A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians

[Display omitted] ► Large-scale molecular phylogenetic estimate for Amphibia. ► Based on 2871 species: 41 caecilians, 436 salamanders, and 2394 frogs. ► Species sampled for up to 12,712 bp from nine nuclear and three mitochondrial genes. The extant amphibians are one of the most diverse radiations o...

Full description

Saved in:
Bibliographic Details
Published inMolecular phylogenetics and evolution Vol. 61; no. 2; pp. 543 - 583
Main Authors Alexander Pyron, R., Wiens, John J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] ► Large-scale molecular phylogenetic estimate for Amphibia. ► Based on 2871 species: 41 caecilians, 436 salamanders, and 2394 frogs. ► Species sampled for up to 12,712 bp from nine nuclear and three mitochondrial genes. The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (>6800 species). Despite much recent focus on their conservation, diversification, and systematics, no previous phylogeny for the group has contained more than 522 species. However, numerous studies with limited taxon sampling have generated large amounts of partially overlapping sequence data for many species. Here, we combine these data and produce a novel estimate of extant amphibian phylogeny, containing 2871 species (∼40% of the known extant species) from 432 genera (∼85% of the ∼500 currently recognized extant genera). Each sampled species contains up to 12,712 bp from 12 genes (three mitochondrial, nine nuclear), with an average of 2563 bp per species. This data set provides strong support for many groups recognized in previous studies, but it also suggests non-monophyly for several currently recognized families, particularly in hyloid frogs (e.g., Ceratophryidae, Cycloramphidae, Leptodactylidae, Strabomantidae). To correct these and other problems, we provide a revised classification of extant amphibians for taxa traditionally delimited at the family and subfamily levels. This new taxonomy includes several families not recognized in current classifications (e.g., Alsodidae, Batrachylidae, Rhinodermatidae, Odontophrynidae, Telmatobiidae), but which are strongly supported and important for avoiding non-monophyly of current families. Finally, this study provides further evidence that the supermatrix approach provides an effective strategy for inferring large-scale phylogenies using the combined results of previous studies, despite many taxa having extensive missing data.
AbstractList The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (>6800 species). Despite much recent focus on their conservation, diversification, and systematics, no previous phylogeny for the group has contained more than 522 species. However, numerous studies with limited taxon sampling have generated large amounts of partially overlapping sequence data for many species. Here, we combine these data and produce a novel estimate of extant amphibian phylogeny, containing 2871 species (∼40% of the known extant species) from 432 genera (∼85% of the ∼500 currently recognized extant genera). Each sampled species contains up to 12,712bp from 12 genes (three mitochondrial, nine nuclear), with an average of 2563bp per species. This data set provides strong support for many groups recognized in previous studies, but it also suggests non-monophyly for several currently recognized families, particularly in hyloid frogs (e.g., Ceratophryidae, Cycloramphidae, Leptodactylidae, Strabomantidae). To correct these and other problems, we provide a revised classification of extant amphibians for taxa traditionally delimited at the family and subfamily levels. This new taxonomy includes several families not recognized in current classifications (e.g., Alsodidae, Batrachylidae, Rhinodermatidae, Odontophrynidae, Telmatobiidae), but which are strongly supported and important for avoiding non-monophyly of current families. Finally, this study provides further evidence that the supermatrix approach provides an effective strategy for inferring large-scale phylogenies using the combined results of previous studies, despite many taxa having extensive missing data.
[Display omitted] ► Large-scale molecular phylogenetic estimate for Amphibia. ► Based on 2871 species: 41 caecilians, 436 salamanders, and 2394 frogs. ► Species sampled for up to 12,712 bp from nine nuclear and three mitochondrial genes. The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (>6800 species). Despite much recent focus on their conservation, diversification, and systematics, no previous phylogeny for the group has contained more than 522 species. However, numerous studies with limited taxon sampling have generated large amounts of partially overlapping sequence data for many species. Here, we combine these data and produce a novel estimate of extant amphibian phylogeny, containing 2871 species (∼40% of the known extant species) from 432 genera (∼85% of the ∼500 currently recognized extant genera). Each sampled species contains up to 12,712 bp from 12 genes (three mitochondrial, nine nuclear), with an average of 2563 bp per species. This data set provides strong support for many groups recognized in previous studies, but it also suggests non-monophyly for several currently recognized families, particularly in hyloid frogs (e.g., Ceratophryidae, Cycloramphidae, Leptodactylidae, Strabomantidae). To correct these and other problems, we provide a revised classification of extant amphibians for taxa traditionally delimited at the family and subfamily levels. This new taxonomy includes several families not recognized in current classifications (e.g., Alsodidae, Batrachylidae, Rhinodermatidae, Odontophrynidae, Telmatobiidae), but which are strongly supported and important for avoiding non-monophyly of current families. Finally, this study provides further evidence that the supermatrix approach provides an effective strategy for inferring large-scale phylogenies using the combined results of previous studies, despite many taxa having extensive missing data.
The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (>6800 species). Despite much recent focus on their conservation, diversification, and systematics, no previous phylogeny for the group has contained more than 522 species. However, numerous studies with limited taxon sampling have generated large amounts of partially overlapping sequence data for many species. Here, we combine these data and produce a novel estimate of extant amphibian phylogeny, containing 2871 species (∼40% of the known extant species) from 432 genera (∼85% of the ∼500 currently recognized extant genera). Each sampled species contains up to 12,712 bp from 12 genes (three mitochondrial, nine nuclear), with an average of 2563 bp per species. This data set provides strong support for many groups recognized in previous studies, but it also suggests non-monophyly for several currently recognized families, particularly in hyloid frogs (e.g., Ceratophryidae, Cycloramphidae, Leptodactylidae, Strabomantidae). To correct these and other problems, we provide a revised classification of extant amphibians for taxa traditionally delimited at the family and subfamily levels. This new taxonomy includes several families not recognized in current classifications (e.g., Alsodidae, Batrachylidae, Rhinodermatidae, Odontophrynidae, Telmatobiidae), but which are strongly supported and important for avoiding non-monophyly of current families. Finally, this study provides further evidence that the supermatrix approach provides an effective strategy for inferring large-scale phylogenies using the combined results of previous studies, despite many taxa having extensive missing data.The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (>6800 species). Despite much recent focus on their conservation, diversification, and systematics, no previous phylogeny for the group has contained more than 522 species. However, numerous studies with limited taxon sampling have generated large amounts of partially overlapping sequence data for many species. Here, we combine these data and produce a novel estimate of extant amphibian phylogeny, containing 2871 species (∼40% of the known extant species) from 432 genera (∼85% of the ∼500 currently recognized extant genera). Each sampled species contains up to 12,712 bp from 12 genes (three mitochondrial, nine nuclear), with an average of 2563 bp per species. This data set provides strong support for many groups recognized in previous studies, but it also suggests non-monophyly for several currently recognized families, particularly in hyloid frogs (e.g., Ceratophryidae, Cycloramphidae, Leptodactylidae, Strabomantidae). To correct these and other problems, we provide a revised classification of extant amphibians for taxa traditionally delimited at the family and subfamily levels. This new taxonomy includes several families not recognized in current classifications (e.g., Alsodidae, Batrachylidae, Rhinodermatidae, Odontophrynidae, Telmatobiidae), but which are strongly supported and important for avoiding non-monophyly of current families. Finally, this study provides further evidence that the supermatrix approach provides an effective strategy for inferring large-scale phylogenies using the combined results of previous studies, despite many taxa having extensive missing data.
The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (>6800 species). Despite much recent focus on their conservation, diversification, and systematics, no previous phylogeny for the group has contained more than 522 species. However, numerous studies with limited taxon sampling have generated large amounts of partially overlapping sequence data for many species. Here, we combine these data and produce a novel estimate of extant amphibian phylogeny, containing 2871 species (∼40% of the known extant species) from 432 genera (∼85% of the ∼500 currently recognized extant genera). Each sampled species contains up to 12,712 bp from 12 genes (three mitochondrial, nine nuclear), with an average of 2563 bp per species. This data set provides strong support for many groups recognized in previous studies, but it also suggests non-monophyly for several currently recognized families, particularly in hyloid frogs (e.g., Ceratophryidae, Cycloramphidae, Leptodactylidae, Strabomantidae). To correct these and other problems, we provide a revised classification of extant amphibians for taxa traditionally delimited at the family and subfamily levels. This new taxonomy includes several families not recognized in current classifications (e.g., Alsodidae, Batrachylidae, Rhinodermatidae, Odontophrynidae, Telmatobiidae), but which are strongly supported and important for avoiding non-monophyly of current families. Finally, this study provides further evidence that the supermatrix approach provides an effective strategy for inferring large-scale phylogenies using the combined results of previous studies, despite many taxa having extensive missing data.
The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (6800 species). Despite much recent focus on their conservation, diversification, and systematics, no previous phylogeny for the group has contained more than 522 species. However, numerous studies with limited taxon sampling have generated large amounts of partially overlapping sequence data for many species. Here, we combine these data and produce a novel estimate of extant amphibian phylogeny, containing 2871 species ([approx]40% of the known extant species) from 432 genera ([approx]85% of the [approx]500 currently recognized extant genera). Each sampled species contains up to 12,712 bp from 12 genes (three mitochondrial, nine nuclear), with an average of 2563 bp per species. This data set provides strong support for many groups recognized in previous studies, but it also suggests non-monophyly for several currently recognized families, particularly in hyloid frogs (e.g., Ceratophryidae, Cycloramphidae, Leptodactylidae, Strabomantidae). To correct these and other problems, we provide a revised classification of extant amphibians for taxa traditionally delimited at the family and subfamily levels. This new taxonomy includes several families not recognized in current classifications (e.g., Alsodidae, Batrachylidae, Rhinodermatidae, Odontophrynidae, Telmatobiidae), but which are strongly supported and important for avoiding non-monophyly of current families. Finally, this study provides further evidence that the supermatrix approach provides an effective strategy for inferring large-scale phylogenies using the combined results of previous studies, despite many taxa having extensive missing data.
Author Wiens, John J.
Alexander Pyron, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Alexander Pyron
  fullname: Alexander Pyron, R.
  email: rpyron@colubroid.org
  organization: Dept. of Biological Sciences, The George Washington University, 2023 G St. NW, Washington, DC 20052, United States
– sequence: 2
  givenname: John J.
  surname: Wiens
  fullname: Wiens, John J.
  email: wiensj@life.bio.sunysb.edu
  organization: Dept. of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21723399$$D View this record in MEDLINE/PubMed
BookMark eNqF0suO0zAUBuAIDWIu8ARI4B0sSPGlduIFi2rETRqJBcPaOnFOOh45drDTir4CT407LSxYTFexou8_tnT-y-osxIBV9ZLRBaNMvb9f7MYJtwtOGVtQtaCMP6kuGNWy1pKJs_1ZyrrRVJxXlznf0wKlls-qc84aLoTWF9XvFfGQ1lhnCx7JdLfzcY1hR-JAVuN05zoHxAXrN70LaxK3mAhvKSV5QuswvyMQegIk4dZl7In1kLMbnIXZxbCfgr9mCDMZUlwXncHDWCKYjlELZY53EPLz6ukAPuOL4_equv308fb6S33z7fPX69VNbeVSzXUH2KFQTaup7uwSeNstuewFDNba1jLFB4G0V2LYK9UpKdtlp5nsys-Bi6vqzWHslOLPDebZjC5b9B4Cxk02mjas0bJpT8ryAtU0lOsi3z4qWWGCF6pOU9VwqhgVstBXR7rpRuzNlNwIaWf-bq8AcQA2xZwTDv8Io2bfEXNvHjpi9h0xVJnSkZLS_6Wsmx_WNSdw_kT29SE7QDSwTi6bH98LkJTSsgUhivhwEFhWuHWYTC49CRZ7l9DOpo_u0Rv-AGar4YU
CitedBy_id crossref_primary_10_1016_j_cbd_2023_101069
crossref_primary_10_1016_j_ympev_2017_09_010
crossref_primary_10_1098_rsos_220935
crossref_primary_10_1242_jeb_065979
crossref_primary_10_11646_zootaxa_5258_2_1
crossref_primary_10_1111_j_1600_0587_2013_00396_x
crossref_primary_10_1093_sysbio_sys028
crossref_primary_10_1590_1519_6984_02014BM
crossref_primary_10_3724_ahr_2095_0357_2023_0003
crossref_primary_10_1093_zoolinnean_zlab083
crossref_primary_10_3724_ahr_2095_0357_2023_0006
crossref_primary_10_3897_zookeys_1187_104536
crossref_primary_10_1017_S0266467415000206
crossref_primary_10_1111_jbi_13347
crossref_primary_10_1080_14772019_2024_2321620
crossref_primary_10_1086_678455
crossref_primary_10_1111_evo_13672
crossref_primary_10_3897_CompCytogen_v10i1_5718
crossref_primary_10_7717_peerj_1204
crossref_primary_10_1111_jbi_12250
crossref_primary_10_1111_azo_12513
crossref_primary_10_1111_jzs_12073
crossref_primary_10_1016_j_ympev_2017_09_021
crossref_primary_10_1111_cla_12367
crossref_primary_10_1655_HERPETOLOGICA_D_12_00075
crossref_primary_10_1371_journal_pone_0192766
crossref_primary_10_1016_j_ympev_2012_07_012
crossref_primary_10_1142_S0219635215500284
crossref_primary_10_5358_hsj_41_196
crossref_primary_10_1093_sysbio_sys039
crossref_primary_10_1016_j_jcz_2021_11_005
crossref_primary_10_1038_s41597_020_00598_9
crossref_primary_10_1371_journal_pone_0039256
crossref_primary_10_1080_21564574_2024_2404860
crossref_primary_10_24072_pci_paleo_100002
crossref_primary_10_1016_j_ympev_2015_05_001
crossref_primary_10_1016_j_ympev_2012_07_016
crossref_primary_10_2988_0006_324X_126_2_151
crossref_primary_10_1080_02724634_2014_907174
crossref_primary_10_1111_cla_12158
crossref_primary_10_1007_s13127_014_0190_6
crossref_primary_10_3897_zse_94_14698
crossref_primary_10_1098_rstb_2011_0215
crossref_primary_10_1002_ece3_1263
crossref_primary_10_3897_zookeys_1065_67005
crossref_primary_10_1016_j_ygcen_2020_113592
crossref_primary_10_1016_j_ympev_2013_02_009
crossref_primary_10_5358_hsj_40_169
crossref_primary_10_1016_j_ympev_2015_06_011
crossref_primary_10_1643_h2020165
crossref_primary_10_5358_hsj_41_82
crossref_primary_10_1111_cla_12162
crossref_primary_10_1670_20_055
crossref_primary_10_22201_fc_25942158e_2023_4_707
crossref_primary_10_1016_j_envpol_2015_04_027
crossref_primary_10_1086_715500
crossref_primary_10_1111_jzs_12094
crossref_primary_10_1080_02724634_2021_1989694
crossref_primary_10_1242_jeb_164285
crossref_primary_10_1016_j_scitotenv_2019_05_487
crossref_primary_10_1126_sciadv_1500983
crossref_primary_10_1655_HERPETOLOGICA_D_12_00059
crossref_primary_10_1111_j_1469_7998_2012_00973_x
crossref_primary_10_1080_21564574_2014_985261
crossref_primary_10_2994_057_007_0302
crossref_primary_10_1086_692326
crossref_primary_10_1017_S0022149X20000929
crossref_primary_10_1111_zoj_12169
crossref_primary_10_1038_s41598_020_59528_9
crossref_primary_10_1093_beheco_arab101
crossref_primary_10_1111_zoj_12171
crossref_primary_10_18272_aci_v10i1_841
crossref_primary_10_5252_geodiversitas2021v43a7
crossref_primary_10_1515_biol_2017_0048
crossref_primary_10_11646_zootaxa_5405_3_3
crossref_primary_10_1016_j_chemosphere_2019_06_166
crossref_primary_10_1126_sciadv_1602929
crossref_primary_10_1371_journal_pone_0079504
crossref_primary_10_11646_zootaxa_5081_3_1
crossref_primary_10_1186_s12862_015_0417_y
crossref_primary_10_1371_journal_pone_0109642
crossref_primary_10_2108_zs160158
crossref_primary_10_1080_14772000_2014_882428
crossref_primary_10_3897_zookeys_371_6580
crossref_primary_10_1111_azo_12318
crossref_primary_10_3390_ijms26031167
crossref_primary_10_1016_j_crpv_2014_06_002
crossref_primary_10_3897_zookeys_1219_129773
crossref_primary_10_5252_z2016n2a5
crossref_primary_10_1080_23802359_2018_1508385
crossref_primary_10_1016_j_zool_2017_08_004
crossref_primary_10_2988_0006_324X_125_4_317
crossref_primary_10_2994_SAJH_D_18_00006_1
crossref_primary_10_1093_zoolinnean_zlz042
crossref_primary_10_3390_ani13213427
crossref_primary_10_1016_j_ympev_2018_03_036
crossref_primary_10_3897_fr_25_83781
crossref_primary_10_5710_PEAPA_27_12_2023_485
crossref_primary_10_1111_j_1096_0031_2012_00417_x
crossref_primary_10_1111_cla_12110
crossref_primary_10_1111_ddi_12421
crossref_primary_10_1111_jbi_12668
crossref_primary_10_1111_cla_12118
crossref_primary_10_3330_hikakuseiriseika_39_122
crossref_primary_10_1534_g3_116_036459
crossref_primary_10_1111_1365_2656_12879
crossref_primary_10_1080_21564574_2013_794866
crossref_primary_10_18272_aci_v6i2_180
crossref_primary_10_1007_s11692_012_9197_0
crossref_primary_10_1093_molbev_msz067
crossref_primary_10_1016_j_gene_2022_147015
crossref_primary_10_1073_pnas_1009828109
crossref_primary_10_1080_21564574_2017_1324918
crossref_primary_10_1016_j_annpal_2020_102407
crossref_primary_10_1080_23766808_2015_1100376
crossref_primary_10_1111_j_1096_0031_2012_00406_x
crossref_primary_10_1080_23802359_2021_2002213
crossref_primary_10_1371_journal_pone_0175113
crossref_primary_10_1590_S1415_475738320150039
crossref_primary_10_3390_ani13223449
crossref_primary_10_1643_CH_16_509
crossref_primary_10_1111_jbi_13997
crossref_primary_10_1038_s41559_017_0240_5
crossref_primary_10_1080_02724634_2015_981636
crossref_primary_10_1534_g3_119_400389
crossref_primary_10_1093_sysbio_syu042
crossref_primary_10_1016_j_ympev_2018_06_042
crossref_primary_10_1655_Herpetologica_D_19_00050_1
crossref_primary_10_1206_0003_0090_471_1_1
crossref_primary_10_1111_ele_12144
crossref_primary_10_1655_HERPETOLOGICA_D_16_00021
crossref_primary_10_3897_zookeys_864_35102
crossref_primary_10_1016_j_cbpa_2015_03_016
crossref_primary_10_1655_HERPMONOGRAPHS_D_19_00002_1
crossref_primary_10_3897_zookeys_863_35484
crossref_primary_10_3897_zookeys_1231_124926
crossref_primary_10_1111_azo_12352
crossref_primary_10_1007_s00265_015_1959_0
crossref_primary_10_3897_zookeys_713_20776
crossref_primary_10_1111_evo_12985
crossref_primary_10_1186_1742_9994_11_8
crossref_primary_10_1643_CH_18_109
crossref_primary_10_2994_SAJH_D_13_00012_1
crossref_primary_10_3897_zookeys_610_8507
crossref_primary_10_1007_s10531_019_01706_x
crossref_primary_10_1086_703112
crossref_primary_10_18272_aci_v8i14_455
crossref_primary_10_1111_1365_2656_13399
crossref_primary_10_1016_j_bse_2016_12_009
crossref_primary_10_1017_S0266467423000251
crossref_primary_10_1002_ar_22952
crossref_primary_10_1007_s10531_018_1573_3
crossref_primary_10_1111_cobi_12567
crossref_primary_10_1016_j_ympev_2018_10_021
crossref_primary_10_1111_evo_12997
crossref_primary_10_1643_CG_14_026
crossref_primary_10_1016_j_dib_2024_111154
crossref_primary_10_1111_ddi_12462
crossref_primary_10_1002_cne_23561
crossref_primary_10_1038_s41598_021_97206_6
crossref_primary_10_7717_peerj_17232
crossref_primary_10_1111_jbi_12625
crossref_primary_10_1643_OT_16_490
crossref_primary_10_1670_19_114
crossref_primary_10_1371_journal_pone_0150022
crossref_primary_10_1371_journal_pone_0145903
crossref_primary_10_1016_j_ympev_2013_11_001
crossref_primary_10_1080_14772000_2022_2039318
crossref_primary_10_2994_SAJH_D_16_00041_1
crossref_primary_10_1111_zoj_12152
crossref_primary_10_1007_s12542_017_0352_x
crossref_primary_10_1016_j_jcz_2021_10_004
crossref_primary_10_1086_688894
crossref_primary_10_1016_j_jtbi_2018_03_026
crossref_primary_10_7717_peerj_1807
crossref_primary_10_1016_j_palwor_2020_12_001
crossref_primary_10_3390_molecules25040912
crossref_primary_10_1016_j_ympev_2013_11_011
crossref_primary_10_1073_pnas_1807012115
crossref_primary_10_1643_CH_18_138
crossref_primary_10_1371_journal_pone_0151114
crossref_primary_10_1111_azo_12144
crossref_primary_10_3897_zookeys_1196_114861
crossref_primary_10_1111_geb_12428
crossref_primary_10_1080_02724634_2017_1228657
crossref_primary_10_1007_s00435_022_00575_3
crossref_primary_10_11646_zootaxa_4254_1_5
crossref_primary_10_3897_zookeys_685_12152
crossref_primary_10_1111_acv_12297
crossref_primary_10_1086_701124
crossref_primary_10_3897_CompCytogen_v10i2_9319
crossref_primary_10_3897_zookeys_673_13050
crossref_primary_10_1016_j_ympev_2016_03_021
crossref_primary_10_2982_028_103_0203
crossref_primary_10_1016_j_theriogenology_2014_09_018
crossref_primary_10_1098_rstb_2022_0541
crossref_primary_10_1186_s12862_018_1140_2
crossref_primary_10_18272_aci_v5i2_133
crossref_primary_10_1098_rspb_2016_0716
crossref_primary_10_1007_s10592_021_01331_8
crossref_primary_10_1655_Herpetologica_D_23_00002
crossref_primary_10_1670_18_104
crossref_primary_10_3390_toxins13110779
crossref_primary_10_1093_conphys_cow056
crossref_primary_10_7717_peerj_6480
crossref_primary_10_1093_zoolinnean_zlae162
crossref_primary_10_1080_14772000_2022_2123865
crossref_primary_10_1111_jbi_12842
crossref_primary_10_1111_zoj_12341
crossref_primary_10_1111_aec_12607
crossref_primary_10_1590_0001_3765202020190458
crossref_primary_10_1016_j_jtherbio_2020_102744
crossref_primary_10_1007_s13127_015_0256_0
crossref_primary_10_1016_j_ympev_2018_05_027
crossref_primary_10_1206_0003_0090_470_1_1
crossref_primary_10_1016_j_ympev_2023_107971
crossref_primary_10_3897_zookeys_594_8295
crossref_primary_10_1080_14772000_2021_1933249
crossref_primary_10_1371_journal_pone_0143926
crossref_primary_10_1111_j_1095_8312_2012_01984_x
crossref_primary_10_1016_j_ympev_2018_06_020
crossref_primary_10_1080_23766808_2015_1074407
crossref_primary_10_1016_j_preteyeres_2018_04_005
crossref_primary_10_1655_Herpetologica_D_16_00041
crossref_primary_10_1016_j_ympev_2013_12_006
crossref_primary_10_1111_aec_12819
crossref_primary_10_1371_journal_pone_0127248
crossref_primary_10_3724_SP_J_1245_2014_00150
crossref_primary_10_3389_fimmu_2021_718627
crossref_primary_10_1093_biolinnean_bly183
crossref_primary_10_1016_j_ympev_2021_107167
crossref_primary_10_1016_j_cretres_2019_05_002
crossref_primary_10_1111_ele_13426
crossref_primary_10_1126_sciadv_abo6108
crossref_primary_10_1080_02724634_2020_1811293
crossref_primary_10_1038_s41467_021_21263_8
crossref_primary_10_1206_0003_0090_443_1_1
crossref_primary_10_7717_peerj_8642
crossref_primary_10_1206_3739_2
crossref_primary_10_1080_02724634_2018_1510413
crossref_primary_10_1206_3792_1
crossref_primary_10_3724_ahr_2095_0357_2024_0022
crossref_primary_10_1007_s00359_017_1218_0
crossref_primary_10_1111_jbi_12808
crossref_primary_10_1111_geb_12229
crossref_primary_10_7717_peerj_12765
crossref_primary_10_1038_s41559_021_01411_5
crossref_primary_10_7882_AZ_2014_040
crossref_primary_10_3354_dao03045
crossref_primary_10_1016_j_jenvman_2022_115254
crossref_primary_10_1016_j_cbpa_2012_03_020
crossref_primary_10_2108_zs190155
crossref_primary_10_3390_genes11070727
crossref_primary_10_3897_vz_71_e60312
crossref_primary_10_1002_ecs2_3526
crossref_primary_10_1073_pnas_1710920114
crossref_primary_10_3390_genes13101878
crossref_primary_10_1371_journal_pone_0060742
crossref_primary_10_1007_s10530_014_0783_1
crossref_primary_10_1655_HERPETOLOGICA_D_13_00029
crossref_primary_10_1002_jmor_20651
crossref_primary_10_1080_00222933_2012_717972
crossref_primary_10_1186_s12864_020_07269_4
crossref_primary_10_1002_ar_23768
crossref_primary_10_1002_jmor_21503
crossref_primary_10_3897_compcytogen_v8i3_7771
crossref_primary_10_1643_CH_19_319
crossref_primary_10_1371_journal_pone_0153834
crossref_primary_10_1016_j_beproc_2019_103996
crossref_primary_10_1080_21564574_2023_2191602
crossref_primary_10_2994_SAJH_D_14_00034_1
crossref_primary_10_1016_j_toxicon_2014_05_020
crossref_primary_10_1655_HERPETOLOGICA_D_13_00053
crossref_primary_10_1111_ele_12641
crossref_primary_10_1655_HERPETOLOGICA_D_13_00054
crossref_primary_10_1242_jeb_114694
crossref_primary_10_1655_HERPETOLOGICA_D_13_00052
crossref_primary_10_1186_1471_2164_13_626
crossref_primary_10_1086_698726
crossref_primary_10_1073_pnas_2114100119
crossref_primary_10_11646_zootaxa_4444_5_5
crossref_primary_10_1643_CH_19_329
crossref_primary_10_1016_j_ympev_2016_11_001
crossref_primary_10_1038_s42003_023_04989_7
crossref_primary_10_1098_rspb_2017_0627
crossref_primary_10_7717_peerj_10791
crossref_primary_10_1016_j_tree_2013_09_003
crossref_primary_10_2994_SAJH_D_16_00018_1
crossref_primary_10_1007_s00435_014_0226_7
crossref_primary_10_1093_molbev_msy103
crossref_primary_10_7717_peerj_5695
crossref_primary_10_3897_vz_72_e79496
crossref_primary_10_3897_zookeys_884_35776
crossref_primary_10_1002_dvdy_413
crossref_primary_10_3389_frmbi_2024_1277645
crossref_primary_10_1080_02724634_2019_1588285
crossref_primary_10_1186_s12864_017_4358_2
crossref_primary_10_3390_genes10110873
crossref_primary_10_1655_HERPETOLOGICA_D_11_00074_1
crossref_primary_10_1186_1471_2164_15_691
crossref_primary_10_1016_j_cretres_2012_11_002
crossref_primary_10_1655_HERPETOLOGICA_D_13_00072
crossref_primary_10_2108_zsj_31_45
crossref_primary_10_3897_vz_74_e114285
crossref_primary_10_1002_ece3_8595
crossref_primary_10_1111_jzs_12422
crossref_primary_10_1016_j_cretres_2020_104728
crossref_primary_10_1007_s12041_016_0645_y
crossref_primary_10_1016_j_ympev_2023_107907
crossref_primary_10_1093_g3journal_jkad193
crossref_primary_10_1111_jeb_12019
crossref_primary_10_3897_zse_97_59696
crossref_primary_10_1080_14772019_2023_2266428
crossref_primary_10_1126_science_1228282
crossref_primary_10_2994_SAJH_D_17_00037_1
crossref_primary_10_26515_rzsi_v121_i2_2021_151692
crossref_primary_10_1016_j_jtherbio_2014_12_008
crossref_primary_10_1655_HERPETOLOGICA_D_16_00069
crossref_primary_10_1016_j_jcz_2018_06_001
crossref_primary_10_1016_j_jcz_2021_06_002
crossref_primary_10_3897_zookeys_929_35984
crossref_primary_10_2478_s11756_020_00488_w
crossref_primary_10_3390_biologics4040027
crossref_primary_10_1073_pnas_1615334114
crossref_primary_10_1371_journal_pone_0050743
crossref_primary_10_7717_peerj_13647
crossref_primary_10_1093_sysbio_syv061
crossref_primary_10_1016_j_ympev_2013_04_001
crossref_primary_10_1111_jzo_12044
crossref_primary_10_1655_HERPETOLOGICA_D_13_00068
crossref_primary_10_1139_cjz_2020_0018
crossref_primary_10_1080_02724634_2017_1261360
crossref_primary_10_1643_CH_15_298
crossref_primary_10_1111_evo_13084
crossref_primary_10_1016_j_jaridenv_2015_06_019
crossref_primary_10_1111_1749_4877_12576
crossref_primary_10_1111_geb_13345
crossref_primary_10_47385_cadunifoa_v19_n54_4621
crossref_primary_10_1016_j_ympev_2015_02_001
crossref_primary_10_1002_ece3_8134
crossref_primary_10_1093_sysbio_syv073
crossref_primary_10_1016_j_anbehav_2016_08_003
crossref_primary_10_2988_12_04_1
crossref_primary_10_1242_jeb_123166
crossref_primary_10_1016_j_ympev_2015_02_003
crossref_primary_10_11646_zootaxa_4648_1_2
crossref_primary_10_1016_j_geobios_2016_09_004
crossref_primary_10_7717_peerj_2392
crossref_primary_10_1093_molbev_msv266
crossref_primary_10_21425_fob_17_132672
crossref_primary_10_5358_hsj_36_11
crossref_primary_10_1111_geb_12482
crossref_primary_10_1016_j_jcz_2013_06_002
crossref_primary_10_1655_HERPETOLOGICA_D_13_00085
crossref_primary_10_1111_geb_12479
crossref_primary_10_1186_1471_2148_13_134
crossref_primary_10_7717_peerj_14715
crossref_primary_10_1016_j_ympev_2013_04_021
crossref_primary_10_1111_jzs_12455
crossref_primary_10_1111_jzs_12452
crossref_primary_10_1002_ajpa_23387
crossref_primary_10_7717_peerj_10595
crossref_primary_10_1111_oik_03166
crossref_primary_10_1080_14772019_2017_1287130
crossref_primary_10_31610_trudyzin_2014_318_4_433
crossref_primary_10_1186_1471_2164_14_633
crossref_primary_10_1016_j_ympev_2022_107618
crossref_primary_10_1093_molbev_mst091
crossref_primary_10_11646_zootaxa_4896_4_4
crossref_primary_10_5635_ASED_2014_30_1_039
crossref_primary_10_1371_journal_pone_0171669
crossref_primary_10_1643_OT_14_211
crossref_primary_10_3390_toxins12020074
crossref_primary_10_1080_08912963_2024_2403590
crossref_primary_10_1007_s11692_014_9270_y
crossref_primary_10_1093_zoolinnean_zlaa158
crossref_primary_10_1670_20_106
crossref_primary_10_1016_j_ympev_2013_04_031
crossref_primary_10_1016_j_cbd_2014_01_002
crossref_primary_10_1111_jzs_12465
crossref_primary_10_3897_CompCytogen_v13i3_35524
crossref_primary_10_1016_j_cretres_2016_02_006
crossref_primary_10_1111_jzs_12224
crossref_primary_10_1016_j_ympev_2018_02_020
crossref_primary_10_1093_sysbio_syz057
crossref_primary_10_1007_s11692_014_9292_5
crossref_primary_10_1186_1471_2148_13_93
crossref_primary_10_3390_microorganisms11040900
crossref_primary_10_1080_02724634_2014_839452
crossref_primary_10_1655_HERPMONOGRAPHS_D_16_00002
crossref_primary_10_1016_j_jcz_2015_07_001
crossref_primary_10_1007_s10531_014_0642_5
crossref_primary_10_1016_j_ympev_2014_10_010
crossref_primary_10_1021_acs_est_5b01299
crossref_primary_10_1186_1471_2164_13_496
crossref_primary_10_1016_j_aquatox_2024_106925
crossref_primary_10_3389_fbinf_2024_1441373
crossref_primary_10_1086_694319
crossref_primary_10_1098_rspb_2023_1759
crossref_primary_10_1038_ncomms2959
crossref_primary_10_1093_jhered_esv061
crossref_primary_10_1371_journal_pone_0248112
crossref_primary_10_3897_BDJ_10_e79984
crossref_primary_10_1002_ece3_6784
crossref_primary_10_1186_1471_2156_14_59
crossref_primary_10_3109_19401736_2014_989522
crossref_primary_10_5358_hsj_34_51
crossref_primary_10_3897_zse_94_22120
crossref_primary_10_1186_s12863_014_0111_x
crossref_primary_10_1016_j_ympev_2020_106981
crossref_primary_10_1670_14_097
crossref_primary_10_7717_peerj_8901
crossref_primary_10_1007_s00442_021_04972_1
crossref_primary_10_1016_j_gene_2014_03_051
crossref_primary_10_1016_j_jcz_2021_09_008
crossref_primary_10_1080_23802359_2021_1899080
crossref_primary_10_7554_eLife_70494
crossref_primary_10_1111_gcb_13610
crossref_primary_10_2994_SAJH_D_16_00003_1
crossref_primary_10_1111_jzs_12483
crossref_primary_10_1371_journal_pone_0196066
crossref_primary_10_1126_science_1237541
crossref_primary_10_1002_ar_25535
crossref_primary_10_1016_j_jcz_2018_02_004
crossref_primary_10_1098_rspb_2018_2737
crossref_primary_10_1371_journal_pone_0198237
crossref_primary_10_1016_j_jtherbio_2021_103148
crossref_primary_10_11646_zootaxa_4838_2_3
crossref_primary_10_1080_00222933_2024_2442749
crossref_primary_10_3390_d13100501
crossref_primary_10_3897_zookeys_846_33200
crossref_primary_10_1002_dvdy_38
crossref_primary_10_1016_j_zool_2012_10_004
crossref_primary_10_1093_zoolinnean_zlab038
crossref_primary_10_1080_02724634_2013_771779
crossref_primary_10_1016_j_ympev_2018_02_012
crossref_primary_10_1007_s13127_016_0294_2
crossref_primary_10_1002_jez_b_22852
crossref_primary_10_1111_zsc_12048
crossref_primary_10_7717_peerj_4525
crossref_primary_10_7717_peerj_5856
crossref_primary_10_1206_3752_2
crossref_primary_10_1670_14_072
crossref_primary_10_1371_journal_pone_0130075
crossref_primary_10_2994_SAJH_D_22_00038_1
crossref_primary_10_1590_S1676_06032013000100026
crossref_primary_10_1371_journal_pone_0162907
crossref_primary_10_1093_biolinnean_blab145
crossref_primary_10_1002_ar_23331
crossref_primary_10_1111_zsc_12015
crossref_primary_10_1655_HERPETOLOGICA_D_16_00065_1
crossref_primary_10_1016_j_ympev_2018_01_017
crossref_primary_10_1007_s10682_015_9774_7
crossref_primary_10_1371_journal_pone_0143392
crossref_primary_10_1038_s41598_022_14722_9
crossref_primary_10_1080_23802359_2024_2427829
crossref_primary_10_1093_sysbio_syz023
crossref_primary_10_1002_jmor_20211
crossref_primary_10_1643_CG_17_621
crossref_primary_10_1002_jez_b_22638
crossref_primary_10_3897_zookeys_929_49748
crossref_primary_10_1016_j_ympev_2020_106789
crossref_primary_10_1371_journal_pone_0204365
crossref_primary_10_1186_1471_2148_14_104
crossref_primary_10_3897_zookeys_994_56277
crossref_primary_10_3390_ijerph18052585
crossref_primary_10_1016_j_jcz_2024_04_002
crossref_primary_10_1186_s12983_021_00423_y
crossref_primary_10_1111_evo_14338
crossref_primary_10_3390_d12060222
crossref_primary_10_1016_j_jcz_2019_11_002
crossref_primary_10_1242_jeb_186544
crossref_primary_10_1371_journal_pone_0218733
crossref_primary_10_1111_joa_13311
crossref_primary_10_1007_s12549_015_0221_0
crossref_primary_10_1002_jmor_20490
crossref_primary_10_2478_asn_2018_0011
crossref_primary_10_1111_geb_12089
crossref_primary_10_11646_zootaxa_5474_2_1
crossref_primary_10_5710_AMGH_29_07_2022_3505
crossref_primary_10_1093_zoolinnean_zlaa149
crossref_primary_10_3897_zookeys_516_9776
crossref_primary_10_1371_journal_pone_0093075
crossref_primary_10_1186_s40851_024_00241_0
crossref_primary_10_11646_zootaxa_3608_5_6
crossref_primary_10_1266_ggs_88_59
crossref_primary_10_11646_zootaxa_3437_1_1
crossref_primary_10_2994_SAJH_D_17_00044_1
crossref_primary_10_1371_journal_pone_0103958
crossref_primary_10_1007_s00435_019_00441_9
crossref_primary_10_3989_graellsia_2012_v68_056
crossref_primary_10_1016_j_jcz_2020_12_003
crossref_primary_10_1080_23802359_2025_2475826
crossref_primary_10_1016_j_ympev_2015_05_026
crossref_primary_10_1016_j_ympev_2024_108223
crossref_primary_10_1080_09524622_2015_1116410
crossref_primary_10_1111_cla_12497
crossref_primary_10_3390_genes13112089
crossref_primary_10_1002_ece3_2459
crossref_primary_10_1111_ede_12092
crossref_primary_10_1111_evo_14642
crossref_primary_10_1093_biolinnean_bly002
crossref_primary_10_1111_bij_12296
crossref_primary_10_1093_molbev_msac052
crossref_primary_10_21805_bzn_v71i4_a15
crossref_primary_10_1017_S0022149X21000250
crossref_primary_10_1111_pala_12057
crossref_primary_10_1093_icb_icy045
crossref_primary_10_1093_zoolinnean_zlac063
crossref_primary_10_11646_zootaxa_3200_1_1
crossref_primary_10_1098_rspb_2013_3229
crossref_primary_10_2994_SAJH_D_16_00055_1
crossref_primary_10_1016_j_jcz_2019_05_002
crossref_primary_10_1080_00222933_2014_931482
crossref_primary_10_1007_s11692_012_9187_2
crossref_primary_10_1002_ece3_6824
crossref_primary_10_1643_h2020056
crossref_primary_10_1371_journal_pone_0222131
crossref_primary_10_1016_j_jtherbio_2022_103233
crossref_primary_10_1093_zoolinnean_zly030
crossref_primary_10_1186_s12983_022_00462_z
crossref_primary_10_1086_689216
crossref_primary_10_1038_s41467_018_06517_2
crossref_primary_10_1073_pnas_1921807117
crossref_primary_10_3109_19401736_2015_1041113
crossref_primary_10_1086_704736
crossref_primary_10_1093_zoolinnean_zlad167
crossref_primary_10_1111_j_1365_2699_2012_02757_x
crossref_primary_10_1371_journal_pone_0166326
crossref_primary_10_1590_S0001_37652013000300014
crossref_primary_10_1159_000354997
crossref_primary_10_1111_jbi_12112
crossref_primary_10_1098_rspb_2013_2156
crossref_primary_10_1126_sciadv_abn1104
crossref_primary_10_1111_brv_12228
crossref_primary_10_1371_journal_pone_0156757
crossref_primary_10_1016_j_biocon_2014_05_030
crossref_primary_10_1898_NWN17_29_1
crossref_primary_10_1016_j_cbpa_2014_10_001
crossref_primary_10_26515_rzsi_v120_i1_2020_138963
crossref_primary_10_11646_zootaxa_3111_1_2
crossref_primary_10_1371_journal_pone_0234331
crossref_primary_10_1016_j_ympev_2014_04_003
crossref_primary_10_1371_journal_pone_0086339
crossref_primary_10_1242_jeb_142315
crossref_primary_10_14411_fp_2014_065
crossref_primary_10_2994_SAJH_D_18_00005_1
crossref_primary_10_1080_08912963_2013_797972
crossref_primary_10_1002_jmor_21091
crossref_primary_10_2994_SAJH_D_13_00022_1
crossref_primary_10_1111_cla_12451
crossref_primary_10_1590_1678_4685_gmb_2017_0260
crossref_primary_10_1016_j_ympev_2013_08_007
crossref_primary_10_1038_nature15380
crossref_primary_10_1371_journal_pone_0087236
crossref_primary_10_1002_jez_b_22902
crossref_primary_10_1002_jemt_22414
crossref_primary_10_1016_j_cbpa_2017_10_020
crossref_primary_10_1089_cmb_2015_0146
crossref_primary_10_1002_jmor_21286
crossref_primary_10_1643_CH2020014
crossref_primary_10_3389_fevo_2019_00352
crossref_primary_10_1002_ar_23292
crossref_primary_10_1111_cla_12447
crossref_primary_10_1016_j_ympev_2014_11_012
crossref_primary_10_1371_journal_pone_0190023
crossref_primary_10_1002_ece3_2267
crossref_primary_10_22201_ib_20078706e_2020_91_3013
crossref_primary_10_1080_02724634_2013_794813
crossref_primary_10_1007_s12041_018_1018_5
crossref_primary_10_1146_annurev_ecolsys_112414_054400
crossref_primary_10_1002_cne_24370
crossref_primary_10_1016_j_jtherbio_2018_07_005
crossref_primary_10_1093_molbev_msae049
crossref_primary_10_1016_j_jtherbio_2019_102398
crossref_primary_10_1111_joa_12625
crossref_primary_10_1371_journal_pone_0204968
crossref_primary_10_11646_zootaxa_5613_1_2
crossref_primary_10_1080_23802359_2017_1347830
crossref_primary_10_1002_ece3_7961
crossref_primary_10_1002_ece3_4214
crossref_primary_10_1016_j_jcz_2017_03_002
crossref_primary_10_1007_s10531_020_01986_8
crossref_primary_10_1017_pab_2022_28
crossref_primary_10_1016_j_jcz_2020_10_007
crossref_primary_10_1080_14772019_2021_1892845
crossref_primary_10_1098_rstb_2014_0006
crossref_primary_10_1098_rspb_2012_1609
crossref_primary_10_1206_3762_2
crossref_primary_10_1111_2041_210X_12051
crossref_primary_10_1111_brv_12430
crossref_primary_10_1093_biolinnean_blaa204
crossref_primary_10_1111_ecog_03889
crossref_primary_10_1017_S0967199414000379
crossref_primary_10_1093_biolinnean_blx127
crossref_primary_10_3390_genes14030768
crossref_primary_10_1080_03036758_2013_825300
crossref_primary_10_3390_ani11020566
crossref_primary_10_3897_zookeys_715_20288
crossref_primary_10_1007_s11692_015_9311_1
crossref_primary_10_1371_journal_pone_0161070
crossref_primary_10_1093_sysbio_syw102
crossref_primary_10_1111_evo_13959
crossref_primary_10_3389_fevo_2023_1195689
crossref_primary_10_1002_ece3_8155
crossref_primary_10_3724_SP_J_1245_2013_00036
crossref_primary_10_1111_jeb_12292
crossref_primary_10_1111_mec_14540
crossref_primary_10_1002_ar_22601
crossref_primary_10_3897_zookeys_1134_91348
crossref_primary_10_11646_zootaxa_3148_1_8
crossref_primary_10_3897_compcytogen_v16_i3_82641
crossref_primary_10_1038_s41467_017_00996_5
crossref_primary_10_1007_s00435_020_00510_4
crossref_primary_10_1111_j_1095_8312_2012_01876_x
crossref_primary_10_1590_1519_6984_225646
crossref_primary_10_1016_j_gene_2017_05_039
crossref_primary_10_1371_journal_pone_0032332
crossref_primary_10_1655_HERPETOLOGICA_D_15_00053
crossref_primary_10_1016_j_ympev_2022_107389
crossref_primary_10_1086_673282
crossref_primary_10_1093_sysbio_syv024
crossref_primary_10_1643_CH_14_210
crossref_primary_10_1016_j_ympev_2016_09_004
crossref_primary_10_1111_jbi_12516
crossref_primary_10_1111_cla_12409
crossref_primary_10_1186_s12863_016_0440_z
crossref_primary_10_1371_journal_pone_0142791
crossref_primary_10_7717_peerj_7012
crossref_primary_10_1016_j_gene_2020_144762
crossref_primary_10_1002_jmor_20819
crossref_primary_10_1016_j_bbamem_2019_183141
crossref_primary_10_1111_azo_12482
crossref_primary_10_3897_zookeys_692_12187
crossref_primary_10_1111_jzo_12648
crossref_primary_10_1016_j_quaint_2013_10_065
crossref_primary_10_1016_j_jsames_2022_103749
crossref_primary_10_1371_journal_pone_0140577
crossref_primary_10_1016_j_ympev_2013_07_023
crossref_primary_10_1002_cne_24777
crossref_primary_10_1163_15685381_00003037
crossref_primary_10_1093_gbe_evu143
crossref_primary_10_1111_zoj_12271
crossref_primary_10_1093_molbev_msae090
crossref_primary_10_1016_j_gecco_2018_e00438
crossref_primary_10_1890_ES14_00332_1
crossref_primary_10_1016_j_ympev_2014_06_012
crossref_primary_10_1002_ece3_5909
crossref_primary_10_1111_jzo_12639
crossref_primary_10_1111_j_1365_2699_2012_02726_x
crossref_primary_10_1016_j_ympev_2019_106724
crossref_primary_10_1007_s10584_020_02677_7
crossref_primary_10_3897_zse_101_133735
crossref_primary_10_1080_01650521_2020_1809333
crossref_primary_10_1111_cla_12429
crossref_primary_10_1655_Herpetologica_D_18_00061
crossref_primary_10_1016_j_ympev_2014_06_002
crossref_primary_10_1017_S0031182015001262
crossref_primary_10_1080_02724634_2018_1508027
crossref_primary_10_5710_AMGH_18_02_2014_1972
crossref_primary_10_1111_ddi_12126
crossref_primary_10_3389_fnana_2019_00086
crossref_primary_10_1073_pnas_1706752114
crossref_primary_10_3897_zookeys_1212_122222
crossref_primary_10_1111_ecog_00521
crossref_primary_10_5358_hsj_40_10
crossref_primary_10_1670_17_002
crossref_primary_10_11922_csdata_2018_0005_zh
crossref_primary_10_1016_j_bse_2017_01_006
crossref_primary_10_25225_jvb_23072
crossref_primary_10_1093_gbe_evad070
crossref_primary_10_3897_herpetozoa_32_e69755
crossref_primary_10_1111_cobi_13577
crossref_primary_10_1002_jwmg_21349
crossref_primary_10_1016_j_ympev_2017_04_008
crossref_primary_10_1017_S0030605317000552
crossref_primary_10_3724_SP_J_1245_2013_00062
crossref_primary_10_1016_j_ympev_2013_06_001
crossref_primary_10_1017_pab_2019_31
crossref_primary_10_3390_genes10100733
crossref_primary_10_1111_zoj_12222
crossref_primary_10_1021_acs_jnatprod_6b00494
crossref_primary_10_1093_molbev_msy045
crossref_primary_10_1016_j_ympev_2017_03_016
crossref_primary_10_2994_SAJH_D_14_00032_1
crossref_primary_10_3897_vz_72_e80019
crossref_primary_10_1080_24701394_2019_1634697
crossref_primary_10_1038_s41598_022_18051_9
crossref_primary_10_1016_j_jcz_2016_04_007
crossref_primary_10_1111_jzo_12433
crossref_primary_10_3897_vertebrate_zoology_71_e60312
crossref_primary_10_1111_jbi_12700
crossref_primary_10_1016_j_resp_2014_11_014
crossref_primary_10_1007_s10682_013_9641_3
crossref_primary_10_1111_zoj_12232
crossref_primary_10_1655_HERPETOLOGICA_D_13_00019
crossref_primary_10_1016_j_jcz_2020_01_002
crossref_primary_10_1016_j_jnc_2016_02_007
crossref_primary_10_3390_genes13081475
crossref_primary_10_2994_SAJH_D_17_00115_1
crossref_primary_10_31610_trudyzin_2013_317_4_494
crossref_primary_10_3389_fcell_2022_797352
crossref_primary_10_1002_dvdy_23897
crossref_primary_10_1111_azo_12292
crossref_primary_10_3897_zookeys_370_6291
crossref_primary_10_1016_j_ympev_2017_10_013
crossref_primary_10_5358_hsj_37_172
crossref_primary_10_1111_geb_13602
crossref_primary_10_2994_SAJH_D_17_00017_1
crossref_primary_10_1086_667891
crossref_primary_10_1111_jeb_13170
crossref_primary_10_3897_zookeys_645_11221
crossref_primary_10_3897_zse_100_110133
crossref_primary_10_1016_j_jcz_2022_11_014
crossref_primary_10_1098_rspb_2020_2102
crossref_primary_10_1186_s13227_016_0043_9
crossref_primary_10_1093_beheco_arv195
crossref_primary_10_1371_journal_pone_0164740
crossref_primary_10_1016_j_ympev_2022_107579
crossref_primary_10_1007_s11692_015_9353_4
crossref_primary_10_11646_zootaxa_4132_3_3
crossref_primary_10_1111_evo_12903
crossref_primary_10_7717_peerj_11793
crossref_primary_10_1080_14772000_2018_1518935
crossref_primary_10_1111_jzo_12137
crossref_primary_10_1186_s12862_015_0572_1
crossref_primary_10_1073_pnas_1704632114
crossref_primary_10_1371_journal_pone_0136134
crossref_primary_10_1111_mec_15596
crossref_primary_10_3897_vz_73_e102475
crossref_primary_10_1016_j_isci_2021_102744
crossref_primary_10_1080_03115518_2016_1101998
crossref_primary_10_1098_rspb_2015_3115
crossref_primary_10_1186_s12862_015_0365_6
crossref_primary_10_1080_14888386_2021_1978108
crossref_primary_10_1111_acv_12406
crossref_primary_10_1007_s11692_015_9363_2
crossref_primary_10_1080_01650521_2017_1317130
crossref_primary_10_1111_zsc_12337
crossref_primary_10_1093_cz_zoy086
crossref_primary_10_1186_1471_2148_12_241
crossref_primary_10_1016_j_ympev_2018_07_005
crossref_primary_10_7717_peerj_6457
crossref_primary_10_1111_ele_12310
crossref_primary_10_1002_jmor_20536
crossref_primary_10_21805_bzn_v73i2_a6
crossref_primary_10_3390_toxins8070213
crossref_primary_10_1007_s12549_015_0228_6
crossref_primary_10_5358_hsj_35_122
crossref_primary_10_1002_ece3_5176
crossref_primary_10_1016_j_semcdb_2020_05_011
crossref_primary_10_1016_j_ympev_2019_02_013
crossref_primary_10_1016_j_tree_2013_01_014
crossref_primary_10_1080_09524622_2016_1260053
crossref_primary_10_1093_sysbio_syy013
crossref_primary_10_1007_s10682_013_9675_6
crossref_primary_10_1016_j_ecolind_2020_106754
crossref_primary_10_1093_biolinnean_blab083
crossref_primary_10_7717_peerj_7532
crossref_primary_10_1016_j_ympev_2015_10_009
crossref_primary_10_11646_zootaxa_4407_1_6
crossref_primary_10_1080_14772019_2025_2456622
crossref_primary_10_1111_geb_12571
crossref_primary_10_1655_HERPMONOGRAPHS_D_20_00002
crossref_primary_10_1080_23766808_2017_1299529
crossref_primary_10_1155_2020_6540343
crossref_primary_10_1016_j_ympev_2021_107241
crossref_primary_10_3377_004_048_0202
crossref_primary_10_2994_SAJH_D_17_00023_1
crossref_primary_10_1371_journal_pone_0151746
crossref_primary_10_1080_02724634_2019_1576183
crossref_primary_10_11646_zootaxa_5575_3_3
crossref_primary_10_1002_jez_b_22566
crossref_primary_10_7717_peerj_8618
crossref_primary_10_5252_zoosystema2018v40a22
crossref_primary_10_1007_s10709_015_9876_8
crossref_primary_10_1080_23802359_2018_1501286
crossref_primary_10_5252_zoosystema2018v40a23
crossref_primary_10_1002_jez_b_22575
crossref_primary_10_1002_jmor_20550
crossref_primary_10_1002_jmor_21642
crossref_primary_10_1098_rspb_2013_1622
crossref_primary_10_5852_ejt_2022_847_1991
crossref_primary_10_3390_ani12182449
crossref_primary_10_1134_S1062360423020029
crossref_primary_10_1111_1755_0998_13517
crossref_primary_10_1655_Herpetologica_D_15_00062_1
crossref_primary_10_3897_zookeys_593_8063
crossref_primary_10_7550_rmb_42015
crossref_primary_10_1111_j_1558_5646_2012_01715_x
crossref_primary_10_1111_jeb_13412
crossref_primary_10_3897_zookeys_672_10624
crossref_primary_10_1371_journal_pone_0119815
crossref_primary_10_1655_HERPETOLOGICA_D_13_00082R1
crossref_primary_10_1016_j_cbd_2013_10_002
crossref_primary_10_1016_j_jcz_2020_04_002
crossref_primary_10_1016_j_jsames_2020_102633
crossref_primary_10_1016_j_tree_2015_04_016
crossref_primary_10_1098_rspb_2014_2213
crossref_primary_10_1590_1678_4685_gmb_2022_0203
crossref_primary_10_1002_jez_2632
crossref_primary_10_1186_1471_2105_14_324
crossref_primary_10_1007_s11692_021_09536_y
crossref_primary_10_1111_jeb_13228
crossref_primary_10_1655_HERPMONOGRAPHS_D_19_00008_1
crossref_primary_10_1086_716213
crossref_primary_10_1016_j_crvi_2012_05_003
crossref_primary_10_1093_biolinnean_blz097
crossref_primary_10_1016_j_ygcen_2020_113611
crossref_primary_10_1038_s41559_018_0632_1
crossref_primary_10_1643_CH_14_128
crossref_primary_10_1080_00222933_2021_1946185
crossref_primary_10_1080_02724634_2012_637591
crossref_primary_10_1086_687547
crossref_primary_10_1643_CH_14_130
crossref_primary_10_1016_j_ympev_2020_106819
crossref_primary_10_1111_jeb_12143
crossref_primary_10_1002_ar_24933
crossref_primary_10_1111_jzs_12317
crossref_primary_10_1371_journal_pone_0096637
crossref_primary_10_11646_zootaxa_4446_4_5
crossref_primary_10_3897_zookeys_868_26766
crossref_primary_10_1007_s10211_015_0214_z
crossref_primary_10_1016_j_ympev_2022_107514
crossref_primary_10_1186_1471_2148_14_44
crossref_primary_10_1016_j_ympev_2014_01_009
crossref_primary_10_3390_ani12091112
crossref_primary_10_1016_j_ympev_2021_107210
crossref_primary_10_1016_j_ympev_2024_108166
crossref_primary_10_1016_j_jksus_2015_02_001
crossref_primary_10_1016_j_ympev_2016_04_019
crossref_primary_10_1002_jmor_21611
crossref_primary_10_1016_j_ympev_2012_12_004
crossref_primary_10_1111_joa_12190
crossref_primary_10_3897_zookeys_1149_85627
crossref_primary_10_1002_dvdy_742
crossref_primary_10_1111_ele_12728
crossref_primary_10_1016_j_jcz_2019_02_002
crossref_primary_10_1017_pab_2016_11
crossref_primary_10_1371_journal_pone_0156176
crossref_primary_10_1111_geb_13206
crossref_primary_10_1643_CH_19_254
crossref_primary_10_2517_PR210031
crossref_primary_10_1007_s10682_016_9817_8
crossref_primary_10_1002_jmor_20751
crossref_primary_10_3897_herpetozoa_34_e66909
crossref_primary_10_3897_zookeys_1024_56399
crossref_primary_10_1111_jeb_13210
crossref_primary_10_7717_peerj_5771
crossref_primary_10_1098_rstb_2020_0426
crossref_primary_10_1670_15_105
crossref_primary_10_1111_jeb_12128
crossref_primary_10_1371_journal_pone_0100176
crossref_primary_10_11646_zootaxa_3484_1_5
crossref_primary_10_1371_journal_pone_0171785
crossref_primary_10_1098_rsos_150277
crossref_primary_10_1016_j_ympev_2020_106841
crossref_primary_10_36253_a_h_15648
crossref_primary_10_1186_s12862_021_01755_3
crossref_primary_10_1016_j_micron_2016_09_003
crossref_primary_10_1038_s41598_018_38133_x
crossref_primary_10_1038_s41598_017_03395_4
crossref_primary_10_1002_jmor_21233
crossref_primary_10_1206_0003_0090_447_1_1
crossref_primary_10_2994_SAJH_D_17_00054_1
crossref_primary_10_5358_hsj_33_112
crossref_primary_10_7717_peerj_2499
crossref_primary_10_1111_jbi_13186
crossref_primary_10_1073_pnas_1519459113
crossref_primary_10_1073_pnas_2320674121
crossref_primary_10_7550_rmb_32842
crossref_primary_10_1111_geb_13031
crossref_primary_10_3897_compcytogen_v8i2_6414
crossref_primary_10_1111_jzs_12113
crossref_primary_10_1098_rsos_200933
crossref_primary_10_3390_d13090399
crossref_primary_10_1186_1471_2148_14_82
crossref_primary_10_1007_s00239_017_9782_z
crossref_primary_10_1163_156853812X638527
crossref_primary_10_1590_1678_9199_jvatitd_2023_0042
crossref_primary_10_1007_s00435_016_0342_7
crossref_primary_10_1655_Herpetologica_D_14_00047_1
crossref_primary_10_1111_jeb_12746
crossref_primary_10_1080_23802359_2019_1624209
crossref_primary_10_7717_peerj_4422
crossref_primary_10_1670_20_001
crossref_primary_10_1590_1678_4766e2017152
crossref_primary_10_2994_SAJH_D_21_00029_1
crossref_primary_10_1674_0003_0031_182_2_191
crossref_primary_10_1098_rspb_2021_0200
crossref_primary_10_1002_jmor_21254
crossref_primary_10_1643_CH_17_630
crossref_primary_10_1016_j_ympev_2014_02_004
crossref_primary_10_1656_058_013_0302
crossref_primary_10_1016_j_ympev_2020_106877
crossref_primary_10_1590_S1676_06032013000300027
crossref_primary_10_1016_j_bse_2016_04_004
crossref_primary_10_1590_S1676_06032013000300026
crossref_primary_10_1670_22_062
crossref_primary_10_1073_pnas_1620010114
crossref_primary_10_1111_jeb_12714
crossref_primary_10_1111_geb_12162
crossref_primary_10_1186_s12859_020_3532_8
crossref_primary_10_1111_brv_12197
crossref_primary_10_1111_joa_12535
crossref_primary_10_1093_bioinformatics_btw712
crossref_primary_10_1111_aec_13154
crossref_primary_10_1002_ece3_5110
crossref_primary_10_1016_j_geobios_2024_03_002
crossref_primary_10_5358_hsj_34_182
crossref_primary_10_1242_bio_020925
crossref_primary_10_1080_14772019_2022_2050824
crossref_primary_10_1093_sysbio_syaa034
crossref_primary_10_1038_sdata_2018_97
crossref_primary_10_1093_molbev_msv113
crossref_primary_10_3390_d11080126
crossref_primary_10_1111_jbi_13394
crossref_primary_10_3390_molecules22091428
crossref_primary_10_1086_732113
crossref_primary_10_1038_s41598_017_10553_1
crossref_primary_10_1655_Herpetologica_D_19_00010_1
crossref_primary_10_1016_j_anbehav_2012_10_031
crossref_primary_10_1089_bio_2011_0036
crossref_primary_10_1643_CE_15_324
crossref_primary_10_1655_HERPMONOGRAPHS_D_22_00003
crossref_primary_10_1590_1678_4685_gmb_2020_0301
crossref_primary_10_1080_08912963_2017_1282475
crossref_primary_10_1111_1749_4877_12628
crossref_primary_10_1016_j_ympev_2020_106899
crossref_primary_10_1016_j_toxicon_2022_04_020
crossref_primary_10_1111_ele_12901
crossref_primary_10_1016_j_ijpsycho_2014_01_004
crossref_primary_10_1016_j_toxicon_2022_02_017
crossref_primary_10_1590_1519_6984_180399
crossref_primary_10_1017_S0022149X22000682
crossref_primary_10_1093_zoolinnean_zlaa002
crossref_primary_10_1080_14772000_2013_764944
crossref_primary_10_1073_pnas_1300881110
crossref_primary_10_2994_057_006_0310
crossref_primary_10_1007_s00435_018_0400_4
crossref_primary_10_1186_s12862_019_1422_3
crossref_primary_10_1007_s00114_024_01910_y
crossref_primary_10_3897_zookeys_726_13864
crossref_primary_10_1111_1755_0998_12648
crossref_primary_10_1111_evo_12274
crossref_primary_10_1111_evo_14216
crossref_primary_10_7717_peerj_2201
crossref_primary_10_31857_S0475145023020027
crossref_primary_10_1111_1749_4877_12611
crossref_primary_10_1111_eva_12520
crossref_primary_10_1016_j_jcz_2022_09_004
crossref_primary_10_1111_btp_13208
crossref_primary_10_1111_pala_12405
crossref_primary_10_1655_HERPMONOGRAPHS_D_15_00009_1
crossref_primary_10_1371_journal_pone_0215349
crossref_primary_10_1111_j_1463_6409_2011_00499_x
crossref_primary_10_1002_jmor_21454
crossref_primary_10_1002_ar_24527
crossref_primary_10_2992_007_084_0104
crossref_primary_10_1016_j_margen_2015_03_006
crossref_primary_10_1111_evo_13133
crossref_primary_10_1111_evo_14468
crossref_primary_10_2108_zs170008
crossref_primary_10_1093_molbev_mst122
crossref_primary_10_1146_annurev_environ_102014_021358
crossref_primary_10_5358_hsj_33_29
crossref_primary_10_1111_joa_13426
crossref_primary_10_1016_j_ympev_2015_11_012
crossref_primary_10_1371_journal_pone_0192861
crossref_primary_10_1016_j_ympev_2015_11_014
crossref_primary_10_1371_journal_pone_0219716
crossref_primary_10_1098_rspb_2018_1589
crossref_primary_10_1093_molbev_msad109
crossref_primary_10_7717_peerj_12012
crossref_primary_10_1111_bij_12083
crossref_primary_10_1111_1755_0998_12624
crossref_primary_10_1206_834_1
crossref_primary_10_1038_s41467_022_35765_6
crossref_primary_10_1371_journal_pone_0145444
crossref_primary_10_1016_j_gr_2012_02_021
crossref_primary_10_3762_bjnano_7_81
crossref_primary_10_3389_fevo_2021_640345
crossref_primary_10_1080_02724634_2012_716113
crossref_primary_10_1111_jbi_13592
crossref_primary_10_3390_genes11020123
crossref_primary_10_2994_SAJH_D_22_00002_1
Cites_doi 10.1093/sysbio/syp090
10.1016/j.ympev.2003.09.003
10.11646/zootaxa.1737.1.1
10.1126/science.1102036
10.11646/zootaxa.2211.1.1
10.1016/j.tree.2006.10.002
10.1016/j.ympev.2007.02.008
10.1111/j.1558-5646.2009.00610.x
10.1080/10635150590945278
10.1080/10635150600812551
10.1080/10635150802166053
10.1111/j.0014-3820.2004.tb00881.x
10.1093/bioinformatics/btl446
10.1080/10635150701397635
10.1073/pnas.0811087106
10.1093/sysbio/syr025
10.1111/j.1558-5646.2007.00159.x
10.1206/0003-0090(2006)299[1:PSODFA]2.0.CO;2
10.1093/sysbio/syp043
10.1111/j.1466-8238.2007.00348.x
10.1086/519396
10.1086/513362
10.1086/507882
10.1016/j.ympev.2009.07.010
10.1093/sysbio/syp075
10.1093/bioinformatics/btm404
10.1086/429523
10.1016/j.ympev.2011.03.012
10.1111/j.1096-0031.2009.00287.x
10.1080/10635150701477825
10.1111/j.0014-3820.2004.tb01632.x
10.1111/j.1558-5646.2011.01221.x
10.1016/j.ympev.2010.11.006
10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2
10.1073/pnas.0608378104
10.1080/10635150590906037
10.1126/science.1103538
10.1098/rspb.2006.0301
10.1016/0169-5347(90)90129-2
10.1073/pnas.0810821106
10.1111/j.1469-7998.2009.00593.x
10.1641/B580405
10.1080/10635150500234625
10.1186/1471-2148-9-131
10.1080/10635150600999150
10.1016/j.ympev.2009.12.011
10.1093/nar/gkh340
10.1016/j.ympev.2010.04.019
10.1093/sysbio/syr047
10.1111/j.1469-7998.1858.tb06387.x
10.11646/zootaxa.2241.1.2
10.1016/j.ympev.2010.03.013
10.11646/zootaxa.2100.1.1
10.1080/10635150390218330
10.1016/j.ympev.2009.06.018
10.1006/mpev.1998.0500
10.1371/journal.pbio.1000056
10.1111/j.1558-5646.2009.00680.x
10.1655/08-031R1.1
10.1038/nature02019
10.1206/0003-0090(2005)294[0001:SROTFF]2.0.CO;2
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright © 2011 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7U5
8FD
L7M
7X8
F1W
H95
L.G
DOI 10.1016/j.ympev.2011.06.012
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList AGRICOLA

MEDLINE - Academic
MEDLINE

Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1095-9513
EndPage 583
ExternalDocumentID 21723399
10_1016_j_ympev_2011_06_012
US201500042533
S105579031100279X
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CBWCG
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LW8
LX2
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
TN5
UNMZH
WUQ
XJT
XPP
XSW
YK3
ZCG
ZKB
ZMT
ZU3
~02
~G-
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
EFKBS
L.6
7U5
8FD
L7M
7X8
F1W
H95
L.G
ID FETCH-LOGICAL-c546t-baebe3678909bc4a28b425d3afccc8c162f3e0d63fe3676b65584b915b0d6f23
IEDL.DBID .~1
ISSN 1055-7903
1095-9513
IngestDate Fri Jul 11 16:00:01 EDT 2025
Thu Jul 10 19:14:11 EDT 2025
Mon Jul 21 11:05:58 EDT 2025
Sun Aug 24 03:58:38 EDT 2025
Thu Apr 03 07:07:33 EDT 2025
Thu Apr 24 23:07:06 EDT 2025
Tue Jul 01 00:44:14 EDT 2025
Thu Apr 03 09:45:43 EDT 2025
Fri Feb 23 02:33:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Anura
Systematics
Apoda
Caudata
Amphibia
Lissamphibia
Gymnophiona
Phylogeny
Supermatrix
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-baebe3678909bc4a28b425d3afccc8c162f3e0d63fe3676b65584b915b0d6f23
Notes http://dx.doi.org/10.1016/j.ympev.2011.06.012
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21723399
PQID 1672061035
PQPubID 24069
PageCount 41
ParticipantIDs proquest_miscellaneous_907179578
proquest_miscellaneous_890677029
proquest_miscellaneous_1770327026
proquest_miscellaneous_1672061035
pubmed_primary_21723399
crossref_primary_10_1016_j_ympev_2011_06_012
crossref_citationtrail_10_1016_j_ympev_2011_06_012
fao_agris_US201500042533
elsevier_sciencedirect_doi_10_1016_j_ympev_2011_06_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-11-01
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular phylogenetics and evolution
PublicationTitleAlternate Mol Phylogenet Evol
PublicationYear 2011
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Felsenstein (b0090) 2004
Vieites, Wollenberg, Andreone, Kohler, Glaw, Vences (b0255) 2009; 106
Pauly, Hillis, Cannatella (b0175) 2009; 65
Grant, Frost, Caldwell, Gagliardo, Haddad, Kok, Means, Noonan, Schargel, Wheeler (b0100) 2006; 299
Wiens (b0265) 2003; 52
Wiens, Sukumaran, Pyron, Brown (b0325) 2009; 63
Wiens (b0285) 2011; 65
Pyron (b0195) 2011; 60
Carroll (b0035) 2009
San Mauro, Gower, Massingham, Wilkinson, Zardoya, Cotton (b0220) 2009; 58
Peng, Zhang, Xiong, Gu, Zeng, Zou (b0180) 2010; 56
Wiens (b0270) 2007; 170
Darst, Cannatella (b0045) 2004; 31
Stuart, Chanson, Cox, Young, Rodrigues, Fischman, Waller (b0235) 2004; 306
Faivovich, Haddad, Garcia, Frost, Campbell, Wheeler (b0075) 2005; 294
Frost, Grant, Faivovich, Bain, Haas, Haddad, De Sa, Channing, Wilkinson, Donnellan, Raxworthy, Campbell, Blotto, Moler, Drewes, Nussbaum, Lynch, Green, Wheeler (b0095) 2006; 297
Bossuyt, Roelants (b0020) 2009
Wiens, Kuczynski, Hua, Moen (b0330) 2010; 55
Zhang, Wake (b0340) 2009; 53
Chippindale, Bonett, Baldwin, Wiens (b0040) 2004; 58
Zhang, Zhou, Chen, Liu, Qu (b0345) 2005; 54
Biju, Bossuyt (b0010) 2003; 425
Guayasamin, Castroviejo-Fisher, Trueb, Ayarzaguena, Rada, Vila (b0105) 2009; 2100
Miranda-Ribeiro (b0165) 1920; 12
Wiens (b0275) 2007; 82
Wiens, Bonett, Chippindale (b0295) 2005; 54
Feller, Hedges (b0085) 1998; 9
.
Hedges, Duellman, Heinicke (b0115) 2008; 1737
Bossuyt, Brown, Hillis, Cannatella, Milinkovitch (b0025) 2006; 55
Pauly, Hillis, Cannatella (b0170) 2004; 58
Blaustein, Wake (b0015) 1990; 5
de Queiroz, Gatesy (b0050) 2007; 22
Lannoo (b0135) 2005
Zhang, Wake (b0335) 2009; 53
San Mauro (b0215) 2010; 56
Vieites, Roman, Wake, Wake (b0260) 2011; 59
Roelants, Gower, Wilkinson, Loader, Biju, Guillaume, Moriau, Bossuyt (b0210) 2007; 104
Camp, Peterman, Milanovich, Lamb, Maerz, Wake (b0030) 2009; 279
Kozak, Mendyk, Wiens (b0130) 2009; 63
McMahon, Sanderson (b0160) 2006; 55
Pramuk, Robertson, Sites, Noonan (b0185) 2008; 17
San Mauro, Vences, Alcobendas, Zardoya, Meyer (b0355) 2005; 165
Driskell, Ane, Burleigh, McMahon, O’Meara, Sanderson (b0055) 2004; 306
Wiens, Kuczynski, Duellman, Reeder (b0310) 2007; 61
Van Bocxlaer, Biju, Loader, Bossuyt (b0245) 2009; 9
Günther (b0110) 1858; 1858
van der Meijden, Vences, Hoegg, Boistel, Channing, Meyer (b0250) 2007; 44
Duellman, Trueb (b0065) 1994
Faivovich, Haddad, Baeta, Jungfer, Alvares, Brandao, Sheil, Barrientos, Barrio-Amoros, Cruz, Wheeler (b0080) 2010; 26
Pyron, Burbrink, Colli, de Oca, Vitt, Kuczynski, Wiens (b0205) 2011; 58
Wiens, Graham, Moen, Smith, Reeder (b0305) 2006; 168
Laurent (b0145) 1984; 37
Wiens, Parra-Olea, Garcia-Paris, Wake (b0315) 2007; 274
Frost, Darrel, R., 2011. Amphibian Species of the World: an Online Reference. Version 5.5 (31 January, 2011). American Museum of Natural History, New York, USA. Electronic Database accessible at
Hugall, Foster, Lee (b0125) 2007; 56
Alfaro, Santini, Brock, Alamillo, Dornburg, Rabosky, Carnevale, Harmon (b0005) 2009; 106
Wiens, Fetzner, Parkinson, Reeder (b0300) 2005; 54
Wiens (b0280) 2008; 58
Stamatakis (b0230) 2006; 22
Edgar (b0070) 2004; 32
Heinicke, Duellman, Trueb, Means, MacCulloch, Hedges (b0120) 2009; 2211
Wiens, Kuczynski, Smith, Mulcahy, Sites, Townsend, Reeder (b0320) 2008; 57
Santos, Coloma, Summers, Caldwell, Ree, Cannatella (b0225) 2009; 7
Lynch (b0150) 1971; 58
Pyron (b0190) 2010; 59
Wiens, J.J., Morrill, M.C., 2011. Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Syst. Biol.
Thomson, Shaffer (b0240) 2010; 59
Duellman (b0060) 1999
Larkin, Blackshields, Brown, Chenna, McGettigan, McWilliam, Valentin, Wallace, Wilm, Lopez, Thompson, Gibson, Higgins (b0140) 2007; 23
Marjanović, Laurin (b0155) 2007; 56
Pyron, Burbrink (b0200) 2009; 2241
Lynch (10.1016/j.ympev.2011.06.012_b0150) 1971; 58
Marjanović (10.1016/j.ympev.2011.06.012_b0155) 2007; 56
San Mauro (10.1016/j.ympev.2011.06.012_b0355) 2005; 165
Wiens (10.1016/j.ympev.2011.06.012_b0305) 2006; 168
Hugall (10.1016/j.ympev.2011.06.012_b0125) 2007; 56
Kozak (10.1016/j.ympev.2011.06.012_b0130) 2009; 63
Pyron (10.1016/j.ympev.2011.06.012_b0200) 2009; 2241
Bossuyt (10.1016/j.ympev.2011.06.012_b0025) 2006; 55
Pyron (10.1016/j.ympev.2011.06.012_b0190) 2010; 59
Duellman (10.1016/j.ympev.2011.06.012_b0060) 1999
Roelants (10.1016/j.ympev.2011.06.012_b0210) 2007; 104
Vieites (10.1016/j.ympev.2011.06.012_b0260) 2011; 59
Wiens (10.1016/j.ympev.2011.06.012_b0325) 2009; 63
Wiens (10.1016/j.ympev.2011.06.012_b0310) 2007; 61
Wiens (10.1016/j.ympev.2011.06.012_b0330) 2010; 55
Camp (10.1016/j.ympev.2011.06.012_b0030) 2009; 279
Peng (10.1016/j.ympev.2011.06.012_b0180) 2010; 56
Stuart (10.1016/j.ympev.2011.06.012_b0235) 2004; 306
10.1016/j.ympev.2011.06.012_b0350
Faivovich (10.1016/j.ympev.2011.06.012_b0075) 2005; 294
Wiens (10.1016/j.ympev.2011.06.012_b0300) 2005; 54
Guayasamin (10.1016/j.ympev.2011.06.012_b0105) 2009; 2100
Grant (10.1016/j.ympev.2011.06.012_b0100) 2006; 299
Vieites (10.1016/j.ympev.2011.06.012_b0255) 2009; 106
Hedges (10.1016/j.ympev.2011.06.012_b0115) 2008; 1737
Wiens (10.1016/j.ympev.2011.06.012_b0320) 2008; 57
Wiens (10.1016/j.ympev.2011.06.012_b0285) 2011; 65
Driskell (10.1016/j.ympev.2011.06.012_b0055) 2004; 306
Pauly (10.1016/j.ympev.2011.06.012_b0175) 2009; 65
Bossuyt (10.1016/j.ympev.2011.06.012_b0020) 2009
Felsenstein (10.1016/j.ympev.2011.06.012_b0090) 2004
Günther (10.1016/j.ympev.2011.06.012_b0110) 1858; 1858
Lannoo (10.1016/j.ympev.2011.06.012_b0135) 2005
Heinicke (10.1016/j.ympev.2011.06.012_b0120) 2009; 2211
Blaustein (10.1016/j.ympev.2011.06.012_b0015) 1990; 5
Pyron (10.1016/j.ympev.2011.06.012_b0205) 2011; 58
Biju (10.1016/j.ympev.2011.06.012_b0010) 2003; 425
Thomson (10.1016/j.ympev.2011.06.012_b0240) 2010; 59
Wiens (10.1016/j.ympev.2011.06.012_b0315) 2007; 274
Chippindale (10.1016/j.ympev.2011.06.012_b0040) 2004; 58
Wiens (10.1016/j.ympev.2011.06.012_b0295) 2005; 54
San Mauro (10.1016/j.ympev.2011.06.012_b0220) 2009; 58
Feller (10.1016/j.ympev.2011.06.012_b0085) 1998; 9
Pyron (10.1016/j.ympev.2011.06.012_b0195) 2011; 60
Santos (10.1016/j.ympev.2011.06.012_b0225) 2009; 7
San Mauro (10.1016/j.ympev.2011.06.012_b0215) 2010; 56
10.1016/j.ympev.2011.06.012_b0290
Miranda-Ribeiro (10.1016/j.ympev.2011.06.012_b0165) 1920; 12
Duellman (10.1016/j.ympev.2011.06.012_b0065) 1994
Wiens (10.1016/j.ympev.2011.06.012_b0265) 2003; 52
Wiens (10.1016/j.ympev.2011.06.012_b0270) 2007; 170
Laurent (10.1016/j.ympev.2011.06.012_b0145) 1984; 37
Darst (10.1016/j.ympev.2011.06.012_b0045) 2004; 31
Pramuk (10.1016/j.ympev.2011.06.012_b0185) 2008; 17
Edgar (10.1016/j.ympev.2011.06.012_b0070) 2004; 32
Zhang (10.1016/j.ympev.2011.06.012_b0335) 2009; 53
de Queiroz (10.1016/j.ympev.2011.06.012_b0050) 2007; 22
Zhang (10.1016/j.ympev.2011.06.012_b0345) 2005; 54
Pauly (10.1016/j.ympev.2011.06.012_b0170) 2004; 58
Frost (10.1016/j.ympev.2011.06.012_b0095) 2006; 297
Wiens (10.1016/j.ympev.2011.06.012_b0280) 2008; 58
McMahon (10.1016/j.ympev.2011.06.012_b0160) 2006; 55
Van Bocxlaer (10.1016/j.ympev.2011.06.012_b0245) 2009; 9
Zhang (10.1016/j.ympev.2011.06.012_b0340) 2009; 53
van der Meijden (10.1016/j.ympev.2011.06.012_b0250) 2007; 44
Carroll (10.1016/j.ympev.2011.06.012_b0035) 2009
Larkin (10.1016/j.ympev.2011.06.012_b0140) 2007; 23
Alfaro (10.1016/j.ympev.2011.06.012_b0005) 2009; 106
Wiens (10.1016/j.ympev.2011.06.012_b0275) 2007; 82
Faivovich (10.1016/j.ympev.2011.06.012_b0080) 2010; 26
Stamatakis (10.1016/j.ympev.2011.06.012_b0230) 2006; 22
References_xml – year: 1994
  ident: b0065
  article-title: Biology of Amphibians
– volume: 1737
  start-page: 1
  year: 2008
  end-page: 182
  ident: b0115
  article-title: New World direct-developing frogs (Anura: Terrarana): molecular phylogeny, classification, biogeography, and conservation
  publication-title: Zootaxa
– volume: 44
  start-page: 1017
  year: 2007
  end-page: 1030
  ident: b0250
  article-title: Nuclear gene phylogeny of narrow-mouthed toads (Family: Microhylidae) and a discussion of competing hypotheses concerning their biogeographical origins
  publication-title: Mol. Phylogenet. Evol.
– volume: 59
  start-page: 623
  year: 2011
  end-page: 635
  ident: b0260
  article-title: A multigenic perspective on phylogenetic relationships in the largest family of salamanders, the Plethodontidae
  publication-title: Mol. Phylogenet. Evol.
– volume: 279
  start-page: 86
  year: 2009
  end-page: 94
  ident: b0030
  article-title: A new genus and species of lungless salamander (family Plethodontidae) from the Appalachian highlands of the south-eastern United States
  publication-title: J. Zool.
– volume: 58
  start-page: 2517
  year: 2004
  end-page: 2535
  ident: b0170
  article-title: The history of a Nearctic colonization: molecular phylogenetics and biogeography of the Nearctic Toads (
  publication-title: Evolution
– volume: 297
  start-page: 8
  year: 2006
  end-page: 370
  ident: b0095
  article-title: The amphibian tree of life
  publication-title: Bull. Am. Mus. Natl. Hist.
– volume: 54
  start-page: 719
  year: 2005
  end-page: 748
  ident: b0300
  article-title: Hylid frog phylogeny and sampling strategies for speciose clades
  publication-title: Syst. Biol.
– volume: 22
  start-page: 2688
  year: 2006
  end-page: 2690
  ident: b0230
  article-title: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models
  publication-title: Bioinformatics
– volume: 59
  start-page: 185
  year: 2010
  end-page: 194
  ident: b0190
  article-title: A likelihood method for assessing molecular divergence time estimates and the placement of fossil calibrations
  publication-title: Syst. Biol.
– volume: 170
  start-page: S86
  year: 2007
  end-page: S106
  ident: b0270
  article-title: Global patterns of diversification and species richness in amphibians
  publication-title: Am. Nat.
– volume: 52
  start-page: 528
  year: 2003
  end-page: 538
  ident: b0265
  article-title: Missing data, incomplete taxa, and phylogenetic accuracy
  publication-title: Syst. Biol.
– volume: 59
  start-page: 42
  year: 2010
  end-page: 58
  ident: b0240
  article-title: Sparse supermatrices for phylogenetic inference. taxonomy, alignment, rogue taxa, and the phylogeny of living turtles
  publication-title: Syst. Biol.
– volume: 106
  start-page: 8267
  year: 2009
  end-page: 8272
  ident: b0255
  article-title: Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 53
  start-page: 492
  year: 2009
  end-page: 508
  ident: b0335
  article-title: Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes
  publication-title: Mol. Phylogenet. Evol.
– volume: 58
  start-page: 425
  year: 2009
  end-page: 438
  ident: b0220
  article-title: Experimental design in caecilian systematics: phylogenetic information of mitochondrial genomes and nuclear RAG1
  publication-title: Syst. Biol.
– volume: 56
  start-page: 369
  year: 2007
  end-page: 388
  ident: b0155
  article-title: Fossils, molecules, divergence times, and the origin of lissamphibians
  publication-title: Syst. Biol.
– volume: 5
  start-page: 203
  year: 1990
  end-page: 204
  ident: b0015
  article-title: Declining amphibian populations – a global phenomenon
  publication-title: Trends Ecol. Evol.
– volume: 37
  start-page: 199
  year: 1984
  end-page: 200
  ident: b0145
  article-title: Heterogeneidad de la familia Caeciliidae (Amphibia–Apoda)
  publication-title: Acta Zool. Lilloana
– volume: 54
  start-page: 91
  year: 2005
  end-page: 110
  ident: b0295
  article-title: Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships
  publication-title: Syst. Biol.
– volume: 2100
  start-page: 1
  year: 2009
  end-page: 97
  ident: b0105
  article-title: Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon
  publication-title: Zootaxa
– volume: 65
  start-page: 1283
  year: 2011
  end-page: 1296
  ident: b0285
  article-title: Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and re-evaluating Dollo’s law
  publication-title: Evolution
– year: 1999
  ident: b0060
  article-title: Patterns of Distribution of Amphibians: A Global Perspective
– volume: 7
  start-page: 448
  year: 2009
  end-page: 461
  ident: b0225
  article-title: Amazonian amphibian diversity is primarily derived from Late Miocene Andean lineages
  publication-title: PLoS Biol.
– volume: 104
  start-page: 887
  year: 2007
  end-page: 892
  ident: b0210
  article-title: Global patterns of diversification in the history of modern amphibians
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 55
  start-page: 579
  year: 2006
  end-page: 594
  ident: b0025
  article-title: Phylogeny and biogeography of a cosmopolitan frog radiation: late Cretaceous diversification resulted in continent-scale endemism in the family Ranidae
  publication-title: Syst. Biol.
– volume: 53
  start-page: 479
  year: 2009
  end-page: 491
  ident: b0340
  article-title: A mitogenomic perspective on the phylogeny and biogeography of living caecilians (Amphibia: Gymnophiona)
  publication-title: Mol. Phylogenet. Evol.
– reference: .
– volume: 58
  start-page: 2809
  year: 2004
  end-page: 2822
  ident: b0040
  article-title: Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders
  publication-title: Evolution
– year: 2004
  ident: b0090
  article-title: Inferring Phylogenies
– volume: 63
  start-page: 1217
  year: 2009
  end-page: 1231
  ident: b0325
  article-title: Evolutionary and biogeographic origins of high tropical diversity in Old World frogs (Ranidae)
  publication-title: Evolution
– volume: 55
  start-page: 818
  year: 2006
  end-page: 836
  ident: b0160
  article-title: Phylogenetic supermatrix analysis of GenBank sequences from 2228 papilionoid legumes
  publication-title: Syst. Biol.
– volume: 12
  start-page: 319
  year: 1920
  end-page: 320
  ident: b0165
  article-title: Algumas consideracões sobre
  publication-title: Rev. Mus. Paulista, São Paulo
– volume: 31
  start-page: 462
  year: 2004
  end-page: 475
  ident: b0045
  article-title: Novel relationships among hyloid frogs inferred from 12S and 16S mitochondrial DNA sequences
  publication-title: Mol. Phylogenet. Evol.
– volume: 54
  start-page: 391
  year: 2005
  end-page: 400
  ident: b0345
  article-title: Mitogenomic perspectives on the origin and phylogeny of living amphibians
  publication-title: Syst. Biol.
– year: 2005
  ident: b0135
  article-title: Amphibian Declines: The Conservation Status of United States Species
– year: 2009
  ident: b0035
  article-title: The Rise of Amphibians: 365 Million Years of Evolution
– volume: 306
  start-page: 1783
  year: 2004
  end-page: 1786
  ident: b0235
  article-title: Status and trends of amphibian declines and extinctions worldwide
  publication-title: Science
– volume: 32
  start-page: 1792
  year: 2004
  end-page: 1797
  ident: b0070
  article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucl. Acids Res.
– volume: 58
  start-page: 329
  year: 2011
  end-page: 342
  ident: b0205
  article-title: The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees
  publication-title: Mol. Phylogenet. Evol.
– volume: 106
  start-page: 13410
  year: 2009
  end-page: 13414
  ident: b0005
  article-title: Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 56
  start-page: 252
  year: 2010
  end-page: 258
  ident: b0180
  article-title: Rediscovery of
  publication-title: Mol. Phylogenet. Evol.
– volume: 2211
  start-page: 1
  year: 2009
  end-page: 35
  ident: b0120
  article-title: A new frog family (Anura: Terrarana) from South America and an expanded direct-developing clade revealed by molecular phylogeny
  publication-title: Zootaxa
– volume: 57
  start-page: 420
  year: 2008
  end-page: 431
  ident: b0320
  article-title: Branch lengths, support, and congruence: testing the phylogenomic approach with 20 nuclear loci in snakes
  publication-title: Syst. Biol.
– volume: 17
  start-page: 72
  year: 2008
  end-page: 83
  ident: b0185
  article-title: Around the world in 10 million years: biogeography of the nearly cosmopolitan true toads (Anura: Bufonidae)
  publication-title: Glob. Ecol. Biogeogr.
– reference: Frost, Darrel, R., 2011. Amphibian Species of the World: an Online Reference. Version 5.5 (31 January, 2011). American Museum of Natural History, New York, USA. Electronic Database accessible at
– volume: 9
  start-page: 131
  year: 2009
  ident: b0245
  article-title: Toad radiation reveals into-India dispersal as a source of endemism in the Western Ghats–Sri Lanka biodiversity hotspot
  publication-title: BMC Evol. Biol.
– volume: 294
  start-page: 6
  year: 2005
  end-page: 228
  ident: b0075
  article-title: Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision
  publication-title: Bull. Am. Mus. Natl. Hist.
– volume: 2241
  start-page: 22
  year: 2009
  end-page: 32
  ident: b0200
  article-title: Systematics of the Common Kingsnake (
  publication-title: Zootaxa
– volume: 165
  start-page: 590
  year: 2005
  end-page: 599
  ident: b0355
  article-title: Initial diversification of living amphibians predated the breakup of Pangaea
  publication-title: Am. Nat.
– start-page: 357
  year: 2009
  end-page: 364
  ident: b0020
  article-title: Anura
  publication-title: The Timetree of Life
– volume: 58
  start-page: 1
  year: 1971
  end-page: 238
  ident: b0150
  article-title: Evolutionary relationships, osteology, and zoogeography of leptodactyloid frogs
  publication-title: Misc. Pub. Mus. Natl. Hist. Kansas
– volume: 23
  start-page: 2947
  year: 2007
  end-page: 2948
  ident: b0140
  article-title: ClustalW and ClustalX version 2.0
  publication-title: Bioinformatics
– volume: 56
  start-page: 554
  year: 2010
  end-page: 561
  ident: b0215
  article-title: A multilocus timescale for the origin of extant amphibians
  publication-title: Mol. Phylogenet. Evol.
– volume: 22
  start-page: 34
  year: 2007
  end-page: 41
  ident: b0050
  article-title: The supermatrix approach to systematics
  publication-title: Trends Ecol. Evol.
– volume: 82
  start-page: 55
  year: 2007
  end-page: 56
  ident: b0275
  article-title: Review of “The amphibian tree of life” by Frost et al
  publication-title: Quart. Rev. Biol.
– reference: Wiens, J.J., Morrill, M.C., 2011. Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Syst. Biol.
– volume: 65
  start-page: 115
  year: 2009
  end-page: 128
  ident: b0175
  article-title: Taxonomic freedom and the role of official lists of species names
  publication-title: Herpetologica
– volume: 274
  start-page: 919
  year: 2007
  end-page: 928
  ident: b0315
  article-title: Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders
  publication-title: Proc. Roy. Soc. Lond. B – Biol. Sci.
– volume: 56
  start-page: 543
  year: 2007
  end-page: 563
  ident: b0125
  article-title: Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1
  publication-title: Syst. Biol.
– volume: 1858
  start-page: 339
  year: 1858
  end-page: 352
  ident: b0110
  article-title: On the systematic arrangement of the tailless batrachians and the structure of
  publication-title: Proc. Zool. Soc. Lond.
– volume: 55
  start-page: 871
  year: 2010
  end-page: 882
  ident: b0330
  article-title: An expanded phylogeny of treefrogs (Hylidae) based on nuclear and mitochondrial sequence data
  publication-title: Mol. Phylogenet. Evol.
– volume: 60
  start-page: 466
  year: 2011
  end-page: 481
  ident: b0195
  article-title: Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia
  publication-title: Syst. Biol.
– volume: 9
  start-page: 509
  year: 1998
  end-page: 516
  ident: b0085
  article-title: Molecular evidence for the early history of living amphibians
  publication-title: Mol. Phylogenet. Evol.
– volume: 58
  start-page: 297
  year: 2008
  end-page: 307
  ident: b0280
  article-title: Systematics and herpetology in the age of genomics
  publication-title: Bioscience
– volume: 61
  start-page: 1886
  year: 2007
  end-page: 1899
  ident: b0310
  article-title: Loss and re-evolution of complex life cycles in marsupial frogs: does ancestral trait reconstruction mislead?
  publication-title: Evolution
– volume: 63
  start-page: 1769
  year: 2009
  end-page: 1784
  ident: b0130
  article-title: Can parallel diversification occur in sympatry? Repeated patterns of body-size evolution in coexisting clades of North American salamanders
  publication-title: Evolution
– volume: 168
  start-page: 579
  year: 2006
  end-page: 596
  ident: b0305
  article-title: Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity
  publication-title: Am. Nat.
– volume: 26
  start-page: 227
  year: 2010
  end-page: 261
  ident: b0080
  article-title: The phylogenetic relationships of the charismatic poster frogs, Phyllomedusinae (Anura, Hylidae)
  publication-title: Cladistics
– volume: 425
  start-page: 711
  year: 2003
  end-page: 714
  ident: b0010
  article-title: New frog family from India reveals an ancient biogeographical link with the Seychelles
  publication-title: Nature
– volume: 306
  start-page: 1172
  year: 2004
  end-page: 1174
  ident: b0055
  article-title: Prospects for building the Tree of Life from large sequence databases
  publication-title: Science
– volume: 299
  start-page: 6
  year: 2006
  end-page: 262
  ident: b0100
  article-title: Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae)
  publication-title: Bull. Am. Mus. Natl. Hist.
– volume: 59
  start-page: 185
  year: 2010
  ident: 10.1016/j.ympev.2011.06.012_b0190
  article-title: A likelihood method for assessing molecular divergence time estimates and the placement of fossil calibrations
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syp090
– start-page: 357
  year: 2009
  ident: 10.1016/j.ympev.2011.06.012_b0020
  article-title: Anura
– volume: 31
  start-page: 462
  year: 2004
  ident: 10.1016/j.ympev.2011.06.012_b0045
  article-title: Novel relationships among hyloid frogs inferred from 12S and 16S mitochondrial DNA sequences
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2003.09.003
– volume: 1737
  start-page: 1
  year: 2008
  ident: 10.1016/j.ympev.2011.06.012_b0115
  article-title: New World direct-developing frogs (Anura: Terrarana): molecular phylogeny, classification, biogeography, and conservation
  publication-title: Zootaxa
  doi: 10.11646/zootaxa.1737.1.1
– volume: 306
  start-page: 1172
  year: 2004
  ident: 10.1016/j.ympev.2011.06.012_b0055
  article-title: Prospects for building the Tree of Life from large sequence databases
  publication-title: Science
  doi: 10.1126/science.1102036
– year: 2004
  ident: 10.1016/j.ympev.2011.06.012_b0090
– volume: 2211
  start-page: 1
  year: 2009
  ident: 10.1016/j.ympev.2011.06.012_b0120
  article-title: A new frog family (Anura: Terrarana) from South America and an expanded direct-developing clade revealed by molecular phylogeny
  publication-title: Zootaxa
  doi: 10.11646/zootaxa.2211.1.1
– volume: 22
  start-page: 34
  year: 2007
  ident: 10.1016/j.ympev.2011.06.012_b0050
  article-title: The supermatrix approach to systematics
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2006.10.002
– volume: 44
  start-page: 1017
  year: 2007
  ident: 10.1016/j.ympev.2011.06.012_b0250
  article-title: Nuclear gene phylogeny of narrow-mouthed toads (Family: Microhylidae) and a discussion of competing hypotheses concerning their biogeographical origins
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2007.02.008
– volume: 63
  start-page: 1217
  year: 2009
  ident: 10.1016/j.ympev.2011.06.012_b0325
  article-title: Evolutionary and biogeographic origins of high tropical diversity in Old World frogs (Ranidae)
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2009.00610.x
– volume: 54
  start-page: 391
  year: 2005
  ident: 10.1016/j.ympev.2011.06.012_b0345
  article-title: Mitogenomic perspectives on the origin and phylogeny of living amphibians
  publication-title: Syst. Biol.
  doi: 10.1080/10635150590945278
– volume: 55
  start-page: 579
  year: 2006
  ident: 10.1016/j.ympev.2011.06.012_b0025
  article-title: Phylogeny and biogeography of a cosmopolitan frog radiation: late Cretaceous diversification resulted in continent-scale endemism in the family Ranidae
  publication-title: Syst. Biol.
  doi: 10.1080/10635150600812551
– volume: 57
  start-page: 420
  year: 2008
  ident: 10.1016/j.ympev.2011.06.012_b0320
  article-title: Branch lengths, support, and congruence: testing the phylogenomic approach with 20 nuclear loci in snakes
  publication-title: Syst. Biol.
  doi: 10.1080/10635150802166053
– volume: 58
  start-page: 2517
  year: 2004
  ident: 10.1016/j.ympev.2011.06.012_b0170
  article-title: The history of a Nearctic colonization: molecular phylogenetics and biogeography of the Nearctic Toads (Bufo)
  publication-title: Evolution
  doi: 10.1111/j.0014-3820.2004.tb00881.x
– volume: 22
  start-page: 2688
  year: 2006
  ident: 10.1016/j.ympev.2011.06.012_b0230
  article-title: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl446
– volume: 56
  start-page: 369
  year: 2007
  ident: 10.1016/j.ympev.2011.06.012_b0155
  article-title: Fossils, molecules, divergence times, and the origin of lissamphibians
  publication-title: Syst. Biol.
  doi: 10.1080/10635150701397635
– volume: 106
  start-page: 13410
  year: 2009
  ident: 10.1016/j.ympev.2011.06.012_b0005
  article-title: Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0811087106
– ident: 10.1016/j.ympev.2011.06.012_b0290
  doi: 10.1093/sysbio/syr025
– volume: 61
  start-page: 1886
  year: 2007
  ident: 10.1016/j.ympev.2011.06.012_b0310
  article-title: Loss and re-evolution of complex life cycles in marsupial frogs: does ancestral trait reconstruction mislead?
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2007.00159.x
– volume: 299
  start-page: 6
  year: 2006
  ident: 10.1016/j.ympev.2011.06.012_b0100
  article-title: Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae)
  publication-title: Bull. Am. Mus. Natl. Hist.
  doi: 10.1206/0003-0090(2006)299[1:PSODFA]2.0.CO;2
– volume: 58
  start-page: 425
  year: 2009
  ident: 10.1016/j.ympev.2011.06.012_b0220
  article-title: Experimental design in caecilian systematics: phylogenetic information of mitochondrial genomes and nuclear RAG1
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syp043
– volume: 17
  start-page: 72
  year: 2008
  ident: 10.1016/j.ympev.2011.06.012_b0185
  article-title: Around the world in 10 million years: biogeography of the nearly cosmopolitan true toads (Anura: Bufonidae)
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/j.1466-8238.2007.00348.x
– year: 1994
  ident: 10.1016/j.ympev.2011.06.012_b0065
– volume: 170
  start-page: S86
  year: 2007
  ident: 10.1016/j.ympev.2011.06.012_b0270
  article-title: Global patterns of diversification and species richness in amphibians
  publication-title: Am. Nat.
  doi: 10.1086/519396
– volume: 12
  start-page: 319
  year: 1920
  ident: 10.1016/j.ympev.2011.06.012_b0165
  article-title: Algumas consideracões sobre Holoaden lüderwaldti e generos correlatos
  publication-title: Rev. Mus. Paulista, São Paulo
– volume: 82
  start-page: 55
  year: 2007
  ident: 10.1016/j.ympev.2011.06.012_b0275
  article-title: Review of “The amphibian tree of life” by Frost et al
  publication-title: Quart. Rev. Biol.
  doi: 10.1086/513362
– volume: 168
  start-page: 579
  year: 2006
  ident: 10.1016/j.ympev.2011.06.012_b0305
  article-title: Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity
  publication-title: Am. Nat.
  doi: 10.1086/507882
– volume: 53
  start-page: 492
  year: 2009
  ident: 10.1016/j.ympev.2011.06.012_b0335
  article-title: Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2009.07.010
– volume: 59
  start-page: 42
  year: 2010
  ident: 10.1016/j.ympev.2011.06.012_b0240
  article-title: Sparse supermatrices for phylogenetic inference. taxonomy, alignment, rogue taxa, and the phylogeny of living turtles
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syp075
– volume: 23
  start-page: 2947
  year: 2007
  ident: 10.1016/j.ympev.2011.06.012_b0140
  article-title: ClustalW and ClustalX version 2.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm404
– volume: 165
  start-page: 590
  year: 2005
  ident: 10.1016/j.ympev.2011.06.012_b0355
  article-title: Initial diversification of living amphibians predated the breakup of Pangaea
  publication-title: Am. Nat.
  doi: 10.1086/429523
– volume: 59
  start-page: 623
  year: 2011
  ident: 10.1016/j.ympev.2011.06.012_b0260
  article-title: A multigenic perspective on phylogenetic relationships in the largest family of salamanders, the Plethodontidae
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2011.03.012
– year: 2005
  ident: 10.1016/j.ympev.2011.06.012_b0135
– volume: 26
  start-page: 227
  year: 2010
  ident: 10.1016/j.ympev.2011.06.012_b0080
  article-title: The phylogenetic relationships of the charismatic poster frogs, Phyllomedusinae (Anura, Hylidae)
  publication-title: Cladistics
  doi: 10.1111/j.1096-0031.2009.00287.x
– volume: 56
  start-page: 543
  year: 2007
  ident: 10.1016/j.ympev.2011.06.012_b0125
  article-title: Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1
  publication-title: Syst. Biol.
  doi: 10.1080/10635150701477825
– volume: 58
  start-page: 2809
  year: 2004
  ident: 10.1016/j.ympev.2011.06.012_b0040
  article-title: Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders
  publication-title: Evolution
  doi: 10.1111/j.0014-3820.2004.tb01632.x
– volume: 65
  start-page: 1283
  year: 2011
  ident: 10.1016/j.ympev.2011.06.012_b0285
  article-title: Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and re-evaluating Dollo’s law
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2011.01221.x
– volume: 58
  start-page: 329
  year: 2011
  ident: 10.1016/j.ympev.2011.06.012_b0205
  article-title: The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2010.11.006
– volume: 297
  start-page: 8
  year: 2006
  ident: 10.1016/j.ympev.2011.06.012_b0095
  article-title: The amphibian tree of life
  publication-title: Bull. Am. Mus. Natl. Hist.
  doi: 10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2
– volume: 104
  start-page: 887
  year: 2007
  ident: 10.1016/j.ympev.2011.06.012_b0210
  article-title: Global patterns of diversification in the history of modern amphibians
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0608378104
– year: 1999
  ident: 10.1016/j.ympev.2011.06.012_b0060
– volume: 54
  start-page: 91
  year: 2005
  ident: 10.1016/j.ympev.2011.06.012_b0295
  article-title: Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships
  publication-title: Syst. Biol.
  doi: 10.1080/10635150590906037
– volume: 306
  start-page: 1783
  year: 2004
  ident: 10.1016/j.ympev.2011.06.012_b0235
  article-title: Status and trends of amphibian declines and extinctions worldwide
  publication-title: Science
  doi: 10.1126/science.1103538
– volume: 274
  start-page: 919
  year: 2007
  ident: 10.1016/j.ympev.2011.06.012_b0315
  article-title: Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders
  publication-title: Proc. Roy. Soc. Lond. B – Biol. Sci.
  doi: 10.1098/rspb.2006.0301
– volume: 5
  start-page: 203
  year: 1990
  ident: 10.1016/j.ympev.2011.06.012_b0015
  article-title: Declining amphibian populations – a global phenomenon
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/0169-5347(90)90129-2
– volume: 37
  start-page: 199
  year: 1984
  ident: 10.1016/j.ympev.2011.06.012_b0145
  article-title: Heterogeneidad de la familia Caeciliidae (Amphibia–Apoda)
  publication-title: Acta Zool. Lilloana
– volume: 106
  start-page: 8267
  year: 2009
  ident: 10.1016/j.ympev.2011.06.012_b0255
  article-title: Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0810821106
– volume: 279
  start-page: 86
  year: 2009
  ident: 10.1016/j.ympev.2011.06.012_b0030
  article-title: A new genus and species of lungless salamander (family Plethodontidae) from the Appalachian highlands of the south-eastern United States
  publication-title: J. Zool.
  doi: 10.1111/j.1469-7998.2009.00593.x
– volume: 58
  start-page: 297
  year: 2008
  ident: 10.1016/j.ympev.2011.06.012_b0280
  article-title: Systematics and herpetology in the age of genomics
  publication-title: Bioscience
  doi: 10.1641/B580405
– volume: 54
  start-page: 719
  year: 2005
  ident: 10.1016/j.ympev.2011.06.012_b0300
  article-title: Hylid frog phylogeny and sampling strategies for speciose clades
  publication-title: Syst. Biol.
  doi: 10.1080/10635150500234625
– year: 2009
  ident: 10.1016/j.ympev.2011.06.012_b0035
– volume: 9
  start-page: 131
  year: 2009
  ident: 10.1016/j.ympev.2011.06.012_b0245
  article-title: Toad radiation reveals into-India dispersal as a source of endemism in the Western Ghats–Sri Lanka biodiversity hotspot
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-9-131
– ident: 10.1016/j.ympev.2011.06.012_b0350
– volume: 58
  start-page: 1
  year: 1971
  ident: 10.1016/j.ympev.2011.06.012_b0150
  article-title: Evolutionary relationships, osteology, and zoogeography of leptodactyloid frogs
  publication-title: Misc. Pub. Mus. Natl. Hist. Kansas
– volume: 55
  start-page: 818
  year: 2006
  ident: 10.1016/j.ympev.2011.06.012_b0160
  article-title: Phylogenetic supermatrix analysis of GenBank sequences from 2228 papilionoid legumes
  publication-title: Syst. Biol.
  doi: 10.1080/10635150600999150
– volume: 56
  start-page: 252
  year: 2010
  ident: 10.1016/j.ympev.2011.06.012_b0180
  article-title: Rediscovery of Protohynobius puxiongensis (Caudata: Hynobiidae) and its phylogenetic position based on complete mitochondrial genomes
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2009.12.011
– volume: 32
  start-page: 1792
  year: 2004
  ident: 10.1016/j.ympev.2011.06.012_b0070
  article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gkh340
– volume: 56
  start-page: 554
  year: 2010
  ident: 10.1016/j.ympev.2011.06.012_b0215
  article-title: A multilocus timescale for the origin of extant amphibians
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2010.04.019
– volume: 60
  start-page: 466
  year: 2011
  ident: 10.1016/j.ympev.2011.06.012_b0195
  article-title: Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syr047
– volume: 1858
  start-page: 339
  year: 1858
  ident: 10.1016/j.ympev.2011.06.012_b0110
  article-title: On the systematic arrangement of the tailless batrachians and the structure of Rhinophrynus dorsalis
  publication-title: Proc. Zool. Soc. Lond.
  doi: 10.1111/j.1469-7998.1858.tb06387.x
– volume: 2241
  start-page: 22
  year: 2009
  ident: 10.1016/j.ympev.2011.06.012_b0200
  article-title: Systematics of the Common Kingsnake (Lampropeltis getula; Serpentes: Colubridae) and the burden of heritage in taxonomy
  publication-title: Zootaxa
  doi: 10.11646/zootaxa.2241.1.2
– volume: 55
  start-page: 871
  year: 2010
  ident: 10.1016/j.ympev.2011.06.012_b0330
  article-title: An expanded phylogeny of treefrogs (Hylidae) based on nuclear and mitochondrial sequence data
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2010.03.013
– volume: 2100
  start-page: 1
  year: 2009
  ident: 10.1016/j.ympev.2011.06.012_b0105
  article-title: Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni
  publication-title: Zootaxa
  doi: 10.11646/zootaxa.2100.1.1
– volume: 52
  start-page: 528
  year: 2003
  ident: 10.1016/j.ympev.2011.06.012_b0265
  article-title: Missing data, incomplete taxa, and phylogenetic accuracy
  publication-title: Syst. Biol.
  doi: 10.1080/10635150390218330
– volume: 53
  start-page: 479
  year: 2009
  ident: 10.1016/j.ympev.2011.06.012_b0340
  article-title: A mitogenomic perspective on the phylogeny and biogeography of living caecilians (Amphibia: Gymnophiona)
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2009.06.018
– volume: 9
  start-page: 509
  year: 1998
  ident: 10.1016/j.ympev.2011.06.012_b0085
  article-title: Molecular evidence for the early history of living amphibians
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1006/mpev.1998.0500
– volume: 7
  start-page: 448
  year: 2009
  ident: 10.1016/j.ympev.2011.06.012_b0225
  article-title: Amazonian amphibian diversity is primarily derived from Late Miocene Andean lineages
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000056
– volume: 63
  start-page: 1769
  year: 2009
  ident: 10.1016/j.ympev.2011.06.012_b0130
  article-title: Can parallel diversification occur in sympatry? Repeated patterns of body-size evolution in coexisting clades of North American salamanders
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2009.00680.x
– volume: 65
  start-page: 115
  year: 2009
  ident: 10.1016/j.ympev.2011.06.012_b0175
  article-title: Taxonomic freedom and the role of official lists of species names
  publication-title: Herpetologica
  doi: 10.1655/08-031R1.1
– volume: 425
  start-page: 711
  year: 2003
  ident: 10.1016/j.ympev.2011.06.012_b0010
  article-title: New frog family from India reveals an ancient biogeographical link with the Seychelles
  publication-title: Nature
  doi: 10.1038/nature02019
– volume: 294
  start-page: 6
  year: 2005
  ident: 10.1016/j.ympev.2011.06.012_b0075
  article-title: Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision
  publication-title: Bull. Am. Mus. Natl. Hist.
  doi: 10.1206/0003-0090(2005)294[0001:SROTFF]2.0.CO;2
SSID ssj0011595
Score 2.584612
Snippet [Display omitted] ► Large-scale molecular phylogenetic estimate for Amphibia. ► Based on 2871 species: 41 caecilians, 436 salamanders, and 2394 frogs. ►...
The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (>6800 species). Despite much recent focus on their conservation,...
The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (6800 species). Despite much recent focus on their conservation,...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 543
SubjectTerms Amphibia
Animals
Anura
Anura - classification
Anura - genetics
Apoda
Bayes Theorem
caecilians
Caudata
Cell Nucleus
Cell Nucleus - genetics
Ceratophryidae
Classification
data collection
DNA, Mitochondrial
DNA, Mitochondrial - genetics
Evolution
Frogs
Genes
genetics
Gymnophiona
Leptodactylidae
Likelihood Functions
Lissamphibia
Phylogeny
Recognition
Rhinodermatidae
salamanders and newts
Sampling
Sequence Analysis, DNA
Strategy
Supermatrix
Systematics
taxonomy
Urodela
Urodela - classification
Urodela - genetics
Vertebrates
Title A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians
URI https://dx.doi.org/10.1016/j.ympev.2011.06.012
https://www.ncbi.nlm.nih.gov/pubmed/21723399
https://www.proquest.com/docview/1672061035
https://www.proquest.com/docview/1770327026
https://www.proquest.com/docview/890677029
https://www.proquest.com/docview/907179578
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFH90HYNdxr7rbisa7Fg3tmTL0TGElawdZawt5CYkWS4ZwS51Ushlf8D-6r0n24EdksNOAfFk4vd7evpJfh8AX1QiqxJpRUxZkHFGZoznLBGLPHEll4VxXbXPKzm7zS7m-fwApkMuDIVV9r6_8-nBW_cjo16bo_vFYnRNrR0LhUZJVUQLNacM9qwgKz_7vQ3zQMITOq-QcEzSQ-WhEOO1QWr62NfxlGdJynftTk8q0-zmoGEvOn8JL3oSySbd_3wFB75-Dc-6tpKbN_BnwpYU4B23CIBnqEgc9_WGNRWbIHqUJcIWtVuuaeNiFMTJOFI6RmmXeHI-ZaYumWEUAdz6kjli2BRSFFCkp6BHR0RY9dDcoXRr0Ky6LJluqjP4HLo_ad_CzfnXm-ks7nsuxC7P5Cq2BlEVktJjlXWZ4WOLq7oUpnLOjV0qeSV8UkpRkZS0MkcGY1WaWxysuHgHh3VT-yNgDlVvS6RLVOIoSey4EngY8wZdTKmEdRHwQdXa9fXIqS3GUg-BZ790wEcTPprC71Iewel20n1XjmO_uBww1P9YlcYNY__EI0Rcmzv0tPr2mtO9UPBvQkTweTADjUuRvq-Y2jfrVqey4EiPEpHvkSnw_SkHUEbAdsig7iWKcbVbRNExXKFqI3jfWeJWHdRxTCDtPP7fd_8Az8PFeUi4_AiHq4e1_4TMa2VPwtI6gaeT6c_vP-j32-Xs6i-YaywY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgSXimeb8jIS3JpuYifO5sBhBVRbWnrpVtqbZTtOtWiVVM0uaC_8AH4Ov5AZJ1mJw-4BqVdrbDkz45nPzjwA3ueRLAuEFSFlQYYJqTHes0Qo0sgWXGbattU-L-T4Kvk6Tac78KfPhaGwys72tzbdW-tuZNBxc3Azmw0uqbVjlqNSUhXRLJ92kZVnbvUT723Nx9PPKOQPnJ98mXwah11rgdCmiVyERuPmhaQs0NzYRPOhQeUthC6ttUMbS14KFxVSlEQljUzRUZs8Tg0OllTsAM3-_QStBXVNOP61DitBgOU7vdDmQtpdX-nIx5StEAr_6OqGyuMo5pu84b1S15sxr_d9J49hrwOtbNTy5QnsuOopPGjbWK6ewe8Rm1NAedigwB1DweG4q1asLtkItYWyUtissvMlOUpGQaOMI4RklOaJN_UjpquCaUYRx40rmCVETyFMXmtoFfQgqAGsvK2vkbrRqMZtVk471Wpch95rmucwuQtBvIDdqq7cATCLrDcFwjMqqRRFZlgKvPw5jSatyIWxAfCe1cp29c-pDcdc9YFu35WXjyL5KAr3i3kAR-tJN235j-3kspeh-keLFTqo7RMPUOJKX6NlV1eXnN6hvD0VIoB3vRooPPr0P0dXrl42KpYZRzgWiXQLTYbfTzmHMgC2gQZ5L5GM55tJcrr258jaAPZbTVyzgzqcCYS5h__77W_h4Xjy7Vydn16cvYRH_tHeJ3u-gt3F7dK9RtS3MG_8MWOg7vhY_wXv5GZL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+large-scale+phylogeny+of+Amphibia+including+over+2800+species%2C+and+a+revised+classification+of+extant+frogs%2C+salamanders%2C+and+caecilians&rft.jtitle=Molecular+phylogenetics+and+evolution&rft.au=Pyron%2C+RAlexander&rft.au=Wiens%2C+John+J&rft.date=2011-11-01&rft.issn=1055-7903&rft.volume=61&rft.issue=2&rft.spage=543&rft.epage=583&rft_id=info:doi/10.1016%2Fj.ympev.2011.06.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-7903&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-7903&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-7903&client=summon