Optimization of Supervised Cluster Analysis for Extracting Reference Tissue Input Curves in (R)-[11C]PK11195 Brain PET Studies
Performance of two supervised cluster analysis (SVCA) algorithms for extracting reference tissue curves was evaluated to improve quantification of dynamic (R)-[11C]PK11195 brain positron emission tomography (PET) studies. Reference tissues were extracted from images using both a manually defined cer...
Saved in:
Published in | Journal of cerebral blood flow and metabolism Vol. 32; no. 8; pp. 1600 - 1608 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.08.2012
Nature Publishing Group Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Performance of two supervised cluster analysis (SVCA) algorithms for extracting reference tissue curves was evaluated to improve quantification of dynamic (R)-[11C]PK11195 brain positron emission tomography (PET) studies. Reference tissues were extracted from images using both a manually defined cerebellum and SVCA algorithms based on either four (SVCA4) or six (SVCA6) kinetic classes. Data from controls, mild cognitive impairment patients, and patients with Alzheimer's disease were analyzed using various kinetic models including plasma input, the simplified reference tissue model (RPM) and RPM with vascular correction (RPMVb). In all subject groups, SVCA-based reference tissue curves showed lower blood volume fractions (Vb) and volume of distributions than those based on cerebellum time-activity curve. Probably resulting from the presence of specific signal from the vessel walls that contains in normal condition a significant concentration of the 18 kDa translocation protein. Best contrast between subject groups was seen using SVCA4-based reference tissues as the result of a lower number of kinetic classes and the prior removal of extracerebral tissues. In addition, incorporation of Vb in RPM improved both parametric images and binding potential contrast between groups. Incorporation of Vb within RPM, together with SVCA4, appears to be the method of choice for analyzing cerebral (R)-[11C]PK11195 neurodegeneration studies. |
---|---|
AbstractList | Performance of two supervised cluster analysis (SVCA) algorithms for extracting reference tissue curves was evaluated to improve quantification of dynamic (R)-[ super(11)C]PK11195 brain positron emission tomography (PET) studies. Reference tissues were extracted from images using both a manually defined cerebellum and SVCA algorithms based on either four (SVCA4) or six (SVCA6) kinetic classes. Data from controls, mild cognitive impairment patients, and patients with Alzheimer's disease were analyzed using various kinetic models including plasma input, the simplified reference tissue model (RPM) and RPM with vascular correction (RPMV sub(b)). In all subject groups, SVCA-based reference tissue curves showed lower blood volume fractions (V sub(b)) and volume of distributions than those based on cerebellum time-activity curve. Probably resulting from the presence of specific signal from the vessel walls that contains in normal condition a significant concentration of the 18 kDa translocation protein. Best contrast between subject groups was seen using SVCA4-based reference tissues as the result of a lower number of kinetic classes and the prior removal of extracerebral tissues. In addition, incorporation of V sub(b) in RPM improved both parametric images and binding potential contrast between groups. Incorporation of V sub(b) within RPM, together with SVCA4, appears to be the method of choice for analyzing cerebral (R)-[ super(11)C]PK11195 neurodegeneration studies. Performance of two supervised cluster analysis (SVCA) algorithms for extracting reference tissue curves was evaluated to improve quantification of dynamic (R)-[11C]PK11195 brain positron emission tomography (PET) studies. Reference tissues were extracted from images using both a manually defined cerebellum and SVCA algorithms based on either four (SVCA4) or six (SVCA6) kinetic classes. Data from controls, mild cognitive impairment patients, and patients with Alzheimer's disease were analyzed using various kinetic models including plasma input, the simplified reference tissue model (RPM) and RPM with vascular correction (RPMVb). In all subject groups, SVCA-based reference tissue curves showed lower blood volume fractions (Vb) and volume of distributions than those based on cerebellum time-activity curve. Probably resulting from the presence of specific signal from the vessel walls that contains in normal condition a significant concentration of the 18 kDa translocation protein. Best contrast between subject groups was seen using SVCA4-based reference tissues as the result of a lower number of kinetic classes and the prior removal of extracerebral tissues. In addition, incorporation of Vb in RPM improved both parametric images and binding potential contrast between groups. Incorporation of Vb within RPM, together with SVCA4, appears to be the method of choice for analyzing cerebral (R)-[11C]PK11195 neurodegeneration studies. Performance of two supervised cluster analysis (SVCA) algorithms for extracting reference tissue curves was evaluated to improve quantification of dynamic (R)-[ 11 C]PK11195 brain positron emission tomography (PET) studies. Reference tissues were extracted from images using both a manually defined cerebellum and SVCA algorithms based on either four (SVCA4) or six (SVCA6) kinetic classes. Data from controls, mild cognitive impairment patients, and patients with Alzheimer's disease were analyzed using various kinetic models including plasma input, the simplified reference tissue model (RPM) and RPM with vascular correction (RPM V b ). In all subject groups, SVCA-based reference tissue curves showed lower blood volume fractions ( V b ) and volume of distributions than those based on cerebellum time-activity curve. Probably resulting from the presence of specific signal from the vessel walls that contains in normal condition a significant concentration of the 18 kDa translocation protein. Best contrast between subject groups was seen using SVCA4-based reference tissues as the result of a lower number of kinetic classes and the prior removal of extracerebral tissues. In addition, incorporation of V b in RPM improved both parametric images and binding potential contrast between groups. Incorporation of V b within RPM, together with SVCA4, appears to be the method of choice for analyzing cerebral (R)-[ 11 C]PK11195 neurodegeneration studies. Performance of two supervised cluster analysis (SVCA) algorithms for extracting reference tissue curves was evaluated to improve quantification of dynamic (R) -[ 11 C]PK11195 brain positron emission tomography (PET) studies. Reference tissues were extracted from images using both a manually defined cerebellum and SVCA algorithms based on either four (SVCA4) or six (SVCA6) kinetic classes. Data from controls, mild cognitive impairment patients, and patients with Alzheimer's disease were analyzed using various kinetic models including plasma input, the simplified reference tissue model (RPM) and RPM with vascular correction (RPM V b ). In all subject groups, SVCA-based reference tissue curves showed lower blood volume fractions ( V b ) and volume of distributions than those based on cerebellum time-activity curve. Probably resulting from the presence of specific signal from the vessel walls that contains in normal condition a significant concentration of the 18 kDa translocation protein. Best contrast between subject groups was seen using SVCA4-based reference tissues as the result of a lower number of kinetic classes and the prior removal of extracerebral tissues. In addition, incorporation of V b in RPM improved both parametric images and binding potential contrast between groups. Incorporation of V b within RPM, together with SVCA4, appears to be the method of choice for analyzing cerebral (R) -[ 11 C]PK11195 neurodegeneration studies. Performance of two supervised cluster analysis (SVCA) algorithms for extracting reference tissue curves was evaluated to improve quantification of dynamic (R)-[(11)C]PK11195 brain positron emission tomography (PET) studies. Reference tissues were extracted from images using both a manually defined cerebellum and SVCA algorithms based on either four (SVCA4) or six (SVCA6) kinetic classes. Data from controls, mild cognitive impairment patients, and patients with Alzheimer's disease were analyzed using various kinetic models including plasma input, the simplified reference tissue model (RPM) and RPM with vascular correction (RPMV(b)). In all subject groups, SVCA-based reference tissue curves showed lower blood volume fractions (V(b)) and volume of distributions than those based on cerebellum time-activity curve. Probably resulting from the presence of specific signal from the vessel walls that contains in normal condition a significant concentration of the 18kDa translocation protein. Best contrast between subject groups was seen using SVCA4-based reference tissues as the result of a lower number of kinetic classes and the prior removal of extracerebral tissues. In addition, incorporation of V(b) in RPM improved both parametric images and binding potential contrast between groups. Incorporation of V(b) within RPM, together with SVCA4, appears to be the method of choice for analyzing cerebral (R)-[(11)C]PK11195 neurodegeneration studies. Performance of two supervised cluster analysis (SVCA) algorithms for extracting reference tissue curves was evaluated to improve quantification of dynamic (R)-[(11)C]PK11195 brain positron emission tomography (PET) studies. Reference tissues were extracted from images using both a manually defined cerebellum and SVCA algorithms based on either four (SVCA4) or six (SVCA6) kinetic classes. Data from controls, mild cognitive impairment patients, and patients with Alzheimer's disease were analyzed using various kinetic models including plasma input, the simplified reference tissue model (RPM) and RPM with vascular correction (RPMV(b)). In all subject groups, SVCA-based reference tissue curves showed lower blood volume fractions (V(b)) and volume of distributions than those based on cerebellum time-activity curve. Probably resulting from the presence of specific signal from the vessel walls that contains in normal condition a significant concentration of the 18 kDa translocation protein. Best contrast between subject groups was seen using SVCA4-based reference tissues as the result of a lower number of kinetic classes and the prior removal of extracerebral tissues. In addition, incorporation of V(b) in RPM improved both parametric images and binding potential contrast between groups. Incorporation of V(b) within RPM, together with SVCA4, appears to be the method of choice for analyzing cerebral (R)-[(11)C]PK11195 neurodegeneration studies. |
Author | Hinz, Rainer Lammertsma, Adriaan A van Berckel, Bart NM Schuitemaker, Alie Boellaard, Ronald Turkheimer, Federico E Tomasi, Giampaolo Yaqub, Maqsood |
Author_xml | – sequence: 1 givenname: Maqsood surname: Yaqub fullname: Yaqub, Maqsood email: Maqsood.Yaqub@VUmc.nl – sequence: 2 givenname: Bart NM surname: van Berckel fullname: van Berckel, Bart NM – sequence: 3 givenname: Alie surname: Schuitemaker fullname: Schuitemaker, Alie – sequence: 4 givenname: Rainer surname: Hinz fullname: Hinz, Rainer – sequence: 5 givenname: Federico E surname: Turkheimer fullname: Turkheimer, Federico E – sequence: 6 givenname: Giampaolo surname: Tomasi fullname: Tomasi, Giampaolo – sequence: 7 givenname: Adriaan A surname: Lammertsma fullname: Lammertsma, Adriaan A – sequence: 8 givenname: Ronald surname: Boellaard fullname: Boellaard, Ronald |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26255409$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22588187$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kt1rFDEUxYNU7Lb66KsERGiFWXOTyU7mpVCXVYuFlnYFQWTIZG7WLLOZNZlZbB_82539sNaiT4Hkd8-9J-cekD3feCTkObAhMKHezE1pF0POgA9l_ogMQMo8yRiM9siA8QySUaY-75ODGOeMMSWkfEL2OZdKgcoG5OfFsnULd6tb13jaWHrdLTGsXMSKjusuthjoqdf1TXSR2ibQyY82aNM6P6NXaDGgN0inLsYO6Zlfdi0dd2GFkTpPj66Oky8A46-XHwEgl_Rt0P315WRKr9uuchifksdW1xGf7c5D8undZDr-kJxfvD8bn54nRqajNsmNsAAItkxLVYJEYfOsslpkKtUlR2szboTQGnNIU2FGMkdTsQpzoSuQShySk63usisXWBn0vYu6WAa30OGmaLQr_n7x7lsxa1aFSDmwPO8FjnYCofneYWyLhYsG61p7bLpY9FmkiqcK1ujLB-i86UL_hxtKgVCS8556cX-iu1F-R9MDr3aAjkbXNmhvXPzDjbiUKVu3S7acCU2MAe0dAmzTsNisSLFekUKuefGAN67dxN8bd_V_q15vq6Ke4X1D_4J_ARWPzkI |
CODEN | JCBMDN |
CitedBy_id | crossref_primary_10_1016_j_media_2018_07_011 crossref_primary_10_1016_j_nicl_2019_101681 crossref_primary_10_1212_WNL_0000000000007133 crossref_primary_10_1177_0271678X19859034 crossref_primary_10_1212_NXI_0000000000001182 crossref_primary_10_1016_j_nicl_2021_102665 crossref_primary_10_1371_journal_pone_0089101 crossref_primary_10_1016_j_brainres_2017_06_022 crossref_primary_10_1093_brain_awad322 crossref_primary_10_1177_0271678X17742004 crossref_primary_10_1371_journal_pone_0201289 crossref_primary_10_1016_j_neuroimage_2014_12_038 crossref_primary_10_1016_j_cpet_2017_03_001 crossref_primary_10_1042_BST20150058 crossref_primary_10_1177_23969873221100338 crossref_primary_10_1002_alz_13830 crossref_primary_10_1212_WNL_0000000000012033 crossref_primary_10_1093_braincomms_fcad148 crossref_primary_10_1002_ana_25911 crossref_primary_10_1007_s11307_016_0984_3 crossref_primary_10_1038_jcbfm_2014_194 crossref_primary_10_1007_s00259_020_04810_1 crossref_primary_10_1038_jcbfm_2014_191 crossref_primary_10_1111_ene_15834 crossref_primary_10_1088_0031_9155_60_22_R363 crossref_primary_10_1016_j_jalz_2019_02_004 crossref_primary_10_12688_f1000research_11603_1 crossref_primary_10_3390_biomedicines10010034 crossref_primary_10_2967_jnumed_113_135129 crossref_primary_10_3389_fneur_2022_826423 crossref_primary_10_1093_brain_awab003 crossref_primary_10_1186_s13550_018_0455_8 crossref_primary_10_1016_j_inffus_2020_10_006 crossref_primary_10_1093_brain_awaa033 crossref_primary_10_1093_brain_awaa275 crossref_primary_10_1177_0271678X231172519 crossref_primary_10_1007_s00259_013_2359_1 crossref_primary_10_3389_fneur_2018_00181 crossref_primary_10_1038_jcbfm_2015_120 crossref_primary_10_3389_fnmol_2022_981442 crossref_primary_10_1016_j_neurobiolaging_2020_11_006 crossref_primary_10_1371_journal_pone_0176636 crossref_primary_10_2967_jnumed_116_173013 crossref_primary_10_1038_jcbfm_2013_133 crossref_primary_10_1109_TIP_2014_2353854 crossref_primary_10_1002_acn3_498 crossref_primary_10_1177_0271678X17692599 crossref_primary_10_1186_s13550_018_0467_4 crossref_primary_10_1016_j_neurobiolaging_2014_11_023 crossref_primary_10_1007_s40336_015_0147_6 crossref_primary_10_2967_jnumed_114_148619 crossref_primary_10_1176_appi_ajp_2015_14101358 crossref_primary_10_1111_jon_12519 crossref_primary_10_1186_s13550_017_0340_x crossref_primary_10_1186_s13195_023_01209_6 crossref_primary_10_1007_s13311_023_01368_2 crossref_primary_10_1016_j_nbd_2014_01_018 crossref_primary_10_1109_TMI_2019_2906828 crossref_primary_10_3389_fneur_2018_00625 crossref_primary_10_1007_s12035_017_0522_6 crossref_primary_10_1517_17460441_2015_1032240 crossref_primary_10_3390_jimaging10020039 crossref_primary_10_1016_j_neurobiolaging_2020_06_010 crossref_primary_10_1007_s40336_015_0138_7 crossref_primary_10_1136_jnnp_2023_331051 crossref_primary_10_1136_bmjopen_2016_013187 crossref_primary_10_1177_0271678X17748786 crossref_primary_10_1007_s00259_015_3172_9 crossref_primary_10_1038_s42003_022_03761_7 crossref_primary_10_1212_NXI_0000000000000443 crossref_primary_10_1016_j_nbd_2015_08_011 crossref_primary_10_1161_STROKEAHA_122_039517 crossref_primary_10_3233_JAD_200840 crossref_primary_10_1002_acn3_51431 crossref_primary_10_2967_jnumed_113_131698 crossref_primary_10_3390_molecules29174212 crossref_primary_10_1007_s00259_013_2447_2 crossref_primary_10_1016_j_bpsc_2020_12_017 crossref_primary_10_1109_TNS_2015_2399973 crossref_primary_10_1111_jvh_12496 crossref_primary_10_1186_s12974_023_02945_0 crossref_primary_10_1161_STROKEAHA_124_048974 crossref_primary_10_1093_brain_awad078 crossref_primary_10_1093_brain_awaa088 crossref_primary_10_1136_jnnp_2020_323894 crossref_primary_10_1038_npjschz_2016_31 crossref_primary_10_1016_j_nicl_2020_102200 crossref_primary_10_1038_s41582_020_00435_y crossref_primary_10_3390_e19110629 crossref_primary_10_1007_s00702_017_1731_x crossref_primary_10_1016_j_jalz_2014_08_105 crossref_primary_10_1093_brain_awy265 crossref_primary_10_1007_s40336_015_0137_8 crossref_primary_10_3390_ijms18050993 crossref_primary_10_1038_jcbfm_2014_261 crossref_primary_10_1212_WNL_0000000000200892 crossref_primary_10_1155_2020_8826087 crossref_primary_10_1007_s00259_021_05248_9 crossref_primary_10_1007_s00259_021_05309_z crossref_primary_10_2967_jnumed_118_222927 crossref_primary_10_1111_epi_13457 crossref_primary_10_1038_tp_2017_193 crossref_primary_10_1088_0031_9155_58_19_6931 crossref_primary_10_1016_S2215_0366_17_30101_3 crossref_primary_10_1212_NXI_0000000000200133 crossref_primary_10_1192_bjp_bp_116_190165 crossref_primary_10_1093_brain_awu331 crossref_primary_10_1093_braincomms_fcab301 crossref_primary_10_1093_brain_awae269 crossref_primary_10_1136_jnnp_2020_325549 |
Cites_doi | 10.1038/sj.jcbfm.9600092 10.1016/j.neuroimage.2007.02.013 10.1016/j.biopsych.2008.04.025 10.1097/00004647-200106000-00002 10.1006/nimg.1997.0303 10.1016/j.neuroimage.2008.04.035 10.1093/brain/123.11.2321 10.1088/0031-9155/55/3/010 10.1097/00004728-199707000-00007 10.1109/42.906424 10.1109/42.563660 10.1006/nimg.1996.0066 10.1016/S0140-6736(01)05625-2 10.1212/01.WNL.0000078192.95645.E6 10.1002/mds.22732 10.2967/jnumed.108.050583 10.1109/NSSMIC.2008.4774453 10.1007/s002590000405 10.1109/42.563664 |
ContentType | Journal Article |
Copyright | 2012 ISCBFM 2015 INIST-CNRS Copyright Nature Publishing Group Aug 2012 Copyright © 2012 International Society for Cerebral Blood Flow & Metabolism, Inc. 2012 International Society for Cerebral Blood Flow & Metabolism, Inc. |
Copyright_xml | – notice: 2012 ISCBFM – notice: 2015 INIST-CNRS – notice: Copyright Nature Publishing Group Aug 2012 – notice: Copyright © 2012 International Society for Cerebral Blood Flow & Metabolism, Inc. 2012 International Society for Cerebral Blood Flow & Metabolism, Inc. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7TK 5PM |
DOI | 10.1038/jcbfm.2012.59 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts CrossRef ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | Reference tissue extraction for (R)-[11C]PK11195 studies |
EISSN | 1559-7016 |
EndPage | 1608 |
ExternalDocumentID | PMC3421099 2753677081 22588187 26255409 10_1038_jcbfm_2012_59 10.1038_jcbfm.2012.59 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_U120085814 |
GroupedDBID | --- -Q- -TM .55 .GJ 0R~ 29K 2WC 36B 39C 3O- 4.4 53G 54M 5GY 5RE 5VS 70F 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AABMB AACKU AACMV AADUE AAEWN AAGGD AAGMC AAJIQ AAJPV AAKGS AANSI AAPEO AAQGT AAQXH AAQXI AARDL AARIX AATAA AATBZ AAUAS AAVDI AAXOT AAYTG AAZBJ ABAWP ABAWZ ABCCA ABCJG ABDWY ABEIX ABFWQ ABHKI ABJNI ABJZC ABKRH ABLUO ABNCE ABPGX ABPNF ABQKF ABQNX ABQXT ABRHV ABUJY ABUWG ABVFX ABXGC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFO ACGFS ACGZU ACJER ACJTF ACLFY ACLHI ACNXM ACOFE ACOXC ACPRK ACROE ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADEBD ADEIA ADMPF ADNON ADRRZ ADTBJ ADUKL ADVBO ADZZY AECGH AENEX AEPTA AEQLS AESZF AEUHG AEWDL AEWHI AEXFG AEXNY AFEET AFFNX AFFZS AFKRA AFKRG AFMOU AFOSN AFQAA AFUIA AFVCE AGHKR AGKLV AGNHF AGPXR AGWFA AHDMH AHMBA AIGRN AJABX AJEFB AJMMQ AJSCY AJUZI AJXAJ AJXGE ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS AMCVQ ANDLU AOIJS ARTOV AUTPY AYAKG B8M BAWUL BBNVY BBRGL BDDNI BENPR BHPHI BKIIM BKSCU BPACV BPHCQ BSEHC BVXVI BWJAD C45 CAG CBRKF CCPQU CDWPY CFDXU COF CORYS CQQTX CS3 CUTAK D-I DC- DC. DIK DOPDO DV7 E3Z EBS EE. EJD EMOBN F5P FHBDP FYUFA GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION GX1 H13 HCIFZ HMCUK HYE HZ~ J8X JSO K.F KQ8 LK8 M1P M7P O9- OK1 OVD P2P P6G PHGZM PHGZT PQQKQ PROAC PSQYO Q1R Q2X RNS RNTTT ROL RPM SASJQ SAUOL SCNPE SFC SHG SPQ SPV TEORI TR2 UKHRP W2D X7M YFH YOC ZGI ZONMY ZPPRI ZRKOI ZSSAH ZXP AAYXX AJGYC CITATION AAEJI AAPII AJVBE IQODW PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK AJHME AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7TK 5PM |
ID | FETCH-LOGICAL-c546t-9c3f11e1fb4b8b15e3f97dfa3784ab2eff72c33aae91443c659ecd0de93ad1583 |
IEDL.DBID | 7X7 |
ISSN | 0271-678X |
IngestDate | Thu Aug 21 14:10:34 EDT 2025 Fri Jul 11 01:09:03 EDT 2025 Wed Aug 13 07:20:23 EDT 2025 Mon Jul 21 05:20:11 EDT 2025 Mon Jul 21 09:16:45 EDT 2025 Tue Jul 01 05:20:44 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Tue Jun 17 22:40:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | parametric analysis clustering (R)-[11C]PK11195 reference tissue Cluster analysis Nervous system diseases Optimization Cerebral disorder Encephalon C]PK11195 Central nervous system disease Positron emission tomography (R)- Cerebrovascular disease Emission tomography |
Language | English |
License | CC BY 4.0 This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c546t-9c3f11e1fb4b8b15e3f97dfa3784ab2eff72c33aae91443c659ecd0de93ad1583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3421099 |
PMID | 22588187 |
PQID | 1038138522 |
PQPubID | 31524 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3421099 proquest_miscellaneous_1034824819 proquest_journals_1038138522 pubmed_primary_22588187 pascalfrancis_primary_26255409 crossref_primary_10_1038_jcbfm_2012_59 crossref_citationtrail_10_1038_jcbfm_2012_59 sage_journals_10_1038_jcbfm_2012_59 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-01 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: New York, NY – name: United States – name: London |
PublicationTitle | Journal of cerebral blood flow and metabolism |
PublicationTitleAlternate | J Cereb Blood Flow Metab |
PublicationYear | 2012 |
Publisher | SAGE Publications Nature Publishing Group Sage Publications Ltd |
Publisher_xml | – name: SAGE Publications – name: Nature Publishing Group – name: Sage Publications Ltd |
References | Cagnin, Brooks, Kennedy, Gunn, Myers, Turkheimer, Jones, Banati 2001; 358 Banati, Newcombe, Gunn, Cagnin, Turkheimer, Heppner, Price, Wegner, Giovannoni, Miller, Perkin, Smith, Hewson, Bydder, Kreutzberg, Jones, Cuzner, Myers 2000; 123 Gray, Contractor, Kenny, Al-Nahhas, Shousha, Stebbing, Wasan, Coombes, Aboagye, Turkheimer, Rosso 2010; 55 Maes, Collignon, Vandermeulen, Marchal, Suetens 1997; 16 Schuitemaker, Van Berckel, Kropholler, Veltman, Scheltens, Jonker, Lammertsma, Boellaard 2007; 35 Van Berckel, Bossong, Boellaard, Kloet, Schuitemaker, Caspers, Luurtsema, Windhorst, Cahn, Lammertsma, Kahn 2008; 64 Gunn, Gunn, Cunningham 2001; 21 Schuitemaker, Van der Doef, Boellaard, Van der Flier, Yaqub, Windhorst, Barkhof, Jonker, Kloet, Lammertsma, Scheltens, Van Berckel 2010; 5 Tomasi, Edison, Bertoldo, Roncaroli, Singh, Gerhard, Cobelli, Brooks, Turkheimer 2008; 49 Zhang, Brady, Smith 2001; 20 Lammertsma, Hume 1996; 4 West, Fitzpatrick, Wang, Dawant, Maurer, Kessler, Maciunas, Barillot, Lemoine, Collignon, Maes, Suetens, Vandermeulen, VandenElsen, Napel, Sumanaweera, Harkness, Hemler, Hill, Hawkes, Studholme, Maintz, Viergever, Malandain, Pennec, Noz, Maguire, Pollack, Pelizzari, Robb, Hanson, Woods 1997; 21 Defrise, Kinahan, Townsend, Michel, Sibomana, Newport 1997; 16 Hinz, Jones, Bloomfield, Boellaard, Turkheimer, Tyrrell 2008; 41 Boellaard, Van Lingen, Van Balen, Hoving, Lammertsma 2001; 28 Kropholler, Boellaard, Schuitemaker, Van Berckel, Luurtsema, Windhorst, Lammertsma 2005; 25 Dodel, Spottke, Gerhard, Reuss, Reinecker, Schimke, Trenkwalder, Sixel-Doring, Herting, Kamm, Gasser, Sawires, Geser, Kollensperger, Seppi, Kloss, Krause, Daniels, Deuschl, Bottger, Naumann, Lipp, Gruber, Kupsch, Du, Turkheimer, Brooks, Klockgether, Poewe, Wenning, Schade-Brittinger, Oertel, Eggert 2010; 25 Gunn, Lammertsma, Hume, Cunningham 1997; 6 Gerhard, Banati, Goerres, Cagnin, Myers, Gunn, Turkheimer, Good, Mathias, Quinn, Schwarz, Brooks 2003; 61 Turkheimer, Edison, Pavese, Roncaroli, Anderson, Hammers, Gerhard, Hinz, Tai, Brooks 2007; 48 bibr3-jcbfm.2012.59 bibr17-jcbfm.2012.59 bibr9-jcbfm.2012.59 bibr8-jcbfm.2012.59 bibr20-jcbfm.2012.59 bibr2-jcbfm.2012.59 bibr15-jcbfm.2012.59 bibr21-jcbfm.2012.59 bibr1-jcbfm.2012.59 Schuitemaker A (bibr16-jcbfm.2012.59) 2010; 5 bibr6-jcbfm.2012.59 bibr14-jcbfm.2012.59 bibr10-jcbfm.2012.59 Turkheimer FE (bibr18-jcbfm.2012.59) 2007; 48 bibr7-jcbfm.2012.59 bibr13-jcbfm.2012.59 bibr4-jcbfm.2012.59 bibr19-jcbfm.2012.59 bibr5-jcbfm.2012.59 bibr12-jcbfm.2012.59 bibr11-jcbfm.2012.59 |
References_xml | – volume: 61 start-page: 686 year: 2003 end-page: 9 article-title: [11C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy publication-title: Neurology – volume: 35 start-page: 1473 year: 2007 end-page: 9 article-title: SPM analysis of parametric (R)-[C-11]PK11195 binding images: plasma input versus reference tissue parametric methods publication-title: Neuroimage – volume: 49 start-page: 1249 year: 2008 end-page: 56 article-title: Novel reference region model reveals increased microglial and reduced vascular binding of 11C-(R)-PK11195 in patients with Alzheimer's disease publication-title: J Nucl Med – volume: 55 start-page: 695 year: 2010 end-page: 709 article-title: Kinetic filtering of [(18)F]Fluorothymidine in positron emission tomography studies publication-title: Phys Med Biol – volume: 64 start-page: 820 year: 2008 end-page: 2 article-title: Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study publication-title: Biol Psychiatry – volume: 21 start-page: 635 year: 2001 end-page: 52 article-title: Positron emission tomography compartmental models publication-title: J Cereb Blood Flow Metab – volume: 16 start-page: 187 year: 1997 end-page: 98 article-title: Multimodality image registration by maximization of mutual information publication-title: IEEE Trans Med Imaging – volume: 123 start-page: 2321 year: 2000 end-page: 37 article-title: The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity publication-title: Brain – volume: 6 start-page: 279 year: 1997 end-page: 87 article-title: Parametric imaging of ligand-receptor binding in PET using a simplified reference region model publication-title: Neuroimage – volume: 48 start-page: 158 year: 2007 end-page: 67 article-title: Reference and target region modeling of [11C]-(R)-PK11195 brain studies publication-title: J Nucl Med – volume: 21 start-page: 554 year: 1997 end-page: 66 article-title: Comparison and evaluation of retrospective intermodality brain image registration techniques publication-title: J Comput Assist Tomogr – volume: 5 start-page: 6 year: 2010 end-page: 9 article-title: Microglial activation in healthy aging publication-title: Neurobiol Aging – volume: 28 start-page: 81 year: 2001 end-page: 9 article-title: Characteristics of a new fully programmable blood sampling device for monitoring blood radioactivity during PET publication-title: Eur J Nucl Med – volume: 358 start-page: 461 year: 2001 end-page: 7 article-title: In-vivo measurement of activated microglia in dementia publication-title: Lancet – volume: 16 start-page: 145 year: 1997 end-page: 58 article-title: Exact and approximate rebinning algorithms for 3-D PET data publication-title: IEEE Trans Med Imaging – volume: 25 start-page: 842 year: 2005 end-page: 51 article-title: Development of a tracer kinetic plasma input model for (R)-[11C]PK11195 brain studies publication-title: J Cereb Blood Flow Metab – volume: 20 start-page: 45 year: 2001 end-page: 57 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans Med Imaging – volume: 4 start-page: 153 year: 1996 end-page: 8 article-title: Simplified reference tissue model for PET receptor studies publication-title: Neuroimage – volume: 41 start-page: T65 year: 2008 article-title: Reference tissue kinetics extraction from [11C]-(R)-PK11195 scans on the High Resolution Research Tomograph (HRRT) [abstract] publication-title: Neuroimage – volume: 25 start-page: 97 year: 2010 end-page: 107 article-title: Minocycline 1-year therapy in multiple-systematrophy: effect on clinical symptoms and [(11)C] (R)-PK11195 PET (MEMSA-trial) publication-title: Mov Disord – ident: bibr12-jcbfm.2012.59 doi: 10.1038/sj.jcbfm.9600092 – ident: bibr15-jcbfm.2012.59 doi: 10.1016/j.neuroimage.2007.02.013 – ident: bibr19-jcbfm.2012.59 doi: 10.1016/j.biopsych.2008.04.025 – ident: bibr9-jcbfm.2012.59 doi: 10.1097/00004647-200106000-00002 – ident: bibr10-jcbfm.2012.59 doi: 10.1006/nimg.1997.0303 – volume: 48 start-page: 158 year: 2007 ident: bibr18-jcbfm.2012.59 publication-title: J Nucl Med – ident: bibr11-jcbfm.2012.59 doi: 10.1016/j.neuroimage.2008.04.035 – volume: 5 start-page: 6 year: 2010 ident: bibr16-jcbfm.2012.59 publication-title: Neurobiol Aging – ident: bibr1-jcbfm.2012.59 doi: 10.1093/brain/123.11.2321 – ident: bibr8-jcbfm.2012.59 doi: 10.1088/0031-9155/55/3/010 – ident: bibr20-jcbfm.2012.59 doi: 10.1097/00004728-199707000-00007 – ident: bibr21-jcbfm.2012.59 doi: 10.1109/42.906424 – ident: bibr5-jcbfm.2012.59 doi: 10.1109/42.563660 – ident: bibr13-jcbfm.2012.59 doi: 10.1006/nimg.1996.0066 – ident: bibr4-jcbfm.2012.59 doi: 10.1016/S0140-6736(01)05625-2 – ident: bibr7-jcbfm.2012.59 doi: 10.1212/01.WNL.0000078192.95645.E6 – ident: bibr6-jcbfm.2012.59 doi: 10.1002/mds.22732 – ident: bibr17-jcbfm.2012.59 doi: 10.2967/jnumed.108.050583 – ident: bibr2-jcbfm.2012.59 doi: 10.1109/NSSMIC.2008.4774453 – ident: bibr3-jcbfm.2012.59 doi: 10.1007/s002590000405 – ident: bibr14-jcbfm.2012.59 doi: 10.1109/42.563664 |
SSID | ssj0008355 |
Score | 2.421044 |
Snippet | Performance of two supervised cluster analysis (SVCA) algorithms for extracting reference tissue curves was evaluated to improve quantification of dynamic... Performance of two supervised cluster analysis (SVCA) algorithms for extracting reference tissue curves was evaluated to improve quantification of dynamic (R)... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref sage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1600 |
SubjectTerms | Adult Aged Aged, 80 and over Algorithms Alzheimer Disease - diagnostic imaging Alzheimer Disease - physiopathology Alzheimer's disease Biological and medical sciences Blood Volume - physiology Blood. Blood coagulation. Reticuloendothelial system Brain Carbon Radioisotopes Cerebellum Cerebellum - blood supply Cerebellum - diagnostic imaging Cerebral blood flow Cluster Analysis Cognitive ability Cognitive Dysfunction - diagnostic imaging Cognitive Dysfunction - physiopathology Computer Simulation Data processing Humans Image Interpretation, Computer-Assisted Isoquinolines - pharmacokinetics Kinetics Medical sciences Middle Aged Models, Neurological Neurodegenerative diseases Neurology Original Pharmacology. Drug treatments Positron emission tomography Positron-Emission Tomography - methods Protein Binding Protein transport Reference Values Reproducibility of Results Thalamus - blood supply Thalamus - diagnostic imaging Tissue Distribution Vascular diseases and vascular malformations of the nervous system Young Adult |
Title | Optimization of Supervised Cluster Analysis for Extracting Reference Tissue Input Curves in (R)-[11C]PK11195 Brain PET Studies |
URI | https://journals.sagepub.com/doi/full/10.1038/jcbfm.2012.59 https://www.ncbi.nlm.nih.gov/pubmed/22588187 https://www.proquest.com/docview/1038138522 https://www.proquest.com/docview/1034824819 https://pubmed.ncbi.nlm.nih.gov/PMC3421099 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9RAEF60fVAQ0dYf0XqsKEXBtLfZ3cvmSepxpSjWo7RwIBJ2Nxvb0uZikwi--Lc7s8mld1h9DDsJyc5k9pud2W8IeZ1YpRWTWTiURkGAgt0AI5GFhudCJU6ZocF9yM-Ho4MT8XEmZ92GW9WVVS58onfU2dziHvkuEnkzrgAuvC9_hNg1CrOrXQuN22QdqcvQquNZH3AhuvAljFHMQnDKs45jE560e25NjgfRWbSDNKVLa9K9UlcwPXnb1-Im4Pl3_eRSEZhfl_YfkPsdoKR7rQU8JLdcsUE29woIpi9_0W3qSzz93vkGuTNetHfbJL-_gLO47E5h0nlOq6ZEv1G5jNqLBvkTqO4YSyggWwpe3J-oKr7TvjcJrb3e6FlRNjW1zdVPV8EFfXP0NvzK2Pjb9BPDKaMGO1HQ6eSYVm3h4iNysj85Hh-EXTOG0EoxqsPE8pwxx3IjjDJMOp4ncZZrHiuhTeTyPI4s51q7BGI0bkcycTYbZi7hOmNS8cdkrZgX7imhbKQZ3M4wSQvLoVCZgiBTilg6QBMqC8i7hTpS2zGVY8OMi9RnzLlKvfZS1F4qk4Bs9-JlS9HxL8HBim576QiCQECuILC1UHba_cpVem14AXnZD4OyMLOiCzdvvIxQkQB0FZAnrW1cPzySClBRHJB4xWp6AST4Xh0pzk490TcXESYuA_IK7Wv5lW74umf_f_nn5C4KtrWLW2StvmrcC8BTtRn4n2ZA1j9MDqdHfwArHiEp |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF9qfaggoq0f0VpX1KJg7O3XZfMgUs6Wq9fWIlc4EInZZKOVNnc2F6Uv_kn-jc5sPnqH1bc-hkzChpnM_GZn9jeEPA0THWumUr-jjIYEBacBcpn6RmRSh1abjsF9yL39bv9Qvhup0QL53ZyFwbbKxic6R52OE9wj30AibyY0wIU3k-8-To3C6mozQqMyi4E9-wkpW_F65y3o9xnn21vDXt-vpwr4iZLdqR8mImPMssxIow1TVmRhkGaxCLSMDbdZFvBEiDi2ISQbIumq0CZpJ7WhiFOmtID3XiFXIfB2MNkLRm2Ch2jGtUzygPkQBEY1pyesfONbYjI8-M74K6RFnYmB1ydxAerIqjkaFwHdv_s1Z5rOXBzcvklu1ACWblYWd4ss2HyZrGzmkLyfnNF16lpK3V79MlnqNePkVsiv9-CcTupTn3Sc0aKcoJ8qbEqT4xL5GmhcM6RQQNIUooY7wZV_oe0sFDp1dkKP8kk5pUl5-sMWcEGff3jhf2Ss9-lgwJBdjhqcfEEPtoa0qBolb5PDS1HTHbKYj3N7j1DWjRk8zrAoDOFX6lRDUqtkoCygF5165GWjjiipmdFxQMdx5Cr0QkdOexFqL1KhR9Zb8UlFCfIvwbU53bbSHJJOQMogsNooO6pdRxGdG7pHHre3QVlYyYlzOy6djNRcAprzyN3KNs5fzpUGFBZ4JJizmlYACcXn7-RHXx2xuJAcC6UeeYL2NbukC77u_v8X_4gs9Yd7u9Huzv7gAbmGD1V9k6tkcXpa2oeA5aZmzf1AlHy-7D_2D45GXhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+supervised+cluster+analysis+for+extracting+reference+tissue+input+curves+in+%28R%29-%5B11C%5DPK11195+brain+PET+studies&rft.jtitle=Journal+of+cerebral+blood+flow+and+metabolism&rft.au=YAQUB%2C+Maqsood&rft.au=VAN+BERCKEL%2C+Bart+N.+M&rft.au=SCHUITEMAKER%2C+Alie&rft.au=HINZ%2C+Rainer&rft.date=2012-08-01&rft.pub=Nature+Publishing+Group&rft.issn=0271-678X&rft.volume=32&rft.issue=8&rft.spage=1600&rft.epage=1608&rft_id=info:doi/10.1038%2Fjcbfm.2012.59&rft.externalDBID=n%2Fa&rft.externalDocID=26255409 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-678X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-678X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-678X&client=summon |