A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians
[Display omitted] ► Large-scale molecular phylogenetic estimate for Amphibia. ► Based on 2871 species: 41 caecilians, 436 salamanders, and 2394 frogs. ► Species sampled for up to 12,712 bp from nine nuclear and three mitochondrial genes. The extant amphibians are one of the most diverse radiations o...
Saved in:
Published in | Molecular phylogenetics and evolution Vol. 61; no. 2; pp. 543 - 583 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
► Large-scale molecular phylogenetic estimate for Amphibia. ► Based on 2871 species: 41 caecilians, 436 salamanders, and 2394 frogs. ► Species sampled for up to 12,712
bp from nine nuclear and three mitochondrial genes.
The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (>6800 species). Despite much recent focus on their conservation, diversification, and systematics, no previous phylogeny for the group has contained more than 522 species. However, numerous studies with limited taxon sampling have generated large amounts of partially overlapping sequence data for many species. Here, we combine these data and produce a novel estimate of extant amphibian phylogeny, containing 2871 species (∼40% of the known extant species) from 432 genera (∼85% of the ∼500 currently recognized extant genera). Each sampled species contains up to 12,712
bp from 12 genes (three mitochondrial, nine nuclear), with an average of 2563
bp per species. This data set provides strong support for many groups recognized in previous studies, but it also suggests non-monophyly for several currently recognized families, particularly in hyloid frogs (e.g., Ceratophryidae, Cycloramphidae, Leptodactylidae, Strabomantidae). To correct these and other problems, we provide a revised classification of extant amphibians for taxa traditionally delimited at the family and subfamily levels. This new taxonomy includes several families not recognized in current classifications (e.g., Alsodidae, Batrachylidae, Rhinodermatidae, Odontophrynidae, Telmatobiidae), but which are strongly supported and important for avoiding non-monophyly of current families. Finally, this study provides further evidence that the supermatrix approach provides an effective strategy for inferring large-scale phylogenies using the combined results of previous studies, despite many taxa having extensive missing data. |
---|---|
AbstractList | The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (>6800 species). Despite much recent focus on their conservation, diversification, and systematics, no previous phylogeny for the group has contained more than 522 species. However, numerous studies with limited taxon sampling have generated large amounts of partially overlapping sequence data for many species. Here, we combine these data and produce a novel estimate of extant amphibian phylogeny, containing 2871 species (∼40% of the known extant species) from 432 genera (∼85% of the ∼500 currently recognized extant genera). Each sampled species contains up to 12,712bp from 12 genes (three mitochondrial, nine nuclear), with an average of 2563bp per species. This data set provides strong support for many groups recognized in previous studies, but it also suggests non-monophyly for several currently recognized families, particularly in hyloid frogs (e.g., Ceratophryidae, Cycloramphidae, Leptodactylidae, Strabomantidae). To correct these and other problems, we provide a revised classification of extant amphibians for taxa traditionally delimited at the family and subfamily levels. This new taxonomy includes several families not recognized in current classifications (e.g., Alsodidae, Batrachylidae, Rhinodermatidae, Odontophrynidae, Telmatobiidae), but which are strongly supported and important for avoiding non-monophyly of current families. Finally, this study provides further evidence that the supermatrix approach provides an effective strategy for inferring large-scale phylogenies using the combined results of previous studies, despite many taxa having extensive missing data. [Display omitted] ► Large-scale molecular phylogenetic estimate for Amphibia. ► Based on 2871 species: 41 caecilians, 436 salamanders, and 2394 frogs. ► Species sampled for up to 12,712 bp from nine nuclear and three mitochondrial genes. The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (>6800 species). Despite much recent focus on their conservation, diversification, and systematics, no previous phylogeny for the group has contained more than 522 species. However, numerous studies with limited taxon sampling have generated large amounts of partially overlapping sequence data for many species. Here, we combine these data and produce a novel estimate of extant amphibian phylogeny, containing 2871 species (∼40% of the known extant species) from 432 genera (∼85% of the ∼500 currently recognized extant genera). Each sampled species contains up to 12,712 bp from 12 genes (three mitochondrial, nine nuclear), with an average of 2563 bp per species. This data set provides strong support for many groups recognized in previous studies, but it also suggests non-monophyly for several currently recognized families, particularly in hyloid frogs (e.g., Ceratophryidae, Cycloramphidae, Leptodactylidae, Strabomantidae). To correct these and other problems, we provide a revised classification of extant amphibians for taxa traditionally delimited at the family and subfamily levels. This new taxonomy includes several families not recognized in current classifications (e.g., Alsodidae, Batrachylidae, Rhinodermatidae, Odontophrynidae, Telmatobiidae), but which are strongly supported and important for avoiding non-monophyly of current families. Finally, this study provides further evidence that the supermatrix approach provides an effective strategy for inferring large-scale phylogenies using the combined results of previous studies, despite many taxa having extensive missing data. The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (>6800 species). Despite much recent focus on their conservation, diversification, and systematics, no previous phylogeny for the group has contained more than 522 species. However, numerous studies with limited taxon sampling have generated large amounts of partially overlapping sequence data for many species. Here, we combine these data and produce a novel estimate of extant amphibian phylogeny, containing 2871 species (∼40% of the known extant species) from 432 genera (∼85% of the ∼500 currently recognized extant genera). Each sampled species contains up to 12,712 bp from 12 genes (three mitochondrial, nine nuclear), with an average of 2563 bp per species. This data set provides strong support for many groups recognized in previous studies, but it also suggests non-monophyly for several currently recognized families, particularly in hyloid frogs (e.g., Ceratophryidae, Cycloramphidae, Leptodactylidae, Strabomantidae). To correct these and other problems, we provide a revised classification of extant amphibians for taxa traditionally delimited at the family and subfamily levels. This new taxonomy includes several families not recognized in current classifications (e.g., Alsodidae, Batrachylidae, Rhinodermatidae, Odontophrynidae, Telmatobiidae), but which are strongly supported and important for avoiding non-monophyly of current families. Finally, this study provides further evidence that the supermatrix approach provides an effective strategy for inferring large-scale phylogenies using the combined results of previous studies, despite many taxa having extensive missing data.The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (>6800 species). Despite much recent focus on their conservation, diversification, and systematics, no previous phylogeny for the group has contained more than 522 species. However, numerous studies with limited taxon sampling have generated large amounts of partially overlapping sequence data for many species. Here, we combine these data and produce a novel estimate of extant amphibian phylogeny, containing 2871 species (∼40% of the known extant species) from 432 genera (∼85% of the ∼500 currently recognized extant genera). Each sampled species contains up to 12,712 bp from 12 genes (three mitochondrial, nine nuclear), with an average of 2563 bp per species. This data set provides strong support for many groups recognized in previous studies, but it also suggests non-monophyly for several currently recognized families, particularly in hyloid frogs (e.g., Ceratophryidae, Cycloramphidae, Leptodactylidae, Strabomantidae). To correct these and other problems, we provide a revised classification of extant amphibians for taxa traditionally delimited at the family and subfamily levels. This new taxonomy includes several families not recognized in current classifications (e.g., Alsodidae, Batrachylidae, Rhinodermatidae, Odontophrynidae, Telmatobiidae), but which are strongly supported and important for avoiding non-monophyly of current families. Finally, this study provides further evidence that the supermatrix approach provides an effective strategy for inferring large-scale phylogenies using the combined results of previous studies, despite many taxa having extensive missing data. The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (>6800 species). Despite much recent focus on their conservation, diversification, and systematics, no previous phylogeny for the group has contained more than 522 species. However, numerous studies with limited taxon sampling have generated large amounts of partially overlapping sequence data for many species. Here, we combine these data and produce a novel estimate of extant amphibian phylogeny, containing 2871 species (∼40% of the known extant species) from 432 genera (∼85% of the ∼500 currently recognized extant genera). Each sampled species contains up to 12,712 bp from 12 genes (three mitochondrial, nine nuclear), with an average of 2563 bp per species. This data set provides strong support for many groups recognized in previous studies, but it also suggests non-monophyly for several currently recognized families, particularly in hyloid frogs (e.g., Ceratophryidae, Cycloramphidae, Leptodactylidae, Strabomantidae). To correct these and other problems, we provide a revised classification of extant amphibians for taxa traditionally delimited at the family and subfamily levels. This new taxonomy includes several families not recognized in current classifications (e.g., Alsodidae, Batrachylidae, Rhinodermatidae, Odontophrynidae, Telmatobiidae), but which are strongly supported and important for avoiding non-monophyly of current families. Finally, this study provides further evidence that the supermatrix approach provides an effective strategy for inferring large-scale phylogenies using the combined results of previous studies, despite many taxa having extensive missing data. The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (6800 species). Despite much recent focus on their conservation, diversification, and systematics, no previous phylogeny for the group has contained more than 522 species. However, numerous studies with limited taxon sampling have generated large amounts of partially overlapping sequence data for many species. Here, we combine these data and produce a novel estimate of extant amphibian phylogeny, containing 2871 species ([approx]40% of the known extant species) from 432 genera ([approx]85% of the [approx]500 currently recognized extant genera). Each sampled species contains up to 12,712 bp from 12 genes (three mitochondrial, nine nuclear), with an average of 2563 bp per species. This data set provides strong support for many groups recognized in previous studies, but it also suggests non-monophyly for several currently recognized families, particularly in hyloid frogs (e.g., Ceratophryidae, Cycloramphidae, Leptodactylidae, Strabomantidae). To correct these and other problems, we provide a revised classification of extant amphibians for taxa traditionally delimited at the family and subfamily levels. This new taxonomy includes several families not recognized in current classifications (e.g., Alsodidae, Batrachylidae, Rhinodermatidae, Odontophrynidae, Telmatobiidae), but which are strongly supported and important for avoiding non-monophyly of current families. Finally, this study provides further evidence that the supermatrix approach provides an effective strategy for inferring large-scale phylogenies using the combined results of previous studies, despite many taxa having extensive missing data. |
Author | Wiens, John J. Alexander Pyron, R. |
Author_xml | – sequence: 1 givenname: R. surname: Alexander Pyron fullname: Alexander Pyron, R. email: rpyron@colubroid.org organization: Dept. of Biological Sciences, The George Washington University, 2023 G St. NW, Washington, DC 20052, United States – sequence: 2 givenname: John J. surname: Wiens fullname: Wiens, John J. email: wiensj@life.bio.sunysb.edu organization: Dept. of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21723399$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0suO0zAUBuAIDWIu8ARI4B0sSPGlduIFi2rETRqJBcPaOnFOOh45drDTir4CT407LSxYTFexou8_tnT-y-osxIBV9ZLRBaNMvb9f7MYJtwtOGVtQtaCMP6kuGNWy1pKJs_1ZyrrRVJxXlznf0wKlls-qc84aLoTWF9XvFfGQ1lhnCx7JdLfzcY1hR-JAVuN05zoHxAXrN70LaxK3mAhvKSV5QuswvyMQegIk4dZl7In1kLMbnIXZxbCfgr9mCDMZUlwXncHDWCKYjlELZY53EPLz6ukAPuOL4_equv308fb6S33z7fPX69VNbeVSzXUH2KFQTaup7uwSeNstuewFDNba1jLFB4G0V2LYK9UpKdtlp5nsys-Bi6vqzWHslOLPDebZjC5b9B4Cxk02mjas0bJpT8ryAtU0lOsi3z4qWWGCF6pOU9VwqhgVstBXR7rpRuzNlNwIaWf-bq8AcQA2xZwTDv8Io2bfEXNvHjpi9h0xVJnSkZLS_6Wsmx_WNSdw_kT29SE7QDSwTi6bH98LkJTSsgUhivhwEFhWuHWYTC49CRZ7l9DOpo_u0Rv-AGar4YU |
CitedBy_id | crossref_primary_10_1016_j_cbd_2023_101069 crossref_primary_10_1016_j_ympev_2017_09_010 crossref_primary_10_1098_rsos_220935 crossref_primary_10_1242_jeb_065979 crossref_primary_10_11646_zootaxa_5258_2_1 crossref_primary_10_1111_j_1600_0587_2013_00396_x crossref_primary_10_1093_sysbio_sys028 crossref_primary_10_1590_1519_6984_02014BM crossref_primary_10_3724_ahr_2095_0357_2023_0003 crossref_primary_10_1093_zoolinnean_zlab083 crossref_primary_10_3724_ahr_2095_0357_2023_0006 crossref_primary_10_3897_zookeys_1187_104536 crossref_primary_10_1017_S0266467415000206 crossref_primary_10_1111_jbi_13347 crossref_primary_10_1080_14772019_2024_2321620 crossref_primary_10_1086_678455 crossref_primary_10_1111_evo_13672 crossref_primary_10_3897_CompCytogen_v10i1_5718 crossref_primary_10_7717_peerj_1204 crossref_primary_10_1111_jbi_12250 crossref_primary_10_1111_azo_12513 crossref_primary_10_1111_jzs_12073 crossref_primary_10_1016_j_ympev_2017_09_021 crossref_primary_10_1111_cla_12367 crossref_primary_10_1655_HERPETOLOGICA_D_12_00075 crossref_primary_10_1371_journal_pone_0192766 crossref_primary_10_1016_j_ympev_2012_07_012 crossref_primary_10_1142_S0219635215500284 crossref_primary_10_5358_hsj_41_196 crossref_primary_10_1093_sysbio_sys039 crossref_primary_10_1016_j_jcz_2021_11_005 crossref_primary_10_1038_s41597_020_00598_9 crossref_primary_10_1371_journal_pone_0039256 crossref_primary_10_1080_21564574_2024_2404860 crossref_primary_10_24072_pci_paleo_100002 crossref_primary_10_1016_j_ympev_2015_05_001 crossref_primary_10_1016_j_ympev_2012_07_016 crossref_primary_10_2988_0006_324X_126_2_151 crossref_primary_10_1080_02724634_2014_907174 crossref_primary_10_1111_cla_12158 crossref_primary_10_1007_s13127_014_0190_6 crossref_primary_10_3897_zse_94_14698 crossref_primary_10_1098_rstb_2011_0215 crossref_primary_10_1002_ece3_1263 crossref_primary_10_3897_zookeys_1065_67005 crossref_primary_10_1016_j_ygcen_2020_113592 crossref_primary_10_1016_j_ympev_2013_02_009 crossref_primary_10_5358_hsj_40_169 crossref_primary_10_1016_j_ympev_2015_06_011 crossref_primary_10_1643_h2020165 crossref_primary_10_5358_hsj_41_82 crossref_primary_10_1111_cla_12162 crossref_primary_10_1670_20_055 crossref_primary_10_22201_fc_25942158e_2023_4_707 crossref_primary_10_1016_j_envpol_2015_04_027 crossref_primary_10_1086_715500 crossref_primary_10_1111_jzs_12094 crossref_primary_10_1080_02724634_2021_1989694 crossref_primary_10_1242_jeb_164285 crossref_primary_10_1016_j_scitotenv_2019_05_487 crossref_primary_10_1126_sciadv_1500983 crossref_primary_10_1655_HERPETOLOGICA_D_12_00059 crossref_primary_10_1111_j_1469_7998_2012_00973_x crossref_primary_10_1080_21564574_2014_985261 crossref_primary_10_2994_057_007_0302 crossref_primary_10_1086_692326 crossref_primary_10_1017_S0022149X20000929 crossref_primary_10_1111_zoj_12169 crossref_primary_10_1038_s41598_020_59528_9 crossref_primary_10_1093_beheco_arab101 crossref_primary_10_1111_zoj_12171 crossref_primary_10_18272_aci_v10i1_841 crossref_primary_10_5252_geodiversitas2021v43a7 crossref_primary_10_1515_biol_2017_0048 crossref_primary_10_11646_zootaxa_5405_3_3 crossref_primary_10_1016_j_chemosphere_2019_06_166 crossref_primary_10_1126_sciadv_1602929 crossref_primary_10_1371_journal_pone_0079504 crossref_primary_10_11646_zootaxa_5081_3_1 crossref_primary_10_1186_s12862_015_0417_y crossref_primary_10_1371_journal_pone_0109642 crossref_primary_10_2108_zs160158 crossref_primary_10_1080_14772000_2014_882428 crossref_primary_10_3897_zookeys_371_6580 crossref_primary_10_1111_azo_12318 crossref_primary_10_3390_ijms26031167 crossref_primary_10_1016_j_crpv_2014_06_002 crossref_primary_10_3897_zookeys_1219_129773 crossref_primary_10_5252_z2016n2a5 crossref_primary_10_1080_23802359_2018_1508385 crossref_primary_10_1016_j_zool_2017_08_004 crossref_primary_10_2988_0006_324X_125_4_317 crossref_primary_10_2994_SAJH_D_18_00006_1 crossref_primary_10_1093_zoolinnean_zlz042 crossref_primary_10_3390_ani13213427 crossref_primary_10_1016_j_ympev_2018_03_036 crossref_primary_10_3897_fr_25_83781 crossref_primary_10_5710_PEAPA_27_12_2023_485 crossref_primary_10_1111_j_1096_0031_2012_00417_x crossref_primary_10_1111_cla_12110 crossref_primary_10_1111_ddi_12421 crossref_primary_10_1111_jbi_12668 crossref_primary_10_1111_cla_12118 crossref_primary_10_3330_hikakuseiriseika_39_122 crossref_primary_10_1534_g3_116_036459 crossref_primary_10_1111_1365_2656_12879 crossref_primary_10_1080_21564574_2013_794866 crossref_primary_10_18272_aci_v6i2_180 crossref_primary_10_1007_s11692_012_9197_0 crossref_primary_10_1093_molbev_msz067 crossref_primary_10_1016_j_gene_2022_147015 crossref_primary_10_1073_pnas_1009828109 crossref_primary_10_1080_21564574_2017_1324918 crossref_primary_10_1016_j_annpal_2020_102407 crossref_primary_10_1080_23766808_2015_1100376 crossref_primary_10_1111_j_1096_0031_2012_00406_x crossref_primary_10_1080_23802359_2021_2002213 crossref_primary_10_1371_journal_pone_0175113 crossref_primary_10_1590_S1415_475738320150039 crossref_primary_10_3390_ani13223449 crossref_primary_10_1643_CH_16_509 crossref_primary_10_1111_jbi_13997 crossref_primary_10_1038_s41559_017_0240_5 crossref_primary_10_1080_02724634_2015_981636 crossref_primary_10_1534_g3_119_400389 crossref_primary_10_1093_sysbio_syu042 crossref_primary_10_1016_j_ympev_2018_06_042 crossref_primary_10_1655_Herpetologica_D_19_00050_1 crossref_primary_10_1206_0003_0090_471_1_1 crossref_primary_10_1111_ele_12144 crossref_primary_10_1655_HERPETOLOGICA_D_16_00021 crossref_primary_10_3897_zookeys_864_35102 crossref_primary_10_1016_j_cbpa_2015_03_016 crossref_primary_10_1655_HERPMONOGRAPHS_D_19_00002_1 crossref_primary_10_3897_zookeys_863_35484 crossref_primary_10_3897_zookeys_1231_124926 crossref_primary_10_1111_azo_12352 crossref_primary_10_1007_s00265_015_1959_0 crossref_primary_10_3897_zookeys_713_20776 crossref_primary_10_1111_evo_12985 crossref_primary_10_1186_1742_9994_11_8 crossref_primary_10_1643_CH_18_109 crossref_primary_10_2994_SAJH_D_13_00012_1 crossref_primary_10_3897_zookeys_610_8507 crossref_primary_10_1007_s10531_019_01706_x crossref_primary_10_1086_703112 crossref_primary_10_18272_aci_v8i14_455 crossref_primary_10_1111_1365_2656_13399 crossref_primary_10_1016_j_bse_2016_12_009 crossref_primary_10_1017_S0266467423000251 crossref_primary_10_1002_ar_22952 crossref_primary_10_1007_s10531_018_1573_3 crossref_primary_10_1111_cobi_12567 crossref_primary_10_1016_j_ympev_2018_10_021 crossref_primary_10_1111_evo_12997 crossref_primary_10_1643_CG_14_026 crossref_primary_10_1016_j_dib_2024_111154 crossref_primary_10_1111_ddi_12462 crossref_primary_10_1002_cne_23561 crossref_primary_10_1038_s41598_021_97206_6 crossref_primary_10_7717_peerj_17232 crossref_primary_10_1111_jbi_12625 crossref_primary_10_1643_OT_16_490 crossref_primary_10_1670_19_114 crossref_primary_10_1371_journal_pone_0150022 crossref_primary_10_1371_journal_pone_0145903 crossref_primary_10_1016_j_ympev_2013_11_001 crossref_primary_10_1080_14772000_2022_2039318 crossref_primary_10_2994_SAJH_D_16_00041_1 crossref_primary_10_1111_zoj_12152 crossref_primary_10_1007_s12542_017_0352_x crossref_primary_10_1016_j_jcz_2021_10_004 crossref_primary_10_1086_688894 crossref_primary_10_1016_j_jtbi_2018_03_026 crossref_primary_10_7717_peerj_1807 crossref_primary_10_1016_j_palwor_2020_12_001 crossref_primary_10_3390_molecules25040912 crossref_primary_10_1016_j_ympev_2013_11_011 crossref_primary_10_1073_pnas_1807012115 crossref_primary_10_1643_CH_18_138 crossref_primary_10_1371_journal_pone_0151114 crossref_primary_10_1111_azo_12144 crossref_primary_10_3897_zookeys_1196_114861 crossref_primary_10_1111_geb_12428 crossref_primary_10_1080_02724634_2017_1228657 crossref_primary_10_1007_s00435_022_00575_3 crossref_primary_10_11646_zootaxa_4254_1_5 crossref_primary_10_3897_zookeys_685_12152 crossref_primary_10_1111_acv_12297 crossref_primary_10_1086_701124 crossref_primary_10_3897_CompCytogen_v10i2_9319 crossref_primary_10_3897_zookeys_673_13050 crossref_primary_10_1016_j_ympev_2016_03_021 crossref_primary_10_2982_028_103_0203 crossref_primary_10_1016_j_theriogenology_2014_09_018 crossref_primary_10_1098_rstb_2022_0541 crossref_primary_10_1186_s12862_018_1140_2 crossref_primary_10_18272_aci_v5i2_133 crossref_primary_10_1098_rspb_2016_0716 crossref_primary_10_1007_s10592_021_01331_8 crossref_primary_10_1655_Herpetologica_D_23_00002 crossref_primary_10_1670_18_104 crossref_primary_10_3390_toxins13110779 crossref_primary_10_1093_conphys_cow056 crossref_primary_10_7717_peerj_6480 crossref_primary_10_1093_zoolinnean_zlae162 crossref_primary_10_1080_14772000_2022_2123865 crossref_primary_10_1111_jbi_12842 crossref_primary_10_1111_zoj_12341 crossref_primary_10_1111_aec_12607 crossref_primary_10_1590_0001_3765202020190458 crossref_primary_10_1016_j_jtherbio_2020_102744 crossref_primary_10_1007_s13127_015_0256_0 crossref_primary_10_1016_j_ympev_2018_05_027 crossref_primary_10_1206_0003_0090_470_1_1 crossref_primary_10_1016_j_ympev_2023_107971 crossref_primary_10_3897_zookeys_594_8295 crossref_primary_10_1080_14772000_2021_1933249 crossref_primary_10_1371_journal_pone_0143926 crossref_primary_10_1111_j_1095_8312_2012_01984_x crossref_primary_10_1016_j_ympev_2018_06_020 crossref_primary_10_1080_23766808_2015_1074407 crossref_primary_10_1016_j_preteyeres_2018_04_005 crossref_primary_10_1655_Herpetologica_D_16_00041 crossref_primary_10_1016_j_ympev_2013_12_006 crossref_primary_10_1111_aec_12819 crossref_primary_10_1371_journal_pone_0127248 crossref_primary_10_3724_SP_J_1245_2014_00150 crossref_primary_10_3389_fimmu_2021_718627 crossref_primary_10_1093_biolinnean_bly183 crossref_primary_10_1016_j_ympev_2021_107167 crossref_primary_10_1016_j_cretres_2019_05_002 crossref_primary_10_1111_ele_13426 crossref_primary_10_1126_sciadv_abo6108 crossref_primary_10_1080_02724634_2020_1811293 crossref_primary_10_1038_s41467_021_21263_8 crossref_primary_10_1206_0003_0090_443_1_1 crossref_primary_10_7717_peerj_8642 crossref_primary_10_1206_3739_2 crossref_primary_10_1080_02724634_2018_1510413 crossref_primary_10_1206_3792_1 crossref_primary_10_3724_ahr_2095_0357_2024_0022 crossref_primary_10_1007_s00359_017_1218_0 crossref_primary_10_1111_jbi_12808 crossref_primary_10_1111_geb_12229 crossref_primary_10_7717_peerj_12765 crossref_primary_10_1038_s41559_021_01411_5 crossref_primary_10_7882_AZ_2014_040 crossref_primary_10_3354_dao03045 crossref_primary_10_1016_j_jenvman_2022_115254 crossref_primary_10_1016_j_cbpa_2012_03_020 crossref_primary_10_2108_zs190155 crossref_primary_10_3390_genes11070727 crossref_primary_10_3897_vz_71_e60312 crossref_primary_10_1002_ecs2_3526 crossref_primary_10_1073_pnas_1710920114 crossref_primary_10_3390_genes13101878 crossref_primary_10_1371_journal_pone_0060742 crossref_primary_10_1007_s10530_014_0783_1 crossref_primary_10_1655_HERPETOLOGICA_D_13_00029 crossref_primary_10_1002_jmor_20651 crossref_primary_10_1080_00222933_2012_717972 crossref_primary_10_1186_s12864_020_07269_4 crossref_primary_10_1002_ar_23768 crossref_primary_10_1002_jmor_21503 crossref_primary_10_3897_compcytogen_v8i3_7771 crossref_primary_10_1643_CH_19_319 crossref_primary_10_1371_journal_pone_0153834 crossref_primary_10_1016_j_beproc_2019_103996 crossref_primary_10_1080_21564574_2023_2191602 crossref_primary_10_2994_SAJH_D_14_00034_1 crossref_primary_10_1016_j_toxicon_2014_05_020 crossref_primary_10_1655_HERPETOLOGICA_D_13_00053 crossref_primary_10_1111_ele_12641 crossref_primary_10_1655_HERPETOLOGICA_D_13_00054 crossref_primary_10_1242_jeb_114694 crossref_primary_10_1655_HERPETOLOGICA_D_13_00052 crossref_primary_10_1186_1471_2164_13_626 crossref_primary_10_1086_698726 crossref_primary_10_1073_pnas_2114100119 crossref_primary_10_11646_zootaxa_4444_5_5 crossref_primary_10_1643_CH_19_329 crossref_primary_10_1016_j_ympev_2016_11_001 crossref_primary_10_1038_s42003_023_04989_7 crossref_primary_10_1098_rspb_2017_0627 crossref_primary_10_7717_peerj_10791 crossref_primary_10_1016_j_tree_2013_09_003 crossref_primary_10_2994_SAJH_D_16_00018_1 crossref_primary_10_1007_s00435_014_0226_7 crossref_primary_10_1093_molbev_msy103 crossref_primary_10_7717_peerj_5695 crossref_primary_10_3897_vz_72_e79496 crossref_primary_10_3897_zookeys_884_35776 crossref_primary_10_1002_dvdy_413 crossref_primary_10_3389_frmbi_2024_1277645 crossref_primary_10_1080_02724634_2019_1588285 crossref_primary_10_1186_s12864_017_4358_2 crossref_primary_10_3390_genes10110873 crossref_primary_10_1655_HERPETOLOGICA_D_11_00074_1 crossref_primary_10_1186_1471_2164_15_691 crossref_primary_10_1016_j_cretres_2012_11_002 crossref_primary_10_1655_HERPETOLOGICA_D_13_00072 crossref_primary_10_2108_zsj_31_45 crossref_primary_10_3897_vz_74_e114285 crossref_primary_10_1002_ece3_8595 crossref_primary_10_1111_jzs_12422 crossref_primary_10_1016_j_cretres_2020_104728 crossref_primary_10_1007_s12041_016_0645_y crossref_primary_10_1016_j_ympev_2023_107907 crossref_primary_10_1093_g3journal_jkad193 crossref_primary_10_1111_jeb_12019 crossref_primary_10_3897_zse_97_59696 crossref_primary_10_1080_14772019_2023_2266428 crossref_primary_10_1126_science_1228282 crossref_primary_10_2994_SAJH_D_17_00037_1 crossref_primary_10_26515_rzsi_v121_i2_2021_151692 crossref_primary_10_1016_j_jtherbio_2014_12_008 crossref_primary_10_1655_HERPETOLOGICA_D_16_00069 crossref_primary_10_1016_j_jcz_2018_06_001 crossref_primary_10_1016_j_jcz_2021_06_002 crossref_primary_10_3897_zookeys_929_35984 crossref_primary_10_2478_s11756_020_00488_w crossref_primary_10_3390_biologics4040027 crossref_primary_10_1073_pnas_1615334114 crossref_primary_10_1371_journal_pone_0050743 crossref_primary_10_7717_peerj_13647 crossref_primary_10_1093_sysbio_syv061 crossref_primary_10_1016_j_ympev_2013_04_001 crossref_primary_10_1111_jzo_12044 crossref_primary_10_1655_HERPETOLOGICA_D_13_00068 crossref_primary_10_1139_cjz_2020_0018 crossref_primary_10_1080_02724634_2017_1261360 crossref_primary_10_1643_CH_15_298 crossref_primary_10_1111_evo_13084 crossref_primary_10_1016_j_jaridenv_2015_06_019 crossref_primary_10_1111_1749_4877_12576 crossref_primary_10_1111_geb_13345 crossref_primary_10_47385_cadunifoa_v19_n54_4621 crossref_primary_10_1016_j_ympev_2015_02_001 crossref_primary_10_1002_ece3_8134 crossref_primary_10_1093_sysbio_syv073 crossref_primary_10_1016_j_anbehav_2016_08_003 crossref_primary_10_2988_12_04_1 crossref_primary_10_1242_jeb_123166 crossref_primary_10_1016_j_ympev_2015_02_003 crossref_primary_10_11646_zootaxa_4648_1_2 crossref_primary_10_1016_j_geobios_2016_09_004 crossref_primary_10_7717_peerj_2392 crossref_primary_10_1093_molbev_msv266 crossref_primary_10_21425_fob_17_132672 crossref_primary_10_5358_hsj_36_11 crossref_primary_10_1111_geb_12482 crossref_primary_10_1016_j_jcz_2013_06_002 crossref_primary_10_1655_HERPETOLOGICA_D_13_00085 crossref_primary_10_1111_geb_12479 crossref_primary_10_1186_1471_2148_13_134 crossref_primary_10_7717_peerj_14715 crossref_primary_10_1016_j_ympev_2013_04_021 crossref_primary_10_1111_jzs_12455 crossref_primary_10_1111_jzs_12452 crossref_primary_10_1002_ajpa_23387 crossref_primary_10_7717_peerj_10595 crossref_primary_10_1111_oik_03166 crossref_primary_10_1080_14772019_2017_1287130 crossref_primary_10_31610_trudyzin_2014_318_4_433 crossref_primary_10_1186_1471_2164_14_633 crossref_primary_10_1016_j_ympev_2022_107618 crossref_primary_10_1093_molbev_mst091 crossref_primary_10_11646_zootaxa_4896_4_4 crossref_primary_10_5635_ASED_2014_30_1_039 crossref_primary_10_1371_journal_pone_0171669 crossref_primary_10_1643_OT_14_211 crossref_primary_10_3390_toxins12020074 crossref_primary_10_1080_08912963_2024_2403590 crossref_primary_10_1007_s11692_014_9270_y crossref_primary_10_1093_zoolinnean_zlaa158 crossref_primary_10_1670_20_106 crossref_primary_10_1016_j_ympev_2013_04_031 crossref_primary_10_1016_j_cbd_2014_01_002 crossref_primary_10_1111_jzs_12465 crossref_primary_10_3897_CompCytogen_v13i3_35524 crossref_primary_10_1016_j_cretres_2016_02_006 crossref_primary_10_1111_jzs_12224 crossref_primary_10_1016_j_ympev_2018_02_020 crossref_primary_10_1093_sysbio_syz057 crossref_primary_10_1007_s11692_014_9292_5 crossref_primary_10_1186_1471_2148_13_93 crossref_primary_10_3390_microorganisms11040900 crossref_primary_10_1080_02724634_2014_839452 crossref_primary_10_1655_HERPMONOGRAPHS_D_16_00002 crossref_primary_10_1016_j_jcz_2015_07_001 crossref_primary_10_1007_s10531_014_0642_5 crossref_primary_10_1016_j_ympev_2014_10_010 crossref_primary_10_1021_acs_est_5b01299 crossref_primary_10_1186_1471_2164_13_496 crossref_primary_10_1016_j_aquatox_2024_106925 crossref_primary_10_3389_fbinf_2024_1441373 crossref_primary_10_1086_694319 crossref_primary_10_1098_rspb_2023_1759 crossref_primary_10_1038_ncomms2959 crossref_primary_10_1093_jhered_esv061 crossref_primary_10_1371_journal_pone_0248112 crossref_primary_10_3897_BDJ_10_e79984 crossref_primary_10_1002_ece3_6784 crossref_primary_10_1186_1471_2156_14_59 crossref_primary_10_3109_19401736_2014_989522 crossref_primary_10_5358_hsj_34_51 crossref_primary_10_3897_zse_94_22120 crossref_primary_10_1186_s12863_014_0111_x crossref_primary_10_1016_j_ympev_2020_106981 crossref_primary_10_1670_14_097 crossref_primary_10_7717_peerj_8901 crossref_primary_10_1007_s00442_021_04972_1 crossref_primary_10_1016_j_gene_2014_03_051 crossref_primary_10_1016_j_jcz_2021_09_008 crossref_primary_10_1080_23802359_2021_1899080 crossref_primary_10_7554_eLife_70494 crossref_primary_10_1111_gcb_13610 crossref_primary_10_2994_SAJH_D_16_00003_1 crossref_primary_10_1111_jzs_12483 crossref_primary_10_1371_journal_pone_0196066 crossref_primary_10_1126_science_1237541 crossref_primary_10_1002_ar_25535 crossref_primary_10_1016_j_jcz_2018_02_004 crossref_primary_10_1098_rspb_2018_2737 crossref_primary_10_1371_journal_pone_0198237 crossref_primary_10_1016_j_jtherbio_2021_103148 crossref_primary_10_11646_zootaxa_4838_2_3 crossref_primary_10_1080_00222933_2024_2442749 crossref_primary_10_3390_d13100501 crossref_primary_10_3897_zookeys_846_33200 crossref_primary_10_1002_dvdy_38 crossref_primary_10_1016_j_zool_2012_10_004 crossref_primary_10_1093_zoolinnean_zlab038 crossref_primary_10_1080_02724634_2013_771779 crossref_primary_10_1016_j_ympev_2018_02_012 crossref_primary_10_1007_s13127_016_0294_2 crossref_primary_10_1002_jez_b_22852 crossref_primary_10_1111_zsc_12048 crossref_primary_10_7717_peerj_4525 crossref_primary_10_7717_peerj_5856 crossref_primary_10_1206_3752_2 crossref_primary_10_1670_14_072 crossref_primary_10_1371_journal_pone_0130075 crossref_primary_10_2994_SAJH_D_22_00038_1 crossref_primary_10_1590_S1676_06032013000100026 crossref_primary_10_1371_journal_pone_0162907 crossref_primary_10_1093_biolinnean_blab145 crossref_primary_10_1002_ar_23331 crossref_primary_10_1111_zsc_12015 crossref_primary_10_1655_HERPETOLOGICA_D_16_00065_1 crossref_primary_10_1016_j_ympev_2018_01_017 crossref_primary_10_1007_s10682_015_9774_7 crossref_primary_10_1371_journal_pone_0143392 crossref_primary_10_1038_s41598_022_14722_9 crossref_primary_10_1080_23802359_2024_2427829 crossref_primary_10_1093_sysbio_syz023 crossref_primary_10_1002_jmor_20211 crossref_primary_10_1643_CG_17_621 crossref_primary_10_1002_jez_b_22638 crossref_primary_10_3897_zookeys_929_49748 crossref_primary_10_1016_j_ympev_2020_106789 crossref_primary_10_1371_journal_pone_0204365 crossref_primary_10_1186_1471_2148_14_104 crossref_primary_10_3897_zookeys_994_56277 crossref_primary_10_3390_ijerph18052585 crossref_primary_10_1016_j_jcz_2024_04_002 crossref_primary_10_1186_s12983_021_00423_y crossref_primary_10_1111_evo_14338 crossref_primary_10_3390_d12060222 crossref_primary_10_1016_j_jcz_2019_11_002 crossref_primary_10_1242_jeb_186544 crossref_primary_10_1371_journal_pone_0218733 crossref_primary_10_1111_joa_13311 crossref_primary_10_1007_s12549_015_0221_0 crossref_primary_10_1002_jmor_20490 crossref_primary_10_2478_asn_2018_0011 crossref_primary_10_1111_geb_12089 crossref_primary_10_11646_zootaxa_5474_2_1 crossref_primary_10_5710_AMGH_29_07_2022_3505 crossref_primary_10_1093_zoolinnean_zlaa149 crossref_primary_10_3897_zookeys_516_9776 crossref_primary_10_1371_journal_pone_0093075 crossref_primary_10_1186_s40851_024_00241_0 crossref_primary_10_11646_zootaxa_3608_5_6 crossref_primary_10_1266_ggs_88_59 crossref_primary_10_11646_zootaxa_3437_1_1 crossref_primary_10_2994_SAJH_D_17_00044_1 crossref_primary_10_1371_journal_pone_0103958 crossref_primary_10_1007_s00435_019_00441_9 crossref_primary_10_3989_graellsia_2012_v68_056 crossref_primary_10_1016_j_jcz_2020_12_003 crossref_primary_10_1080_23802359_2025_2475826 crossref_primary_10_1016_j_ympev_2015_05_026 crossref_primary_10_1016_j_ympev_2024_108223 crossref_primary_10_1080_09524622_2015_1116410 crossref_primary_10_1111_cla_12497 crossref_primary_10_3390_genes13112089 crossref_primary_10_1002_ece3_2459 crossref_primary_10_1111_ede_12092 crossref_primary_10_1111_evo_14642 crossref_primary_10_1093_biolinnean_bly002 crossref_primary_10_1111_bij_12296 crossref_primary_10_1093_molbev_msac052 crossref_primary_10_21805_bzn_v71i4_a15 crossref_primary_10_1017_S0022149X21000250 crossref_primary_10_1111_pala_12057 crossref_primary_10_1093_icb_icy045 crossref_primary_10_1093_zoolinnean_zlac063 crossref_primary_10_11646_zootaxa_3200_1_1 crossref_primary_10_1098_rspb_2013_3229 crossref_primary_10_2994_SAJH_D_16_00055_1 crossref_primary_10_1016_j_jcz_2019_05_002 crossref_primary_10_1080_00222933_2014_931482 crossref_primary_10_1007_s11692_012_9187_2 crossref_primary_10_1002_ece3_6824 crossref_primary_10_1643_h2020056 crossref_primary_10_1371_journal_pone_0222131 crossref_primary_10_1016_j_jtherbio_2022_103233 crossref_primary_10_1093_zoolinnean_zly030 crossref_primary_10_1186_s12983_022_00462_z crossref_primary_10_1086_689216 crossref_primary_10_1038_s41467_018_06517_2 crossref_primary_10_1073_pnas_1921807117 crossref_primary_10_3109_19401736_2015_1041113 crossref_primary_10_1086_704736 crossref_primary_10_1093_zoolinnean_zlad167 crossref_primary_10_1111_j_1365_2699_2012_02757_x crossref_primary_10_1371_journal_pone_0166326 crossref_primary_10_1590_S0001_37652013000300014 crossref_primary_10_1159_000354997 crossref_primary_10_1111_jbi_12112 crossref_primary_10_1098_rspb_2013_2156 crossref_primary_10_1126_sciadv_abn1104 crossref_primary_10_1111_brv_12228 crossref_primary_10_1371_journal_pone_0156757 crossref_primary_10_1016_j_biocon_2014_05_030 crossref_primary_10_1898_NWN17_29_1 crossref_primary_10_1016_j_cbpa_2014_10_001 crossref_primary_10_26515_rzsi_v120_i1_2020_138963 crossref_primary_10_11646_zootaxa_3111_1_2 crossref_primary_10_1371_journal_pone_0234331 crossref_primary_10_1016_j_ympev_2014_04_003 crossref_primary_10_1371_journal_pone_0086339 crossref_primary_10_1242_jeb_142315 crossref_primary_10_14411_fp_2014_065 crossref_primary_10_2994_SAJH_D_18_00005_1 crossref_primary_10_1080_08912963_2013_797972 crossref_primary_10_1002_jmor_21091 crossref_primary_10_2994_SAJH_D_13_00022_1 crossref_primary_10_1111_cla_12451 crossref_primary_10_1590_1678_4685_gmb_2017_0260 crossref_primary_10_1016_j_ympev_2013_08_007 crossref_primary_10_1038_nature15380 crossref_primary_10_1371_journal_pone_0087236 crossref_primary_10_1002_jez_b_22902 crossref_primary_10_1002_jemt_22414 crossref_primary_10_1016_j_cbpa_2017_10_020 crossref_primary_10_1089_cmb_2015_0146 crossref_primary_10_1002_jmor_21286 crossref_primary_10_1643_CH2020014 crossref_primary_10_3389_fevo_2019_00352 crossref_primary_10_1002_ar_23292 crossref_primary_10_1111_cla_12447 crossref_primary_10_1016_j_ympev_2014_11_012 crossref_primary_10_1371_journal_pone_0190023 crossref_primary_10_1002_ece3_2267 crossref_primary_10_22201_ib_20078706e_2020_91_3013 crossref_primary_10_1080_02724634_2013_794813 crossref_primary_10_1007_s12041_018_1018_5 crossref_primary_10_1146_annurev_ecolsys_112414_054400 crossref_primary_10_1002_cne_24370 crossref_primary_10_1016_j_jtherbio_2018_07_005 crossref_primary_10_1093_molbev_msae049 crossref_primary_10_1016_j_jtherbio_2019_102398 crossref_primary_10_1111_joa_12625 crossref_primary_10_1371_journal_pone_0204968 crossref_primary_10_11646_zootaxa_5613_1_2 crossref_primary_10_1080_23802359_2017_1347830 crossref_primary_10_1002_ece3_7961 crossref_primary_10_1002_ece3_4214 crossref_primary_10_1016_j_jcz_2017_03_002 crossref_primary_10_1007_s10531_020_01986_8 crossref_primary_10_1017_pab_2022_28 crossref_primary_10_1016_j_jcz_2020_10_007 crossref_primary_10_1080_14772019_2021_1892845 crossref_primary_10_1098_rstb_2014_0006 crossref_primary_10_1098_rspb_2012_1609 crossref_primary_10_1206_3762_2 crossref_primary_10_1111_2041_210X_12051 crossref_primary_10_1111_brv_12430 crossref_primary_10_1093_biolinnean_blaa204 crossref_primary_10_1111_ecog_03889 crossref_primary_10_1017_S0967199414000379 crossref_primary_10_1093_biolinnean_blx127 crossref_primary_10_3390_genes14030768 crossref_primary_10_1080_03036758_2013_825300 crossref_primary_10_3390_ani11020566 crossref_primary_10_3897_zookeys_715_20288 crossref_primary_10_1007_s11692_015_9311_1 crossref_primary_10_1371_journal_pone_0161070 crossref_primary_10_1093_sysbio_syw102 crossref_primary_10_1111_evo_13959 crossref_primary_10_3389_fevo_2023_1195689 crossref_primary_10_1002_ece3_8155 crossref_primary_10_3724_SP_J_1245_2013_00036 crossref_primary_10_1111_jeb_12292 crossref_primary_10_1111_mec_14540 crossref_primary_10_1002_ar_22601 crossref_primary_10_3897_zookeys_1134_91348 crossref_primary_10_11646_zootaxa_3148_1_8 crossref_primary_10_3897_compcytogen_v16_i3_82641 crossref_primary_10_1038_s41467_017_00996_5 crossref_primary_10_1007_s00435_020_00510_4 crossref_primary_10_1111_j_1095_8312_2012_01876_x crossref_primary_10_1590_1519_6984_225646 crossref_primary_10_1016_j_gene_2017_05_039 crossref_primary_10_1371_journal_pone_0032332 crossref_primary_10_1655_HERPETOLOGICA_D_15_00053 crossref_primary_10_1016_j_ympev_2022_107389 crossref_primary_10_1086_673282 crossref_primary_10_1093_sysbio_syv024 crossref_primary_10_1643_CH_14_210 crossref_primary_10_1016_j_ympev_2016_09_004 crossref_primary_10_1111_jbi_12516 crossref_primary_10_1111_cla_12409 crossref_primary_10_1186_s12863_016_0440_z crossref_primary_10_1371_journal_pone_0142791 crossref_primary_10_7717_peerj_7012 crossref_primary_10_1016_j_gene_2020_144762 crossref_primary_10_1002_jmor_20819 crossref_primary_10_1016_j_bbamem_2019_183141 crossref_primary_10_1111_azo_12482 crossref_primary_10_3897_zookeys_692_12187 crossref_primary_10_1111_jzo_12648 crossref_primary_10_1016_j_quaint_2013_10_065 crossref_primary_10_1016_j_jsames_2022_103749 crossref_primary_10_1371_journal_pone_0140577 crossref_primary_10_1016_j_ympev_2013_07_023 crossref_primary_10_1002_cne_24777 crossref_primary_10_1163_15685381_00003037 crossref_primary_10_1093_gbe_evu143 crossref_primary_10_1111_zoj_12271 crossref_primary_10_1093_molbev_msae090 crossref_primary_10_1016_j_gecco_2018_e00438 crossref_primary_10_1890_ES14_00332_1 crossref_primary_10_1016_j_ympev_2014_06_012 crossref_primary_10_1002_ece3_5909 crossref_primary_10_1111_jzo_12639 crossref_primary_10_1111_j_1365_2699_2012_02726_x crossref_primary_10_1016_j_ympev_2019_106724 crossref_primary_10_1007_s10584_020_02677_7 crossref_primary_10_3897_zse_101_133735 crossref_primary_10_1080_01650521_2020_1809333 crossref_primary_10_1111_cla_12429 crossref_primary_10_1655_Herpetologica_D_18_00061 crossref_primary_10_1016_j_ympev_2014_06_002 crossref_primary_10_1017_S0031182015001262 crossref_primary_10_1080_02724634_2018_1508027 crossref_primary_10_5710_AMGH_18_02_2014_1972 crossref_primary_10_1111_ddi_12126 crossref_primary_10_3389_fnana_2019_00086 crossref_primary_10_1073_pnas_1706752114 crossref_primary_10_3897_zookeys_1212_122222 crossref_primary_10_1111_ecog_00521 crossref_primary_10_5358_hsj_40_10 crossref_primary_10_1670_17_002 crossref_primary_10_11922_csdata_2018_0005_zh crossref_primary_10_1016_j_bse_2017_01_006 crossref_primary_10_25225_jvb_23072 crossref_primary_10_1093_gbe_evad070 crossref_primary_10_3897_herpetozoa_32_e69755 crossref_primary_10_1111_cobi_13577 crossref_primary_10_1002_jwmg_21349 crossref_primary_10_1016_j_ympev_2017_04_008 crossref_primary_10_1017_S0030605317000552 crossref_primary_10_3724_SP_J_1245_2013_00062 crossref_primary_10_1016_j_ympev_2013_06_001 crossref_primary_10_1017_pab_2019_31 crossref_primary_10_3390_genes10100733 crossref_primary_10_1111_zoj_12222 crossref_primary_10_1021_acs_jnatprod_6b00494 crossref_primary_10_1093_molbev_msy045 crossref_primary_10_1016_j_ympev_2017_03_016 crossref_primary_10_2994_SAJH_D_14_00032_1 crossref_primary_10_3897_vz_72_e80019 crossref_primary_10_1080_24701394_2019_1634697 crossref_primary_10_1038_s41598_022_18051_9 crossref_primary_10_1016_j_jcz_2016_04_007 crossref_primary_10_1111_jzo_12433 crossref_primary_10_3897_vertebrate_zoology_71_e60312 crossref_primary_10_1111_jbi_12700 crossref_primary_10_1016_j_resp_2014_11_014 crossref_primary_10_1007_s10682_013_9641_3 crossref_primary_10_1111_zoj_12232 crossref_primary_10_1655_HERPETOLOGICA_D_13_00019 crossref_primary_10_1016_j_jcz_2020_01_002 crossref_primary_10_1016_j_jnc_2016_02_007 crossref_primary_10_3390_genes13081475 crossref_primary_10_2994_SAJH_D_17_00115_1 crossref_primary_10_31610_trudyzin_2013_317_4_494 crossref_primary_10_3389_fcell_2022_797352 crossref_primary_10_1002_dvdy_23897 crossref_primary_10_1111_azo_12292 crossref_primary_10_3897_zookeys_370_6291 crossref_primary_10_1016_j_ympev_2017_10_013 crossref_primary_10_5358_hsj_37_172 crossref_primary_10_1111_geb_13602 crossref_primary_10_2994_SAJH_D_17_00017_1 crossref_primary_10_1086_667891 crossref_primary_10_1111_jeb_13170 crossref_primary_10_3897_zookeys_645_11221 crossref_primary_10_3897_zse_100_110133 crossref_primary_10_1016_j_jcz_2022_11_014 crossref_primary_10_1098_rspb_2020_2102 crossref_primary_10_1186_s13227_016_0043_9 crossref_primary_10_1093_beheco_arv195 crossref_primary_10_1371_journal_pone_0164740 crossref_primary_10_1016_j_ympev_2022_107579 crossref_primary_10_1007_s11692_015_9353_4 crossref_primary_10_11646_zootaxa_4132_3_3 crossref_primary_10_1111_evo_12903 crossref_primary_10_7717_peerj_11793 crossref_primary_10_1080_14772000_2018_1518935 crossref_primary_10_1111_jzo_12137 crossref_primary_10_1186_s12862_015_0572_1 crossref_primary_10_1073_pnas_1704632114 crossref_primary_10_1371_journal_pone_0136134 crossref_primary_10_1111_mec_15596 crossref_primary_10_3897_vz_73_e102475 crossref_primary_10_1016_j_isci_2021_102744 crossref_primary_10_1080_03115518_2016_1101998 crossref_primary_10_1098_rspb_2015_3115 crossref_primary_10_1186_s12862_015_0365_6 crossref_primary_10_1080_14888386_2021_1978108 crossref_primary_10_1111_acv_12406 crossref_primary_10_1007_s11692_015_9363_2 crossref_primary_10_1080_01650521_2017_1317130 crossref_primary_10_1111_zsc_12337 crossref_primary_10_1093_cz_zoy086 crossref_primary_10_1186_1471_2148_12_241 crossref_primary_10_1016_j_ympev_2018_07_005 crossref_primary_10_7717_peerj_6457 crossref_primary_10_1111_ele_12310 crossref_primary_10_1002_jmor_20536 crossref_primary_10_21805_bzn_v73i2_a6 crossref_primary_10_3390_toxins8070213 crossref_primary_10_1007_s12549_015_0228_6 crossref_primary_10_5358_hsj_35_122 crossref_primary_10_1002_ece3_5176 crossref_primary_10_1016_j_semcdb_2020_05_011 crossref_primary_10_1016_j_ympev_2019_02_013 crossref_primary_10_1016_j_tree_2013_01_014 crossref_primary_10_1080_09524622_2016_1260053 crossref_primary_10_1093_sysbio_syy013 crossref_primary_10_1007_s10682_013_9675_6 crossref_primary_10_1016_j_ecolind_2020_106754 crossref_primary_10_1093_biolinnean_blab083 crossref_primary_10_7717_peerj_7532 crossref_primary_10_1016_j_ympev_2015_10_009 crossref_primary_10_11646_zootaxa_4407_1_6 crossref_primary_10_1080_14772019_2025_2456622 crossref_primary_10_1111_geb_12571 crossref_primary_10_1655_HERPMONOGRAPHS_D_20_00002 crossref_primary_10_1080_23766808_2017_1299529 crossref_primary_10_1155_2020_6540343 crossref_primary_10_1016_j_ympev_2021_107241 crossref_primary_10_3377_004_048_0202 crossref_primary_10_2994_SAJH_D_17_00023_1 crossref_primary_10_1371_journal_pone_0151746 crossref_primary_10_1080_02724634_2019_1576183 crossref_primary_10_11646_zootaxa_5575_3_3 crossref_primary_10_1002_jez_b_22566 crossref_primary_10_7717_peerj_8618 crossref_primary_10_5252_zoosystema2018v40a22 crossref_primary_10_1007_s10709_015_9876_8 crossref_primary_10_1080_23802359_2018_1501286 crossref_primary_10_5252_zoosystema2018v40a23 crossref_primary_10_1002_jez_b_22575 crossref_primary_10_1002_jmor_20550 crossref_primary_10_1002_jmor_21642 crossref_primary_10_1098_rspb_2013_1622 crossref_primary_10_5852_ejt_2022_847_1991 crossref_primary_10_3390_ani12182449 crossref_primary_10_1134_S1062360423020029 crossref_primary_10_1111_1755_0998_13517 crossref_primary_10_1655_Herpetologica_D_15_00062_1 crossref_primary_10_3897_zookeys_593_8063 crossref_primary_10_7550_rmb_42015 crossref_primary_10_1111_j_1558_5646_2012_01715_x crossref_primary_10_1111_jeb_13412 crossref_primary_10_3897_zookeys_672_10624 crossref_primary_10_1371_journal_pone_0119815 crossref_primary_10_1655_HERPETOLOGICA_D_13_00082R1 crossref_primary_10_1016_j_cbd_2013_10_002 crossref_primary_10_1016_j_jcz_2020_04_002 crossref_primary_10_1016_j_jsames_2020_102633 crossref_primary_10_1016_j_tree_2015_04_016 crossref_primary_10_1098_rspb_2014_2213 crossref_primary_10_1590_1678_4685_gmb_2022_0203 crossref_primary_10_1002_jez_2632 crossref_primary_10_1186_1471_2105_14_324 crossref_primary_10_1007_s11692_021_09536_y crossref_primary_10_1111_jeb_13228 crossref_primary_10_1655_HERPMONOGRAPHS_D_19_00008_1 crossref_primary_10_1086_716213 crossref_primary_10_1016_j_crvi_2012_05_003 crossref_primary_10_1093_biolinnean_blz097 crossref_primary_10_1016_j_ygcen_2020_113611 crossref_primary_10_1038_s41559_018_0632_1 crossref_primary_10_1643_CH_14_128 crossref_primary_10_1080_00222933_2021_1946185 crossref_primary_10_1080_02724634_2012_637591 crossref_primary_10_1086_687547 crossref_primary_10_1643_CH_14_130 crossref_primary_10_1016_j_ympev_2020_106819 crossref_primary_10_1111_jeb_12143 crossref_primary_10_1002_ar_24933 crossref_primary_10_1111_jzs_12317 crossref_primary_10_1371_journal_pone_0096637 crossref_primary_10_11646_zootaxa_4446_4_5 crossref_primary_10_3897_zookeys_868_26766 crossref_primary_10_1007_s10211_015_0214_z crossref_primary_10_1016_j_ympev_2022_107514 crossref_primary_10_1186_1471_2148_14_44 crossref_primary_10_1016_j_ympev_2014_01_009 crossref_primary_10_3390_ani12091112 crossref_primary_10_1016_j_ympev_2021_107210 crossref_primary_10_1016_j_ympev_2024_108166 crossref_primary_10_1016_j_jksus_2015_02_001 crossref_primary_10_1016_j_ympev_2016_04_019 crossref_primary_10_1002_jmor_21611 crossref_primary_10_1016_j_ympev_2012_12_004 crossref_primary_10_1111_joa_12190 crossref_primary_10_3897_zookeys_1149_85627 crossref_primary_10_1002_dvdy_742 crossref_primary_10_1111_ele_12728 crossref_primary_10_1016_j_jcz_2019_02_002 crossref_primary_10_1017_pab_2016_11 crossref_primary_10_1371_journal_pone_0156176 crossref_primary_10_1111_geb_13206 crossref_primary_10_1643_CH_19_254 crossref_primary_10_2517_PR210031 crossref_primary_10_1007_s10682_016_9817_8 crossref_primary_10_1002_jmor_20751 crossref_primary_10_3897_herpetozoa_34_e66909 crossref_primary_10_3897_zookeys_1024_56399 crossref_primary_10_1111_jeb_13210 crossref_primary_10_7717_peerj_5771 crossref_primary_10_1098_rstb_2020_0426 crossref_primary_10_1670_15_105 crossref_primary_10_1111_jeb_12128 crossref_primary_10_1371_journal_pone_0100176 crossref_primary_10_11646_zootaxa_3484_1_5 crossref_primary_10_1371_journal_pone_0171785 crossref_primary_10_1098_rsos_150277 crossref_primary_10_1016_j_ympev_2020_106841 crossref_primary_10_36253_a_h_15648 crossref_primary_10_1186_s12862_021_01755_3 crossref_primary_10_1016_j_micron_2016_09_003 crossref_primary_10_1038_s41598_018_38133_x crossref_primary_10_1038_s41598_017_03395_4 crossref_primary_10_1002_jmor_21233 crossref_primary_10_1206_0003_0090_447_1_1 crossref_primary_10_2994_SAJH_D_17_00054_1 crossref_primary_10_5358_hsj_33_112 crossref_primary_10_7717_peerj_2499 crossref_primary_10_1111_jbi_13186 crossref_primary_10_1073_pnas_1519459113 crossref_primary_10_1073_pnas_2320674121 crossref_primary_10_7550_rmb_32842 crossref_primary_10_1111_geb_13031 crossref_primary_10_3897_compcytogen_v8i2_6414 crossref_primary_10_1111_jzs_12113 crossref_primary_10_1098_rsos_200933 crossref_primary_10_3390_d13090399 crossref_primary_10_1186_1471_2148_14_82 crossref_primary_10_1007_s00239_017_9782_z crossref_primary_10_1163_156853812X638527 crossref_primary_10_1590_1678_9199_jvatitd_2023_0042 crossref_primary_10_1007_s00435_016_0342_7 crossref_primary_10_1655_Herpetologica_D_14_00047_1 crossref_primary_10_1111_jeb_12746 crossref_primary_10_1080_23802359_2019_1624209 crossref_primary_10_7717_peerj_4422 crossref_primary_10_1670_20_001 crossref_primary_10_1590_1678_4766e2017152 crossref_primary_10_2994_SAJH_D_21_00029_1 crossref_primary_10_1674_0003_0031_182_2_191 crossref_primary_10_1098_rspb_2021_0200 crossref_primary_10_1002_jmor_21254 crossref_primary_10_1643_CH_17_630 crossref_primary_10_1016_j_ympev_2014_02_004 crossref_primary_10_1656_058_013_0302 crossref_primary_10_1016_j_ympev_2020_106877 crossref_primary_10_1590_S1676_06032013000300027 crossref_primary_10_1016_j_bse_2016_04_004 crossref_primary_10_1590_S1676_06032013000300026 crossref_primary_10_1670_22_062 crossref_primary_10_1073_pnas_1620010114 crossref_primary_10_1111_jeb_12714 crossref_primary_10_1111_geb_12162 crossref_primary_10_1186_s12859_020_3532_8 crossref_primary_10_1111_brv_12197 crossref_primary_10_1111_joa_12535 crossref_primary_10_1093_bioinformatics_btw712 crossref_primary_10_1111_aec_13154 crossref_primary_10_1002_ece3_5110 crossref_primary_10_1016_j_geobios_2024_03_002 crossref_primary_10_5358_hsj_34_182 crossref_primary_10_1242_bio_020925 crossref_primary_10_1080_14772019_2022_2050824 crossref_primary_10_1093_sysbio_syaa034 crossref_primary_10_1038_sdata_2018_97 crossref_primary_10_1093_molbev_msv113 crossref_primary_10_3390_d11080126 crossref_primary_10_1111_jbi_13394 crossref_primary_10_3390_molecules22091428 crossref_primary_10_1086_732113 crossref_primary_10_1038_s41598_017_10553_1 crossref_primary_10_1655_Herpetologica_D_19_00010_1 crossref_primary_10_1016_j_anbehav_2012_10_031 crossref_primary_10_1089_bio_2011_0036 crossref_primary_10_1643_CE_15_324 crossref_primary_10_1655_HERPMONOGRAPHS_D_22_00003 crossref_primary_10_1590_1678_4685_gmb_2020_0301 crossref_primary_10_1080_08912963_2017_1282475 crossref_primary_10_1111_1749_4877_12628 crossref_primary_10_1016_j_ympev_2020_106899 crossref_primary_10_1016_j_toxicon_2022_04_020 crossref_primary_10_1111_ele_12901 crossref_primary_10_1016_j_ijpsycho_2014_01_004 crossref_primary_10_1016_j_toxicon_2022_02_017 crossref_primary_10_1590_1519_6984_180399 crossref_primary_10_1017_S0022149X22000682 crossref_primary_10_1093_zoolinnean_zlaa002 crossref_primary_10_1080_14772000_2013_764944 crossref_primary_10_1073_pnas_1300881110 crossref_primary_10_2994_057_006_0310 crossref_primary_10_1007_s00435_018_0400_4 crossref_primary_10_1186_s12862_019_1422_3 crossref_primary_10_1007_s00114_024_01910_y crossref_primary_10_3897_zookeys_726_13864 crossref_primary_10_1111_1755_0998_12648 crossref_primary_10_1111_evo_12274 crossref_primary_10_1111_evo_14216 crossref_primary_10_7717_peerj_2201 crossref_primary_10_31857_S0475145023020027 crossref_primary_10_1111_1749_4877_12611 crossref_primary_10_1111_eva_12520 crossref_primary_10_1016_j_jcz_2022_09_004 crossref_primary_10_1111_btp_13208 crossref_primary_10_1111_pala_12405 crossref_primary_10_1655_HERPMONOGRAPHS_D_15_00009_1 crossref_primary_10_1371_journal_pone_0215349 crossref_primary_10_1111_j_1463_6409_2011_00499_x crossref_primary_10_1002_jmor_21454 crossref_primary_10_1002_ar_24527 crossref_primary_10_2992_007_084_0104 crossref_primary_10_1016_j_margen_2015_03_006 crossref_primary_10_1111_evo_13133 crossref_primary_10_1111_evo_14468 crossref_primary_10_2108_zs170008 crossref_primary_10_1093_molbev_mst122 crossref_primary_10_1146_annurev_environ_102014_021358 crossref_primary_10_5358_hsj_33_29 crossref_primary_10_1111_joa_13426 crossref_primary_10_1016_j_ympev_2015_11_012 crossref_primary_10_1371_journal_pone_0192861 crossref_primary_10_1016_j_ympev_2015_11_014 crossref_primary_10_1371_journal_pone_0219716 crossref_primary_10_1098_rspb_2018_1589 crossref_primary_10_1093_molbev_msad109 crossref_primary_10_7717_peerj_12012 crossref_primary_10_1111_bij_12083 crossref_primary_10_1111_1755_0998_12624 crossref_primary_10_1206_834_1 crossref_primary_10_1038_s41467_022_35765_6 crossref_primary_10_1371_journal_pone_0145444 crossref_primary_10_1016_j_gr_2012_02_021 crossref_primary_10_3762_bjnano_7_81 crossref_primary_10_3389_fevo_2021_640345 crossref_primary_10_1080_02724634_2012_716113 crossref_primary_10_1111_jbi_13592 crossref_primary_10_3390_genes11020123 crossref_primary_10_2994_SAJH_D_22_00002_1 |
Cites_doi | 10.1093/sysbio/syp090 10.1016/j.ympev.2003.09.003 10.11646/zootaxa.1737.1.1 10.1126/science.1102036 10.11646/zootaxa.2211.1.1 10.1016/j.tree.2006.10.002 10.1016/j.ympev.2007.02.008 10.1111/j.1558-5646.2009.00610.x 10.1080/10635150590945278 10.1080/10635150600812551 10.1080/10635150802166053 10.1111/j.0014-3820.2004.tb00881.x 10.1093/bioinformatics/btl446 10.1080/10635150701397635 10.1073/pnas.0811087106 10.1093/sysbio/syr025 10.1111/j.1558-5646.2007.00159.x 10.1206/0003-0090(2006)299[1:PSODFA]2.0.CO;2 10.1093/sysbio/syp043 10.1111/j.1466-8238.2007.00348.x 10.1086/519396 10.1086/513362 10.1086/507882 10.1016/j.ympev.2009.07.010 10.1093/sysbio/syp075 10.1093/bioinformatics/btm404 10.1086/429523 10.1016/j.ympev.2011.03.012 10.1111/j.1096-0031.2009.00287.x 10.1080/10635150701477825 10.1111/j.0014-3820.2004.tb01632.x 10.1111/j.1558-5646.2011.01221.x 10.1016/j.ympev.2010.11.006 10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2 10.1073/pnas.0608378104 10.1080/10635150590906037 10.1126/science.1103538 10.1098/rspb.2006.0301 10.1016/0169-5347(90)90129-2 10.1073/pnas.0810821106 10.1111/j.1469-7998.2009.00593.x 10.1641/B580405 10.1080/10635150500234625 10.1186/1471-2148-9-131 10.1080/10635150600999150 10.1016/j.ympev.2009.12.011 10.1093/nar/gkh340 10.1016/j.ympev.2010.04.019 10.1093/sysbio/syr047 10.1111/j.1469-7998.1858.tb06387.x 10.11646/zootaxa.2241.1.2 10.1016/j.ympev.2010.03.013 10.11646/zootaxa.2100.1.1 10.1080/10635150390218330 10.1016/j.ympev.2009.06.018 10.1006/mpev.1998.0500 10.1371/journal.pbio.1000056 10.1111/j.1558-5646.2009.00680.x 10.1655/08-031R1.1 10.1038/nature02019 10.1206/0003-0090(2005)294[0001:SROTFF]2.0.CO;2 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Inc. Copyright © 2011 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2011 Elsevier Inc. – notice: Copyright © 2011 Elsevier Inc. All rights reserved. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7U5 8FD L7M 7X8 F1W H95 L.G |
DOI | 10.1016/j.ympev.2011.06.012 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1095-9513 |
EndPage | 583 |
ExternalDocumentID | 21723399 10_1016_j_ympev_2011_06_012 US201500042533 S105579031100279X |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CBWCG COF CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HVGLF HZ~ IHE J1W K-O KOM LG5 LW8 LX2 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K TN5 UNMZH WUQ XJT XPP XSW YK3 ZCG ZKB ZMT ZU3 ~02 ~G- AAHBH AATTM AAXKI ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AKRWK ANKPU BNPGV FBQ SSH AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7S9 EFKBS L.6 7U5 8FD L7M 7X8 F1W H95 L.G |
ID | FETCH-LOGICAL-c546t-baebe3678909bc4a28b425d3afccc8c162f3e0d63fe3676b65584b915b0d6f23 |
IEDL.DBID | .~1 |
ISSN | 1055-7903 1095-9513 |
IngestDate | Fri Jul 11 16:00:01 EDT 2025 Thu Jul 10 19:14:11 EDT 2025 Mon Jul 21 11:05:58 EDT 2025 Sun Aug 24 03:58:38 EDT 2025 Thu Apr 03 07:07:33 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Tue Jul 01 00:44:14 EDT 2025 Thu Apr 03 09:45:43 EDT 2025 Fri Feb 23 02:33:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Anura Systematics Apoda Caudata Amphibia Lissamphibia Gymnophiona Phylogeny Supermatrix |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c546t-baebe3678909bc4a28b425d3afccc8c162f3e0d63fe3676b65584b915b0d6f23 |
Notes | http://dx.doi.org/10.1016/j.ympev.2011.06.012 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21723399 |
PQID | 1672061035 |
PQPubID | 24069 |
PageCount | 41 |
ParticipantIDs | proquest_miscellaneous_907179578 proquest_miscellaneous_890677029 proquest_miscellaneous_1770327026 proquest_miscellaneous_1672061035 pubmed_primary_21723399 crossref_primary_10_1016_j_ympev_2011_06_012 crossref_citationtrail_10_1016_j_ympev_2011_06_012 fao_agris_US201500042533 elsevier_sciencedirect_doi_10_1016_j_ympev_2011_06_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-11-01 |
PublicationDateYYYYMMDD | 2011-11-01 |
PublicationDate_xml | – month: 11 year: 2011 text: 2011-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular phylogenetics and evolution |
PublicationTitleAlternate | Mol Phylogenet Evol |
PublicationYear | 2011 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Felsenstein (b0090) 2004 Vieites, Wollenberg, Andreone, Kohler, Glaw, Vences (b0255) 2009; 106 Pauly, Hillis, Cannatella (b0175) 2009; 65 Grant, Frost, Caldwell, Gagliardo, Haddad, Kok, Means, Noonan, Schargel, Wheeler (b0100) 2006; 299 Wiens (b0265) 2003; 52 Wiens, Sukumaran, Pyron, Brown (b0325) 2009; 63 Wiens (b0285) 2011; 65 Pyron (b0195) 2011; 60 Carroll (b0035) 2009 San Mauro, Gower, Massingham, Wilkinson, Zardoya, Cotton (b0220) 2009; 58 Peng, Zhang, Xiong, Gu, Zeng, Zou (b0180) 2010; 56 Wiens (b0270) 2007; 170 Darst, Cannatella (b0045) 2004; 31 Stuart, Chanson, Cox, Young, Rodrigues, Fischman, Waller (b0235) 2004; 306 Faivovich, Haddad, Garcia, Frost, Campbell, Wheeler (b0075) 2005; 294 Frost, Grant, Faivovich, Bain, Haas, Haddad, De Sa, Channing, Wilkinson, Donnellan, Raxworthy, Campbell, Blotto, Moler, Drewes, Nussbaum, Lynch, Green, Wheeler (b0095) 2006; 297 Bossuyt, Roelants (b0020) 2009 Wiens, Kuczynski, Hua, Moen (b0330) 2010; 55 Zhang, Wake (b0340) 2009; 53 Chippindale, Bonett, Baldwin, Wiens (b0040) 2004; 58 Zhang, Zhou, Chen, Liu, Qu (b0345) 2005; 54 Biju, Bossuyt (b0010) 2003; 425 Guayasamin, Castroviejo-Fisher, Trueb, Ayarzaguena, Rada, Vila (b0105) 2009; 2100 Miranda-Ribeiro (b0165) 1920; 12 Wiens (b0275) 2007; 82 Wiens, Bonett, Chippindale (b0295) 2005; 54 Feller, Hedges (b0085) 1998; 9 . Hedges, Duellman, Heinicke (b0115) 2008; 1737 Bossuyt, Brown, Hillis, Cannatella, Milinkovitch (b0025) 2006; 55 Pauly, Hillis, Cannatella (b0170) 2004; 58 Blaustein, Wake (b0015) 1990; 5 de Queiroz, Gatesy (b0050) 2007; 22 Lannoo (b0135) 2005 Zhang, Wake (b0335) 2009; 53 San Mauro (b0215) 2010; 56 Vieites, Roman, Wake, Wake (b0260) 2011; 59 Roelants, Gower, Wilkinson, Loader, Biju, Guillaume, Moriau, Bossuyt (b0210) 2007; 104 Camp, Peterman, Milanovich, Lamb, Maerz, Wake (b0030) 2009; 279 Kozak, Mendyk, Wiens (b0130) 2009; 63 McMahon, Sanderson (b0160) 2006; 55 Pramuk, Robertson, Sites, Noonan (b0185) 2008; 17 San Mauro, Vences, Alcobendas, Zardoya, Meyer (b0355) 2005; 165 Driskell, Ane, Burleigh, McMahon, O’Meara, Sanderson (b0055) 2004; 306 Wiens, Kuczynski, Duellman, Reeder (b0310) 2007; 61 Van Bocxlaer, Biju, Loader, Bossuyt (b0245) 2009; 9 Günther (b0110) 1858; 1858 van der Meijden, Vences, Hoegg, Boistel, Channing, Meyer (b0250) 2007; 44 Duellman, Trueb (b0065) 1994 Faivovich, Haddad, Baeta, Jungfer, Alvares, Brandao, Sheil, Barrientos, Barrio-Amoros, Cruz, Wheeler (b0080) 2010; 26 Pyron, Burbrink, Colli, de Oca, Vitt, Kuczynski, Wiens (b0205) 2011; 58 Wiens, Graham, Moen, Smith, Reeder (b0305) 2006; 168 Laurent (b0145) 1984; 37 Wiens, Parra-Olea, Garcia-Paris, Wake (b0315) 2007; 274 Frost, Darrel, R., 2011. Amphibian Species of the World: an Online Reference. Version 5.5 (31 January, 2011). American Museum of Natural History, New York, USA. Electronic Database accessible at Hugall, Foster, Lee (b0125) 2007; 56 Alfaro, Santini, Brock, Alamillo, Dornburg, Rabosky, Carnevale, Harmon (b0005) 2009; 106 Wiens, Fetzner, Parkinson, Reeder (b0300) 2005; 54 Wiens (b0280) 2008; 58 Stamatakis (b0230) 2006; 22 Edgar (b0070) 2004; 32 Heinicke, Duellman, Trueb, Means, MacCulloch, Hedges (b0120) 2009; 2211 Wiens, Kuczynski, Smith, Mulcahy, Sites, Townsend, Reeder (b0320) 2008; 57 Santos, Coloma, Summers, Caldwell, Ree, Cannatella (b0225) 2009; 7 Lynch (b0150) 1971; 58 Pyron (b0190) 2010; 59 Wiens, J.J., Morrill, M.C., 2011. Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Syst. Biol. Thomson, Shaffer (b0240) 2010; 59 Duellman (b0060) 1999 Larkin, Blackshields, Brown, Chenna, McGettigan, McWilliam, Valentin, Wallace, Wilm, Lopez, Thompson, Gibson, Higgins (b0140) 2007; 23 Marjanović, Laurin (b0155) 2007; 56 Pyron, Burbrink (b0200) 2009; 2241 Lynch (10.1016/j.ympev.2011.06.012_b0150) 1971; 58 Marjanović (10.1016/j.ympev.2011.06.012_b0155) 2007; 56 San Mauro (10.1016/j.ympev.2011.06.012_b0355) 2005; 165 Wiens (10.1016/j.ympev.2011.06.012_b0305) 2006; 168 Hugall (10.1016/j.ympev.2011.06.012_b0125) 2007; 56 Kozak (10.1016/j.ympev.2011.06.012_b0130) 2009; 63 Pyron (10.1016/j.ympev.2011.06.012_b0200) 2009; 2241 Bossuyt (10.1016/j.ympev.2011.06.012_b0025) 2006; 55 Pyron (10.1016/j.ympev.2011.06.012_b0190) 2010; 59 Duellman (10.1016/j.ympev.2011.06.012_b0060) 1999 Roelants (10.1016/j.ympev.2011.06.012_b0210) 2007; 104 Vieites (10.1016/j.ympev.2011.06.012_b0260) 2011; 59 Wiens (10.1016/j.ympev.2011.06.012_b0325) 2009; 63 Wiens (10.1016/j.ympev.2011.06.012_b0310) 2007; 61 Wiens (10.1016/j.ympev.2011.06.012_b0330) 2010; 55 Camp (10.1016/j.ympev.2011.06.012_b0030) 2009; 279 Peng (10.1016/j.ympev.2011.06.012_b0180) 2010; 56 Stuart (10.1016/j.ympev.2011.06.012_b0235) 2004; 306 10.1016/j.ympev.2011.06.012_b0350 Faivovich (10.1016/j.ympev.2011.06.012_b0075) 2005; 294 Wiens (10.1016/j.ympev.2011.06.012_b0300) 2005; 54 Guayasamin (10.1016/j.ympev.2011.06.012_b0105) 2009; 2100 Grant (10.1016/j.ympev.2011.06.012_b0100) 2006; 299 Vieites (10.1016/j.ympev.2011.06.012_b0255) 2009; 106 Hedges (10.1016/j.ympev.2011.06.012_b0115) 2008; 1737 Wiens (10.1016/j.ympev.2011.06.012_b0320) 2008; 57 Wiens (10.1016/j.ympev.2011.06.012_b0285) 2011; 65 Driskell (10.1016/j.ympev.2011.06.012_b0055) 2004; 306 Pauly (10.1016/j.ympev.2011.06.012_b0175) 2009; 65 Bossuyt (10.1016/j.ympev.2011.06.012_b0020) 2009 Felsenstein (10.1016/j.ympev.2011.06.012_b0090) 2004 Günther (10.1016/j.ympev.2011.06.012_b0110) 1858; 1858 Lannoo (10.1016/j.ympev.2011.06.012_b0135) 2005 Heinicke (10.1016/j.ympev.2011.06.012_b0120) 2009; 2211 Blaustein (10.1016/j.ympev.2011.06.012_b0015) 1990; 5 Pyron (10.1016/j.ympev.2011.06.012_b0205) 2011; 58 Biju (10.1016/j.ympev.2011.06.012_b0010) 2003; 425 Thomson (10.1016/j.ympev.2011.06.012_b0240) 2010; 59 Wiens (10.1016/j.ympev.2011.06.012_b0315) 2007; 274 Chippindale (10.1016/j.ympev.2011.06.012_b0040) 2004; 58 Wiens (10.1016/j.ympev.2011.06.012_b0295) 2005; 54 San Mauro (10.1016/j.ympev.2011.06.012_b0220) 2009; 58 Feller (10.1016/j.ympev.2011.06.012_b0085) 1998; 9 Pyron (10.1016/j.ympev.2011.06.012_b0195) 2011; 60 Santos (10.1016/j.ympev.2011.06.012_b0225) 2009; 7 San Mauro (10.1016/j.ympev.2011.06.012_b0215) 2010; 56 10.1016/j.ympev.2011.06.012_b0290 Miranda-Ribeiro (10.1016/j.ympev.2011.06.012_b0165) 1920; 12 Duellman (10.1016/j.ympev.2011.06.012_b0065) 1994 Wiens (10.1016/j.ympev.2011.06.012_b0265) 2003; 52 Wiens (10.1016/j.ympev.2011.06.012_b0270) 2007; 170 Laurent (10.1016/j.ympev.2011.06.012_b0145) 1984; 37 Darst (10.1016/j.ympev.2011.06.012_b0045) 2004; 31 Pramuk (10.1016/j.ympev.2011.06.012_b0185) 2008; 17 Edgar (10.1016/j.ympev.2011.06.012_b0070) 2004; 32 Zhang (10.1016/j.ympev.2011.06.012_b0335) 2009; 53 de Queiroz (10.1016/j.ympev.2011.06.012_b0050) 2007; 22 Zhang (10.1016/j.ympev.2011.06.012_b0345) 2005; 54 Pauly (10.1016/j.ympev.2011.06.012_b0170) 2004; 58 Frost (10.1016/j.ympev.2011.06.012_b0095) 2006; 297 Wiens (10.1016/j.ympev.2011.06.012_b0280) 2008; 58 McMahon (10.1016/j.ympev.2011.06.012_b0160) 2006; 55 Van Bocxlaer (10.1016/j.ympev.2011.06.012_b0245) 2009; 9 Zhang (10.1016/j.ympev.2011.06.012_b0340) 2009; 53 van der Meijden (10.1016/j.ympev.2011.06.012_b0250) 2007; 44 Carroll (10.1016/j.ympev.2011.06.012_b0035) 2009 Larkin (10.1016/j.ympev.2011.06.012_b0140) 2007; 23 Alfaro (10.1016/j.ympev.2011.06.012_b0005) 2009; 106 Wiens (10.1016/j.ympev.2011.06.012_b0275) 2007; 82 Faivovich (10.1016/j.ympev.2011.06.012_b0080) 2010; 26 Stamatakis (10.1016/j.ympev.2011.06.012_b0230) 2006; 22 |
References_xml | – year: 1994 ident: b0065 article-title: Biology of Amphibians – volume: 1737 start-page: 1 year: 2008 end-page: 182 ident: b0115 article-title: New World direct-developing frogs (Anura: Terrarana): molecular phylogeny, classification, biogeography, and conservation publication-title: Zootaxa – volume: 44 start-page: 1017 year: 2007 end-page: 1030 ident: b0250 article-title: Nuclear gene phylogeny of narrow-mouthed toads (Family: Microhylidae) and a discussion of competing hypotheses concerning their biogeographical origins publication-title: Mol. Phylogenet. Evol. – volume: 59 start-page: 623 year: 2011 end-page: 635 ident: b0260 article-title: A multigenic perspective on phylogenetic relationships in the largest family of salamanders, the Plethodontidae publication-title: Mol. Phylogenet. Evol. – volume: 279 start-page: 86 year: 2009 end-page: 94 ident: b0030 article-title: A new genus and species of lungless salamander (family Plethodontidae) from the Appalachian highlands of the south-eastern United States publication-title: J. Zool. – volume: 58 start-page: 2517 year: 2004 end-page: 2535 ident: b0170 article-title: The history of a Nearctic colonization: molecular phylogenetics and biogeography of the Nearctic Toads ( publication-title: Evolution – volume: 297 start-page: 8 year: 2006 end-page: 370 ident: b0095 article-title: The amphibian tree of life publication-title: Bull. Am. Mus. Natl. Hist. – volume: 54 start-page: 719 year: 2005 end-page: 748 ident: b0300 article-title: Hylid frog phylogeny and sampling strategies for speciose clades publication-title: Syst. Biol. – volume: 22 start-page: 2688 year: 2006 end-page: 2690 ident: b0230 article-title: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models publication-title: Bioinformatics – volume: 59 start-page: 185 year: 2010 end-page: 194 ident: b0190 article-title: A likelihood method for assessing molecular divergence time estimates and the placement of fossil calibrations publication-title: Syst. Biol. – volume: 170 start-page: S86 year: 2007 end-page: S106 ident: b0270 article-title: Global patterns of diversification and species richness in amphibians publication-title: Am. Nat. – volume: 52 start-page: 528 year: 2003 end-page: 538 ident: b0265 article-title: Missing data, incomplete taxa, and phylogenetic accuracy publication-title: Syst. Biol. – volume: 59 start-page: 42 year: 2010 end-page: 58 ident: b0240 article-title: Sparse supermatrices for phylogenetic inference. taxonomy, alignment, rogue taxa, and the phylogeny of living turtles publication-title: Syst. Biol. – volume: 106 start-page: 8267 year: 2009 end-page: 8272 ident: b0255 article-title: Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory publication-title: Proc. Natl. Acad. Sci. USA – volume: 53 start-page: 492 year: 2009 end-page: 508 ident: b0335 article-title: Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes publication-title: Mol. Phylogenet. Evol. – volume: 58 start-page: 425 year: 2009 end-page: 438 ident: b0220 article-title: Experimental design in caecilian systematics: phylogenetic information of mitochondrial genomes and nuclear RAG1 publication-title: Syst. Biol. – volume: 56 start-page: 369 year: 2007 end-page: 388 ident: b0155 article-title: Fossils, molecules, divergence times, and the origin of lissamphibians publication-title: Syst. Biol. – volume: 5 start-page: 203 year: 1990 end-page: 204 ident: b0015 article-title: Declining amphibian populations – a global phenomenon publication-title: Trends Ecol. Evol. – volume: 37 start-page: 199 year: 1984 end-page: 200 ident: b0145 article-title: Heterogeneidad de la familia Caeciliidae (Amphibia–Apoda) publication-title: Acta Zool. Lilloana – volume: 54 start-page: 91 year: 2005 end-page: 110 ident: b0295 article-title: Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships publication-title: Syst. Biol. – volume: 2100 start-page: 1 year: 2009 end-page: 97 ident: b0105 article-title: Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon publication-title: Zootaxa – volume: 65 start-page: 1283 year: 2011 end-page: 1296 ident: b0285 article-title: Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and re-evaluating Dollo’s law publication-title: Evolution – year: 1999 ident: b0060 article-title: Patterns of Distribution of Amphibians: A Global Perspective – volume: 7 start-page: 448 year: 2009 end-page: 461 ident: b0225 article-title: Amazonian amphibian diversity is primarily derived from Late Miocene Andean lineages publication-title: PLoS Biol. – volume: 104 start-page: 887 year: 2007 end-page: 892 ident: b0210 article-title: Global patterns of diversification in the history of modern amphibians publication-title: Proc. Natl. Acad. Sci. USA – volume: 55 start-page: 579 year: 2006 end-page: 594 ident: b0025 article-title: Phylogeny and biogeography of a cosmopolitan frog radiation: late Cretaceous diversification resulted in continent-scale endemism in the family Ranidae publication-title: Syst. Biol. – volume: 53 start-page: 479 year: 2009 end-page: 491 ident: b0340 article-title: A mitogenomic perspective on the phylogeny and biogeography of living caecilians (Amphibia: Gymnophiona) publication-title: Mol. Phylogenet. Evol. – reference: . – volume: 58 start-page: 2809 year: 2004 end-page: 2822 ident: b0040 article-title: Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders publication-title: Evolution – year: 2004 ident: b0090 article-title: Inferring Phylogenies – volume: 63 start-page: 1217 year: 2009 end-page: 1231 ident: b0325 article-title: Evolutionary and biogeographic origins of high tropical diversity in Old World frogs (Ranidae) publication-title: Evolution – volume: 55 start-page: 818 year: 2006 end-page: 836 ident: b0160 article-title: Phylogenetic supermatrix analysis of GenBank sequences from 2228 papilionoid legumes publication-title: Syst. Biol. – volume: 12 start-page: 319 year: 1920 end-page: 320 ident: b0165 article-title: Algumas consideracões sobre publication-title: Rev. Mus. Paulista, São Paulo – volume: 31 start-page: 462 year: 2004 end-page: 475 ident: b0045 article-title: Novel relationships among hyloid frogs inferred from 12S and 16S mitochondrial DNA sequences publication-title: Mol. Phylogenet. Evol. – volume: 54 start-page: 391 year: 2005 end-page: 400 ident: b0345 article-title: Mitogenomic perspectives on the origin and phylogeny of living amphibians publication-title: Syst. Biol. – year: 2005 ident: b0135 article-title: Amphibian Declines: The Conservation Status of United States Species – year: 2009 ident: b0035 article-title: The Rise of Amphibians: 365 Million Years of Evolution – volume: 306 start-page: 1783 year: 2004 end-page: 1786 ident: b0235 article-title: Status and trends of amphibian declines and extinctions worldwide publication-title: Science – volume: 32 start-page: 1792 year: 2004 end-page: 1797 ident: b0070 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucl. Acids Res. – volume: 58 start-page: 329 year: 2011 end-page: 342 ident: b0205 article-title: The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees publication-title: Mol. Phylogenet. Evol. – volume: 106 start-page: 13410 year: 2009 end-page: 13414 ident: b0005 article-title: Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates publication-title: Proc. Natl. Acad. Sci. USA – volume: 56 start-page: 252 year: 2010 end-page: 258 ident: b0180 article-title: Rediscovery of publication-title: Mol. Phylogenet. Evol. – volume: 2211 start-page: 1 year: 2009 end-page: 35 ident: b0120 article-title: A new frog family (Anura: Terrarana) from South America and an expanded direct-developing clade revealed by molecular phylogeny publication-title: Zootaxa – volume: 57 start-page: 420 year: 2008 end-page: 431 ident: b0320 article-title: Branch lengths, support, and congruence: testing the phylogenomic approach with 20 nuclear loci in snakes publication-title: Syst. Biol. – volume: 17 start-page: 72 year: 2008 end-page: 83 ident: b0185 article-title: Around the world in 10 million years: biogeography of the nearly cosmopolitan true toads (Anura: Bufonidae) publication-title: Glob. Ecol. Biogeogr. – reference: Frost, Darrel, R., 2011. Amphibian Species of the World: an Online Reference. Version 5.5 (31 January, 2011). American Museum of Natural History, New York, USA. Electronic Database accessible at – volume: 9 start-page: 131 year: 2009 ident: b0245 article-title: Toad radiation reveals into-India dispersal as a source of endemism in the Western Ghats–Sri Lanka biodiversity hotspot publication-title: BMC Evol. Biol. – volume: 294 start-page: 6 year: 2005 end-page: 228 ident: b0075 article-title: Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision publication-title: Bull. Am. Mus. Natl. Hist. – volume: 2241 start-page: 22 year: 2009 end-page: 32 ident: b0200 article-title: Systematics of the Common Kingsnake ( publication-title: Zootaxa – volume: 165 start-page: 590 year: 2005 end-page: 599 ident: b0355 article-title: Initial diversification of living amphibians predated the breakup of Pangaea publication-title: Am. Nat. – start-page: 357 year: 2009 end-page: 364 ident: b0020 article-title: Anura publication-title: The Timetree of Life – volume: 58 start-page: 1 year: 1971 end-page: 238 ident: b0150 article-title: Evolutionary relationships, osteology, and zoogeography of leptodactyloid frogs publication-title: Misc. Pub. Mus. Natl. Hist. Kansas – volume: 23 start-page: 2947 year: 2007 end-page: 2948 ident: b0140 article-title: ClustalW and ClustalX version 2.0 publication-title: Bioinformatics – volume: 56 start-page: 554 year: 2010 end-page: 561 ident: b0215 article-title: A multilocus timescale for the origin of extant amphibians publication-title: Mol. Phylogenet. Evol. – volume: 22 start-page: 34 year: 2007 end-page: 41 ident: b0050 article-title: The supermatrix approach to systematics publication-title: Trends Ecol. Evol. – volume: 82 start-page: 55 year: 2007 end-page: 56 ident: b0275 article-title: Review of “The amphibian tree of life” by Frost et al publication-title: Quart. Rev. Biol. – reference: Wiens, J.J., Morrill, M.C., 2011. Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Syst. Biol. – volume: 65 start-page: 115 year: 2009 end-page: 128 ident: b0175 article-title: Taxonomic freedom and the role of official lists of species names publication-title: Herpetologica – volume: 274 start-page: 919 year: 2007 end-page: 928 ident: b0315 article-title: Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders publication-title: Proc. Roy. Soc. Lond. B – Biol. Sci. – volume: 56 start-page: 543 year: 2007 end-page: 563 ident: b0125 article-title: Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1 publication-title: Syst. Biol. – volume: 1858 start-page: 339 year: 1858 end-page: 352 ident: b0110 article-title: On the systematic arrangement of the tailless batrachians and the structure of publication-title: Proc. Zool. Soc. Lond. – volume: 55 start-page: 871 year: 2010 end-page: 882 ident: b0330 article-title: An expanded phylogeny of treefrogs (Hylidae) based on nuclear and mitochondrial sequence data publication-title: Mol. Phylogenet. Evol. – volume: 60 start-page: 466 year: 2011 end-page: 481 ident: b0195 article-title: Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia publication-title: Syst. Biol. – volume: 9 start-page: 509 year: 1998 end-page: 516 ident: b0085 article-title: Molecular evidence for the early history of living amphibians publication-title: Mol. Phylogenet. Evol. – volume: 58 start-page: 297 year: 2008 end-page: 307 ident: b0280 article-title: Systematics and herpetology in the age of genomics publication-title: Bioscience – volume: 61 start-page: 1886 year: 2007 end-page: 1899 ident: b0310 article-title: Loss and re-evolution of complex life cycles in marsupial frogs: does ancestral trait reconstruction mislead? publication-title: Evolution – volume: 63 start-page: 1769 year: 2009 end-page: 1784 ident: b0130 article-title: Can parallel diversification occur in sympatry? Repeated patterns of body-size evolution in coexisting clades of North American salamanders publication-title: Evolution – volume: 168 start-page: 579 year: 2006 end-page: 596 ident: b0305 article-title: Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity publication-title: Am. Nat. – volume: 26 start-page: 227 year: 2010 end-page: 261 ident: b0080 article-title: The phylogenetic relationships of the charismatic poster frogs, Phyllomedusinae (Anura, Hylidae) publication-title: Cladistics – volume: 425 start-page: 711 year: 2003 end-page: 714 ident: b0010 article-title: New frog family from India reveals an ancient biogeographical link with the Seychelles publication-title: Nature – volume: 306 start-page: 1172 year: 2004 end-page: 1174 ident: b0055 article-title: Prospects for building the Tree of Life from large sequence databases publication-title: Science – volume: 299 start-page: 6 year: 2006 end-page: 262 ident: b0100 article-title: Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae) publication-title: Bull. Am. Mus. Natl. Hist. – volume: 59 start-page: 185 year: 2010 ident: 10.1016/j.ympev.2011.06.012_b0190 article-title: A likelihood method for assessing molecular divergence time estimates and the placement of fossil calibrations publication-title: Syst. Biol. doi: 10.1093/sysbio/syp090 – start-page: 357 year: 2009 ident: 10.1016/j.ympev.2011.06.012_b0020 article-title: Anura – volume: 31 start-page: 462 year: 2004 ident: 10.1016/j.ympev.2011.06.012_b0045 article-title: Novel relationships among hyloid frogs inferred from 12S and 16S mitochondrial DNA sequences publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2003.09.003 – volume: 1737 start-page: 1 year: 2008 ident: 10.1016/j.ympev.2011.06.012_b0115 article-title: New World direct-developing frogs (Anura: Terrarana): molecular phylogeny, classification, biogeography, and conservation publication-title: Zootaxa doi: 10.11646/zootaxa.1737.1.1 – volume: 306 start-page: 1172 year: 2004 ident: 10.1016/j.ympev.2011.06.012_b0055 article-title: Prospects for building the Tree of Life from large sequence databases publication-title: Science doi: 10.1126/science.1102036 – year: 2004 ident: 10.1016/j.ympev.2011.06.012_b0090 – volume: 2211 start-page: 1 year: 2009 ident: 10.1016/j.ympev.2011.06.012_b0120 article-title: A new frog family (Anura: Terrarana) from South America and an expanded direct-developing clade revealed by molecular phylogeny publication-title: Zootaxa doi: 10.11646/zootaxa.2211.1.1 – volume: 22 start-page: 34 year: 2007 ident: 10.1016/j.ympev.2011.06.012_b0050 article-title: The supermatrix approach to systematics publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2006.10.002 – volume: 44 start-page: 1017 year: 2007 ident: 10.1016/j.ympev.2011.06.012_b0250 article-title: Nuclear gene phylogeny of narrow-mouthed toads (Family: Microhylidae) and a discussion of competing hypotheses concerning their biogeographical origins publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2007.02.008 – volume: 63 start-page: 1217 year: 2009 ident: 10.1016/j.ympev.2011.06.012_b0325 article-title: Evolutionary and biogeographic origins of high tropical diversity in Old World frogs (Ranidae) publication-title: Evolution doi: 10.1111/j.1558-5646.2009.00610.x – volume: 54 start-page: 391 year: 2005 ident: 10.1016/j.ympev.2011.06.012_b0345 article-title: Mitogenomic perspectives on the origin and phylogeny of living amphibians publication-title: Syst. Biol. doi: 10.1080/10635150590945278 – volume: 55 start-page: 579 year: 2006 ident: 10.1016/j.ympev.2011.06.012_b0025 article-title: Phylogeny and biogeography of a cosmopolitan frog radiation: late Cretaceous diversification resulted in continent-scale endemism in the family Ranidae publication-title: Syst. Biol. doi: 10.1080/10635150600812551 – volume: 57 start-page: 420 year: 2008 ident: 10.1016/j.ympev.2011.06.012_b0320 article-title: Branch lengths, support, and congruence: testing the phylogenomic approach with 20 nuclear loci in snakes publication-title: Syst. Biol. doi: 10.1080/10635150802166053 – volume: 58 start-page: 2517 year: 2004 ident: 10.1016/j.ympev.2011.06.012_b0170 article-title: The history of a Nearctic colonization: molecular phylogenetics and biogeography of the Nearctic Toads (Bufo) publication-title: Evolution doi: 10.1111/j.0014-3820.2004.tb00881.x – volume: 22 start-page: 2688 year: 2006 ident: 10.1016/j.ympev.2011.06.012_b0230 article-title: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl446 – volume: 56 start-page: 369 year: 2007 ident: 10.1016/j.ympev.2011.06.012_b0155 article-title: Fossils, molecules, divergence times, and the origin of lissamphibians publication-title: Syst. Biol. doi: 10.1080/10635150701397635 – volume: 106 start-page: 13410 year: 2009 ident: 10.1016/j.ympev.2011.06.012_b0005 article-title: Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0811087106 – ident: 10.1016/j.ympev.2011.06.012_b0290 doi: 10.1093/sysbio/syr025 – volume: 61 start-page: 1886 year: 2007 ident: 10.1016/j.ympev.2011.06.012_b0310 article-title: Loss and re-evolution of complex life cycles in marsupial frogs: does ancestral trait reconstruction mislead? publication-title: Evolution doi: 10.1111/j.1558-5646.2007.00159.x – volume: 299 start-page: 6 year: 2006 ident: 10.1016/j.ympev.2011.06.012_b0100 article-title: Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae) publication-title: Bull. Am. Mus. Natl. Hist. doi: 10.1206/0003-0090(2006)299[1:PSODFA]2.0.CO;2 – volume: 58 start-page: 425 year: 2009 ident: 10.1016/j.ympev.2011.06.012_b0220 article-title: Experimental design in caecilian systematics: phylogenetic information of mitochondrial genomes and nuclear RAG1 publication-title: Syst. Biol. doi: 10.1093/sysbio/syp043 – volume: 17 start-page: 72 year: 2008 ident: 10.1016/j.ympev.2011.06.012_b0185 article-title: Around the world in 10 million years: biogeography of the nearly cosmopolitan true toads (Anura: Bufonidae) publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/j.1466-8238.2007.00348.x – year: 1994 ident: 10.1016/j.ympev.2011.06.012_b0065 – volume: 170 start-page: S86 year: 2007 ident: 10.1016/j.ympev.2011.06.012_b0270 article-title: Global patterns of diversification and species richness in amphibians publication-title: Am. Nat. doi: 10.1086/519396 – volume: 12 start-page: 319 year: 1920 ident: 10.1016/j.ympev.2011.06.012_b0165 article-title: Algumas consideracões sobre Holoaden lüderwaldti e generos correlatos publication-title: Rev. Mus. Paulista, São Paulo – volume: 82 start-page: 55 year: 2007 ident: 10.1016/j.ympev.2011.06.012_b0275 article-title: Review of “The amphibian tree of life” by Frost et al publication-title: Quart. Rev. Biol. doi: 10.1086/513362 – volume: 168 start-page: 579 year: 2006 ident: 10.1016/j.ympev.2011.06.012_b0305 article-title: Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity publication-title: Am. Nat. doi: 10.1086/507882 – volume: 53 start-page: 492 year: 2009 ident: 10.1016/j.ympev.2011.06.012_b0335 article-title: Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2009.07.010 – volume: 59 start-page: 42 year: 2010 ident: 10.1016/j.ympev.2011.06.012_b0240 article-title: Sparse supermatrices for phylogenetic inference. taxonomy, alignment, rogue taxa, and the phylogeny of living turtles publication-title: Syst. Biol. doi: 10.1093/sysbio/syp075 – volume: 23 start-page: 2947 year: 2007 ident: 10.1016/j.ympev.2011.06.012_b0140 article-title: ClustalW and ClustalX version 2.0 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm404 – volume: 165 start-page: 590 year: 2005 ident: 10.1016/j.ympev.2011.06.012_b0355 article-title: Initial diversification of living amphibians predated the breakup of Pangaea publication-title: Am. Nat. doi: 10.1086/429523 – volume: 59 start-page: 623 year: 2011 ident: 10.1016/j.ympev.2011.06.012_b0260 article-title: A multigenic perspective on phylogenetic relationships in the largest family of salamanders, the Plethodontidae publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2011.03.012 – year: 2005 ident: 10.1016/j.ympev.2011.06.012_b0135 – volume: 26 start-page: 227 year: 2010 ident: 10.1016/j.ympev.2011.06.012_b0080 article-title: The phylogenetic relationships of the charismatic poster frogs, Phyllomedusinae (Anura, Hylidae) publication-title: Cladistics doi: 10.1111/j.1096-0031.2009.00287.x – volume: 56 start-page: 543 year: 2007 ident: 10.1016/j.ympev.2011.06.012_b0125 article-title: Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1 publication-title: Syst. Biol. doi: 10.1080/10635150701477825 – volume: 58 start-page: 2809 year: 2004 ident: 10.1016/j.ympev.2011.06.012_b0040 article-title: Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders publication-title: Evolution doi: 10.1111/j.0014-3820.2004.tb01632.x – volume: 65 start-page: 1283 year: 2011 ident: 10.1016/j.ympev.2011.06.012_b0285 article-title: Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and re-evaluating Dollo’s law publication-title: Evolution doi: 10.1111/j.1558-5646.2011.01221.x – volume: 58 start-page: 329 year: 2011 ident: 10.1016/j.ympev.2011.06.012_b0205 article-title: The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2010.11.006 – volume: 297 start-page: 8 year: 2006 ident: 10.1016/j.ympev.2011.06.012_b0095 article-title: The amphibian tree of life publication-title: Bull. Am. Mus. Natl. Hist. doi: 10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2 – volume: 104 start-page: 887 year: 2007 ident: 10.1016/j.ympev.2011.06.012_b0210 article-title: Global patterns of diversification in the history of modern amphibians publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0608378104 – year: 1999 ident: 10.1016/j.ympev.2011.06.012_b0060 – volume: 54 start-page: 91 year: 2005 ident: 10.1016/j.ympev.2011.06.012_b0295 article-title: Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships publication-title: Syst. Biol. doi: 10.1080/10635150590906037 – volume: 306 start-page: 1783 year: 2004 ident: 10.1016/j.ympev.2011.06.012_b0235 article-title: Status and trends of amphibian declines and extinctions worldwide publication-title: Science doi: 10.1126/science.1103538 – volume: 274 start-page: 919 year: 2007 ident: 10.1016/j.ympev.2011.06.012_b0315 article-title: Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders publication-title: Proc. Roy. Soc. Lond. B – Biol. Sci. doi: 10.1098/rspb.2006.0301 – volume: 5 start-page: 203 year: 1990 ident: 10.1016/j.ympev.2011.06.012_b0015 article-title: Declining amphibian populations – a global phenomenon publication-title: Trends Ecol. Evol. doi: 10.1016/0169-5347(90)90129-2 – volume: 37 start-page: 199 year: 1984 ident: 10.1016/j.ympev.2011.06.012_b0145 article-title: Heterogeneidad de la familia Caeciliidae (Amphibia–Apoda) publication-title: Acta Zool. Lilloana – volume: 106 start-page: 8267 year: 2009 ident: 10.1016/j.ympev.2011.06.012_b0255 article-title: Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0810821106 – volume: 279 start-page: 86 year: 2009 ident: 10.1016/j.ympev.2011.06.012_b0030 article-title: A new genus and species of lungless salamander (family Plethodontidae) from the Appalachian highlands of the south-eastern United States publication-title: J. Zool. doi: 10.1111/j.1469-7998.2009.00593.x – volume: 58 start-page: 297 year: 2008 ident: 10.1016/j.ympev.2011.06.012_b0280 article-title: Systematics and herpetology in the age of genomics publication-title: Bioscience doi: 10.1641/B580405 – volume: 54 start-page: 719 year: 2005 ident: 10.1016/j.ympev.2011.06.012_b0300 article-title: Hylid frog phylogeny and sampling strategies for speciose clades publication-title: Syst. Biol. doi: 10.1080/10635150500234625 – year: 2009 ident: 10.1016/j.ympev.2011.06.012_b0035 – volume: 9 start-page: 131 year: 2009 ident: 10.1016/j.ympev.2011.06.012_b0245 article-title: Toad radiation reveals into-India dispersal as a source of endemism in the Western Ghats–Sri Lanka biodiversity hotspot publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-9-131 – ident: 10.1016/j.ympev.2011.06.012_b0350 – volume: 58 start-page: 1 year: 1971 ident: 10.1016/j.ympev.2011.06.012_b0150 article-title: Evolutionary relationships, osteology, and zoogeography of leptodactyloid frogs publication-title: Misc. Pub. Mus. Natl. Hist. Kansas – volume: 55 start-page: 818 year: 2006 ident: 10.1016/j.ympev.2011.06.012_b0160 article-title: Phylogenetic supermatrix analysis of GenBank sequences from 2228 papilionoid legumes publication-title: Syst. Biol. doi: 10.1080/10635150600999150 – volume: 56 start-page: 252 year: 2010 ident: 10.1016/j.ympev.2011.06.012_b0180 article-title: Rediscovery of Protohynobius puxiongensis (Caudata: Hynobiidae) and its phylogenetic position based on complete mitochondrial genomes publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2009.12.011 – volume: 32 start-page: 1792 year: 2004 ident: 10.1016/j.ympev.2011.06.012_b0070 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucl. Acids Res. doi: 10.1093/nar/gkh340 – volume: 56 start-page: 554 year: 2010 ident: 10.1016/j.ympev.2011.06.012_b0215 article-title: A multilocus timescale for the origin of extant amphibians publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2010.04.019 – volume: 60 start-page: 466 year: 2011 ident: 10.1016/j.ympev.2011.06.012_b0195 article-title: Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia publication-title: Syst. Biol. doi: 10.1093/sysbio/syr047 – volume: 1858 start-page: 339 year: 1858 ident: 10.1016/j.ympev.2011.06.012_b0110 article-title: On the systematic arrangement of the tailless batrachians and the structure of Rhinophrynus dorsalis publication-title: Proc. Zool. Soc. Lond. doi: 10.1111/j.1469-7998.1858.tb06387.x – volume: 2241 start-page: 22 year: 2009 ident: 10.1016/j.ympev.2011.06.012_b0200 article-title: Systematics of the Common Kingsnake (Lampropeltis getula; Serpentes: Colubridae) and the burden of heritage in taxonomy publication-title: Zootaxa doi: 10.11646/zootaxa.2241.1.2 – volume: 55 start-page: 871 year: 2010 ident: 10.1016/j.ympev.2011.06.012_b0330 article-title: An expanded phylogeny of treefrogs (Hylidae) based on nuclear and mitochondrial sequence data publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2010.03.013 – volume: 2100 start-page: 1 year: 2009 ident: 10.1016/j.ympev.2011.06.012_b0105 article-title: Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni publication-title: Zootaxa doi: 10.11646/zootaxa.2100.1.1 – volume: 52 start-page: 528 year: 2003 ident: 10.1016/j.ympev.2011.06.012_b0265 article-title: Missing data, incomplete taxa, and phylogenetic accuracy publication-title: Syst. Biol. doi: 10.1080/10635150390218330 – volume: 53 start-page: 479 year: 2009 ident: 10.1016/j.ympev.2011.06.012_b0340 article-title: A mitogenomic perspective on the phylogeny and biogeography of living caecilians (Amphibia: Gymnophiona) publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2009.06.018 – volume: 9 start-page: 509 year: 1998 ident: 10.1016/j.ympev.2011.06.012_b0085 article-title: Molecular evidence for the early history of living amphibians publication-title: Mol. Phylogenet. Evol. doi: 10.1006/mpev.1998.0500 – volume: 7 start-page: 448 year: 2009 ident: 10.1016/j.ympev.2011.06.012_b0225 article-title: Amazonian amphibian diversity is primarily derived from Late Miocene Andean lineages publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000056 – volume: 63 start-page: 1769 year: 2009 ident: 10.1016/j.ympev.2011.06.012_b0130 article-title: Can parallel diversification occur in sympatry? Repeated patterns of body-size evolution in coexisting clades of North American salamanders publication-title: Evolution doi: 10.1111/j.1558-5646.2009.00680.x – volume: 65 start-page: 115 year: 2009 ident: 10.1016/j.ympev.2011.06.012_b0175 article-title: Taxonomic freedom and the role of official lists of species names publication-title: Herpetologica doi: 10.1655/08-031R1.1 – volume: 425 start-page: 711 year: 2003 ident: 10.1016/j.ympev.2011.06.012_b0010 article-title: New frog family from India reveals an ancient biogeographical link with the Seychelles publication-title: Nature doi: 10.1038/nature02019 – volume: 294 start-page: 6 year: 2005 ident: 10.1016/j.ympev.2011.06.012_b0075 article-title: Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision publication-title: Bull. Am. Mus. Natl. Hist. doi: 10.1206/0003-0090(2005)294[0001:SROTFF]2.0.CO;2 |
SSID | ssj0011595 |
Score | 2.584612 |
Snippet | [Display omitted]
► Large-scale molecular phylogenetic estimate for Amphibia. ► Based on 2871 species: 41 caecilians, 436 salamanders, and 2394 frogs. ►... The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (>6800 species). Despite much recent focus on their conservation,... The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (6800 species). Despite much recent focus on their conservation,... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 543 |
SubjectTerms | Amphibia Animals Anura Anura - classification Anura - genetics Apoda Bayes Theorem caecilians Caudata Cell Nucleus Cell Nucleus - genetics Ceratophryidae Classification data collection DNA, Mitochondrial DNA, Mitochondrial - genetics Evolution Frogs Genes genetics Gymnophiona Leptodactylidae Likelihood Functions Lissamphibia Phylogeny Recognition Rhinodermatidae salamanders and newts Sampling Sequence Analysis, DNA Strategy Supermatrix Systematics taxonomy Urodela Urodela - classification Urodela - genetics Vertebrates |
Title | A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians |
URI | https://dx.doi.org/10.1016/j.ympev.2011.06.012 https://www.ncbi.nlm.nih.gov/pubmed/21723399 https://www.proquest.com/docview/1672061035 https://www.proquest.com/docview/1770327026 https://www.proquest.com/docview/890677029 https://www.proquest.com/docview/907179578 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFH90HYNdxr7rbisa7Fg3tmTL0TGElawdZawt5CYkWS4ZwS51Ushlf8D-6r0n24EdksNOAfFk4vd7evpJfh8AX1QiqxJpRUxZkHFGZoznLBGLPHEll4VxXbXPKzm7zS7m-fwApkMuDIVV9r6_8-nBW_cjo16bo_vFYnRNrR0LhUZJVUQLNacM9qwgKz_7vQ3zQMITOq-QcEzSQ-WhEOO1QWr62NfxlGdJynftTk8q0-zmoGEvOn8JL3oSySbd_3wFB75-Dc-6tpKbN_BnwpYU4B23CIBnqEgc9_WGNRWbIHqUJcIWtVuuaeNiFMTJOFI6RmmXeHI-ZaYumWEUAdz6kjli2BRSFFCkp6BHR0RY9dDcoXRr0Ky6LJluqjP4HLo_ad_CzfnXm-ks7nsuxC7P5Cq2BlEVktJjlXWZ4WOLq7oUpnLOjV0qeSV8UkpRkZS0MkcGY1WaWxysuHgHh3VT-yNgDlVvS6RLVOIoSey4EngY8wZdTKmEdRHwQdXa9fXIqS3GUg-BZ790wEcTPprC71Iewel20n1XjmO_uBww1P9YlcYNY__EI0Rcmzv0tPr2mtO9UPBvQkTweTADjUuRvq-Y2jfrVqey4EiPEpHvkSnw_SkHUEbAdsig7iWKcbVbRNExXKFqI3jfWeJWHdRxTCDtPP7fd_8Az8PFeUi4_AiHq4e1_4TMa2VPwtI6gaeT6c_vP-j32-Xs6i-YaywY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgSXimeb8jIS3JpuYifO5sBhBVRbWnrpVtqbZTtOtWiVVM0uaC_8AH4Ov5AZJ1mJw-4BqVdrbDkz45nPzjwA3ueRLAuEFSFlQYYJqTHes0Qo0sgWXGbattU-L-T4Kvk6Tac78KfPhaGwys72tzbdW-tuZNBxc3Azmw0uqbVjlqNSUhXRLJ92kZVnbvUT723Nx9PPKOQPnJ98mXwah11rgdCmiVyERuPmhaQs0NzYRPOhQeUthC6ttUMbS14KFxVSlEQljUzRUZs8Tg0OllTsAM3-_QStBXVNOP61DitBgOU7vdDmQtpdX-nIx5StEAr_6OqGyuMo5pu84b1S15sxr_d9J49hrwOtbNTy5QnsuOopPGjbWK6ewe8Rm1NAedigwB1DweG4q1asLtkItYWyUtissvMlOUpGQaOMI4RklOaJN_UjpquCaUYRx40rmCVETyFMXmtoFfQgqAGsvK2vkbrRqMZtVk471Wpch95rmucwuQtBvIDdqq7cATCLrDcFwjMqqRRFZlgKvPw5jSatyIWxAfCe1cp29c-pDcdc9YFu35WXjyL5KAr3i3kAR-tJN235j-3kspeh-keLFTqo7RMPUOJKX6NlV1eXnN6hvD0VIoB3vRooPPr0P0dXrl42KpYZRzgWiXQLTYbfTzmHMgC2gQZ5L5GM55tJcrr258jaAPZbTVyzgzqcCYS5h__77W_h4Xjy7Vydn16cvYRH_tHeJ3u-gt3F7dK9RtS3MG_8MWOg7vhY_wXv5GZL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+large-scale+phylogeny+of+Amphibia+including+over+2800+species%2C+and+a+revised+classification+of+extant+frogs%2C+salamanders%2C+and+caecilians&rft.jtitle=Molecular+phylogenetics+and+evolution&rft.au=Pyron%2C+RAlexander&rft.au=Wiens%2C+John+J&rft.date=2011-11-01&rft.issn=1055-7903&rft.volume=61&rft.issue=2&rft.spage=543&rft.epage=583&rft_id=info:doi/10.1016%2Fj.ympev.2011.06.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-7903&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-7903&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-7903&client=summon |