Integrated simulation-based dynamic traffic and transit assignment model for large-scale network

Although the traffic and transit assignment processes are intertwined, the interactions between them are usually ignored in practice, especially for large-scale networks. In this paper, we build a simulation-based traffic and transit assignment model that preserves the interactions between the two a...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of civil engineering Vol. 47; no. 8; pp. 898 - 907
Main Authors Kamel, Islam, Shalaby, Amer, Abdulhai, Baher
Format Journal Article
LanguageEnglish
Published 1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7 NRC Research Press 01.08.2020
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text
ISSN0315-1468
1208-6029
DOI10.1139/cjce-2018-0706

Cover

Abstract Although the traffic and transit assignment processes are intertwined, the interactions between them are usually ignored in practice, especially for large-scale networks. In this paper, we build a simulation-based traffic and transit assignment model that preserves the interactions between the two assignment processes for the large-scale network of the Greater Toronto Area during the morning peak. This traffic assignment model is dynamic, user-equilibrium seeking, and includes surface transit routes. It utilizes the congested travel times, determined by the dynamic traffic assignment, rather than using predefined timetables. Unlike the static transit assignment models, the proposed transit model distinguishes between different intervals within the morning peak by using the accurate demand, transit schedule, and time-based road level-of-service. The traffic and transit assignment models are calibrated against actual field observations. The resulting dynamic model is suitable for testing different demand management strategies that impose dynamic changes on multiple modes simultaneously.
AbstractList Although the traffic and transit assignment processes are intertwined, the interactions between them are usually ignored in practice, especially for large-scale networks. In this paper, we build a simulation-based traffic and transit assignment model that preserves the interactions between the two assignment processes for the large-scale network of the Greater Toronto Area during the morning peak. This traffic assignment model is dynamic, user-equilibrium seeking, and includes surface transit routes. It utilizes the congested travel times, determined by the dynamic traffic assignment, rather than using predefined timetables. Unlike the static transit assignment models, the proposed transit model distinguishes between different intervals within the morning peak by using the accurate demand, transit schedule, and time-based road level-of-service. The traffic and transit assignment models are calibrated against actual field observations. The resulting dynamic model is suitable for testing different demand management strategies that impose dynamic changes on multiple modes simultaneously.
Although the traffic and transit assignment processes are intertwined, the interactions between them are usually ignored in practice, especially for large-scale networks. In this paper, we build a simulation-based traffic and transit assignment model that preserves the interactions between the two assignment processes for the large-scale network of the Greater Toronto Area during the morning peak. This traffic assignment model is dynamic, user-equilibrium seeking, and includes surface transit routes. It utilizes the congested travel times, determined by the dynamic traffic assignment, rather than using predefined timetables. Unlike the static transit assignment models, the proposed transit model distinguishes between different intervals within the morning peak by using the accurate demand, transit schedule, and time-based road level-of-service. The traffic and transit assignment models are calibrated against actual field observations. The resulting dynamic model is suitable for testing different demand management strategies that impose dynamic changes on multiple modes simultaneously. Key words: dynamic traffic assignment, dynamic transit assignment, large-scale network, multimodal transportation model, in-vehicle congestion, out-of-vehicle congestion. Bien que les processus d'affectation de la circulation routiere et des services de transport en commun soient etroitement lies, les interactions entre eux sont generalement ignorees dans la pratique, en particulier pour les reseaux a grande echelle. Dans le cadre de cette etude, nous elaborons un modele d'affectation base sur la simulation de la circulation et du transport en commun qui preserve les interactions entre les deux processus d'affectation pour le reseau a grande echelle de la region du Grand Toronto, et ce, pendant l'heure de pointe du matin. Le modele d'affectation du trafic est dynamique, ciblant une ponderation des utilisateurs, et il comprend les itineraires de transport en commun de surface. Pour le transport en commun, le modele utilise les periodes de congestion des deplacements, determinees par l'affectation dynamique du trafic, plutot que d'utiliser des horaires predefinis. Contrairement aux modeles statiques d'affectation des services de transport en commun, le modele de transport en commun propose etablit une distinction entre differents intervalles au cours de la pointe du matin en utilisant la demande exacte, l'horaire des services de transport en commun et le niveau de service routier etabli en fonction de la periode. Les modeles d'affectation du trafic et du transport en commun sont etalonnes en fonction des observations reelles sur le terrain. Le modele dynamique qui en decoule est adapte pour tester differentes strategies de gestion de la demande qui imposent des changements dynamiques sur plusieurs modes simultanement. [Traduit par la Redaction] Mots-cles : affectation dynamique du trafic, affectation dynamique des services de transport en commun, reseau a grande echelle, modele de transport multimodal, engorgement dans les vehicules de transport en commun, congestion sur les routes.
Abstract_FL Bien que les processus d’affectation de la circulation routière et des services de transport en commun soient étroitement liés, les interactions entre eux sont généralement ignorées dans la pratique, en particulier pour les réseaux à grande échelle. Dans le cadre de cette étude, nous élaborons un modèle d’affectation basé sur la simulation de la circulation et du transport en commun qui préserve les interactions entre les deux processus d’affectation pour le réseau à grande échelle de la région du Grand Toronto, et ce, pendant l’heure de pointe du matin. Le modèle d’affectation du trafic est dynamique, ciblant une pondération des utilisateurs, et il comprend les itinéraires de transport en commun de surface. Pour le transport en commun, le modèle utilise les périodes de congestion des déplacements, déterminées par l’affectation dynamique du trafic, plutôt que d’utiliser des horaires prédéfinis. Contrairement aux modèles statiques d’affectation des services de transport en commun, le modèle de transport en commun proposé établit une distinction entre différents intervalles au cours de la pointe du matin en utilisant la demande exacte, l’horaire des services de transport en commun et le niveau de service routier établi en fonction de la période. Les modèles d’affectation du trafic et du transport en commun sont étalonnés en fonction des observations réelles sur le terrain. Le modèle dynamique qui en découle est adapté pour tester différentes stratégies de gestion de la demande qui imposent des changements dynamiques sur plusieurs modes simultanément. [Traduit par la Rédaction]
Audience Academic
Author Abdulhai, Baher
Shalaby, Amer
Kamel, Islam
Author_xml – sequence: 1
  givenname: Islam
  surname: Kamel
  fullname: Kamel, Islam
  organization: University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada
– sequence: 2
  givenname: Amer
  surname: Shalaby
  fullname: Shalaby, Amer
– sequence: 3
  givenname: Baher
  surname: Abdulhai
  fullname: Abdulhai, Baher
  organization: University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada
BookMark eNqVkk1v1DAQhi1UJLaFK-cITkik2HGcTY6rqpSVKpD4OJuJPU69JM7WdgT993VYJLooCCEfxho979gz856SEzc6JOQ5o-eM8eaN2inMC8rqnK5p9YisWEHrvKJFc0JWlDORs7Kqn5DTEHaUMsp5syJfty5i5yGizoIdph6iHV3eQkgJfedgsCqLHoxJEZye7y7YmEEItnMDupgNo8Y-M6PPevAd5kFBj5nD-H30356Sxwb6gM9-xTPy5e3l54t3-fWHq-3F5jpXoqxi3grdarUGUxbAVN1yA9AIWreNUWC0annNtDFiTUsmhGkaTttWmwqNKqkAzs_Iy0PdvR9vJwxR7sbJu_SkLMqibhrKRfmb6tIXpXVmTP2owQYlNxUvasGpKBKVL1AdOvTQp6Ebm9JH_IsFXu3trXwInS9A6WhMM16s-upIkJiIP2IHUwhy--njf7Dvj9nXD9h2CtZhWmbaancTw0GyWfi38mMIHo3cezuAv5OMytl4cjaenI0nZ-MlQfmHQNn401apYdv_XcYOMueVx4Dg1c2_nroHBi3sqQ
CitedBy_id crossref_primary_10_1016_j_physa_2022_128252
crossref_primary_10_1109_TITS_2023_3266461
crossref_primary_10_1016_j_cstp_2021_06_013
crossref_primary_10_2514_1_I010954
crossref_primary_10_1016_j_procs_2023_03_017
crossref_primary_10_1016_j_tranpol_2020_04_002
crossref_primary_10_15388_21_INFOR449
crossref_primary_10_1016_j_trd_2018_04_011
crossref_primary_10_3390_s21217341
crossref_primary_10_1177_03611981241243080
Cites_doi 10.1287/trsc.9.2.115
10.1016/j.trb.2014.01.003
10.1080/0144164032000048922
10.1061/(ASCE)0733-947X(2007)133:10(549)
10.1007/978-3-319-33681-7_37
10.1002/atr.5670180205
10.1007/s11116-011-9358-5
10.1061/(ASCE)0733-947X(2004)130:1(56)
10.17226/22313
10.1016/j.trc.2016.01.003
10.1016/0191-2615(89)90034-9
10.1109/MITS.2017.2776123
10.1016/S0191-2615(99)00029-6
10.1016/j.trb.2011.02.006
10.1287/trsc.27.2.133
10.1016/j.tra.2016.10.005
ContentType Journal Article
Copyright COPYRIGHT 2020 NRC Research Press
2020 Published by NRC Research Press
Copyright_xml – notice: COPYRIGHT 2020 NRC Research Press
– notice: 2020 Published by NRC Research Press
DBID AAYXX
CITATION
N95
ISN
ISR
7ST
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
SOI
DOI 10.1139/cjce-2018-0706
DatabaseName CrossRef
Gale Business: Insights
Gale In Context: Canada
Gale In Context: Science
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts




CrossRef




DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1208-6029
EndPage 907
ExternalDocumentID A632853052
10_1139_cjce_2018_0706
cjce-2018-0706
GeographicLocations Ontario
GeographicLocations_xml – name: Ontario
GroupedDBID 02
0R
1AW
29B
3V.
4.4
4IJ
4S
5GY
5RP
7XC
88I
8AF
8FE
8FG
8FH
8FQ
8RP
AAIKC
AAYJJ
ABDBF
ABJCF
ABPTK
ABUWG
ACGFS
ACGOD
ACIWK
ADKZR
AENEX
AFKRA
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
AZQEC
BCR
BCU
BEC
BENPR
BES
BGLVJ
BHPHI
BLC
BPHCQ
CAG
COF
CS3
D8U
DU5
DWQXO
EAD
EAP
EAS
EBS
ECC
EDH
EDO
EJD
EMK
EPL
EST
ESX
GNUQQ
HCIFZ
HZ
I-F
IAO
ICQ
IEA
IOF
ISN
ISR
ITC
L6V
L7B
LA8
M2P
M2Q
M3C
M3E
M3G
M7S
MV1
N95
NMEPN
NRXXU
NYCZX
O9-
OVD
P2P
PATMY
PEA
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
PYCSY
QF4
QM1
QN7
QO4
QRP
RIG
RRCRK
RRP
SJFOW
TAE
TUS
U5U
X
XHC
-~X
..I
.4S
.DC
00T
0R~
2QL
6J9
AAMNW
AAYXX
ABJNI
ACGFO
ACUHS
AEGXH
AEUYN
AIAGR
CCPQU
CITATION
DATHI
HZ~
IPNFZ
ONR
PHGZM
PHGZT
PQGLB
PV9
RZL
TEORI
VQG
~02
7ST
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
SOI
ID FETCH-LOGICAL-c546t-b5dbdc7af42a1c8b3faa9508b9fcafdcb381dff5704155f9930bbdf6efc405a33
ISSN 0315-1468
IngestDate Sat Aug 16 17:22:19 EDT 2025
Tue Feb 18 22:48:33 EST 2025
Wed Feb 12 07:59:47 EST 2025
Tue Jun 10 15:33:18 EDT 2025
Wed Feb 12 07:06:10 EST 2025
Fri Feb 14 02:57:58 EST 2025
Fri Feb 14 02:49:32 EST 2025
Fri May 23 02:00:58 EDT 2025
Thu Jul 10 08:04:09 EDT 2025
Thu Apr 24 22:53:01 EDT 2025
Wed Nov 11 00:35:04 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c546t-b5dbdc7af42a1c8b3faa9508b9fcafdcb381dff5704155f9930bbdf6efc405a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2428990354
PQPubID 47617
PageCount 10
ParticipantIDs gale_incontextgauss_ISN_A632853052
gale_infotracacademiconefile_A632853052
gale_incontextgauss_ISR_A632853052
crossref_primary_10_1139_cjce_2018_0706
gale_infotracgeneralonefile_A632853052
gale_infotraccpiq_632853052
nrcresearch_primary_10_1139_cjce_2018_0706
proquest_journals_2428990354
crossref_citationtrail_10_1139_cjce_2018_0706
gale_businessinsightsgauss_A632853052
gale_infotracmisc_A632853052
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace 1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7
PublicationPlace_xml – name: 1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7
– name: Ottawa
PublicationTitle Canadian journal of civil engineering
PublicationYear 2020
Publisher NRC Research Press
Canadian Science Publishing NRC Research Press
Publisher_xml – name: NRC Research Press
– name: Canadian Science Publishing NRC Research Press
References refg18/ref18
refg20/ref20
refg22/ref22
refg9/ref9
refg11/ref11
refg25/ref25
refg6/ref6
refg15/ref15
refg14/ref14
refg8/ref8
refg5/ref5
refg2/ref2
refg23/ref23
refg17/ref17
refg19/ref19
refg21/ref21
refg7/ref7
refg4/ref4
refg10/ref10
refg12/ref12
refg1/ref1
Aboudina A. (refg3/ref3) 2017; 10
refg24/ref24
refg16/ref16
refg13/ref13
References_xml – ident: refg6/ref6
  doi: 10.1287/trsc.9.2.115
– ident: refg22/ref22
  doi: 10.1016/j.trb.2014.01.003
– ident: refg10/ref10
  doi: 10.1080/0144164032000048922
– ident: refg7/ref7
– ident: refg18/ref18
  doi: 10.1061/(ASCE)0733-947X(2007)133:10(549)
– ident: refg11/ref11
  doi: 10.1007/978-3-319-33681-7_37
– ident: refg5/ref5
– ident: refg23/ref23
  doi: 10.1002/atr.5670180205
– ident: refg25/ref25
  doi: 10.1007/s11116-011-9358-5
– ident: refg4/ref4
  doi: 10.1061/(ASCE)0733-947X(2004)130:1(56)
– ident: refg15/ref15
  doi: 10.17226/22313
– ident: refg17/ref17
  doi: 10.1016/j.trc.2016.01.003
– ident: refg20/ref20
– ident: refg19/ref19
  doi: 10.1016/0191-2615(89)90034-9
– ident: refg1/ref1
– volume: 10
  start-page: 95
  issue: 1
  year: 2017
  ident: refg3/ref3
  publication-title: IEEE Intelligent Transportation Systems Magazine
  doi: 10.1109/MITS.2017.2776123
– ident: refg13/ref13
– ident: refg16/ref16
  doi: 10.1016/S0191-2615(99)00029-6
– ident: refg21/ref21
  doi: 10.1016/j.trb.2011.02.006
– ident: refg8/ref8
  doi: 10.1287/trsc.27.2.133
– ident: refg14/ref14
– ident: refg2/ref2
  doi: 10.1016/j.tra.2016.10.005
– ident: refg9/ref9
– ident: refg12/ref12
– ident: refg24/ref24
SSID ssj0010339
Score 2.2799814
Snippet Although the traffic and transit assignment processes are intertwined, the interactions between them are usually ignored in practice, especially for...
SourceID proquest
gale
crossref
nrcresearch
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 898
SubjectTerms affectation dynamique des services de transport en commun
affectation dynamique du trafic
Computer simulation
congestion sur les routes
Dynamic models
dynamic traffic assignment
dynamic transit assignment
engorgement dans les véhicules de transport en commun
in-vehicle congestion
large-scale network
modèle de transport multimodal
multimodal transportation model
out-of-vehicle congestion
réseau à grande échelle
Schedules
Simulation
Strategic planning (Business)
Timetables
Traffic assignment
Traffic congestion
Traffic models
Transport
Transportation models
Travel time
Title Integrated simulation-based dynamic traffic and transit assignment model for large-scale network
URI http://www.nrcresearchpress.com/doi/abs/10.1139/cjce-2018-0706
https://www.proquest.com/docview/2428990354
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCe6EHxFOEBmQhoBLR0s16n8ekULVI9FBaqbfF60cTlG5LN-GA-PHM2M4-2iJaLqtoPfFuPF9mxvb4G0LeRDwo4izyvTTUzAtDFnscIgMP7GUqFFeJMqUTvhzEe8fh55PopNf73T5dsig-iF83niv5H63CPdArnpK9g2brTuEGfAb9whU0DNdb6Xh_xfUgh9XszBXi8tAxyaG0peaxBgSyRNhMSXRMM6wtg2kbJg3AVMIxuYZzzAn3KtCZGpY2ObwdudY0Bi2uCTH7OZsPVUNpWJtvfmZ3_w3i6lWcKQfMGa3iRlGz8ySXc1cWe8KnrsGtRARNHpxL1DjcqdMFOwkk5nDWKPLwlJd1O9bWBvD92HcLHs4YW_pNB7q0ZVnTLG056cyWyr1u_xnSp4rvQgFQRvB6iX-FaNu47q7APbIeJAlu8q-PJx8nu-tNBQxTia5-eUf6CQ_Z7vbQCWqca98oL4UjbJpec_Qmejl6SB64aQcdWww9Ij1VPiYbLTLKJ-RbgyZ6FU3UoYk6NFFAE3Voog2aqEETBTTRFpqoQ9NTcrz76Whnz3P1NzwRhfHCKyJZSJFwHQZ8JNKCac6xaHCRacG1FAVEe1LrKEGah0hDpOsXhdSx0gKmAZyxZ2StPC_Vc0LDkYTYWo6UkH6osrgQMReMK8ZZhjvZfeKtBjAXjpwea6TMczNJZVmOA57jgOc44H2yVctfWFqWv0q-RX3krqYrXCpc9apO-bKq8nHMAghY_Sjok9dGDjlRSky6sgL7Xw9uI3TYEdpyQvocfoPg7qALjARyrXUkNzuS4mL2I2-1vuu0nloe-pu6GXQEwUGITvP7FhT_OVyDFVJzZ0-qHML4FKJWFoUv7tLXJrnfmIkBWVtcLtVLCOEXxSv3T_sDMan0LQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+simulation-based+dynamic+traffic+and+transit+assignment+model+for+large-scale+network&rft.jtitle=Canadian+journal+of+civil+engineering&rft.au=Kamel%2C+Islam&rft.au=Shalaby%2C+Amer&rft.au=Abdulhai%2C+Baher&rft.date=2020-08-01&rft.pub=NRC+Research+Press&rft.issn=0315-1468&rft.eissn=1208-6029&rft.volume=47&rft.issue=8&rft.spage=898&rft.epage=907&rft_id=info:doi/10.1139%2Fcjce-2018-0706&rft.externalDocID=cjce-2018-0706
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0315-1468&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0315-1468&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0315-1468&client=summon