Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation
Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques,...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 342; no. 6154; pp. 95 - 98 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Association for the Advancement of Science
04.10.2013
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques, it is difficult to prepare microporous membranes thinner than 20 nm without introducing extra defects. Here, we report ultrathin graphene oxide (GO) membranes, with thickness approaching 1.8 nm, prepared by a facile filtration process. These membranes showed mixture separation selectivities as high as 3400 and 900 for H₂/CO₂ and H₂/N₂ mixtures, respectively, through selective structural defects on GO. |
---|---|
AbstractList | Gas SeparationsWhen gas separation membranes are made thinner, they usually allow permeating gases to pass through faster. However, a thinner membrane may be poorer at separating between gas species. Kim et al. (p. 91) examined the permeability and selectivity of layered graphene and graphene oxide membranes. Gas molecules diffuse through defective pores and channels that form between the layers. Controlling these structures tuned the properties of the membranes to allow the extraction of carbon dioxide from other gases. Li et al. (p. 95) describe membranes as thin as 1.8 nanometers made from only two to three layers of graphene oxide. Small defects within the layers allowed hydrogen to pass through, separating it from carbon dioxide and nitrogen. When gas separation membranes are made thinner, they usually allow permeating gases to pass through faster. However, a thinner membrane may be poorer at separating between gas species. Kim et al. (p. 91) examined the permeability and selectivity of layered graphene and graphene oxide membranes. Gas molecules diffuse through defective pores and channels that form between the layers. Controlling these structures tuned the properties of the membranes to allow the extraction of carbon dioxide from other gases. Li et al. (p. 95) describe membranes as thin as 1.8 nanometers made from only two to three layers of graphene oxide. Small defects within the layers allowed hydrogen to pass through, separating it from carbon dioxide and nitrogen. [PUBLICATION ABSTRACT] Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques, it is difficult to prepare microporous membranes thinner than 20 nm without introducing extra defects. Here, we report ultrathin graphene oxide (GO) membranes, with thickness approaching 1.8 nm, prepared by a facile filtration process. These membranes showed mixture separation selectivities as high as 3400 and 900 for H2/CO2 and H2/N2 mixtures, respectively, through selective structural defects on GO. [PUBLICATION ABSTRACT] Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques, it is difficult to prepare microporous membranes thinner than 20 nm without introducing extra defects. Here, we report ultrathin graphene oxide (GO) membranes, with thickness approaching 1.8 nm, prepared by a facile filtration process. These membranes showed mixture separation selectivities as high as 3400 and 900 for H2/CO2 and H2/N2 mixtures, respectively, through selective structural defects on GO.Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques, it is difficult to prepare microporous membranes thinner than 20 nm without introducing extra defects. Here, we report ultrathin graphene oxide (GO) membranes, with thickness approaching 1.8 nm, prepared by a facile filtration process. These membranes showed mixture separation selectivities as high as 3400 and 900 for H2/CO2 and H2/N2 mixtures, respectively, through selective structural defects on GO. When gas separation membranes are made thinner, they usually allow permeating gases to pass through faster. However, a thinner membrane may be poorer at separating between gas species. Kim et al. (p. 91 ) examined the permeability and selectivity of layered graphene and graphene oxide membranes. Gas molecules diffuse through defective pores and channels that form between the layers. Controlling these structures tuned the properties of the membranes to allow the extraction of carbon dioxide from other gases. Li et al. (p. 95 ) describe membranes as thin as 1.8 nanometers made from only two to three layers of graphene oxide. Small defects within the layers allowed hydrogen to pass through, separating it from carbon dioxide and nitrogen. Ultrathin graphene oxide membranes show enhanced separation selectivity for hydrogen gas. Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques, it is difficult to prepare microporous membranes thinner than 20 nm without introducing extra defects. Here, we report ultrathin graphene oxide (GO) membranes, with thickness approaching 1.8 nm, prepared by a facile filtration process. These membranes showed mixture separation selectivities as high as 3400 and 900 for H 2 /CO 2 and H 2 /N 2 mixtures, respectively, through selective structural defects on GO. Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques, it is difficult to prepare microporous membranes thinner than 20 nm without introducing extra defects. Here, we report ultrathin graphene oxide (GO) membranes, with thickness approaching 1.8 nm, prepared by a facile filtration process. These membranes showed mixture separation selectivities as high as 3400 and 900 for H2/CO2 and H2/N2 mixtures, respectively, through selective structural defects on GO. Gas Separations When gas separation membranes are made thinner, they usually allow permeating gases to pass through faster. However, a thinner membrane may be poorer at separating between gas species. Kim et al. (p. 91) examined the permeability and selectivity of layered graphene and graphene oxide membranes. Gas molecules diffuse through defective pores and channels that form between the layers. Controlling these structures tuned the properties of the membranes to allow the extraction of carbon dioxide from other gases. Li et al. (p. 95) describe membranes as thin as 1.8 nanometers made from only two to three layers of graphene oxide. Small defects within the layers allowed hydrogen to pass through, separating it from carbon dioxide and nitrogen. Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques, it is difficult to prepare microporous membranes thinner than 20 nm without introducing extra defects. Here, we report ultrathin graphene oxide (GO) membranes, with thickness approaching 1.8 nm, prepared by a facile filtration process. These membranes showed mixture separation selectivities as high as 3400 and 900 for H₂/CO₂ and H₂/N₂ mixtures, respectively, through selective structural defects on GO. |
Author | Li, Hang Bao, Yu Song, Zhuonan Mao, Yating Yu, Miao Ploehn, Harry J. Li, Shiguang Huang, Yi Zhang, Xiaojie |
Author_xml | – sequence: 1 givenname: Hang surname: Li fullname: Li, Hang – sequence: 2 givenname: Zhuonan surname: Song fullname: Song, Zhuonan – sequence: 3 givenname: Xiaojie surname: Zhang fullname: Zhang, Xiaojie – sequence: 4 givenname: Yi surname: Huang fullname: Huang, Yi – sequence: 5 givenname: Shiguang surname: Li fullname: Li, Shiguang – sequence: 6 givenname: Yating surname: Mao fullname: Mao, Yating – sequence: 7 givenname: Harry J. surname: Ploehn fullname: Ploehn, Harry J. – sequence: 8 givenname: Yu surname: Bao fullname: Bao, Yu – sequence: 9 givenname: Miao surname: Yu fullname: Yu, Miao |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27895684$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24092739$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1rFDEUhoNU7LZ67ZUyIIIXTpvvybksRVuhpRe1eDlkMmfbLLPJmswU--_NulOFgpTACSTP-3K-DsheiAEJecvoEWNcH2fnMTg8YlxobfQLsmAUVA2cij2yoFTo2tBG7ZODnFeUlj8Qr8g-lxR4I2BBftwMY7LjnQ-fq8s4oJsGm-prj_c-3FZnyW7uMGB19cv3WF3iuks2YK6WMVXXWPDR32N1_tCneIuhPG1scfMxvCYvl3bI-Ga-D8nN1y_fT8_ri6uzb6cnF7VTUo81gOKGlrPsLGhqeuVAGqSNpr2kDEBoaTqLyHoOjTOcSSxBO2M611MpDsmnne8mxZ8T5rFd--xwGEqaccotL0ULyalRz6JMKdAgGIjnUSmFAFZCQT88QVdxSqHUXCgBfOvYFOr9TE3dGvt2k_zapof2cRAF-DgDNjs7LEubnc__uMaA0mZbr9pxLsWcEy5b58c_HS9j9EPLaLtdjHZejHZejKI7fqJ7tP6_4t1OscpjTH9xyTWDhoP4DWxdwpQ |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1016_j_coche_2017_04_004 crossref_primary_10_1016_j_ijhydene_2015_08_107 crossref_primary_10_1039_C7CP03270F crossref_primary_10_1016_j_coche_2017_04_009 crossref_primary_10_1016_j_progpolymsci_2017_12_002 crossref_primary_10_1021_acs_iecr_7b04796 crossref_primary_10_1021_jp5026762 crossref_primary_10_1016_j_memsci_2018_06_033 crossref_primary_10_1002_advs_202404001 crossref_primary_10_1021_acs_jpcc_7b01796 crossref_primary_10_1016_j_carbon_2018_05_071 crossref_primary_10_1039_D2NR05229F crossref_primary_10_1073_pnas_1613031113 crossref_primary_10_1016_j_ijggc_2016_11_010 crossref_primary_10_1007_s10934_017_0485_z crossref_primary_10_1016_j_memsci_2015_08_042 crossref_primary_10_1038_nnano_2015_110 crossref_primary_10_1002_cphc_202400662 crossref_primary_10_1016_j_compositesa_2020_105829 crossref_primary_10_1038_srep42299 crossref_primary_10_1016_j_chempr_2021_06_005 crossref_primary_10_1016_j_memsci_2019_01_041 crossref_primary_10_2139_ssrn_4131167 crossref_primary_10_1016_j_mtphys_2022_100792 crossref_primary_10_1039_C6TA10395B crossref_primary_10_1016_j_seppur_2018_07_044 crossref_primary_10_1021_acs_jpcc_6b08529 crossref_primary_10_1021_acsami_0c01378 crossref_primary_10_1021_acs_langmuir_1c00392 crossref_primary_10_1016_j_cplett_2015_03_052 crossref_primary_10_3390_membranes12100915 crossref_primary_10_1002_admi_202400651 crossref_primary_10_1016_j_memsci_2019_117297 crossref_primary_10_1021_acs_nanolett_3c00004 crossref_primary_10_1039_D3NR03459C crossref_primary_10_3390_pr11030927 crossref_primary_10_1002_anie_202304734 crossref_primary_10_1039_C9TA03159F crossref_primary_10_1002_eem2_12843 crossref_primary_10_1039_D0CP03773G crossref_primary_10_1002_asia_202000053 crossref_primary_10_1021_acs_jpcb_8b12341 crossref_primary_10_1021_acsnano_4c15126 crossref_primary_10_1515_phys_2016_0075 crossref_primary_10_1021_ja5083602 crossref_primary_10_1039_C8TA09504C crossref_primary_10_1002_adma_201705933 crossref_primary_10_1016_j_advmem_2021_100011 crossref_primary_10_3390_nano11020382 crossref_primary_10_1021_acs_est_5b00904 crossref_primary_10_1021_acs_jpcc_3c07127 crossref_primary_10_1021_acsami_7b08232 crossref_primary_10_1016_j_desal_2017_09_024 crossref_primary_10_1039_C9NA00235A crossref_primary_10_1080_1536383X_2020_1813720 crossref_primary_10_1126_science_ade1411 crossref_primary_10_1063_1_4963098 crossref_primary_10_1016_j_seppur_2018_08_065 crossref_primary_10_1021_acs_est_5b02086 crossref_primary_10_1016_j_carbon_2016_02_070 crossref_primary_10_1039_C6TA09362K crossref_primary_10_1021_acsami_6b09912 crossref_primary_10_1142_S1793604715500198 crossref_primary_10_1016_j_seppur_2019_116181 crossref_primary_10_1016_j_seppur_2020_116818 crossref_primary_10_1039_C4CP04385E crossref_primary_10_1021_acsomega_0c01773 crossref_primary_10_1002_anie_201907773 crossref_primary_10_1021_acsami_7b01890 crossref_primary_10_1016_j_memsci_2015_07_034 crossref_primary_10_1021_acsabm_9b00249 crossref_primary_10_1016_j_memsci_2023_121876 crossref_primary_10_1021_am509048k crossref_primary_10_1039_C8QM00272J crossref_primary_10_1002_cite_201600041 crossref_primary_10_1021_acs_jpclett_6b00219 crossref_primary_10_1038_s41699_021_00246_9 crossref_primary_10_1016_j_cej_2021_128609 crossref_primary_10_1016_j_memsci_2023_121631 crossref_primary_10_1039_C9NR09656F crossref_primary_10_1016_j_seppur_2016_10_012 crossref_primary_10_1021_acsomega_1c04466 crossref_primary_10_1016_j_ces_2019_07_059 crossref_primary_10_1002_ange_202106346 crossref_primary_10_1016_j_seppur_2024_131077 crossref_primary_10_1039_C4CP00514G crossref_primary_10_1016_j_ceramint_2016_03_069 crossref_primary_10_1002_admi_201600495 crossref_primary_10_1039_C6CP00167J crossref_primary_10_1021_jacs_8b05136 crossref_primary_10_1039_D1SM01158H crossref_primary_10_1088_1361_6528_aa680f crossref_primary_10_1016_j_memsci_2019_01_003 crossref_primary_10_1016_j_memsci_2022_121102 crossref_primary_10_1021_acs_chemmater_9b00688 crossref_primary_10_1002_asia_202000013 crossref_primary_10_1021_acs_nanolett_1c01076 crossref_primary_10_1002_adma_201907580 crossref_primary_10_1016_j_memsci_2015_08_010 crossref_primary_10_1039_C7CP01665D crossref_primary_10_1016_j_memsci_2019_03_087 crossref_primary_10_1142_S1793292021500661 crossref_primary_10_1016_j_carbon_2018_04_004 crossref_primary_10_1016_j_cej_2023_148163 crossref_primary_10_1016_j_memsci_2020_117934 crossref_primary_10_1039_D1EE00689D crossref_primary_10_1002_app_50902 crossref_primary_10_1021_acsnano_5b07304 crossref_primary_10_1002_asia_202000251 crossref_primary_10_1021_nn501098d crossref_primary_10_1039_D2TC02536A crossref_primary_10_1039_C7TA03874G crossref_primary_10_1038_ncomms14460 crossref_primary_10_3390_coatings9030183 crossref_primary_10_1016_j_memsci_2023_121856 crossref_primary_10_1016_j_carbon_2018_12_050 crossref_primary_10_1002_ange_201601135 crossref_primary_10_1016_j_ijhydene_2020_04_053 crossref_primary_10_1038_nchem_2145 crossref_primary_10_1016_j_apsusc_2021_151355 crossref_primary_10_1016_j_desal_2017_07_014 crossref_primary_10_1039_C4TA06193D crossref_primary_10_1002_adma_202108457 crossref_primary_10_3390_nano12040688 crossref_primary_10_1016_j_apcatb_2023_122442 crossref_primary_10_1016_j_desal_2024_118177 crossref_primary_10_1021_acs_jpcc_0c06783 crossref_primary_10_1016_j_carbon_2017_09_061 crossref_primary_10_1016_j_mee_2016_03_040 crossref_primary_10_1021_jp412588f crossref_primary_10_1039_C5RA01321F crossref_primary_10_3390_app9142784 crossref_primary_10_1007_s10853_020_04367_2 crossref_primary_10_1016_j_apsusc_2015_08_061 crossref_primary_10_1016_j_cjche_2015_04_018 crossref_primary_10_1038_ncomms8602 crossref_primary_10_1016_j_seppur_2020_116858 crossref_primary_10_1021_acs_iecr_9b05975 crossref_primary_10_1038_s41467_024_45007_6 crossref_primary_10_1002_ange_201411550 crossref_primary_10_1039_C6TA04579K crossref_primary_10_1103_RevModPhys_91_021004 crossref_primary_10_1002_advs_202307073 crossref_primary_10_1038_nnano_2015_37 crossref_primary_10_1039_C9EW01129C crossref_primary_10_1039_D0TA05610C crossref_primary_10_1016_j_carbon_2018_11_063 crossref_primary_10_1016_j_jclepro_2018_11_020 crossref_primary_10_1016_j_memsci_2020_118419 crossref_primary_10_3390_nano9081180 crossref_primary_10_1039_C7EE00830A crossref_primary_10_1016_j_seppur_2021_120301 crossref_primary_10_1016_j_seppur_2020_118192 crossref_primary_10_1016_j_ces_2020_115602 crossref_primary_10_1021_acs_jpcc_6b00884 crossref_primary_10_1021_jp504921p crossref_primary_10_1002_admi_202000121 crossref_primary_10_1021_acsami_0c16468 crossref_primary_10_1016_j_rser_2021_111062 crossref_primary_10_1016_j_materresbull_2016_01_033 crossref_primary_10_1016_j_jcis_2015_08_065 crossref_primary_10_1039_C4TA06573E crossref_primary_10_1039_D0TA07065C crossref_primary_10_1021_accountsmr_0c00092 crossref_primary_10_3390_nano10081492 crossref_primary_10_1002_adma_202104946 crossref_primary_10_4028_www_scientific_net_DDF_391_195 crossref_primary_10_1016_j_ijhydene_2017_04_043 crossref_primary_10_1021_acs_est_9b05597 crossref_primary_10_1039_C9TA01524H crossref_primary_10_1016_j_nanoms_2019_02_004 crossref_primary_10_1016_j_cej_2014_04_017 crossref_primary_10_1021_acs_jpcb_0c02052 crossref_primary_10_1021_acsnano_6b02588 crossref_primary_10_1038_s41467_025_56358_z crossref_primary_10_3390_membranes12121241 crossref_primary_10_1021_acsami_9b06309 crossref_primary_10_1002_adma_201705775 crossref_primary_10_1016_j_adna_2024_03_001 crossref_primary_10_1021_acs_jpcc_6b02616 crossref_primary_10_1039_C4TA00108G crossref_primary_10_1016_j_cjche_2021_12_009 crossref_primary_10_1016_j_memsci_2022_120291 crossref_primary_10_1021_acs_jpclett_0c00204 crossref_primary_10_1002_smll_202302627 crossref_primary_10_1016_j_apsusc_2018_02_042 crossref_primary_10_1016_j_carbon_2018_12_098 crossref_primary_10_1038_s41467_023_37932_9 crossref_primary_10_1007_s10570_019_02962_4 crossref_primary_10_1039_C5CP04976H crossref_primary_10_1021_acsami_6b00928 crossref_primary_10_1039_D0EN00401D crossref_primary_10_1016_j_memsci_2020_118454 crossref_primary_10_2139_ssrn_4103332 crossref_primary_10_1002_adma_201802418 crossref_primary_10_1038_s41699_024_00462_z crossref_primary_10_1007_s42765_021_00105_8 crossref_primary_10_1016_j_memsci_2020_118691 crossref_primary_10_1016_j_memsci_2022_121126 crossref_primary_10_1021_acs_iecr_6b01005 crossref_primary_10_1021_acs_jpcc_5b04918 crossref_primary_10_1021_acsnano_7b01231 crossref_primary_10_1039_C8TA06161K crossref_primary_10_1021_acsami_5b09648 crossref_primary_10_1021_acs_jpcc_7b10699 crossref_primary_10_1016_j_memsci_2016_12_019 crossref_primary_10_1039_C6NR06977K crossref_primary_10_1016_j_cep_2017_05_013 crossref_primary_10_1038_s41467_017_02198_5 crossref_primary_10_1111_jace_15859 crossref_primary_10_1021_acsestwater_0c00015 crossref_primary_10_1039_D4RA05273K crossref_primary_10_1007_s11706_021_0536_x crossref_primary_10_1016_j_tsf_2015_06_060 crossref_primary_10_1039_C4CC03940H crossref_primary_10_1016_j_coche_2017_03_003 crossref_primary_10_1016_j_coche_2017_03_002 crossref_primary_10_1016_j_gce_2020_12_001 crossref_primary_10_1016_j_jechem_2021_03_002 crossref_primary_10_1021_acsanm_2c00974 crossref_primary_10_1002_anie_201600438 crossref_primary_10_1016_j_seppur_2022_120629 crossref_primary_10_1039_D0TA03071F crossref_primary_10_1021_acsnano_9b04612 crossref_primary_10_1002_admi_202200337 crossref_primary_10_1039_C5TA04471E crossref_primary_10_1021_acsnano_7b05419 crossref_primary_10_1016_j_jaecs_2020_100004 crossref_primary_10_1021_acs_chemrev_7b00095 crossref_primary_10_1088_2053_1583_1_3_034004 crossref_primary_10_1039_C7RA11088J crossref_primary_10_1021_acs_macromol_7b01718 crossref_primary_10_1039_D0QI00307G crossref_primary_10_1002_anie_201915797 crossref_primary_10_1038_srep10258 crossref_primary_10_1039_D1NR02169A crossref_primary_10_1080_1573062X_2023_2290613 crossref_primary_10_1246_bcsj_20210169 crossref_primary_10_1038_s41467_017_02529_6 crossref_primary_10_1016_j_cej_2018_03_136 crossref_primary_10_1039_C7TA01142C crossref_primary_10_1016_j_seppur_2019_115712 crossref_primary_10_1039_C4TB01896F crossref_primary_10_12677_MS_2018_86087 crossref_primary_10_1021_mz500484k crossref_primary_10_1021_acs_nanolett_6b03837 crossref_primary_10_1038_s41467_022_31779_2 crossref_primary_10_1039_C9CC00349E crossref_primary_10_1016_j_memsci_2023_121454 crossref_primary_10_1039_C5EE02433A crossref_primary_10_1002_smll_202303757 crossref_primary_10_1021_acsami_8b05296 crossref_primary_10_1039_C7TA06307E crossref_primary_10_1039_D4RA00444B crossref_primary_10_1103_PhysRevApplied_10_034018 crossref_primary_10_1002_admi_201400433 crossref_primary_10_1016_j_apmt_2020_100766 crossref_primary_10_1016_j_poly_2021_115588 crossref_primary_10_1021_acs_jpcc_7b03728 crossref_primary_10_1016_j_rser_2023_113540 crossref_primary_10_1039_D1CP05417A crossref_primary_10_5714_CL_2015_16_3_183 crossref_primary_10_1039_D3CC05545K crossref_primary_10_1039_C8TA08261H crossref_primary_10_1016_j_flatc_2017_06_008 crossref_primary_10_1038_srep13981 crossref_primary_10_1016_j_seppur_2023_126232 crossref_primary_10_1038_s41467_018_07710_z crossref_primary_10_1016_j_pmatsci_2014_10_004 crossref_primary_10_1002_smll_201804640 crossref_primary_10_1016_j_molstruc_2021_132255 crossref_primary_10_1016_j_ijhydene_2025_02_343 crossref_primary_10_1016_j_flatc_2023_100493 crossref_primary_10_1021_acs_jpclett_9b03082 crossref_primary_10_1016_j_carbon_2018_01_062 crossref_primary_10_1016_j_memsci_2018_03_056 crossref_primary_10_1021_acs_jpcc_7b04394 crossref_primary_10_1002_adfm_201503229 crossref_primary_10_3390_membranes12111131 crossref_primary_10_1007_s11244_015_0391_z crossref_primary_10_1021_acsami_9b16966 crossref_primary_10_1016_j_memsci_2014_11_050 crossref_primary_10_1039_C8TA02256A crossref_primary_10_1002_anie_201509213 crossref_primary_10_1016_j_compscitech_2020_108344 crossref_primary_10_1038_s41467_017_00544_1 crossref_primary_10_1016_j_ces_2015_04_033 crossref_primary_10_1039_C8CP00466H crossref_primary_10_1126_sciadv_adg2229 crossref_primary_10_1088_1361_648X_aa7d5e crossref_primary_10_1016_j_pmatsci_2018_09_003 crossref_primary_10_1098_rsta_2015_0024 crossref_primary_10_1038_s41467_024_46083_4 crossref_primary_10_3389_fceng_2021_668867 crossref_primary_10_1246_cl_180557 crossref_primary_10_1002_ange_201401061 crossref_primary_10_1002_cnma_202000041 crossref_primary_10_1021_acsnano_8b02015 crossref_primary_10_1002_ange_201600438 crossref_primary_10_1021_acsapm_9b00851 crossref_primary_10_1039_D0TA04406G crossref_primary_10_1016_j_mtener_2025_101811 crossref_primary_10_1016_j_carbon_2016_12_029 crossref_primary_10_1016_j_memsci_2021_119419 crossref_primary_10_1039_C4NR03621B crossref_primary_10_1016_j_memsci_2024_122428 crossref_primary_10_1038_s41467_021_23121_z crossref_primary_10_1016_j_memsci_2024_123511 crossref_primary_10_1002_anie_201701288 crossref_primary_10_1038_ncomms4705 crossref_primary_10_1039_C7NR05737G crossref_primary_10_1016_j_trechm_2024_04_006 crossref_primary_10_1016_j_jgsce_2023_205049 crossref_primary_10_1021_acsnano_1c00987 crossref_primary_10_1039_C4CC06207H crossref_primary_10_1002_aic_15260 crossref_primary_10_1021_acsnano_6b06655 crossref_primary_10_1016_j_surfcoat_2018_06_082 crossref_primary_10_1021_acsami_6b08020 crossref_primary_10_1016_j_cjche_2016_11_010 crossref_primary_10_1016_j_jtice_2022_104379 crossref_primary_10_1038_srep05528 crossref_primary_10_1007_s11270_018_3757_6 crossref_primary_10_1016_j_carbon_2016_12_041 crossref_primary_10_1016_j_materresbull_2017_08_049 crossref_primary_10_1016_j_molliq_2018_04_155 crossref_primary_10_1016_j_memsci_2018_03_040 crossref_primary_10_1016_j_seppur_2018_04_079 crossref_primary_10_1039_C7CP03981F crossref_primary_10_1002_anie_201911359 crossref_primary_10_1016_j_memsci_2022_120943 crossref_primary_10_1039_D4CC00201F crossref_primary_10_1002_smll_202201982 crossref_primary_10_1016_j_carbon_2021_06_011 crossref_primary_10_1021_acs_chemmater_8b00765 crossref_primary_10_1039_D0MH00853B crossref_primary_10_1080_15583724_2014_963235 crossref_primary_10_3390_polym13173012 crossref_primary_10_1021_acs_jpcc_2c06085 crossref_primary_10_1039_C5CE02188J crossref_primary_10_1002_admi_201400250 crossref_primary_10_1002_adfm_201907549 crossref_primary_10_1038_srep15799 crossref_primary_10_1002_cjoc_202000066 crossref_primary_10_1134_S1990793122080073 crossref_primary_10_1021_acs_iecr_1c03039 crossref_primary_10_1002_celc_202200342 crossref_primary_10_1016_j_memsci_2020_118237 crossref_primary_10_15541_jim20190548 crossref_primary_10_1016_j_jssc_2014_01_030 crossref_primary_10_1016_j_memsci_2017_10_060 crossref_primary_10_1021_acsami_0c15178 crossref_primary_10_1039_C9QI00455F crossref_primary_10_1039_C4RA10521D crossref_primary_10_1007_s11356_018_3225_2 crossref_primary_10_1021_acs_jpcb_4c02204 crossref_primary_10_1016_j_ijhydene_2019_07_196 crossref_primary_10_1021_acsanm_3c00895 crossref_primary_10_1002_adfm_202421913 crossref_primary_10_1002_admt_201800742 crossref_primary_10_3390_membranes10100258 crossref_primary_10_1002_adfm_201804944 crossref_primary_10_1039_C6NR06612G crossref_primary_10_1007_s10853_016_0319_4 crossref_primary_10_1021_acsami_8b10569 crossref_primary_10_1039_C7NR00378A crossref_primary_10_1016_j_ijhydene_2018_06_094 crossref_primary_10_1039_C6RA21432K crossref_primary_10_1039_C6RA24746F crossref_primary_10_1039_C8RA03080D crossref_primary_10_1039_C9MH01570A crossref_primary_10_1021_acsami_5b05012 crossref_primary_10_1016_j_nantod_2018_04_007 crossref_primary_10_1016_j_cclet_2021_09_012 crossref_primary_10_1002_ange_201311324 crossref_primary_10_1016_j_carbon_2018_01_040 crossref_primary_10_1021_acs_nanolett_3c01946 crossref_primary_10_1039_C7CC00810D crossref_primary_10_1039_C5CC05412E crossref_primary_10_1021_acsami_8b09377 crossref_primary_10_1021_am500777b crossref_primary_10_1039_C4TA02859G crossref_primary_10_1016_j_memsci_2018_08_021 crossref_primary_10_1039_C7NR01792H crossref_primary_10_1016_j_jece_2023_109741 crossref_primary_10_1016_j_apsusc_2020_147024 crossref_primary_10_1016_j_diamond_2021_108687 crossref_primary_10_1021_acsami_7b16574 crossref_primary_10_1021_acs_jpcb_2c07699 crossref_primary_10_1016_j_snb_2014_02_064 crossref_primary_10_1016_j_memsci_2020_118253 crossref_primary_10_1016_j_memsci_2022_120912 crossref_primary_10_1016_j_polymer_2022_125601 crossref_primary_10_1021_acs_chemmater_8b03820 crossref_primary_10_1021_acsnano_7b02523 crossref_primary_10_1021_acssuschemeng_9b00282 crossref_primary_10_1002_ange_201907773 crossref_primary_10_1016_j_seppur_2021_119986 crossref_primary_10_1039_C5TA06707C crossref_primary_10_1016_j_rser_2021_110878 crossref_primary_10_1021_nl5013689 crossref_primary_10_1016_j_memsci_2018_05_073 crossref_primary_10_1016_j_jwpe_2022_102875 crossref_primary_10_1016_j_scib_2017_03_004 crossref_primary_10_1039_C4CC07558G crossref_primary_10_1039_C5CS00292C crossref_primary_10_1016_j_pmatsci_2020_100708 crossref_primary_10_1021_acsami_9b01071 crossref_primary_10_1021_acs_nanolett_6b05183 crossref_primary_10_34133_2020_8748602 crossref_primary_10_1080_10408398_2022_2054937 crossref_primary_10_1016_j_ijhydene_2020_06_117 crossref_primary_10_1016_j_desal_2022_115908 crossref_primary_10_1016_j_molliq_2022_120248 crossref_primary_10_1007_s00894_024_05872_w crossref_primary_10_1016_j_memsci_2025_123861 crossref_primary_10_1002_cben_202000038 crossref_primary_10_7498_aps_66_056601 crossref_primary_10_1002_anie_201409563 crossref_primary_10_1021_acs_jpcc_9b10615 crossref_primary_10_1016_j_carbon_2019_08_058 crossref_primary_10_1021_acssuschemeng_7b01351 crossref_primary_10_1016_j_coche_2016_04_002 crossref_primary_10_1039_C5TA00366K crossref_primary_10_1016_j_colsurfa_2019_123942 crossref_primary_10_1039_C5CP03382A crossref_primary_10_1016_j_seppur_2022_121465 crossref_primary_10_1002_adma_202301589 crossref_primary_10_1039_C5TA09152G crossref_primary_10_1038_s41467_023_44626_9 crossref_primary_10_1016_j_scib_2020_04_017 crossref_primary_10_1016_j_carbon_2017_09_088 crossref_primary_10_1039_C7GC03345A crossref_primary_10_1146_annurev_chembioeng_060817_084046 crossref_primary_10_1016_j_apmt_2017_02_010 crossref_primary_10_1016_j_cej_2019_122138 crossref_primary_10_1002_adma_201502595 crossref_primary_10_1039_C8CY00082D crossref_primary_10_1002_adfm_201503858 crossref_primary_10_1016_j_memsci_2017_11_065 crossref_primary_10_1155_2020_9087595 crossref_primary_10_1002_admi_202300554 crossref_primary_10_1002_asia_202100875 crossref_primary_10_1038_s41545_019_0044_z crossref_primary_10_1002_admi_201600169 crossref_primary_10_1016_j_apsusc_2020_146524 crossref_primary_10_1016_j_memsci_2017_10_039 crossref_primary_10_1039_C9TA05909A crossref_primary_10_1016_j_jhazmat_2025_137277 crossref_primary_10_1186_s42480_019_0012_x crossref_primary_10_1039_D0CC04204H crossref_primary_10_1039_D0TA05449F crossref_primary_10_1016_j_rser_2022_112527 crossref_primary_10_1002_adfm_201606652 crossref_primary_10_1016_j_memsci_2014_01_062 crossref_primary_10_1016_j_pmatsci_2024_101324 crossref_primary_10_1016_j_trechm_2021_04_005 crossref_primary_10_1126_science_aab0530 crossref_primary_10_1016_j_jece_2020_104454 crossref_primary_10_1039_C5CP06569K crossref_primary_10_1016_j_memsci_2018_07_027 crossref_primary_10_1002_ange_201809548 crossref_primary_10_1002_adma_202408364 crossref_primary_10_1038_s41467_022_34849_7 crossref_primary_10_1021_acsami_9b22345 crossref_primary_10_1016_j_carbon_2015_01_024 crossref_primary_10_1039_C9TA01902B crossref_primary_10_1021_acsanm_9b02277 crossref_primary_10_1038_ncomms9335 crossref_primary_10_1016_j_cej_2019_02_042 crossref_primary_10_1039_D3RA00617D crossref_primary_10_1016_j_cjche_2017_04_015 crossref_primary_10_1021_acsnano_1c03194 crossref_primary_10_1016_j_memsci_2018_08_050 crossref_primary_10_1039_C7RA08098K crossref_primary_10_1016_j_ceja_2020_100066 crossref_primary_10_1021_acsami_7b12103 crossref_primary_10_1016_j_coelec_2023_101257 crossref_primary_10_1039_D1NA00483B crossref_primary_10_1557_adv_2016_205 crossref_primary_10_1016_j_memsci_2022_120548 crossref_primary_10_1039_C4CC08186B crossref_primary_10_1002_ange_201701288 crossref_primary_10_1039_C4CC10103K crossref_primary_10_1016_j_apsusc_2019_05_319 crossref_primary_10_1016_j_memsci_2017_12_063 crossref_primary_10_1002_admi_201800032 crossref_primary_10_1016_j_memsci_2018_05_029 crossref_primary_10_1039_C4TA04006F crossref_primary_10_1080_02678292_2020_1783705 crossref_primary_10_1016_j_seppur_2024_129158 crossref_primary_10_5360_membrane_39_132 crossref_primary_10_1039_C9CP06372B crossref_primary_10_1021_acsanm_3c03526 crossref_primary_10_1039_C6TA06381K crossref_primary_10_1039_C8CS00376A crossref_primary_10_1039_C4RA12967A crossref_primary_10_1016_j_memsci_2017_11_016 crossref_primary_10_1039_C8NJ06045B crossref_primary_10_1016_j_jece_2021_105605 crossref_primary_10_1186_s11671_015_1199_2 crossref_primary_10_14579_MEMBRANE_JOURNAL_2019_29_3_130 crossref_primary_10_1002_adfm_202001549 crossref_primary_10_1016_j_desal_2019_04_028 crossref_primary_10_1007_s40242_022_1474_6 crossref_primary_10_1021_acs_nanolett_8b03155 crossref_primary_10_1016_j_seppur_2020_117200 crossref_primary_10_1002_admi_201800286 crossref_primary_10_1016_j_cartre_2025_100486 crossref_primary_10_1016_j_memsci_2022_120533 crossref_primary_10_1021_acs_est_8b03661 crossref_primary_10_1016_j_advmem_2021_100015 crossref_primary_10_1039_C4RA06184E crossref_primary_10_1016_j_carbon_2021_04_087 crossref_primary_10_1039_C4CC07734B crossref_primary_10_1039_C8CS00268A crossref_primary_10_1016_j_desal_2016_08_012 crossref_primary_10_1002_asia_202100834 crossref_primary_10_1021_acs_accounts_2c00434 crossref_primary_10_1016_j_seppur_2018_02_032 crossref_primary_10_1002_smll_201502061 crossref_primary_10_1021_acsnano_4c12051 crossref_primary_10_1016_j_memsci_2017_12_081 crossref_primary_10_1021_acs_energyfuels_3c01348 crossref_primary_10_1016_j_commatsci_2017_09_010 crossref_primary_10_1039_D0CS01347A crossref_primary_10_1002_sstr_202200109 crossref_primary_10_1016_j_jiec_2018_05_040 crossref_primary_10_1016_j_carbon_2016_12_097 crossref_primary_10_1016_j_mtcomm_2022_104274 crossref_primary_10_1088_0957_4484_27_27_274002 crossref_primary_10_1016_j_carbon_2019_09_028 crossref_primary_10_1134_S0965545X16050084 crossref_primary_10_1021_acsanm_3c02459 crossref_primary_10_1039_C7TA08598B crossref_primary_10_5360_membrane_39_118 crossref_primary_10_1002_asia_202100839 crossref_primary_10_1007_s42791_020_00032_6 crossref_primary_10_1126_sciadv_abb6011 crossref_primary_10_1007_s10853_017_1246_8 crossref_primary_10_1039_C4QI00230J crossref_primary_10_1016_j_fuel_2022_126285 crossref_primary_10_1002_cssc_202001572 crossref_primary_10_1038_s41565_017_0031_9 crossref_primary_10_1146_annurev_chembioeng_080615_034455 crossref_primary_10_1021_acs_iecr_0c02103 crossref_primary_10_1021_acsanm_0c03336 crossref_primary_10_1007_s11705_020_1990_1 crossref_primary_10_1002_adma_202106785 crossref_primary_10_1016_j_molliq_2018_04_116 crossref_primary_10_1038_s41560_021_00946_y crossref_primary_10_1016_j_jhazmat_2021_125661 crossref_primary_10_1016_j_surfin_2023_103764 crossref_primary_10_1016_j_seppur_2019_116029 crossref_primary_10_1021_acsnano_4c05461 crossref_primary_10_1002_adfm_201804189 crossref_primary_10_1021_am5015953 crossref_primary_10_1016_j_physb_2024_416063 crossref_primary_10_1039_C8TA03701A crossref_primary_10_1021_acsami_7b11777 crossref_primary_10_1021_acs_nanolett_8b01866 crossref_primary_10_1016_j_memsci_2020_118938 crossref_primary_10_1126_sciadv_abf0116 crossref_primary_10_1016_j_carbon_2017_02_022 crossref_primary_10_1016_j_mencom_2021_03_001 crossref_primary_10_1016_j_mset_2018_11_002 crossref_primary_10_1002_adfm_201500998 crossref_primary_10_1016_j_susmat_2023_e00698 crossref_primary_10_1039_D2NR06984A crossref_primary_10_1016_j_desal_2022_115621 crossref_primary_10_1016_j_memsci_2020_117844 crossref_primary_10_1002_ange_201915797 crossref_primary_10_1021_acsanm_1c01919 crossref_primary_10_3390_ma16052105 crossref_primary_10_1016_j_carbon_2020_01_002 crossref_primary_10_1039_C5CC00871A crossref_primary_10_1038_s41467_021_23325_3 crossref_primary_10_1016_j_memsci_2017_04_032 crossref_primary_10_1088_1361_6463_abafdd crossref_primary_10_1016_j_rser_2021_111343 crossref_primary_10_3390_coatings9090558 crossref_primary_10_1016_j_desal_2014_12_046 crossref_primary_10_1063_5_0142808 crossref_primary_10_1016_j_ijhydene_2024_12_222 crossref_primary_10_1016_j_memsci_2017_12_018 crossref_primary_10_1126_sciadv_abl8160 crossref_primary_10_1016_j_ces_2018_05_010 crossref_primary_10_1016_j_carbon_2016_08_060 crossref_primary_10_1016_j_memsci_2014_06_047 crossref_primary_10_1039_C4RA09062D crossref_primary_10_1039_D0CP03785K crossref_primary_10_1016_j_chemosphere_2022_134184 crossref_primary_10_3390_pr11051520 crossref_primary_10_1002_elps_201800529 crossref_primary_10_1016_j_jiec_2018_02_030 crossref_primary_10_1016_j_arabjc_2021_103565 crossref_primary_10_1002_cssc_201800479 crossref_primary_10_1021_acsapm_0c00558 crossref_primary_10_1038_s42004_017_0002_y crossref_primary_10_1039_C6TA08858A crossref_primary_10_1039_C7EE02865B crossref_primary_10_1016_j_cclet_2021_07_013 crossref_primary_10_1039_C8QM00351C crossref_primary_10_1016_j_memsci_2014_06_053 crossref_primary_10_1039_C4CC05295A crossref_primary_10_1016_j_seppur_2015_02_032 crossref_primary_10_1002_admi_201901514 crossref_primary_10_4491_KSEE_2015_37_11_649 crossref_primary_10_1016_j_ijhydene_2022_01_049 crossref_primary_10_1021_acsanm_8b01375 crossref_primary_10_1039_C8TA09070J crossref_primary_10_1016_j_joule_2019_07_003 crossref_primary_10_1016_j_memsci_2020_117883 crossref_primary_10_1039_D2CP03044F crossref_primary_10_1021_cm502098e crossref_primary_10_1088_2053_1583_ad5bf0 crossref_primary_10_1016_j_addr_2018_01_004 crossref_primary_10_1016_j_memsci_2019_117394 crossref_primary_10_1038_s41598_023_37080_6 crossref_primary_10_1126_sciadv_ade7871 crossref_primary_10_1016_j_seppur_2020_116933 crossref_primary_10_1021_acsami_6b14371 crossref_primary_10_1016_j_jpowsour_2019_227589 crossref_primary_10_1039_C5RA27349H crossref_primary_10_1088_2053_1583_ab1519 crossref_primary_10_1002_ange_201409563 crossref_primary_10_1016_j_apsusc_2017_02_253 crossref_primary_10_1063_5_0037873 crossref_primary_10_1002_macp_202300169 crossref_primary_10_1002_adfm_201704316 crossref_primary_10_1021_am5040945 crossref_primary_10_1007_s12274_017_1803_0 crossref_primary_10_1039_D2RA00271J crossref_primary_10_1002_anie_201904385 crossref_primary_10_1016_j_seppur_2022_121674 crossref_primary_10_1007_s00343_018_6088_y crossref_primary_10_1021_bc500503e crossref_primary_10_1039_C7SC00223H crossref_primary_10_1002_smll_202205542 crossref_primary_10_1021_acs_nanolett_0c02860 crossref_primary_10_1016_j_memsci_2022_121238 crossref_primary_10_1039_D3NR04885C crossref_primary_10_1021_acs_accounts_4c00398 crossref_primary_10_1016_j_cej_2022_136870 crossref_primary_10_1016_j_memsci_2021_119281 crossref_primary_10_1039_C9CP00137A crossref_primary_10_3389_fchem_2020_598562 crossref_primary_10_1021_acs_jpclett_5b00914 crossref_primary_10_1016_j_carbon_2019_06_006 crossref_primary_10_1002_anie_201411550 crossref_primary_10_1021_acs_nanolett_4c03094 crossref_primary_10_1039_C6EE03566C crossref_primary_10_1016_j_memsci_2016_09_040 crossref_primary_10_1002_cnma_201700357 crossref_primary_10_1016_j_apsusc_2023_158822 crossref_primary_10_1021_acs_est_6b05711 crossref_primary_10_1103_PhysRevApplied_14_014075 crossref_primary_10_1016_j_seppur_2022_122752 crossref_primary_10_3390_w16070967 crossref_primary_10_1016_j_memsci_2023_121529 crossref_primary_10_1021_acs_nanolett_4c05275 crossref_primary_10_1039_C5CC01411E crossref_primary_10_1016_j_carbon_2019_07_052 crossref_primary_10_1016_j_memsci_2021_120036 crossref_primary_10_1149_1945_7111_ac3593 crossref_primary_10_1021_acs_energyfuels_0c00311 crossref_primary_10_1039_D0MH01453B crossref_primary_10_1016_j_memsci_2023_121771 crossref_primary_10_1088_2053_1591_ab1ffd crossref_primary_10_1016_j_carbon_2020_12_082 crossref_primary_10_1016_j_ces_2015_08_019 crossref_primary_10_1039_C6TA00296J crossref_primary_10_1016_j_cis_2024_103269 crossref_primary_10_1021_acs_jpcc_1c00327 crossref_primary_10_1016_j_seppur_2017_12_019 crossref_primary_10_1016_j_memsci_2016_09_031 crossref_primary_10_1016_j_ces_2016_12_061 crossref_primary_10_4236_graphene_2015_41001 crossref_primary_10_1016_j_cjche_2021_09_022 crossref_primary_10_1016_j_dwt_2025_101033 crossref_primary_10_1016_j_ceramint_2015_02_094 crossref_primary_10_1016_j_cej_2024_158366 crossref_primary_10_1016_j_carbon_2016_07_065 crossref_primary_10_1016_j_matpr_2020_04_806 crossref_primary_10_1016_j_ijhydene_2024_04_216 crossref_primary_10_1063_1_4975150 crossref_primary_10_1038_s41467_019_09178_x crossref_primary_10_1002_adfm_201502955 crossref_primary_10_1016_j_ces_2015_08_049 crossref_primary_10_1016_j_memsci_2019_117189 crossref_primary_10_1039_C7TA06800J crossref_primary_10_1039_C8RA03156H crossref_primary_10_1002_ange_201911359 crossref_primary_10_1021_acs_iecr_5b03251 crossref_primary_10_1039_C5CC07406A crossref_primary_10_1002_anie_201311324 crossref_primary_10_1016_j_seppur_2015_03_020 crossref_primary_10_1038_nature24044 crossref_primary_10_1039_C6RA08441A crossref_primary_10_1002_anie_201609306 crossref_primary_10_1016_j_memsci_2015_10_046 crossref_primary_10_1016_j_seppur_2020_116730 crossref_primary_10_1039_D3CC02175K crossref_primary_10_1126_sciadv_aau1698 crossref_primary_10_1039_C8CC10283J crossref_primary_10_1039_C4TA02359E crossref_primary_10_3390_ijms20225609 crossref_primary_10_1002_adfm_201805026 crossref_primary_10_1021_acsami_5b00106 crossref_primary_10_1038_nature14015 crossref_primary_10_1002_anie_202106346 crossref_primary_10_1088_2632_2153_ac9bca crossref_primary_10_1016_j_apsusc_2017_02_054 crossref_primary_10_1002_aic_18167 crossref_primary_10_1002_smsc_202300264 crossref_primary_10_1021_acsami_7b04803 crossref_primary_10_1016_j_seppur_2022_121447 crossref_primary_10_1021_acs_iecr_2c02042 crossref_primary_10_1021_acsami_7b05497 crossref_primary_10_1021_acsami_0c02192 crossref_primary_10_1016_j_memsci_2019_117568 crossref_primary_10_1021_acsnano_8b00367 crossref_primary_10_1002_adma_202206627 crossref_primary_10_1016_j_memsci_2016_08_049 crossref_primary_10_1007_s40843_018_9276_8 crossref_primary_10_3390_ma11010074 crossref_primary_10_1002_admi_201701449 crossref_primary_10_1016_j_seppur_2021_119440 crossref_primary_10_1002_ange_201703959 crossref_primary_10_1002_adma_201500975 crossref_primary_10_1016_j_memsci_2021_119924 crossref_primary_10_1002_admi_201600734 crossref_primary_10_1016_j_ijmecsci_2018_11_021 crossref_primary_10_1016_j_est_2024_113931 crossref_primary_10_1021_acs_nanolett_7b02910 crossref_primary_10_1039_C9CE00259F crossref_primary_10_1016_j_apmt_2021_100971 crossref_primary_10_1016_j_isci_2021_102576 crossref_primary_10_1002_adfm_201801511 crossref_primary_10_1038_nmat5025 crossref_primary_10_1002_tcr_201900024 crossref_primary_10_1038_srep28052 crossref_primary_10_1007_s10311_017_0653_z crossref_primary_10_1016_j_memsci_2018_10_075 crossref_primary_10_1002_adfm_202316247 crossref_primary_10_1016_j_carbon_2024_118855 crossref_primary_10_1016_j_memsci_2018_01_031 crossref_primary_10_1039_C6EE01984F crossref_primary_10_1002_adma_201606093 crossref_primary_10_1002_cite_202100084 crossref_primary_10_1016_j_memsci_2019_117785 crossref_primary_10_1016_j_memsci_2019_117786 crossref_primary_10_1038_s41586_018_0203_2 crossref_primary_10_1039_C5RA21604D crossref_primary_10_1021_acs_analchem_6b02175 crossref_primary_10_1016_j_watres_2020_115674 crossref_primary_10_1039_C9TA07370A crossref_primary_10_1016_j_desal_2022_115684 crossref_primary_10_1016_j_seppur_2024_127316 crossref_primary_10_1126_sciadv_aav1851 crossref_primary_10_1007_s10853_018_3045_2 crossref_primary_10_1016_j_mtener_2022_101124 crossref_primary_10_1149_1945_7111_abb4f5 crossref_primary_10_1038_s41467_017_02318_1 crossref_primary_10_1016_j_memsci_2019_117308 crossref_primary_10_1016_j_apsusc_2017_01_292 crossref_primary_10_1016_j_seppur_2017_03_026 crossref_primary_10_1126_sciadv_abl3521 crossref_primary_10_1016_j_memsci_2021_119706 crossref_primary_10_1021_acs_jpcc_1c07542 crossref_primary_10_1126_science_1249097 crossref_primary_10_1016_j_carbon_2014_06_007 crossref_primary_10_3390_fermentation11010019 crossref_primary_10_1016_j_memsci_2018_10_068 crossref_primary_10_1088_1361_6528_acbf56 crossref_primary_10_1016_j_ces_2016_03_003 crossref_primary_10_1088_1674_4926_39_1_013002 crossref_primary_10_1021_acs_estlett_0c00143 crossref_primary_10_1007_s12043_018_1638_6 crossref_primary_10_1016_j_memsci_2022_121011 crossref_primary_10_1088_1742_6596_2369_1_012026 crossref_primary_10_1016_j_scitotenv_2018_02_043 crossref_primary_10_1007_s10853_020_05756_3 crossref_primary_10_1016_j_memsci_2020_118985 crossref_primary_10_1088_1361_6528_aab73e crossref_primary_10_1002_cssc_201700801 crossref_primary_10_1016_j_porgcoat_2019_105345 crossref_primary_10_1016_j_psep_2019_08_021 crossref_primary_10_1038_s41598_022_09365_9 crossref_primary_10_1016_j_rser_2016_11_118 crossref_primary_10_1016_j_surfrep_2018_09_001 crossref_primary_10_1039_C4NR04453C crossref_primary_10_1080_10420150_2018_1442464 crossref_primary_10_1007_s11814_017_0339_z crossref_primary_10_1016_j_cej_2021_133001 crossref_primary_10_1016_j_ijhydene_2022_10_027 crossref_primary_10_1002_ange_202304734 crossref_primary_10_1002_adfm_201902014 crossref_primary_10_1039_D1TA00090J crossref_primary_10_1021_nl404118f crossref_primary_10_1007_s11705_020_2016_8 crossref_primary_10_1021_la403969g crossref_primary_10_1038_s41467_019_10971_x crossref_primary_10_1080_01496395_2024_2339865 crossref_primary_10_1126_science_1254227 crossref_primary_10_1002_smll_202207313 crossref_primary_10_3390_membranes10110336 crossref_primary_10_1016_j_apsusc_2014_04_088 crossref_primary_10_1002_aic_17022 crossref_primary_10_1038_ncomms10804 crossref_primary_10_1016_j_ijhydene_2014_01_046 crossref_primary_10_1039_D0CE01751E crossref_primary_10_1002_ange_202017089 crossref_primary_10_1021_acs_jpclett_9b01780 crossref_primary_10_1021_acs_chemrev_8b00091 crossref_primary_10_1021_acssuschemeng_8b05333 crossref_primary_10_1016_j_cej_2018_04_069 crossref_primary_10_1002_adma_201506237 crossref_primary_10_1016_j_apsusc_2017_08_124 crossref_primary_10_1039_C6CC02013E crossref_primary_10_1016_j_coche_2023_100901 crossref_primary_10_1088_2043_6262_7_2_023002 crossref_primary_10_1002_anie_201809548 crossref_primary_10_1007_s11434_015_0914_9 crossref_primary_10_1039_C6QI00042H crossref_primary_10_1016_j_ces_2018_06_031 crossref_primary_10_1016_j_memsci_2018_02_034 crossref_primary_10_1021_acs_jpcc_7b04921 crossref_primary_10_1088_1361_6528_aa5e68 crossref_primary_10_1021_acs_iecr_1c01919 crossref_primary_10_1021_acsnano_8b02373 crossref_primary_10_1021_acsnano_0c01550 crossref_primary_10_1038_ncomms5843 crossref_primary_10_1002_anie_201708835 crossref_primary_10_1016_j_memsci_2023_121583 crossref_primary_10_1039_C7TA02462B crossref_primary_10_1016_j_memsci_2016_08_067 crossref_primary_10_1002_app_52377 crossref_primary_10_1039_C8TA10872B crossref_primary_10_1002_advs_201800241 crossref_primary_10_1021_acs_jpcb_6b12757 crossref_primary_10_1021_acsanm_8b01575 crossref_primary_10_1088_1742_6596_2671_1_012007 crossref_primary_10_1016_j_memsci_2014_03_008 crossref_primary_10_1021_acsanm_8b00241 crossref_primary_10_1039_D3EE02095A crossref_primary_10_1039_D2EE02449G crossref_primary_10_1126_sciadv_abc7927 crossref_primary_10_1038_s41545_022_00209_7 crossref_primary_10_1021_acsami_5b00986 crossref_primary_10_1016_j_desal_2016_04_030 crossref_primary_10_3390_membranes8040100 crossref_primary_10_1016_j_memsci_2016_08_059 crossref_primary_10_1016_j_memsci_2022_121293 crossref_primary_10_1002_aic_16144 crossref_primary_10_1016_j_desal_2018_07_020 crossref_primary_10_3390_chemosensors8030082 crossref_primary_10_1051_e3sconf_20199001004 crossref_primary_10_1002_adma_201802922 crossref_primary_10_1002_ange_201801094 crossref_primary_10_1021_acs_langmuir_5b02414 crossref_primary_10_1039_D2CP03548K crossref_primary_10_1088_1361_6528_aa510d crossref_primary_10_1126_sciadv_aba9471 crossref_primary_10_1016_j_memsci_2024_123617 crossref_primary_10_1103_PhysRevMaterials_2_074004 crossref_primary_10_1016_j_memsci_2018_10_017 crossref_primary_10_1002_anie_202017089 crossref_primary_10_1007_s10853_023_08262_4 crossref_primary_10_1002_adma_202206349 crossref_primary_10_1002_adfm_201904357 crossref_primary_10_1039_D1TA07883F crossref_primary_10_1016_j_jpowsour_2015_10_035 crossref_primary_10_1088_1361_6528_aaad50 crossref_primary_10_1021_acsami_0c00615 crossref_primary_10_1016_j_cej_2021_129574 crossref_primary_10_1016_j_coche_2015_04_003 crossref_primary_10_1021_nn405537u crossref_primary_10_1039_C6SC02865A crossref_primary_10_1016_j_psep_2020_07_027 crossref_primary_10_1016_j_ssc_2023_115344 crossref_primary_10_1002_tcr_202300163 crossref_primary_10_1016_j_cherd_2018_03_033 crossref_primary_10_1038_s41563_020_00822_2 crossref_primary_10_1016_j_gce_2020_11_005 crossref_primary_10_1016_j_memsci_2019_117733 crossref_primary_10_1016_j_chemosphere_2016_04_060 crossref_primary_10_1039_C8DT00082D crossref_primary_10_1021_acsmaterialslett_2c00175 crossref_primary_10_1039_C5EE03856A crossref_primary_10_1002_aic_17576 crossref_primary_10_1016_j_coche_2018_02_003 crossref_primary_10_1038_s41467_018_06097_1 crossref_primary_10_1016_j_coche_2018_02_004 crossref_primary_10_1016_j_cjche_2020_05_024 crossref_primary_10_1016_j_indcrop_2022_114554 crossref_primary_10_1038_nature_2014_16425 crossref_primary_10_1021_acsanm_9b02322 crossref_primary_10_1021_acs_iecr_1c02098 crossref_primary_10_1039_C7EN00548B crossref_primary_10_1039_C7TA04692H crossref_primary_10_1039_C7TA10814A crossref_primary_10_1039_C5NR06321C crossref_primary_10_1016_j_micromeso_2022_111825 crossref_primary_10_1016_j_seppur_2019_04_005 crossref_primary_10_1038_s41467_024_49961_z crossref_primary_10_1039_C9TA12293A crossref_primary_10_1007_s11581_024_05940_4 crossref_primary_10_1016_j_flatc_2023_100594 crossref_primary_10_1016_j_seppur_2023_123431 crossref_primary_10_1039_C8NR02625D crossref_primary_10_1002_adfm_201902394 crossref_primary_10_1002_jctb_5505 crossref_primary_10_1039_C7TA04015F crossref_primary_10_1002_adma_201601010 crossref_primary_10_1155_2021_9934118 crossref_primary_10_1016_j_memsci_2020_118178 crossref_primary_10_1063_5_0241089 crossref_primary_10_1021_acsami_8b19480 crossref_primary_10_1016_j_apsusc_2023_157194 crossref_primary_10_1016_j_ces_2023_119194 crossref_primary_10_1039_C8NH00335A crossref_primary_10_1002_adma_201404054 crossref_primary_10_1016_j_jnnfm_2020_104426 crossref_primary_10_1021_acs_analchem_9b03869 crossref_primary_10_1039_C6RA18396D crossref_primary_10_1016_j_colsurfa_2018_07_002 crossref_primary_10_1016_j_jclepro_2020_124194 crossref_primary_10_1016_j_memsci_2019_05_057 crossref_primary_10_1021_acscatal_0c02203 crossref_primary_10_1021_acs_langmuir_5b03984 crossref_primary_10_1002_adma_201606949 crossref_primary_10_1016_j_jhazmat_2021_127012 crossref_primary_10_1021_acs_jpcc_8b01616 crossref_primary_10_1007_s12274_020_3082_4 crossref_primary_10_1039_C8TA05774E crossref_primary_10_1002_anie_202410441 crossref_primary_10_1039_C8RA05596C crossref_primary_10_1021_acs_est_9b00408 crossref_primary_10_1002_adma_202002723 crossref_primary_10_1016_j_cej_2022_137047 crossref_primary_10_1016_j_memsci_2022_120821 crossref_primary_10_1016_j_cej_2024_153250 crossref_primary_10_1016_j_coche_2015_03_004 crossref_primary_10_1016_j_coche_2015_03_003 crossref_primary_10_1016_j_memsci_2017_01_003 crossref_primary_10_1016_j_seppur_2023_123691 crossref_primary_10_1002_pat_4245 crossref_primary_10_1002_adfm_202005629 crossref_primary_10_1002_admt_201901069 crossref_primary_10_3390_membranes13010053 crossref_primary_10_3390_membranes12121268 crossref_primary_10_1016_j_oceram_2025_100763 crossref_primary_10_1021_acsami_5b06470 crossref_primary_10_3390_membranes12121274 crossref_primary_10_1016_j_memsci_2017_02_043 crossref_primary_10_1016_j_desal_2022_116096 crossref_primary_10_1039_D0GC04077K crossref_primary_10_1016_j_memsci_2015_03_001 crossref_primary_10_1021_acsnano_6b08538 crossref_primary_10_1007_BF03353757 crossref_primary_10_1016_j_cap_2017_08_019 crossref_primary_10_1016_j_ces_2025_121407 crossref_primary_10_1016_j_carbon_2015_12_087 crossref_primary_10_1016_j_memsci_2018_11_080 crossref_primary_10_1016_j_memsci_2025_123946 crossref_primary_10_1088_1361_6463_adbf2b crossref_primary_10_1088_1757_899X_269_1_012012 crossref_primary_10_1002_adfm_201402952 crossref_primary_10_1039_D0RA02254C crossref_primary_10_1016_j_memsci_2022_120801 crossref_primary_10_1063_1_5024317 crossref_primary_10_1016_j_carbon_2020_04_026 crossref_primary_10_1016_j_memsci_2017_07_055 crossref_primary_10_1016_j_memsci_2020_118363 crossref_primary_10_1016_j_nxener_2023_100079 crossref_primary_10_1039_C6RA06425F crossref_primary_10_1016_j_memsci_2019_05_005 crossref_primary_10_1016_j_psep_2023_03_002 crossref_primary_10_1016_j_mtnano_2020_100074 crossref_primary_10_1016_j_carbon_2017_01_086 crossref_primary_10_1016_j_ces_2018_11_055 crossref_primary_10_1021_acs_iecr_9b05169 crossref_primary_10_1002_admi_201600918 crossref_primary_10_3390_membranes11040269 crossref_primary_10_1002_admi_202400166 crossref_primary_10_1021_acsami_3c15966 crossref_primary_10_1002_anie_201401061 crossref_primary_10_1016_j_memsci_2017_06_011 crossref_primary_10_1021_acs_jpcc_7b12700 crossref_primary_10_1039_C5TA00506J crossref_primary_10_1002_ange_202410441 crossref_primary_10_1016_j_memsci_2018_11_076 crossref_primary_10_1039_C5CC00924C crossref_primary_10_1021_acs_jpcc_7b02915 crossref_primary_10_1016_j_carbon_2023_118524 crossref_primary_10_1002_adfm_201905229 crossref_primary_10_1016_j_apsusc_2016_03_119 crossref_primary_10_1039_C5CP01789K crossref_primary_10_1039_C5NR04096E crossref_primary_10_1002_ange_201904385 crossref_primary_10_1021_acsnano_0c04533 crossref_primary_10_1016_j_envres_2020_109984 crossref_primary_10_1016_j_memsci_2017_06_005 crossref_primary_10_1002_adma_202312566 crossref_primary_10_1002_anie_201601135 crossref_primary_10_1002_ange_201609306 crossref_primary_10_1039_C6RA24974D crossref_primary_10_1002_adfm_202006949 crossref_primary_10_1002_ange_201509213 crossref_primary_10_1039_C9NJ03962G crossref_primary_10_1002_chem_201800556 crossref_primary_10_1039_C7SC04815G crossref_primary_10_1039_C8SC03012J crossref_primary_10_1016_j_radphyschem_2022_110355 crossref_primary_10_1002_ange_201708835 crossref_primary_10_1021_acs_chemmater_9b01102 crossref_primary_10_1016_j_memsci_2022_120863 crossref_primary_10_1016_j_memsci_2023_122099 crossref_primary_10_3390_polym10020129 crossref_primary_10_1021_acs_chemmater_9b00494 crossref_primary_10_3390_su15010476 crossref_primary_10_1021_am403790s crossref_primary_10_1021_acsami_8b22015 crossref_primary_10_1039_C5RA12550B crossref_primary_10_1016_j_cej_2021_129507 crossref_primary_10_1039_C4CS00423J crossref_primary_10_3390_ma14227012 crossref_primary_10_1038_nmat4621 crossref_primary_10_1016_j_cej_2023_142943 crossref_primary_10_1016_j_ultsonch_2022_106202 crossref_primary_10_1016_j_pmatsci_2023_101154 crossref_primary_10_1142_S0218625X21400047 crossref_primary_10_1039_C7TA05033J crossref_primary_10_1016_j_carbon_2016_02_016 crossref_primary_10_1016_j_chemosphere_2021_130487 crossref_primary_10_1039_D3NR05874C crossref_primary_10_1016_j_seppur_2019_03_037 crossref_primary_10_1016_j_memsci_2021_119136 crossref_primary_10_1038_s41467_020_20298_7 crossref_primary_10_1016_j_jcou_2021_101544 crossref_primary_10_1007_s10853_016_0075_5 crossref_primary_10_1016_j_desal_2025_118567 crossref_primary_10_1021_acs_iecr_9b06881 crossref_primary_10_1038_s41467_020_15503_6 crossref_primary_10_1016_j_ceja_2022_100392 crossref_primary_10_1016_j_ijhydene_2019_02_225 crossref_primary_10_1021_acs_chemmater_5b04475 crossref_primary_10_1038_s41467_017_00990_x crossref_primary_10_1039_C5NR08697C crossref_primary_10_1007_s11837_014_1245_z crossref_primary_10_1016_j_memsci_2024_123237 crossref_primary_10_1002_pat_6250 crossref_primary_10_1007_s10853_020_04774_5 crossref_primary_10_1038_s41570_022_00458_7 crossref_primary_10_1038_ncomms11315 crossref_primary_10_1016_j_micromeso_2016_01_001 crossref_primary_10_1021_acs_jpcc_9b09715 crossref_primary_10_1016_j_memsci_2021_119146 crossref_primary_10_1021_acsami_6b15752 crossref_primary_10_1021_acs_iecr_1c04668 crossref_primary_10_1002_adma_201603036 crossref_primary_10_1016_j_seppur_2022_121122 crossref_primary_10_1016_j_memsci_2022_120838 crossref_primary_10_1002_anie_201801094 crossref_primary_10_1021_acsnano_8b04187 crossref_primary_10_1038_srep28509 crossref_primary_10_1088_1757_899X_395_1_012005 crossref_primary_10_1016_j_cjche_2018_08_019 crossref_primary_10_1039_D0NR07042D crossref_primary_10_1073_pnas_1414215111 crossref_primary_10_1007_s11664_020_07992_4 crossref_primary_10_3390_nano10112093 crossref_primary_10_1021_jacs_9b13825 crossref_primary_10_1021_acsami_4c03088 crossref_primary_10_1016_j_ijhydene_2024_09_435 crossref_primary_10_1021_ar400288h crossref_primary_10_1016_j_memsci_2021_119397 crossref_primary_10_1016_j_memsci_2019_06_003 crossref_primary_10_1021_acsami_6b14895 crossref_primary_10_1016_j_memsci_2019_06_006 crossref_primary_10_1016_j_progpolymsci_2022_101504 crossref_primary_10_1088_0957_4484_27_33_332001 crossref_primary_10_1002_adfm_202207265 crossref_primary_10_1021_jacs_0c00927 crossref_primary_10_1016_j_colsurfa_2022_130066 crossref_primary_10_1021_acsami_8b01103 crossref_primary_10_1007_s40843_018_9401_1 crossref_primary_10_1016_j_measurement_2022_111156 crossref_primary_10_1021_acsami_5b08824 crossref_primary_10_1016_j_memsci_2020_118184 crossref_primary_10_1002_anie_201703959 crossref_primary_10_1002_smll_201401549 crossref_primary_10_1016_j_cattod_2018_05_047 crossref_primary_10_1038_nnano_2015_158 crossref_primary_10_1016_j_jpowsour_2019_227516 crossref_primary_10_1016_j_desal_2024_118415 crossref_primary_10_1038_s41467_024_48419_6 crossref_primary_10_1088_1361_665X_ab3c2e crossref_primary_10_1016_j_memsci_2021_119326 crossref_primary_10_1080_17583004_2014_923237 crossref_primary_10_1021_acsami_0c07277 crossref_primary_10_1038_srep06798 crossref_primary_10_1002_smsc_202100013 crossref_primary_10_1039_C5NR08129G crossref_primary_10_1016_j_jece_2023_110243 crossref_primary_10_1021_acsnano_1c03492 crossref_primary_10_2139_ssrn_4088714 crossref_primary_10_1016_j_memsci_2020_119040 crossref_primary_10_1021_acsami_7b14217 crossref_primary_10_1016_j_memsci_2015_01_014 crossref_primary_10_1016_j_compositesb_2019_03_053 crossref_primary_10_1016_j_memsci_2016_10_045 crossref_primary_10_1016_j_renene_2022_06_137 crossref_primary_10_1016_j_seppur_2024_130014 crossref_primary_10_1038_nchem_2218 crossref_primary_10_1002_adfm_201502205 crossref_primary_10_1002_chem_201400175 crossref_primary_10_1016_j_cej_2021_132942 crossref_primary_10_1016_j_micromeso_2020_110120 crossref_primary_10_1016_j_desal_2023_117277 crossref_primary_10_1039_C5CC04999G crossref_primary_10_1038_nmat4638 crossref_primary_10_1007_s10562_019_02702_0 crossref_primary_10_1016_j_pmatsci_2020_100665 crossref_primary_10_1016_j_molliq_2022_120787 crossref_primary_10_1016_j_mtcomm_2017_04_002 crossref_primary_10_1038_srep38583 crossref_primary_10_1039_C4CC09370D crossref_primary_10_5004_dwt_2020_25231 crossref_primary_10_1039_C8TA04178D crossref_primary_10_1016_j_cej_2017_07_064 crossref_primary_10_1016_j_apmt_2015_06_002 crossref_primary_10_1016_j_cis_2024_103330 crossref_primary_10_1016_j_rser_2025_115524 crossref_primary_10_1116_1_5035347 crossref_primary_10_1016_j_gee_2020_09_015 crossref_primary_10_1039_C7NR07612F crossref_primary_10_1016_j_ces_2023_119392 crossref_primary_10_1016_j_ces_2023_119393 crossref_primary_10_1016_j_memsci_2018_12_011 crossref_primary_10_1039_C7TA01862B crossref_primary_10_1246_cl_171070 crossref_primary_10_1360_TB_2022_0503 crossref_primary_10_1002_adfm_201504604 crossref_primary_10_1080_19475411_2023_2300348 crossref_primary_10_1039_C8CS00254A crossref_primary_10_1016_j_memsci_2021_119110 |
Cites_doi | 10.1002/aic.11457 10.1016/j.memsci.2009.09.009 10.1021/nl201432g 10.1038/nature06016 10.1016/S0376-7388(02)00544-6 10.1021/nn103028d 10.1126/science.285.5435.1902 10.1021/nl9021946 10.1021/jp206258u 10.1021/ja076473o 10.1126/science.1211694 10.1038/nnano.2012.162 10.1016/j.micromeso.2003.11.016 10.1103/PhysRevB.61.14095 10.1016/j.memsci.2006.11.027 10.1126/science.1082169 10.1021/jp060936f 10.1021/ar200083e 10.1016/j.susc.2012.08.024 10.1021/ie048739v 10.1021/cr0501792 10.1126/science.1157996 10.1038/nnano.2011.130 10.1021/la900474y 10.1016/S0008-6223(01)00262-7 10.1016/j.ijggc.2010.04.001 10.1016/j.memsci.2010.02.074 10.1016/j.memsci.2008.04.030 10.1021/ie8019032 10.1126/science.1146744 10.1016/j.memsci.2009.11.040 10.1063/1.3021413 10.1021/ja8074874 10.1016/j.memsci.2007.09.031 10.1126/science.279.5357.1710 10.1021/ja108681n 10.1021/nl061702a 10.1021/nl801457b 10.1016/j.memsci.2004.06.046 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Association for the Advancement of Science 2015 INIST-CNRS Copyright © 2013, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2013 American Association for the Advancement of Science – notice: 2015 INIST-CNRS – notice: Copyright © 2013, American Association for the Advancement of Science |
DBID | AAYXX CITATION IQODW NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1126/science.1236686 |
DatabaseName | CrossRef Pascal-Francis PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database Materials Research Database MEDLINE - Academic CrossRef PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Applied Sciences |
EISSN | 1095-9203 |
EndPage | 98 |
ExternalDocumentID | 3089573651 24092739 27895684 10_1126_science_1236686 42619729 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 4.4 4R4 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~KM ~ZZ AAYXX AGFXO ALIPV CITATION .GJ .GO 0-V 186 3EH 41~ 42X 692 79B 7X7 7XC 88E 88I 8AF 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8GL 8WZ 97F A6W AADHG AAFWJ AAKAS AAYOK ABDPE ABJCF ABTAH ABUWG ACQAM ACTDY ADBBV ADZCM AEUYN AFKRA AFQQW AJUXI ARALO ARAPS ATCPS AZQEC BBNVY BBWZM BCU BEC BENPR BGLVJ BHPHI BKNYI BKSAR BPHCQ BVXVI C2- CCPQU CJNVE D0S D1I D1J D1K DWQXO D~A EAU EGS EWM EX3 FYUFA GICCO GNUQQ GUQSH GX1 HCIFZ HGD HMCUK HQ3 HTVGU HVGLF IAG IBG IEP IER IPC IQODW ISN ITC J5H K6- K9- KB. KQ8 L6V LK5 LK8 LPU M0K M0R M1P M2O M2P M2Q M7P M7R M7S N4W OK1 P62 PATMY PCBAR PDBOC PHGZT PQEDU PROAC PSQYO PTHSS PV9 PYCSY QS- R05 RNS RZL SJFOW SKT UBY UHU UIG UKHRP VOH WOQ WOW X7L XIH XKJ XOL YCJ YJ6 YXB ZCG ZGI ZKG ZVL ZVM ZXP ZY4 ~G0 ~H1 NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c546t-995280808fba9608d5c948e0760d401993648baee1d297c8214e8216c88bcd043 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Jul 10 16:36:33 EDT 2025 Fri Jul 11 09:03:09 EDT 2025 Fri Jul 11 13:28:07 EDT 2025 Fri Jul 25 10:34:11 EDT 2025 Mon Jul 21 06:04:25 EDT 2025 Wed Apr 02 07:16:13 EDT 2025 Thu Apr 24 23:02:09 EDT 2025 Tue Jul 01 04:10:02 EDT 2025 Sun Aug 24 12:10:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6154 |
Keywords | Ultrathin films Aluminium oxide Gas permeability Hydrogen Morphology Carbon dioxide Selective permeability Membrane Manufacturing Nitrogen Experimental study |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c546t-995280808fba9608d5c948e0760d401993648baee1d297c8214e8216c88bcd043 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24092739 |
PQID | 1439269317 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2000342085 proquest_miscellaneous_1559693193 proquest_miscellaneous_1443391433 proquest_journals_1439269317 pubmed_primary_24092739 pascalfrancis_primary_27895684 crossref_citationtrail_10_1126_science_1236686 crossref_primary_10_1126_science_1236686 jstor_primary_42619729 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-04 |
PublicationDateYYYYMMDD | 2013-10-04 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2013 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_32_2 doi: 10.1002/aic.11457 – ident: e_1_3_2_33_2 doi: 10.1016/j.memsci.2009.09.009 – ident: e_1_3_2_40_2 doi: 10.1021/nl201432g – ident: e_1_3_2_7_2 doi: 10.1038/nature06016 – ident: e_1_3_2_24_2 doi: 10.1016/S0376-7388(02)00544-6 – ident: e_1_3_2_8_2 doi: 10.1021/nn103028d – ident: e_1_3_2_5_2 doi: 10.1126/science.285.5435.1902 – ident: e_1_3_2_16_2 doi: 10.1021/nl9021946 – ident: e_1_3_2_17_2 doi: 10.1021/jp206258u – ident: e_1_3_2_35_2 doi: 10.1021/ja076473o – ident: e_1_3_2_11_2 doi: 10.1126/science.1211694 – ident: e_1_3_2_13_2 doi: 10.1038/nnano.2012.162 – ident: e_1_3_2_25_2 doi: 10.1016/j.micromeso.2003.11.016 – ident: e_1_3_2_38_2 doi: 10.1103/PhysRevB.61.14095 – ident: e_1_3_2_27_2 doi: 10.1016/j.memsci.2006.11.027 – ident: e_1_3_2_2_2 doi: 10.1126/science.1082169 – ident: e_1_3_2_37_2 doi: 10.1021/jp060936f – ident: e_1_3_2_3_2 doi: 10.1021/ar200083e – ident: e_1_3_2_18_2 doi: 10.1016/j.susc.2012.08.024 – ident: e_1_3_2_28_2 doi: 10.1021/ie048739v – ident: e_1_3_2_19_2 doi: 10.1021/cr0501792 – ident: e_1_3_2_9_2 doi: 10.1126/science.1157996 – ident: e_1_3_2_36_2 doi: 10.1038/nnano.2011.130 – ident: e_1_3_2_31_2 doi: 10.1021/la900474y – ident: e_1_3_2_41_2 doi: 10.1016/S0008-6223(01)00262-7 – ident: e_1_3_2_22_2 doi: 10.1016/j.ijggc.2010.04.001 – ident: e_1_3_2_29_2 doi: 10.1016/j.memsci.2010.02.074 – ident: e_1_3_2_26_2 doi: 10.1016/j.memsci.2008.04.030 – ident: e_1_3_2_20_2 doi: 10.1021/ie8019032 – ident: e_1_3_2_6_2 doi: 10.1126/science.1146744 – ident: e_1_3_2_21_2 doi: 10.1016/j.memsci.2009.11.040 – ident: e_1_3_2_12_2 doi: 10.1063/1.3021413 – ident: e_1_3_2_34_2 doi: 10.1021/ja8074874 – ident: e_1_3_2_23_2 doi: 10.1016/j.memsci.2007.09.031 – ident: e_1_3_2_4_2 doi: 10.1126/science.279.5357.1710 – ident: e_1_3_2_30_2 doi: 10.1021/ja108681n – ident: e_1_3_2_39_2 doi: 10.1021/nl061702a – ident: e_1_3_2_10_2 doi: 10.1021/nl801457b – ident: e_1_3_2_15_2 doi: 10.1016/j.memsci.2004.06.046 |
SSID | ssj0009593 |
Score | 2.6345882 |
Snippet | Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous... When gas separation membranes are made thinner, they usually allow permeating gases to pass through faster. However, a thinner membrane may be poorer at... Gas SeparationsWhen gas separation membranes are made thinner, they usually allow permeating gases to pass through faster. However, a thinner membrane may be... Gas Separations When gas separation membranes are made thinner, they usually allow permeating gases to pass through faster. However, a thinner membrane may be... |
SourceID | proquest pubmed pascalfrancis crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 95 |
SubjectTerms | Adsorption Applied sciences Carbon dioxide Channels Chemical engineering Diffusion Exact sciences and technology Filtration Gases Graphene graphene oxide Hydrogen Materials science Membrane separation (reverse osmosis, dialysis...) Membranes Micropores Molecules nitrogen Oxides P branes permeability Pore size Porosity Solvents String theory |
Title | Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation |
URI | https://www.jstor.org/stable/42619729 https://www.ncbi.nlm.nih.gov/pubmed/24092739 https://www.proquest.com/docview/1439269317 https://www.proquest.com/docview/1443391433 https://www.proquest.com/docview/1559693193 https://www.proquest.com/docview/2000342085 |
Volume | 342 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJyReEBuMBcZkJB6GIFXqr8SPHTBViMHDVlF4iZzE1YJGi9YWMf4b_43r2HE9RifYS1S5Tpr6HNv32Nf3IvSsLCnYwUwBAhIEiiRFnIHKiAmnouBi0peVWe84ei-GI_Z2zMedzq_Aa2m5KHrlz7-eK7kJqlAGuJpTsv-BrH8oFMBnwBeugDBc_wnj0ZmJLXtqwwActYlu4-Naf7frSsp4cOkXH37UFXRf_RWkMQxtjWvhcZMAx_gNDS-q8xn8BhTZQOAOKWeytr0fTFG_vROA6v0UB9aboHUucLcFKw3vbIJs5eZKs6zj_IE_ny5BEHia-kXsca1mX-qAeq78Ux0uVvSt29tqsfIGrxkO3i52sp267HidmFSTJKHhgE4ZCZgLJhsLRmjJg7neJsC-OosEeS91z8SnEX_G624sgEZ-gjq5hTYIqBTSRRuDg9cHh2ujPrvYUsGprfbpl8wi6xlr3HTVHHrqxKZYWa-BGlvo5B6660QMHlhGbqKOnm6h2zat6cUW2nSNOsf7Lqr58_vooyfrS3yFqrilKm6oij1VMcCGPVVxS1W8ouoDNDp8c_JqGLusHnHJmVjEUnJigplmk0KBfM4qXkqWabNDXIHYB3tZsKxQWvcrItMyI32m4SLKLCvKKmF0G3Wns6neQVinSqS0SBOVUqYyXSRSGZt-IkptNrQj1GsbNS9dyHuTeeUsb6QvEblDIXcoRGjf3_DNRntZX3W7QcnXa8kQob1LsPkK5sw5FxmL0G6LY-4GkzkocBAqQoI1H6Gn_msY6s3-HbT3bGnqMEol1KTX1OFcmsfIa-qQJiqVSc4boYeWR6uXZIkERSMfrft7j9GdVcfeRd3F-VI_Abt8Uew59v8GTZ3jfQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin%2C+Molecular-Sieving+Graphene+Oxide+Membranes+for+Selective+Hydrogen+Separation&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Li%2C+Hang&rft.au=Song%2C+Zhuonan&rft.au=Zhang%2C+Xiaojie&rft.au=Huang%2C+Yi&rft.date=2013-10-04&rft.pub=American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=342&rft.issue=6154&rft.spage=95&rft.epage=98&rft_id=info:doi/10.1126%2Fscience.1236686&rft.externalDocID=42619729 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |