crossref_primary_10_1016_j_psj_2022_101734
crossref_primary_10_1186_s12920_022_01163_6
crossref_primary_10_1007_s00018_024_05148_9
crossref_primary_10_1002_dmrr_3394
crossref_primary_10_1007_s10120_023_01392_3
crossref_primary_10_1007_s10142_022_00862_8
crossref_primary_10_1016_j_expneurol_2024_114882
crossref_primary_10_37349_emed_2024_00264
crossref_primary_10_1186_s13075_022_02732_x
crossref_primary_10_1002_jcla_24487
crossref_primary_10_1128_JVI_02296_20
crossref_primary_10_3389_fimmu_2022_1005307
crossref_primary_10_1111_adb_13071
crossref_primary_10_1007_s42535_024_00868_6
crossref_primary_10_1111_1753_0407_13471
crossref_primary_10_1016_j_yjmcc_2017_06_015
Cites_doi 10.1261/rna.052282.115
10.1016/j.cell.2014.07.012
10.1186/s12864-015-1603-4
10.1261/rna.047126.114
10.1101/gad.270421.115
10.1146/annurev.genet.40.110405.090625
10.1016/0092-8674(93)90279-Y
10.1016/S0092-8674(00)80878-8
10.1074/jbc.274.12.8153
10.1038/nature11993
10.7150/jca.11997
10.1371/journal.pone.0090859
10.1016/j.celrep.2014.12.019
10.1182/blood-2015-06-649434
10.1186/s13059-015-0690-5
10.1016/j.molcel.2014.08.019
10.1002/j.1460-2075.1992.tb05148.x
10.1038/nature11928
10.1093/nar/24.6.1015
10.1016/j.cell.2014.09.001
10.1038/nrg3847
10.1016/j.jmb.2015.02.018
10.1038/nn.3975
10.1016/0092-8674(91)90244-S
10.1371/journal.pone.0030733
10.1101/gad.247361.114
10.1016/j.cell.2015.02.014
10.1186/s13059-014-0409-z
10.1242/dev.124.21.4321
10.1038/280339a0
10.1371/journal.pone.0141214
10.1016/j.molcel.2013.08.017
10.1186/1479-7364-8-3
10.1038/nrm3967
10.1074/jbc.M606744200
10.1016/j.celrep.2014.12.002
10.1038/cr.2015.82
10.1038/emboj.2011.359
10.1038/nbt.1883
10.1186/s13059-015-0801-3
10.1371/journal.pgen.1003777
10.1016/j.molcel.2015.03.027
10.1073/pnas.1403244111
10.1038/nbt.2890
10.7554/eLife.07540
10.1101/gad.187278.112
10.1016/j.celrep.2014.10.062
10.1371/journal.pgen.1001233
10.1128/MCB.17.6.2985
10.1146/annurev.physiol.60.1.497
10.1101/gad.251926.114
10.1371/journal.pbio.1001156
10.1095/biolreprod57.5.1128
10.1038/348450a0
10.1128/MCB.17.2.809
10.1093/jhered/esj037
10.1261/rna.035667.112
10.1093/hmg/1.5.345
10.1073/pnas.0136770100
ContentType Journal Article
Copyright 2016
Copyright © 2016. Published by Elsevier Ltd.
Copyright_xml – notice: 2016
– notice: Copyright © 2016. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
DOI 10.1016/j.tig.2016.03.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic



MEDLINE
Genetics Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EndPage 316
ExternalDocumentID PMC4948998
27050930
10_1016_j_tig_2016_03_002
S0168952516000329
1_s2_0_S0168952516000329
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R00 CA168987
– fundername: NIGMS NIH HHS
  grantid: R01 GM116847
GroupedDBID ---
--K
--M
-DZ
-RU
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5VS
7-5
71M
85S
8P~
9JM
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABFNM
ABFRF
ABGSF
ABLJU
ABMAC
ABUDA
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADUVX
ADVLN
ADXHL
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D0L
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HZ~
IH2
IHE
J1W
K-O
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SSU
SSZ
T5K
TN5
UQL
WH7
WUQ
Y6R
Z5R
ZCA
ZCG
ZGI
~G-
~KM
1RT
AACTN
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AFCTW
AFMIJ
AJBFU
DOVZS
EFLBG
G8K
XFK
ZA5
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c546t-c53712a81a3c624c360d40ffa1495a166cd3b872fb81bf6cdf56503b57f86df43
IEDL.DBID .~1
ISSN 0168-9525
IngestDate Thu Aug 21 18:45:58 EDT 2025
Fri Jul 11 16:20:03 EDT 2025
Fri Jul 11 03:22:10 EDT 2025
Thu Apr 03 07:09:11 EDT 2025
Tue Jul 01 01:43:35 EDT 2025
Thu Apr 24 23:00:39 EDT 2025
Fri Feb 23 02:22:40 EST 2024
Tue Feb 25 19:59:48 EST 2025
Tue Aug 26 19:58:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords RNA
circRNA
circular RNA
RNA splicing
Language English
License Copyright © 2016. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-c53712a81a3c624c360d40ffa1495a166cd3b872fb81bf6cdf56503b57f86df43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 27050930
PQID 1784085645
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4948998
proquest_miscellaneous_1787980611
proquest_miscellaneous_1784085645
pubmed_primary_27050930
crossref_primary_10_1016_j_tig_2016_03_002
crossref_citationtrail_10_1016_j_tig_2016_03_002
elsevier_sciencedirect_doi_10_1016_j_tig_2016_03_002
elsevier_clinicalkeyesjournals_1_s2_0_S0168952516000329
elsevier_clinicalkey_doi_10_1016_j_tig_2016_03_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in genetics
PublicationTitleAlternate Trends Genet
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Vincent, Deutscher (bib0475) 2006; 281
Coca-Prados, Hsu (bib0380) 1979; 280
Dichmann, Harland (bib0485) 2012; 26
Saad (bib0395) 1992; 1
Conn (bib0370) 2015; 160
Grabherr (bib0460) 2011; 29
Hooper (bib0455) 2014; 8
Koopman (bib0420) 1990; 348
Starke (bib0550) 2015; 10
Begemann (bib0590) 1997; 124
Peng (bib0465) 2015; 6
Kelly (bib0530) 2015; 427
Guo (bib0430) 2014; 15
Broadbent (bib0345) 2015; 16
Hansen (bib0410) 2011; 30
Szabo (bib0350) 2015; 16
Yang (bib0610) 2015
Lu (bib0340) 2015; 21
Li (bib0605) 2015; 25
Ashwal-Fluss (bib0360) 2014; 56
Lasda, Parker (bib0320) 2014; 20
Nigro (bib0385) 1991; 64
Lewis (bib0495) 2003; 100
Dolci (bib0560) 1997; 57
Zlotorynski (bib0500) 2015; 16
Schmucker (bib0510) 2000; 101
Cocquerelle (bib0390) 1992; 11
Boutz (bib0490) 2015; 29
Kramer (bib0375) 2015; 29
Barrett (bib0555) 2015; 4
Nam (bib0440) 1997; 17
Capel (bib0435) 1993; 73
Zhang (bib0505) 2013; 51
Hansen (bib0425) 2013; 495
Westholm (bib0595) 2014; 9
Thu (bib0520) 2014; 158
You (bib0575) 2015; 18
Memczak (bib0565) 2015; 10
Veno (bib0580) 2015; 16
Rybak-Wolf (bib0585) 2015; 58
Salzman (bib0355) 2013; 9
Jeck (bib0330) 2013; 19
Westholm (bib0365) 2014; 9
Salzman (bib0310) 2012; 7
Rodriguez-Trelles (bib0480) 2006; 40
Jeck, Sharpless (bib0315) 2014; 32
Alhasan (bib0600) 2015; 127
Wang (bib0335) 2014; 9
Lytton, Li (bib0450) 1999; 274
Capel (bib0535) 1998; 60
Bailleul (bib0400) 1996; 24
Memczak (bib0325) 2013; 495
Zaphiropoulos (bib0405) 1997
Salzman (bib0470) 2011; 9
Burd (bib0415) 2010; 6
Zhang (bib0570) 2014; 159
Ivanov (bib0540) 2015; 10
Treutlein (bib0515) 2014; 111
Lokody (bib0525) 2014; 15
Liang, Wilusz (bib0545) 2014; 28
Houseley (bib0445) 2006; 97
Starke (10.1016/j.tig.2016.03.002_bib0550) 2015; 10
Nam (10.1016/j.tig.2016.03.002_bib0440) 1997; 17
Treutlein (10.1016/j.tig.2016.03.002_bib0515) 2014; 111
Zhang (10.1016/j.tig.2016.03.002_bib0570) 2014; 159
Zaphiropoulos (10.1016/j.tig.2016.03.002_bib0405) 1997
Cocquerelle (10.1016/j.tig.2016.03.002_bib0390) 1992; 11
Koopman (10.1016/j.tig.2016.03.002_bib0420) 1990; 348
Lewis (10.1016/j.tig.2016.03.002_bib0495) 2003; 100
Alhasan (10.1016/j.tig.2016.03.002_bib0600) 2015; 127
Coca-Prados (10.1016/j.tig.2016.03.002_bib0380) 1979; 280
Burd (10.1016/j.tig.2016.03.002_bib0415) 2010; 6
Hansen (10.1016/j.tig.2016.03.002_bib0410) 2011; 30
Conn (10.1016/j.tig.2016.03.002_bib0370) 2015; 160
Zlotorynski (10.1016/j.tig.2016.03.002_bib0500) 2015; 16
Liang (10.1016/j.tig.2016.03.002_bib0545) 2014; 28
Salzman (10.1016/j.tig.2016.03.002_bib0310) 2012; 7
Lasda (10.1016/j.tig.2016.03.002_bib0320) 2014; 20
Veno (10.1016/j.tig.2016.03.002_bib0580) 2015; 16
Begemann (10.1016/j.tig.2016.03.002_bib0590) 1997; 124
Rodriguez-Trelles (10.1016/j.tig.2016.03.002_bib0480) 2006; 40
Schmucker (10.1016/j.tig.2016.03.002_bib0510) 2000; 101
Lokody (10.1016/j.tig.2016.03.002_bib0525) 2014; 15
Broadbent (10.1016/j.tig.2016.03.002_bib0345) 2015; 16
Lu (10.1016/j.tig.2016.03.002_bib0340) 2015; 21
Salzman (10.1016/j.tig.2016.03.002_bib0470) 2011; 9
Nigro (10.1016/j.tig.2016.03.002_bib0385) 1991; 64
Yang (10.1016/j.tig.2016.03.002_bib0610) 2015
Bailleul (10.1016/j.tig.2016.03.002_bib0400) 1996; 24
Li (10.1016/j.tig.2016.03.002_bib0605) 2015; 25
Szabo (10.1016/j.tig.2016.03.002_bib0350) 2015; 16
Kramer (10.1016/j.tig.2016.03.002_bib0375) 2015; 29
Ashwal-Fluss (10.1016/j.tig.2016.03.002_bib0360) 2014; 56
You (10.1016/j.tig.2016.03.002_bib0575) 2015; 18
Boutz (10.1016/j.tig.2016.03.002_bib0490) 2015; 29
Salzman (10.1016/j.tig.2016.03.002_bib0355) 2013; 9
Capel (10.1016/j.tig.2016.03.002_bib0535) 1998; 60
Kelly (10.1016/j.tig.2016.03.002_bib0530) 2015; 427
Thu (10.1016/j.tig.2016.03.002_bib0520) 2014; 158
Wang (10.1016/j.tig.2016.03.002_bib0335) 2014; 9
Westholm (10.1016/j.tig.2016.03.002_bib0365) 2014; 9
Dichmann (10.1016/j.tig.2016.03.002_bib0485) 2012; 26
Memczak (10.1016/j.tig.2016.03.002_bib0565) 2015; 10
Hooper (10.1016/j.tig.2016.03.002_bib0455) 2014; 8
Zhang (10.1016/j.tig.2016.03.002_bib0505) 2013; 51
Westholm (10.1016/j.tig.2016.03.002_bib0595) 2014; 9
Jeck (10.1016/j.tig.2016.03.002_bib0315) 2014; 32
Houseley (10.1016/j.tig.2016.03.002_bib0445) 2006; 97
Guo (10.1016/j.tig.2016.03.002_bib0430) 2014; 15
Barrett (10.1016/j.tig.2016.03.002_bib0555) 2015; 4
Memczak (10.1016/j.tig.2016.03.002_bib0325) 2013; 495
Lytton (10.1016/j.tig.2016.03.002_bib0450) 1999; 274
Saad (10.1016/j.tig.2016.03.002_bib0395) 1992; 1
Hansen (10.1016/j.tig.2016.03.002_bib0425) 2013; 495
Dolci (10.1016/j.tig.2016.03.002_bib0560) 1997; 57
Peng (10.1016/j.tig.2016.03.002_bib0465) 2015; 6
Rybak-Wolf (10.1016/j.tig.2016.03.002_bib0585) 2015; 58
Vincent (10.1016/j.tig.2016.03.002_bib0475) 2006; 281
Jeck (10.1016/j.tig.2016.03.002_bib0330) 2013; 19
Grabherr (10.1016/j.tig.2016.03.002_bib0460) 2011; 29
Ivanov (10.1016/j.tig.2016.03.002_bib0540) 2015; 10
Capel (10.1016/j.tig.2016.03.002_bib0435) 1993; 73
26464523 - RNA. 2015 Dec;21(12):2076-87
1303213 - Hum Mol Genet. 1992 Aug;1(5):345-6
21151960 - PLoS Genet. 2010 Dec 02;6(12):e1001233
7684656 - Cell. 1993 Jun 4;73(5):1019-30
10075718 - J Biol Chem. 1999 Mar 19;274(12):8153-60
17094737 - Annu Rev Genet. 2006;40:47-76
25070500 - Genome Biol. 2014 Jul 29;15(7):409
22319583 - PLoS One. 2012;7(2):e30733
25171406 - Cell. 2014 Aug 28;158(5):1045-59
26660425 - Blood. 2016 Mar 3;127(9):e1-e11
24039610 - PLoS Genet. 2013;9(9):e1003777
25544350 - Cell Rep. 2014 Dec 11;9(5):1966-80
25561496 - Genes Dev. 2015 Jan 1;29(1):63-80
23249747 - RNA. 2013 Feb;19(2):141-57
25404635 - RNA. 2014 Dec;20(12):1829-42
21964070 - EMBO J. 2011 Sep 30;30(21):4414-22
26138677 - Cell Res. 2015 Aug;25(8):981-4
16714427 - J Hered. 2006 May-Jun;97(3):253-60
21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52
16893880 - J Biol Chem. 2006 Oct 6;281(40):29769-75
25558066 - Cell Rep. 2015 Jan 13;10(2):170-7
25543144 - Cell Rep. 2015 Jan 6;10(1):103-11
9369180 - Biol Reprod. 1997 Nov;57(5):1128-35
1339341 - EMBO J. 1992 Mar;11(3):1095-8
26450910 - Genes Dev. 2015 Oct 15;29(20):2168-82
25242144 - Mol Cell. 2014 Oct 2;56(1):55-66
25728652 - J Mol Biol. 2015 Jul 31;427(15):2414-7
24639501 - Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1291-9
9558474 - Annu Rev Physiol. 1998;60:497-523
26485708 - PLoS One. 2015 Oct 20;10(10):e0141214
25714049 - Nat Neurosci. 2015 Apr;18(4):603-10
24811520 - Nat Biotechnol. 2014 May;32(5):453-61
9001235 - Mol Cell Biol. 1997 Feb;17(2):809-18
24609083 - PLoS One. 2014 Mar 07;9(6):e90859
26541409 - Genome Biol. 2015 Nov 05;16:245
1991322 - Cell. 1991 Feb 8;64(3):607-13
25714680 - Nat Rev Mol Cell Biol. 2015 Apr;16(4):206
9334280 - Development. 1997 Nov;124(21):4321-31
25281217 - Genes Dev. 2014 Oct 15;28(20):2233-47
22713872 - Genes Dev. 2012 Jun 15;26(12):1351-63
460409 - Nature. 1979 Jul 26;280(5720):339-40
23446348 - Nature. 2013 Mar 21;495(7441):333-8
26076956 - Genome Biol. 2015 Jun 16;16:126
26657152 - Oncogene. 2016 Jul 28;35(30):3919-31
25921068 - Mol Cell. 2015 Jun 4;58(5):870-85
24447644 - Hum Genomics. 2014 Jan 21;8:3
25242744 - Cell. 2014 Sep 25;159(1):134-47
10892653 - Cell. 2000 Jun 9;101(6):671-84
9154796 - Mol Cell Biol. 1997 Jun;17(6):2985-93
26057830 - Elife. 2015 Jun 09;4:e07540
26070627 - BMC Genomics. 2015 Jun 13;16:454
8604331 - Nucleic Acids Res. 1996 Mar 15;24(6):1015-9
24035497 - Mol Cell. 2013 Sep 26;51(6):792-806
25324005 - Nat Rev Genet. 2014 Nov;15(11):706
12502788 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):189-92
2247150 - Nature. 1990 Nov 29;348(6300):450-2
23446346 - Nature. 2013 Mar 21;495(7441):384-8
25768908 - Cell. 2015 Mar 12;160(6):1125-34
26000048 - J Cancer. 2015 May 01;6(6):555-67
21949640 - PLoS Biol. 2011 Sep;9(9):e1001156
References_xml – volume: 159
  start-page: 134
  year: 2014
  end-page: 147
  ident: bib0570
  article-title: Complementary sequence-mediated exon circularization
  publication-title: Cell
– volume: 19
  start-page: 141
  year: 2013
  end-page: 157
  ident: bib0330
  article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats
  publication-title: RNA
– volume: 6
  start-page: 555
  year: 2015
  end-page: 567
  ident: bib0465
  article-title: Hypothesis: artifacts, including spurious chimeric RNAs with a short homologous sequence, caused by consecutive reverse transcriptions and endogenous random primers
  publication-title: J. Cancer
– volume: 25
  start-page: 981
  year: 2015
  end-page: 984
  ident: bib0605
  article-title: Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis
  publication-title: Cell Res.
– volume: 57
  start-page: 1128
  year: 1997
  end-page: 1135
  ident: bib0560
  article-title: Identification of a promoter region generating Sry circular transcripts both in germ cells from male adult mice and in male mouse embryonal gonads
  publication-title: Biol. Reprod.
– volume: 73
  start-page: 1019
  year: 1993
  end-page: 1030
  ident: bib0435
  article-title: Circular transcripts of the testis-determining gene Sry in adult mouse testis
  publication-title: Cell
– volume: 20
  start-page: 1829
  year: 2014
  end-page: 1842
  ident: bib0320
  article-title: Circular RNAs: diversity of form and function
  publication-title: RNA
– volume: 427
  start-page: 2414
  year: 2015
  end-page: 2417
  ident: bib0530
  article-title: Exon skipping is correlated with exon circularization
  publication-title: J. Mol. Biol.
– volume: 101
  start-page: 671
  year: 2000
  end-page: 684
  ident: bib0510
  article-title: Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity
  publication-title: Cell
– volume: 21
  start-page: 2076
  year: 2015
  end-page: 2087
  ident: bib0340
  article-title: Transcriptome-wide investigation of circular RNAs in rice
  publication-title: RNA
– volume: 24
  start-page: 1015
  year: 1996
  end-page: 1019
  ident: bib0400
  article-title: During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles
  publication-title: Nucleic Acids Res.
– volume: 10
  start-page: 170
  year: 2015
  end-page: 177
  ident: bib0540
  article-title: Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals
  publication-title: Cell Rep.
– volume: 26
  start-page: 1351
  year: 2012
  end-page: 1363
  ident: bib0485
  article-title: fus/TLS orchestrates splicing of developmental regulators during gastrulation
  publication-title: Genes Dev.
– volume: 280
  start-page: 339
  year: 1979
  end-page: 340
  ident: bib0380
  article-title: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells
  publication-title: Nature
– volume: 29
  start-page: 644
  year: 2011
  end-page: 652
  ident: bib0460
  article-title: Full-length transcriptome assembly from RNA-Seq data without a reference genome
  publication-title: Nat. Biotechnol.
– volume: 160
  start-page: 1125
  year: 2015
  end-page: 1134
  ident: bib0370
  article-title: The RNA binding protein quaking regulates formation of circRNAs
  publication-title: Cell
– volume: 6
  start-page: e1001233
  year: 2010
  ident: bib0415
  article-title: Expression of linear and novel circular forms of an INK4/ARF-associated non–coding RNA correlates with atherosclerosis risk
  publication-title: PLoS Genet.
– volume: 111
  start-page: E1291
  year: 2014
  end-page: E1299
  ident: bib0515
  article-title: Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 274
  start-page: 8153
  year: 1999
  end-page: 8160
  ident: bib0450
  article-title: A circularized sodium-calcium exchanger exon 2 transcript
  publication-title: J. Biol. Chem.
– volume: 58
  start-page: 870
  year: 2015
  end-page: 885
  ident: bib0585
  article-title: Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed
  publication-title: Mol. Cell
– volume: 97
  start-page: 253
  year: 2006
  end-page: 260
  ident: bib0445
  article-title: Noncanonical RNAs from transcripts of the
  publication-title: J. Heredity
– volume: 495
  start-page: 333
  year: 2013
  end-page: 338
  ident: bib0325
  article-title: Circular RNAs are a large class of animal RNAs with regulatory potency
  publication-title: Nature
– volume: 40
  start-page: 47
  year: 2006
  end-page: 76
  ident: bib0480
  article-title: Origins and evolution of spliceosomal introns
  publication-title: Annu. Rev. Genet.
– volume: 158
  start-page: 1045
  year: 2014
  end-page: 1059
  ident: bib0520
  article-title: Single-cell identity generated by combinatorial homophilic interactions between alpha, beta, and gamma protocadherins
  publication-title: Cell
– volume: 10
  start-page: 103
  year: 2015
  end-page: 111
  ident: bib0550
  article-title: Exon circularization requires canonical splice signals
  publication-title: Cell Rep.
– volume: 28
  start-page: 2233
  year: 2014
  end-page: 2247
  ident: bib0545
  article-title: Short intronic repeat sequences facilitate circular RNA production
  publication-title: Genes Dev.
– volume: 64
  start-page: 607
  year: 1991
  end-page: 613
  ident: bib0385
  article-title: Scrambled exons
  publication-title: Cell
– volume: 495
  start-page: 384
  year: 2013
  end-page: 388
  ident: bib0425
  article-title: Natural RNA circles function as efficient microRNA sponges
  publication-title: Nature
– volume: 11
  start-page: 1095
  year: 1992
  end-page: 1098
  ident: bib0390
  article-title: Splicing with inverted order of exons occurs proximal to large introns
  publication-title: EMBO J.
– volume: 8
  start-page: 3
  year: 2014
  ident: bib0455
  article-title: A survey of software for genome-wide discovery of differential splicing in RNA-Seq data
  publication-title: Hum. Genomics
– volume: 9
  start-page: 1966
  year: 2014
  end-page: 1980
  ident: bib0595
  article-title: Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation
  publication-title: Cell Rep.
– volume: 56
  start-page: 55
  year: 2014
  end-page: 66
  ident: bib0360
  article-title: circRNA biogenesis competes with pre-mRNA splicing
  publication-title: Mol. Cell
– volume: 9
  start-page: e1003777
  year: 2013
  ident: bib0355
  article-title: Cell-type specific regulation of circular RNA expression
  publication-title: PLoS Genet.
– start-page: 2985
  year: 1997
  end-page: 2993
  ident: bib0405
  article-title: Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis
  publication-title: Mol. Cell. Biol.
– volume: 29
  start-page: 63
  year: 2015
  end-page: 80
  ident: bib0490
  article-title: Detained introns are a novel, widespread class of post-transcriptionally spliced introns
  publication-title: Genes Dev.
– volume: 127
  start-page: e1
  year: 2015
  end-page: e11
  ident: bib0600
  article-title: Circular RNA enrichment in platelets is a signature of transcriptome degradation
  publication-title: Blood
– volume: 4
  start-page: e07540
  year: 2015
  ident: bib0555
  article-title: Circular RNA biogenesis can proceed through an exon-containing lariat precursor
  publication-title: Elife
– volume: 100
  start-page: 189
  year: 2003
  end-page: 192
  ident: bib0495
  article-title: Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– year: 2015
  ident: bib0610
  article-title: Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis
  publication-title: Oncogene
– volume: 1
  start-page: 345
  year: 1992
  end-page: 346
  ident: bib0395
  article-title: A 3′ consensus splice mutation in the human dystrophin gene detected by a screening for intra-exonic deletions
  publication-title: Hum. Mol. Genet.
– volume: 10
  start-page: e0141214
  year: 2015
  ident: bib0565
  article-title: Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood
  publication-title: PLoS ONE
– volume: 281
  start-page: 29769
  year: 2006
  end-page: 29775
  ident: bib0475
  article-title: Substrate recognition and catalysis by the exoribonuclease RNase R
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: e30733
  year: 2012
  ident: bib0310
  article-title: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types
  publication-title: PLoS ONE
– volume: 9
  start-page: e1001156
  year: 2011
  ident: bib0470
  article-title: ESRRA-C11orf20 is a recurrent gene fusion in serous ovarian carcinoma
  publication-title: PLoS Biol.
– volume: 60
  start-page: 497
  year: 1998
  end-page: 523
  ident: bib0535
  article-title: Sex in the 90s: SRY and the switch to the male pathway
  publication-title: Annu. Rev. Physiol.
– volume: 16
  start-page: 206
  year: 2015
  ident: bib0500
  article-title: Non-coding RNA: circular RNAs promote transcription
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 124
  start-page: 4321
  year: 1997
  end-page: 4331
  ident: bib0590
  article-title: muscleblind, a gene required for photoreceptor differentiation in Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing proteins
  publication-title: Development
– volume: 16
  start-page: 245
  year: 2015
  ident: bib0580
  article-title: Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development
  publication-title: Genome Biol.
– volume: 30
  start-page: 4414
  year: 2011
  end-page: 4422
  ident: bib0410
  article-title: miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA
  publication-title: EMBO J.
– volume: 15
  start-page: 409
  year: 2014
  ident: bib0430
  article-title: Expanded identification and characterization of mammalian circular RNAs
  publication-title: Genome Biol.
– volume: 29
  start-page: 2168
  year: 2015
  end-page: 2182
  ident: bib0375
  article-title: Combinatorial control of
  publication-title: Genes Dev.
– volume: 17
  start-page: 809
  year: 1997
  end-page: 818
  ident: bib0440
  article-title: Severe growth defect in a
  publication-title: Mol. Cell. Biol.
– volume: 9
  start-page: e90859
  year: 2014
  ident: bib0335
  article-title: Circular RNA is expressed across the eukaryotic tree of life
  publication-title: PLoS ONE
– volume: 16
  start-page: 454
  year: 2015
  ident: bib0345
  article-title: Strand-specific RNA sequencing in
  publication-title: BMC Genomics
– volume: 51
  start-page: 792
  year: 2013
  end-page: 806
  ident: bib0505
  article-title: Circular intronic long noncoding RNAs
  publication-title: Mol. Cell
– volume: 18
  start-page: 603
  year: 2015
  end-page: 610
  ident: bib0575
  article-title: Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity
  publication-title: Nat. Neurosci.
– volume: 15
  start-page: 706
  year: 2014
  ident: bib0525
  article-title: Alternative splicing: characterizing cell fate
  publication-title: Nat. Rev. Genet.
– volume: 16
  start-page: 126
  year: 2015
  ident: bib0350
  article-title: Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development
  publication-title: Genome Biol.
– volume: 348
  start-page: 450
  year: 1990
  end-page: 452
  ident: bib0420
  article-title: Expression of a candidate sex-determining gene during mouse testis differentiation
  publication-title: Nature
– volume: 32
  start-page: 453
  year: 2014
  end-page: 461
  ident: bib0315
  article-title: Detecting and characterizing circular RNAs
  publication-title: Nat. Biotechnol.
– volume: 9
  start-page: 1966
  year: 2014
  end-page: 1980
  ident: bib0365
  article-title: Genome-wide analysis of
  publication-title: Cell Rep.
– volume: 21
  start-page: 2076
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0340
  article-title: Transcriptome-wide investigation of circular RNAs in rice
  publication-title: RNA
  doi: 10.1261/rna.052282.115
– volume: 158
  start-page: 1045
  year: 2014
  ident: 10.1016/j.tig.2016.03.002_bib0520
  article-title: Single-cell identity generated by combinatorial homophilic interactions between alpha, beta, and gamma protocadherins
  publication-title: Cell
  doi: 10.1016/j.cell.2014.07.012
– volume: 16
  start-page: 454
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0345
  article-title: Strand-specific RNA sequencing in Plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1603-4
– volume: 20
  start-page: 1829
  year: 2014
  ident: 10.1016/j.tig.2016.03.002_bib0320
  article-title: Circular RNAs: diversity of form and function
  publication-title: RNA
  doi: 10.1261/rna.047126.114
– volume: 29
  start-page: 2168
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0375
  article-title: Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins
  publication-title: Genes Dev.
  doi: 10.1101/gad.270421.115
– volume: 40
  start-page: 47
  year: 2006
  ident: 10.1016/j.tig.2016.03.002_bib0480
  article-title: Origins and evolution of spliceosomal introns
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.40.110405.090625
– volume: 73
  start-page: 1019
  year: 1993
  ident: 10.1016/j.tig.2016.03.002_bib0435
  article-title: Circular transcripts of the testis-determining gene Sry in adult mouse testis
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90279-Y
– volume: 101
  start-page: 671
  year: 2000
  ident: 10.1016/j.tig.2016.03.002_bib0510
  article-title: Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80878-8
– volume: 274
  start-page: 8153
  year: 1999
  ident: 10.1016/j.tig.2016.03.002_bib0450
  article-title: A circularized sodium-calcium exchanger exon 2 transcript
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.12.8153
– volume: 495
  start-page: 384
  year: 2013
  ident: 10.1016/j.tig.2016.03.002_bib0425
  article-title: Natural RNA circles function as efficient microRNA sponges
  publication-title: Nature
  doi: 10.1038/nature11993
– volume: 6
  start-page: 555
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0465
  article-title: Hypothesis: artifacts, including spurious chimeric RNAs with a short homologous sequence, caused by consecutive reverse transcriptions and endogenous random primers
  publication-title: J. Cancer
  doi: 10.7150/jca.11997
– volume: 9
  start-page: e90859
  year: 2014
  ident: 10.1016/j.tig.2016.03.002_bib0335
  article-title: Circular RNA is expressed across the eukaryotic tree of life
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0090859
– volume: 10
  start-page: 170
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0540
  article-title: Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.12.019
– volume: 127
  start-page: e1
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0600
  article-title: Circular RNA enrichment in platelets is a signature of transcriptome degradation
  publication-title: Blood
  doi: 10.1182/blood-2015-06-649434
– volume: 16
  start-page: 126
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0350
  article-title: Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0690-5
– volume: 56
  start-page: 55
  year: 2014
  ident: 10.1016/j.tig.2016.03.002_bib0360
  article-title: circRNA biogenesis competes with pre-mRNA splicing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.08.019
– volume: 11
  start-page: 1095
  year: 1992
  ident: 10.1016/j.tig.2016.03.002_bib0390
  article-title: Splicing with inverted order of exons occurs proximal to large introns
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1992.tb05148.x
– volume: 495
  start-page: 333
  year: 2013
  ident: 10.1016/j.tig.2016.03.002_bib0325
  article-title: Circular RNAs are a large class of animal RNAs with regulatory potency
  publication-title: Nature
  doi: 10.1038/nature11928
– volume: 24
  start-page: 1015
  year: 1996
  ident: 10.1016/j.tig.2016.03.002_bib0400
  article-title: During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/24.6.1015
– volume: 159
  start-page: 134
  year: 2014
  ident: 10.1016/j.tig.2016.03.002_bib0570
  article-title: Complementary sequence-mediated exon circularization
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.001
– volume: 15
  start-page: 706
  year: 2014
  ident: 10.1016/j.tig.2016.03.002_bib0525
  article-title: Alternative splicing: characterizing cell fate
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3847
– volume: 427
  start-page: 2414
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0530
  article-title: Exon skipping is correlated with exon circularization
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2015.02.018
– volume: 18
  start-page: 603
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0575
  article-title: Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3975
– volume: 64
  start-page: 607
  year: 1991
  ident: 10.1016/j.tig.2016.03.002_bib0385
  article-title: Scrambled exons
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90244-S
– volume: 7
  start-page: e30733
  year: 2012
  ident: 10.1016/j.tig.2016.03.002_bib0310
  article-title: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030733
– volume: 29
  start-page: 63
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0490
  article-title: Detained introns are a novel, widespread class of post-transcriptionally spliced introns
  publication-title: Genes Dev.
  doi: 10.1101/gad.247361.114
– volume: 160
  start-page: 1125
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0370
  article-title: The RNA binding protein quaking regulates formation of circRNAs
  publication-title: Cell
  doi: 10.1016/j.cell.2015.02.014
– volume: 15
  start-page: 409
  year: 2014
  ident: 10.1016/j.tig.2016.03.002_bib0430
  article-title: Expanded identification and characterization of mammalian circular RNAs
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0409-z
– volume: 124
  start-page: 4321
  year: 1997
  ident: 10.1016/j.tig.2016.03.002_bib0590
  article-title: muscleblind, a gene required for photoreceptor differentiation in Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing proteins
  publication-title: Development
  doi: 10.1242/dev.124.21.4321
– volume: 280
  start-page: 339
  year: 1979
  ident: 10.1016/j.tig.2016.03.002_bib0380
  article-title: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells
  publication-title: Nature
  doi: 10.1038/280339a0
– volume: 10
  start-page: e0141214
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0565
  article-title: Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0141214
– volume: 51
  start-page: 792
  year: 2013
  ident: 10.1016/j.tig.2016.03.002_bib0505
  article-title: Circular intronic long noncoding RNAs
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.08.017
– volume: 8
  start-page: 3
  year: 2014
  ident: 10.1016/j.tig.2016.03.002_bib0455
  article-title: A survey of software for genome-wide discovery of differential splicing in RNA-Seq data
  publication-title: Hum. Genomics
  doi: 10.1186/1479-7364-8-3
– volume: 16
  start-page: 206
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0500
  article-title: Non-coding RNA: circular RNAs promote transcription
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3967
– volume: 281
  start-page: 29769
  year: 2006
  ident: 10.1016/j.tig.2016.03.002_bib0475
  article-title: Substrate recognition and catalysis by the exoribonuclease RNase R
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M606744200
– volume: 10
  start-page: 103
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0550
  article-title: Exon circularization requires canonical splice signals
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.12.002
– volume: 25
  start-page: 981
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0605
  article-title: Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.82
– volume: 30
  start-page: 4414
  year: 2011
  ident: 10.1016/j.tig.2016.03.002_bib0410
  article-title: miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.359
– volume: 29
  start-page: 644
  year: 2011
  ident: 10.1016/j.tig.2016.03.002_bib0460
  article-title: Full-length transcriptome assembly from RNA-Seq data without a reference genome
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1883
– volume: 16
  start-page: 245
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0580
  article-title: Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0801-3
– volume: 9
  start-page: e1003777
  year: 2013
  ident: 10.1016/j.tig.2016.03.002_bib0355
  article-title: Cell-type specific regulation of circular RNA expression
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003777
– volume: 58
  start-page: 870
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0585
  article-title: Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.03.027
– volume: 111
  start-page: E1291
  year: 2014
  ident: 10.1016/j.tig.2016.03.002_bib0515
  article-title: Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1403244111
– volume: 32
  start-page: 453
  year: 2014
  ident: 10.1016/j.tig.2016.03.002_bib0315
  article-title: Detecting and characterizing circular RNAs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2890
– volume: 4
  start-page: e07540
  year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0555
  article-title: Circular RNA biogenesis can proceed through an exon-containing lariat precursor
  publication-title: Elife
  doi: 10.7554/eLife.07540
– volume: 26
  start-page: 1351
  year: 2012
  ident: 10.1016/j.tig.2016.03.002_bib0485
  article-title: fus/TLS orchestrates splicing of developmental regulators during gastrulation
  publication-title: Genes Dev.
  doi: 10.1101/gad.187278.112
– volume: 9
  start-page: 1966
  year: 2014
  ident: 10.1016/j.tig.2016.03.002_bib0595
  article-title: Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.10.062
– volume: 6
  start-page: e1001233
  year: 2010
  ident: 10.1016/j.tig.2016.03.002_bib0415
  article-title: Expression of linear and novel circular forms of an INK4/ARF-associated non–coding RNA correlates with atherosclerosis risk
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001233
– start-page: 2985
  year: 1997
  ident: 10.1016/j.tig.2016.03.002_bib0405
  article-title: Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.17.6.2985
– volume: 60
  start-page: 497
  year: 1998
  ident: 10.1016/j.tig.2016.03.002_bib0535
  article-title: Sex in the 90s: SRY and the switch to the male pathway
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.physiol.60.1.497
– volume: 28
  start-page: 2233
  year: 2014
  ident: 10.1016/j.tig.2016.03.002_bib0545
  article-title: Short intronic repeat sequences facilitate circular RNA production
  publication-title: Genes Dev.
  doi: 10.1101/gad.251926.114
– volume: 9
  start-page: e1001156
  year: 2011
  ident: 10.1016/j.tig.2016.03.002_bib0470
  article-title: ESRRA-C11orf20 is a recurrent gene fusion in serous ovarian carcinoma
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001156
– volume: 57
  start-page: 1128
  year: 1997
  ident: 10.1016/j.tig.2016.03.002_bib0560
  article-title: Identification of a promoter region generating Sry circular transcripts both in germ cells from male adult mice and in male mouse embryonal gonads
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod57.5.1128
– volume: 9
  start-page: 1966
  year: 2014
  ident: 10.1016/j.tig.2016.03.002_bib0365
  article-title: Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.10.062
– year: 2015
  ident: 10.1016/j.tig.2016.03.002_bib0610
  article-title: Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis
  publication-title: Oncogene
– volume: 348
  start-page: 450
  year: 1990
  ident: 10.1016/j.tig.2016.03.002_bib0420
  article-title: Expression of a candidate sex-determining gene during mouse testis differentiation
  publication-title: Nature
  doi: 10.1038/348450a0
– volume: 17
  start-page: 809
  year: 1997
  ident: 10.1016/j.tig.2016.03.002_bib0440
  article-title: Severe growth defect in a Schizosaccharomyces pombe mutant defective in intron lariat degradation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.17.2.809
– volume: 97
  start-page: 253
  year: 2006
  ident: 10.1016/j.tig.2016.03.002_bib0445
  article-title: Noncanonical RNAs from transcripts of the Drosophila muscleblind gene
  publication-title: J. Heredity
  doi: 10.1093/jhered/esj037
– volume: 19
  start-page: 141
  year: 2013
  ident: 10.1016/j.tig.2016.03.002_bib0330
  article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats
  publication-title: RNA
  doi: 10.1261/rna.035667.112
– volume: 1
  start-page: 345
  year: 1992
  ident: 10.1016/j.tig.2016.03.002_bib0395
  article-title: A 3′ consensus splice mutation in the human dystrophin gene detected by a screening for intra-exonic deletions
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/1.5.345
– volume: 100
  start-page: 189
  year: 2003
  ident: 10.1016/j.tig.2016.03.002_bib0495
  article-title: Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0136770100
– reference: 9154796 - Mol Cell Biol. 1997 Jun;17(6):2985-93
– reference: 21151960 - PLoS Genet. 2010 Dec 02;6(12):e1001233
– reference: 25543144 - Cell Rep. 2015 Jan 6;10(1):103-11
– reference: 12502788 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):189-92
– reference: 26485708 - PLoS One. 2015 Oct 20;10(10):e0141214
– reference: 21964070 - EMBO J. 2011 Sep 30;30(21):4414-22
– reference: 460409 - Nature. 1979 Jul 26;280(5720):339-40
– reference: 26138677 - Cell Res. 2015 Aug;25(8):981-4
– reference: 24039610 - PLoS Genet. 2013;9(9):e1003777
– reference: 8604331 - Nucleic Acids Res. 1996 Mar 15;24(6):1015-9
– reference: 26541409 - Genome Biol. 2015 Nov 05;16:245
– reference: 9001235 - Mol Cell Biol. 1997 Feb;17(2):809-18
– reference: 25242744 - Cell. 2014 Sep 25;159(1):134-47
– reference: 1303213 - Hum Mol Genet. 1992 Aug;1(5):345-6
– reference: 10892653 - Cell. 2000 Jun 9;101(6):671-84
– reference: 26657152 - Oncogene. 2016 Jul 28;35(30):3919-31
– reference: 26464523 - RNA. 2015 Dec;21(12):2076-87
– reference: 25728652 - J Mol Biol. 2015 Jul 31;427(15):2414-7
– reference: 26000048 - J Cancer. 2015 May 01;6(6):555-67
– reference: 25561496 - Genes Dev. 2015 Jan 1;29(1):63-80
– reference: 23446348 - Nature. 2013 Mar 21;495(7441):333-8
– reference: 21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52
– reference: 25714049 - Nat Neurosci. 2015 Apr;18(4):603-10
– reference: 26057830 - Elife. 2015 Jun 09;4:e07540
– reference: 25544350 - Cell Rep. 2014 Dec 11;9(5):1966-80
– reference: 24609083 - PLoS One. 2014 Mar 07;9(6):e90859
– reference: 23446346 - Nature. 2013 Mar 21;495(7441):384-8
– reference: 24811520 - Nat Biotechnol. 2014 May;32(5):453-61
– reference: 17094737 - Annu Rev Genet. 2006;40:47-76
– reference: 25921068 - Mol Cell. 2015 Jun 4;58(5):870-85
– reference: 25404635 - RNA. 2014 Dec;20(12):1829-42
– reference: 24639501 - Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1291-9
– reference: 10075718 - J Biol Chem. 1999 Mar 19;274(12):8153-60
– reference: 26450910 - Genes Dev. 2015 Oct 15;29(20):2168-82
– reference: 9334280 - Development. 1997 Nov;124(21):4321-31
– reference: 1339341 - EMBO J. 1992 Mar;11(3):1095-8
– reference: 25768908 - Cell. 2015 Mar 12;160(6):1125-34
– reference: 23249747 - RNA. 2013 Feb;19(2):141-57
– reference: 25281217 - Genes Dev. 2014 Oct 15;28(20):2233-47
– reference: 16714427 - J Hered. 2006 May-Jun;97(3):253-60
– reference: 25714680 - Nat Rev Mol Cell Biol. 2015 Apr;16(4):206
– reference: 25070500 - Genome Biol. 2014 Jul 29;15(7):409
– reference: 26070627 - BMC Genomics. 2015 Jun 13;16:454
– reference: 25171406 - Cell. 2014 Aug 28;158(5):1045-59
– reference: 25324005 - Nat Rev Genet. 2014 Nov;15(11):706
– reference: 9369180 - Biol Reprod. 1997 Nov;57(5):1128-35
– reference: 16893880 - J Biol Chem. 2006 Oct 6;281(40):29769-75
– reference: 26660425 - Blood. 2016 Mar 3;127(9):e1-e11
– reference: 9558474 - Annu Rev Physiol. 1998;60:497-523
– reference: 22319583 - PLoS One. 2012;7(2):e30733
– reference: 1991322 - Cell. 1991 Feb 8;64(3):607-13
– reference: 24447644 - Hum Genomics. 2014 Jan 21;8:3
– reference: 26076956 - Genome Biol. 2015 Jun 16;16:126
– reference: 21949640 - PLoS Biol. 2011 Sep;9(9):e1001156
– reference: 25242144 - Mol Cell. 2014 Oct 2;56(1):55-66
– reference: 25558066 - Cell Rep. 2015 Jan 13;10(2):170-7
– reference: 24035497 - Mol Cell. 2013 Sep 26;51(6):792-806
– reference: 2247150 - Nature. 1990 Nov 29;348(6300):450-2
– reference: 22713872 - Genes Dev. 2012 Jun 15;26(12):1351-63
– reference: 7684656 - Cell. 1993 Jun 4;73(5):1019-30
SSID ssj0005735
Score 2.6576967
SecondaryResourceType review_article
Snippet In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 309
SubjectTerms circRNA
circular RNA
Gene Expression Regulation
Humans
Medical Education
RNA
RNA - biosynthesis
RNA - genetics
RNA splicing
RNA Splicing - genetics
Title Circular RNA Expression: Its Potential Regulation and Function
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0168952516000329
https://www.clinicalkey.es/playcontent/1-s2.0-S0168952516000329
https://dx.doi.org/10.1016/j.tig.2016.03.002
https://www.ncbi.nlm.nih.gov/pubmed/27050930
https://www.proquest.com/docview/1784085645
https://www.proquest.com/docview/1787980611
https://pubmed.ncbi.nlm.nih.gov/PMC4948998
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB-OE8UX0fNrTz0q-CTUTdM0SX0QluWWPeUWOT24t9CmqVake9z24Hzxb3emSZdbT1fwpZBm0rTTycyE_GYG4FXCq4TbPIsLW_JYoE2PCy2KmKHtY5JVZZVQoPDxQs5Pxfuz7GwHpkMsDMEqg-73Or3X1uHOOHBzfN4040_orOg8Q_ssybHnFMQnhCIpf_PzGsxD-SKbSBwT9XCy2WO8uuYLobukz3PK_2abbvqev0Mor9mk2X24F5zJaOLf9wHsuHYPbvvykj_24M5xODh_CO-mzUWPOI1OFpPo8CrAX9u30VG3ij4uOwIN4aNOfGl67ImKtopmaPWo8QhOZ4efp_M4lE6IbSZkh9dUJbzQSZFayYVNke2C1XVBG6IikdJWaakVr0t0W2ts1ejYsbTMVK1lVYv0Mey2y9Y9hchVeY57PltaUQvtXF45UkoataTLdSZGwAamGRvyilN5i-9mAJB9M8hnQ3w2LDXI5xG8Xg8590k1thHz4U-YIVoU9ZtBlb9tkPrTILcKK3RlErPihpkbUjQCsR65IYj_mvDlICQGFyiduhStW17iREpTFjkpsq00KtfoWiUjeOIFa80YrihFT8rwkzZEbk1ACcI3e9rma58onFL_4HZ6__8-6RncpZZHdz6H3e7i0r1AD6wrD_oldgC3Jkcf5otfFVst3A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTsBeEAzGymeQeEKKmjiO4_CAVFWrWrZWaGzS3izHcSAIpdOaSfDfc1c7hTIoEi-REvvycTnfneWffwfwOmZlzEyehtoULOQY00MtuQ4jjH2RiMqijGmj8GwuJuf8_UV6sQOjbi8MwSq973c-feWt_ZWB1-bgsq4HHzFZkXmK8VlQYs_yW7BL7FRpD3aH0-PJ_CfSI3N1NrF_SALd4uYK5tXWnwjgJRzVKftbeLqZfv6OovwlLI3vwz2fTwZD98oPYMc2-3DbVZj8vg93Zn7t_CG8G9VXK9BpcDofBkffPAK2eRtM22XwYdESbghvdeqq02NLoJsyGGPgo5NHcD4-OhtNQl89ITQpFy0ekyxmWsY6MYJxk6DmeVRVmuZEOhbClEkhM1YVmLlWeFZhbhclRZpVUpQVTw6g1ywaewiBLfMcp32mMLzi0tq8tOSXJDpKm8uU9yHqlKaMpxanChdfVYch-6JQz4r0rKJEoZ778GYtcul4NbZ1Zt2fUN2GUXRxCr3-NqHsT0J26QfpUsVqyVSkbhhSH_hacsMW__XAV52RKByjtPCiG7u4xgdlkojkBE-39slyidlV3IfHzrDWimEZsfQkEX7ShsmtOxBH-GZLU39ecYUT-w_OqJ_83ye9hLuTs9mJOpnOj5_CHrU4sOcz6LVX1_Y5JmRt8cIPuB9XLDCN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circular+RNA+Expression%3A+Its+Potential+Regulation+and+Function&rft.jtitle=Trends+in+genetics&rft.au=Salzman%2C+Julia&rft.date=2016-05-01&rft.issn=0168-9525&rft_id=info:doi/10.1016%2Fj.tig.2016.03.002&rft.externalDBID=ECK1-s2.0-S0168952516000329&rft.externalDocID=1_s2_0_S0168952516000329
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9525&client=summon