Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation

Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques,...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 342; no. 6154; pp. 95 - 98
Main Authors Li, Hang, Song, Zhuonan, Zhang, Xiaojie, Huang, Yi, Li, Shiguang, Mao, Yating, Ploehn, Harry J., Bao, Yu, Yu, Miao
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 04.10.2013
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques, it is difficult to prepare microporous membranes thinner than 20 nm without introducing extra defects. Here, we report ultrathin graphene oxide (GO) membranes, with thickness approaching 1.8 nm, prepared by a facile filtration process. These membranes showed mixture separation selectivities as high as 3400 and 900 for H₂/CO₂ and H₂/N₂ mixtures, respectively, through selective structural defects on GO.
AbstractList Gas SeparationsWhen gas separation membranes are made thinner, they usually allow permeating gases to pass through faster. However, a thinner membrane may be poorer at separating between gas species. Kim et al. (p. 91) examined the permeability and selectivity of layered graphene and graphene oxide membranes. Gas molecules diffuse through defective pores and channels that form between the layers. Controlling these structures tuned the properties of the membranes to allow the extraction of carbon dioxide from other gases. Li et al. (p. 95) describe membranes as thin as 1.8 nanometers made from only two to three layers of graphene oxide. Small defects within the layers allowed hydrogen to pass through, separating it from carbon dioxide and nitrogen.
When gas separation membranes are made thinner, they usually allow permeating gases to pass through faster. However, a thinner membrane may be poorer at separating between gas species. Kim et al. (p. 91) examined the permeability and selectivity of layered graphene and graphene oxide membranes. Gas molecules diffuse through defective pores and channels that form between the layers. Controlling these structures tuned the properties of the membranes to allow the extraction of carbon dioxide from other gases. Li et al. (p. 95) describe membranes as thin as 1.8 nanometers made from only two to three layers of graphene oxide. Small defects within the layers allowed hydrogen to pass through, separating it from carbon dioxide and nitrogen. [PUBLICATION ABSTRACT] Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques, it is difficult to prepare microporous membranes thinner than 20 nm without introducing extra defects. Here, we report ultrathin graphene oxide (GO) membranes, with thickness approaching 1.8 nm, prepared by a facile filtration process. These membranes showed mixture separation selectivities as high as 3400 and 900 for H2/CO2 and H2/N2 mixtures, respectively, through selective structural defects on GO. [PUBLICATION ABSTRACT]
Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques, it is difficult to prepare microporous membranes thinner than 20 nm without introducing extra defects. Here, we report ultrathin graphene oxide (GO) membranes, with thickness approaching 1.8 nm, prepared by a facile filtration process. These membranes showed mixture separation selectivities as high as 3400 and 900 for H2/CO2 and H2/N2 mixtures, respectively, through selective structural defects on GO.Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques, it is difficult to prepare microporous membranes thinner than 20 nm without introducing extra defects. Here, we report ultrathin graphene oxide (GO) membranes, with thickness approaching 1.8 nm, prepared by a facile filtration process. These membranes showed mixture separation selectivities as high as 3400 and 900 for H2/CO2 and H2/N2 mixtures, respectively, through selective structural defects on GO.
When gas separation membranes are made thinner, they usually allow permeating gases to pass through faster. However, a thinner membrane may be poorer at separating between gas species. Kim et al. (p. 91 ) examined the permeability and selectivity of layered graphene and graphene oxide membranes. Gas molecules diffuse through defective pores and channels that form between the layers. Controlling these structures tuned the properties of the membranes to allow the extraction of carbon dioxide from other gases. Li et al. (p. 95 ) describe membranes as thin as 1.8 nanometers made from only two to three layers of graphene oxide. Small defects within the layers allowed hydrogen to pass through, separating it from carbon dioxide and nitrogen. Ultrathin graphene oxide membranes show enhanced separation selectivity for hydrogen gas. Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques, it is difficult to prepare microporous membranes thinner than 20 nm without introducing extra defects. Here, we report ultrathin graphene oxide (GO) membranes, with thickness approaching 1.8 nm, prepared by a facile filtration process. These membranes showed mixture separation selectivities as high as 3400 and 900 for H 2 /CO 2 and H 2 /N 2 mixtures, respectively, through selective structural defects on GO.
Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques, it is difficult to prepare microporous membranes thinner than 20 nm without introducing extra defects. Here, we report ultrathin graphene oxide (GO) membranes, with thickness approaching 1.8 nm, prepared by a facile filtration process. These membranes showed mixture separation selectivities as high as 3400 and 900 for H2/CO2 and H2/N2 mixtures, respectively, through selective structural defects on GO.
Gas Separations When gas separation membranes are made thinner, they usually allow permeating gases to pass through faster. However, a thinner membrane may be poorer at separating between gas species. Kim et al. (p. 91) examined the permeability and selectivity of layered graphene and graphene oxide membranes. Gas molecules diffuse through defective pores and channels that form between the layers. Controlling these structures tuned the properties of the membranes to allow the extraction of carbon dioxide from other gases. Li et al. (p. 95) describe membranes as thin as 1.8 nanometers made from only two to three layers of graphene oxide. Small defects within the layers allowed hydrogen to pass through, separating it from carbon dioxide and nitrogen.
Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques, it is difficult to prepare microporous membranes thinner than 20 nm without introducing extra defects. Here, we report ultrathin graphene oxide (GO) membranes, with thickness approaching 1.8 nm, prepared by a facile filtration process. These membranes showed mixture separation selectivities as high as 3400 and 900 for H₂/CO₂ and H₂/N₂ mixtures, respectively, through selective structural defects on GO.
Author Li, Hang
Bao, Yu
Song, Zhuonan
Mao, Yating
Yu, Miao
Ploehn, Harry J.
Li, Shiguang
Huang, Yi
Zhang, Xiaojie
Author_xml – sequence: 1
  givenname: Hang
  surname: Li
  fullname: Li, Hang
– sequence: 2
  givenname: Zhuonan
  surname: Song
  fullname: Song, Zhuonan
– sequence: 3
  givenname: Xiaojie
  surname: Zhang
  fullname: Zhang, Xiaojie
– sequence: 4
  givenname: Yi
  surname: Huang
  fullname: Huang, Yi
– sequence: 5
  givenname: Shiguang
  surname: Li
  fullname: Li, Shiguang
– sequence: 6
  givenname: Yating
  surname: Mao
  fullname: Mao, Yating
– sequence: 7
  givenname: Harry J.
  surname: Ploehn
  fullname: Ploehn, Harry J.
– sequence: 8
  givenname: Yu
  surname: Bao
  fullname: Bao, Yu
– sequence: 9
  givenname: Miao
  surname: Yu
  fullname: Yu, Miao
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27895684$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24092739$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEUhoNU7LZ67ZUyIIIXTpvvybksRVuhpRe1eDlkMmfbLLPJmswU--_NulOFgpTACSTP-3K-DsheiAEJecvoEWNcH2fnMTg8YlxobfQLsmAUVA2cij2yoFTo2tBG7ZODnFeUlj8Qr8g-lxR4I2BBftwMY7LjnQ-fq8s4oJsGm-prj_c-3FZnyW7uMGB19cv3WF3iuks2YK6WMVXXWPDR32N1_tCneIuhPG1scfMxvCYvl3bI-Ga-D8nN1y_fT8_ri6uzb6cnF7VTUo81gOKGlrPsLGhqeuVAGqSNpr2kDEBoaTqLyHoOjTOcSSxBO2M611MpDsmnne8mxZ8T5rFd--xwGEqaccotL0ULyalRz6JMKdAgGIjnUSmFAFZCQT88QVdxSqHUXCgBfOvYFOr9TE3dGvt2k_zapof2cRAF-DgDNjs7LEubnc__uMaA0mZbr9pxLsWcEy5b58c_HS9j9EPLaLtdjHZejHZejKI7fqJ7tP6_4t1OscpjTH9xyTWDhoP4DWxdwpQ
CODEN SCIEAS
CitedBy_id crossref_primary_10_1016_j_coche_2017_04_004
crossref_primary_10_1016_j_ijhydene_2015_08_107
crossref_primary_10_1039_C7CP03270F
crossref_primary_10_1016_j_coche_2017_04_009
crossref_primary_10_1016_j_progpolymsci_2017_12_002
crossref_primary_10_1021_acs_iecr_7b04796
crossref_primary_10_1021_jp5026762
crossref_primary_10_1016_j_memsci_2018_06_033
crossref_primary_10_1002_advs_202404001
crossref_primary_10_1021_acs_jpcc_7b01796
crossref_primary_10_1016_j_carbon_2018_05_071
crossref_primary_10_1039_D2NR05229F
crossref_primary_10_1073_pnas_1613031113
crossref_primary_10_1016_j_ijggc_2016_11_010
crossref_primary_10_1007_s10934_017_0485_z
crossref_primary_10_1016_j_memsci_2015_08_042
crossref_primary_10_1038_nnano_2015_110
crossref_primary_10_1002_cphc_202400662
crossref_primary_10_1016_j_compositesa_2020_105829
crossref_primary_10_1038_srep42299
crossref_primary_10_1016_j_chempr_2021_06_005
crossref_primary_10_1016_j_memsci_2019_01_041
crossref_primary_10_2139_ssrn_4131167
crossref_primary_10_1016_j_mtphys_2022_100792
crossref_primary_10_1039_C6TA10395B
crossref_primary_10_1016_j_seppur_2018_07_044
crossref_primary_10_1021_acs_jpcc_6b08529
crossref_primary_10_1021_acsami_0c01378
crossref_primary_10_1021_acs_langmuir_1c00392
crossref_primary_10_1016_j_cplett_2015_03_052
crossref_primary_10_3390_membranes12100915
crossref_primary_10_1002_admi_202400651
crossref_primary_10_1016_j_memsci_2019_117297
crossref_primary_10_1021_acs_nanolett_3c00004
crossref_primary_10_1039_D3NR03459C
crossref_primary_10_3390_pr11030927
crossref_primary_10_1002_anie_202304734
crossref_primary_10_1039_C9TA03159F
crossref_primary_10_1002_eem2_12843
crossref_primary_10_1039_D0CP03773G
crossref_primary_10_1002_asia_202000053
crossref_primary_10_1021_acs_jpcb_8b12341
crossref_primary_10_1021_acsnano_4c15126
crossref_primary_10_1515_phys_2016_0075
crossref_primary_10_1021_ja5083602
crossref_primary_10_1039_C8TA09504C
crossref_primary_10_1002_adma_201705933
crossref_primary_10_1016_j_advmem_2021_100011
crossref_primary_10_3390_nano11020382
crossref_primary_10_1021_acs_est_5b00904
crossref_primary_10_1021_acs_jpcc_3c07127
crossref_primary_10_1021_acsami_7b08232
crossref_primary_10_1016_j_desal_2017_09_024
crossref_primary_10_1039_C9NA00235A
crossref_primary_10_1080_1536383X_2020_1813720
crossref_primary_10_1126_science_ade1411
crossref_primary_10_1063_1_4963098
crossref_primary_10_1016_j_seppur_2018_08_065
crossref_primary_10_1021_acs_est_5b02086
crossref_primary_10_1016_j_carbon_2016_02_070
crossref_primary_10_1039_C6TA09362K
crossref_primary_10_1021_acsami_6b09912
crossref_primary_10_1142_S1793604715500198
crossref_primary_10_1016_j_seppur_2019_116181
crossref_primary_10_1016_j_seppur_2020_116818
crossref_primary_10_1039_C4CP04385E
crossref_primary_10_1021_acsomega_0c01773
crossref_primary_10_1002_anie_201907773
crossref_primary_10_1021_acsami_7b01890
crossref_primary_10_1016_j_memsci_2015_07_034
crossref_primary_10_1021_acsabm_9b00249
crossref_primary_10_1016_j_memsci_2023_121876
crossref_primary_10_1021_am509048k
crossref_primary_10_1039_C8QM00272J
crossref_primary_10_1002_cite_201600041
crossref_primary_10_1021_acs_jpclett_6b00219
crossref_primary_10_1038_s41699_021_00246_9
crossref_primary_10_1016_j_cej_2021_128609
crossref_primary_10_1016_j_memsci_2023_121631
crossref_primary_10_1039_C9NR09656F
crossref_primary_10_1016_j_seppur_2016_10_012
crossref_primary_10_1021_acsomega_1c04466
crossref_primary_10_1016_j_ces_2019_07_059
crossref_primary_10_1002_ange_202106346
crossref_primary_10_1016_j_seppur_2024_131077
crossref_primary_10_1039_C4CP00514G
crossref_primary_10_1016_j_ceramint_2016_03_069
crossref_primary_10_1002_admi_201600495
crossref_primary_10_1039_C6CP00167J
crossref_primary_10_1021_jacs_8b05136
crossref_primary_10_1039_D1SM01158H
crossref_primary_10_1088_1361_6528_aa680f
crossref_primary_10_1016_j_memsci_2019_01_003
crossref_primary_10_1016_j_memsci_2022_121102
crossref_primary_10_1021_acs_chemmater_9b00688
crossref_primary_10_1002_asia_202000013
crossref_primary_10_1021_acs_nanolett_1c01076
crossref_primary_10_1002_adma_201907580
crossref_primary_10_1016_j_memsci_2015_08_010
crossref_primary_10_1039_C7CP01665D
crossref_primary_10_1016_j_memsci_2019_03_087
crossref_primary_10_1142_S1793292021500661
crossref_primary_10_1016_j_carbon_2018_04_004
crossref_primary_10_1016_j_cej_2023_148163
crossref_primary_10_1016_j_memsci_2020_117934
crossref_primary_10_1039_D1EE00689D
crossref_primary_10_1002_app_50902
crossref_primary_10_1021_acsnano_5b07304
crossref_primary_10_1002_asia_202000251
crossref_primary_10_1021_nn501098d
crossref_primary_10_1039_D2TC02536A
crossref_primary_10_1039_C7TA03874G
crossref_primary_10_1038_ncomms14460
crossref_primary_10_3390_coatings9030183
crossref_primary_10_1016_j_memsci_2023_121856
crossref_primary_10_1016_j_carbon_2018_12_050
crossref_primary_10_1002_ange_201601135
crossref_primary_10_1016_j_ijhydene_2020_04_053
crossref_primary_10_1038_nchem_2145
crossref_primary_10_1016_j_apsusc_2021_151355
crossref_primary_10_1016_j_desal_2017_07_014
crossref_primary_10_1039_C4TA06193D
crossref_primary_10_1002_adma_202108457
crossref_primary_10_3390_nano12040688
crossref_primary_10_1016_j_apcatb_2023_122442
crossref_primary_10_1016_j_desal_2024_118177
crossref_primary_10_1021_acs_jpcc_0c06783
crossref_primary_10_1016_j_carbon_2017_09_061
crossref_primary_10_1016_j_mee_2016_03_040
crossref_primary_10_1021_jp412588f
crossref_primary_10_1039_C5RA01321F
crossref_primary_10_3390_app9142784
crossref_primary_10_1007_s10853_020_04367_2
crossref_primary_10_1016_j_apsusc_2015_08_061
crossref_primary_10_1016_j_cjche_2015_04_018
crossref_primary_10_1038_ncomms8602
crossref_primary_10_1016_j_seppur_2020_116858
crossref_primary_10_1021_acs_iecr_9b05975
crossref_primary_10_1038_s41467_024_45007_6
crossref_primary_10_1002_ange_201411550
crossref_primary_10_1039_C6TA04579K
crossref_primary_10_1103_RevModPhys_91_021004
crossref_primary_10_1002_advs_202307073
crossref_primary_10_1038_nnano_2015_37
crossref_primary_10_1039_C9EW01129C
crossref_primary_10_1039_D0TA05610C
crossref_primary_10_1016_j_carbon_2018_11_063
crossref_primary_10_1016_j_jclepro_2018_11_020
crossref_primary_10_1016_j_memsci_2020_118419
crossref_primary_10_3390_nano9081180
crossref_primary_10_1039_C7EE00830A
crossref_primary_10_1016_j_seppur_2021_120301
crossref_primary_10_1016_j_seppur_2020_118192
crossref_primary_10_1016_j_ces_2020_115602
crossref_primary_10_1021_acs_jpcc_6b00884
crossref_primary_10_1021_jp504921p
crossref_primary_10_1002_admi_202000121
crossref_primary_10_1021_acsami_0c16468
crossref_primary_10_1016_j_rser_2021_111062
crossref_primary_10_1016_j_materresbull_2016_01_033
crossref_primary_10_1016_j_jcis_2015_08_065
crossref_primary_10_1039_C4TA06573E
crossref_primary_10_1039_D0TA07065C
crossref_primary_10_1021_accountsmr_0c00092
crossref_primary_10_3390_nano10081492
crossref_primary_10_1002_adma_202104946
crossref_primary_10_4028_www_scientific_net_DDF_391_195
crossref_primary_10_1016_j_ijhydene_2017_04_043
crossref_primary_10_1021_acs_est_9b05597
crossref_primary_10_1039_C9TA01524H
crossref_primary_10_1016_j_nanoms_2019_02_004
crossref_primary_10_1016_j_cej_2014_04_017
crossref_primary_10_1021_acs_jpcb_0c02052
crossref_primary_10_1021_acsnano_6b02588
crossref_primary_10_1038_s41467_025_56358_z
crossref_primary_10_3390_membranes12121241
crossref_primary_10_1021_acsami_9b06309
crossref_primary_10_1002_adma_201705775
crossref_primary_10_1016_j_adna_2024_03_001
crossref_primary_10_1021_acs_jpcc_6b02616
crossref_primary_10_1039_C4TA00108G
crossref_primary_10_1016_j_cjche_2021_12_009
crossref_primary_10_1016_j_memsci_2022_120291
crossref_primary_10_1021_acs_jpclett_0c00204
crossref_primary_10_1002_smll_202302627
crossref_primary_10_1016_j_apsusc_2018_02_042
crossref_primary_10_1016_j_carbon_2018_12_098
crossref_primary_10_1038_s41467_023_37932_9
crossref_primary_10_1007_s10570_019_02962_4
crossref_primary_10_1039_C5CP04976H
crossref_primary_10_1021_acsami_6b00928
crossref_primary_10_1039_D0EN00401D
crossref_primary_10_1016_j_memsci_2020_118454
crossref_primary_10_2139_ssrn_4103332
crossref_primary_10_1002_adma_201802418
crossref_primary_10_1038_s41699_024_00462_z
crossref_primary_10_1007_s42765_021_00105_8
crossref_primary_10_1016_j_memsci_2020_118691
crossref_primary_10_1016_j_memsci_2022_121126
crossref_primary_10_1021_acs_iecr_6b01005
crossref_primary_10_1021_acs_jpcc_5b04918
crossref_primary_10_1021_acsnano_7b01231
crossref_primary_10_1039_C8TA06161K
crossref_primary_10_1021_acsami_5b09648
crossref_primary_10_1021_acs_jpcc_7b10699
crossref_primary_10_1016_j_memsci_2016_12_019
crossref_primary_10_1039_C6NR06977K
crossref_primary_10_1016_j_cep_2017_05_013
crossref_primary_10_1038_s41467_017_02198_5
crossref_primary_10_1111_jace_15859
crossref_primary_10_1021_acsestwater_0c00015
crossref_primary_10_1039_D4RA05273K
crossref_primary_10_1007_s11706_021_0536_x
crossref_primary_10_1016_j_tsf_2015_06_060
crossref_primary_10_1039_C4CC03940H
crossref_primary_10_1016_j_coche_2017_03_003
crossref_primary_10_1016_j_coche_2017_03_002
crossref_primary_10_1016_j_gce_2020_12_001
crossref_primary_10_1016_j_jechem_2021_03_002
crossref_primary_10_1021_acsanm_2c00974
crossref_primary_10_1002_anie_201600438
crossref_primary_10_1016_j_seppur_2022_120629
crossref_primary_10_1039_D0TA03071F
crossref_primary_10_1021_acsnano_9b04612
crossref_primary_10_1002_admi_202200337
crossref_primary_10_1039_C5TA04471E
crossref_primary_10_1021_acsnano_7b05419
crossref_primary_10_1016_j_jaecs_2020_100004
crossref_primary_10_1021_acs_chemrev_7b00095
crossref_primary_10_1088_2053_1583_1_3_034004
crossref_primary_10_1039_C7RA11088J
crossref_primary_10_1021_acs_macromol_7b01718
crossref_primary_10_1039_D0QI00307G
crossref_primary_10_1002_anie_201915797
crossref_primary_10_1038_srep10258
crossref_primary_10_1039_D1NR02169A
crossref_primary_10_1080_1573062X_2023_2290613
crossref_primary_10_1246_bcsj_20210169
crossref_primary_10_1038_s41467_017_02529_6
crossref_primary_10_1016_j_cej_2018_03_136
crossref_primary_10_1039_C7TA01142C
crossref_primary_10_1016_j_seppur_2019_115712
crossref_primary_10_1039_C4TB01896F
crossref_primary_10_12677_MS_2018_86087
crossref_primary_10_1021_mz500484k
crossref_primary_10_1021_acs_nanolett_6b03837
crossref_primary_10_1038_s41467_022_31779_2
crossref_primary_10_1039_C9CC00349E
crossref_primary_10_1016_j_memsci_2023_121454
crossref_primary_10_1039_C5EE02433A
crossref_primary_10_1002_smll_202303757
crossref_primary_10_1021_acsami_8b05296
crossref_primary_10_1039_C7TA06307E
crossref_primary_10_1039_D4RA00444B
crossref_primary_10_1103_PhysRevApplied_10_034018
crossref_primary_10_1002_admi_201400433
crossref_primary_10_1016_j_apmt_2020_100766
crossref_primary_10_1016_j_poly_2021_115588
crossref_primary_10_1021_acs_jpcc_7b03728
crossref_primary_10_1016_j_rser_2023_113540
crossref_primary_10_1039_D1CP05417A
crossref_primary_10_5714_CL_2015_16_3_183
crossref_primary_10_1039_D3CC05545K
crossref_primary_10_1039_C8TA08261H
crossref_primary_10_1016_j_flatc_2017_06_008
crossref_primary_10_1038_srep13981
crossref_primary_10_1016_j_seppur_2023_126232
crossref_primary_10_1038_s41467_018_07710_z
crossref_primary_10_1016_j_pmatsci_2014_10_004
crossref_primary_10_1002_smll_201804640
crossref_primary_10_1016_j_molstruc_2021_132255
crossref_primary_10_1016_j_ijhydene_2025_02_343
crossref_primary_10_1016_j_flatc_2023_100493
crossref_primary_10_1021_acs_jpclett_9b03082
crossref_primary_10_1016_j_carbon_2018_01_062
crossref_primary_10_1016_j_memsci_2018_03_056
crossref_primary_10_1021_acs_jpcc_7b04394
crossref_primary_10_1002_adfm_201503229
crossref_primary_10_3390_membranes12111131
crossref_primary_10_1007_s11244_015_0391_z
crossref_primary_10_1021_acsami_9b16966
crossref_primary_10_1016_j_memsci_2014_11_050
crossref_primary_10_1039_C8TA02256A
crossref_primary_10_1002_anie_201509213
crossref_primary_10_1016_j_compscitech_2020_108344
crossref_primary_10_1038_s41467_017_00544_1
crossref_primary_10_1016_j_ces_2015_04_033
crossref_primary_10_1039_C8CP00466H
crossref_primary_10_1126_sciadv_adg2229
crossref_primary_10_1088_1361_648X_aa7d5e
crossref_primary_10_1016_j_pmatsci_2018_09_003
crossref_primary_10_1098_rsta_2015_0024
crossref_primary_10_1038_s41467_024_46083_4
crossref_primary_10_3389_fceng_2021_668867
crossref_primary_10_1246_cl_180557
crossref_primary_10_1002_ange_201401061
crossref_primary_10_1002_cnma_202000041
crossref_primary_10_1021_acsnano_8b02015
crossref_primary_10_1002_ange_201600438
crossref_primary_10_1021_acsapm_9b00851
crossref_primary_10_1039_D0TA04406G
crossref_primary_10_1016_j_mtener_2025_101811
crossref_primary_10_1016_j_carbon_2016_12_029
crossref_primary_10_1016_j_memsci_2021_119419
crossref_primary_10_1039_C4NR03621B
crossref_primary_10_1016_j_memsci_2024_122428
crossref_primary_10_1038_s41467_021_23121_z
crossref_primary_10_1016_j_memsci_2024_123511
crossref_primary_10_1002_anie_201701288
crossref_primary_10_1038_ncomms4705
crossref_primary_10_1039_C7NR05737G
crossref_primary_10_1016_j_trechm_2024_04_006
crossref_primary_10_1016_j_jgsce_2023_205049
crossref_primary_10_1021_acsnano_1c00987
crossref_primary_10_1039_C4CC06207H
crossref_primary_10_1002_aic_15260
crossref_primary_10_1021_acsnano_6b06655
crossref_primary_10_1016_j_surfcoat_2018_06_082
crossref_primary_10_1021_acsami_6b08020
crossref_primary_10_1016_j_cjche_2016_11_010
crossref_primary_10_1016_j_jtice_2022_104379
crossref_primary_10_1038_srep05528
crossref_primary_10_1007_s11270_018_3757_6
crossref_primary_10_1016_j_carbon_2016_12_041
crossref_primary_10_1016_j_materresbull_2017_08_049
crossref_primary_10_1016_j_molliq_2018_04_155
crossref_primary_10_1016_j_memsci_2018_03_040
crossref_primary_10_1016_j_seppur_2018_04_079
crossref_primary_10_1039_C7CP03981F
crossref_primary_10_1002_anie_201911359
crossref_primary_10_1016_j_memsci_2022_120943
crossref_primary_10_1039_D4CC00201F
crossref_primary_10_1002_smll_202201982
crossref_primary_10_1016_j_carbon_2021_06_011
crossref_primary_10_1021_acs_chemmater_8b00765
crossref_primary_10_1039_D0MH00853B
crossref_primary_10_1080_15583724_2014_963235
crossref_primary_10_3390_polym13173012
crossref_primary_10_1021_acs_jpcc_2c06085
crossref_primary_10_1039_C5CE02188J
crossref_primary_10_1002_admi_201400250
crossref_primary_10_1002_adfm_201907549
crossref_primary_10_1038_srep15799
crossref_primary_10_1002_cjoc_202000066
crossref_primary_10_1134_S1990793122080073
crossref_primary_10_1021_acs_iecr_1c03039
crossref_primary_10_1002_celc_202200342
crossref_primary_10_1016_j_memsci_2020_118237
crossref_primary_10_15541_jim20190548
crossref_primary_10_1016_j_jssc_2014_01_030
crossref_primary_10_1016_j_memsci_2017_10_060
crossref_primary_10_1021_acsami_0c15178
crossref_primary_10_1039_C9QI00455F
crossref_primary_10_1039_C4RA10521D
crossref_primary_10_1007_s11356_018_3225_2
crossref_primary_10_1021_acs_jpcb_4c02204
crossref_primary_10_1016_j_ijhydene_2019_07_196
crossref_primary_10_1021_acsanm_3c00895
crossref_primary_10_1002_adfm_202421913
crossref_primary_10_1002_admt_201800742
crossref_primary_10_3390_membranes10100258
crossref_primary_10_1002_adfm_201804944
crossref_primary_10_1039_C6NR06612G
crossref_primary_10_1007_s10853_016_0319_4
crossref_primary_10_1021_acsami_8b10569
crossref_primary_10_1039_C7NR00378A
crossref_primary_10_1016_j_ijhydene_2018_06_094
crossref_primary_10_1039_C6RA21432K
crossref_primary_10_1039_C6RA24746F
crossref_primary_10_1039_C8RA03080D
crossref_primary_10_1039_C9MH01570A
crossref_primary_10_1021_acsami_5b05012
crossref_primary_10_1016_j_nantod_2018_04_007
crossref_primary_10_1016_j_cclet_2021_09_012
crossref_primary_10_1002_ange_201311324
crossref_primary_10_1016_j_carbon_2018_01_040
crossref_primary_10_1021_acs_nanolett_3c01946
crossref_primary_10_1039_C7CC00810D
crossref_primary_10_1039_C5CC05412E
crossref_primary_10_1021_acsami_8b09377
crossref_primary_10_1021_am500777b
crossref_primary_10_1039_C4TA02859G
crossref_primary_10_1016_j_memsci_2018_08_021
crossref_primary_10_1039_C7NR01792H
crossref_primary_10_1016_j_jece_2023_109741
crossref_primary_10_1016_j_apsusc_2020_147024
crossref_primary_10_1016_j_diamond_2021_108687
crossref_primary_10_1021_acsami_7b16574
crossref_primary_10_1021_acs_jpcb_2c07699
crossref_primary_10_1016_j_snb_2014_02_064
crossref_primary_10_1016_j_memsci_2020_118253
crossref_primary_10_1016_j_memsci_2022_120912
crossref_primary_10_1016_j_polymer_2022_125601
crossref_primary_10_1021_acs_chemmater_8b03820
crossref_primary_10_1021_acsnano_7b02523
crossref_primary_10_1021_acssuschemeng_9b00282
crossref_primary_10_1002_ange_201907773
crossref_primary_10_1016_j_seppur_2021_119986
crossref_primary_10_1039_C5TA06707C
crossref_primary_10_1016_j_rser_2021_110878
crossref_primary_10_1021_nl5013689
crossref_primary_10_1016_j_memsci_2018_05_073
crossref_primary_10_1016_j_jwpe_2022_102875
crossref_primary_10_1016_j_scib_2017_03_004
crossref_primary_10_1039_C4CC07558G
crossref_primary_10_1039_C5CS00292C
crossref_primary_10_1016_j_pmatsci_2020_100708
crossref_primary_10_1021_acsami_9b01071
crossref_primary_10_1021_acs_nanolett_6b05183
crossref_primary_10_34133_2020_8748602
crossref_primary_10_1080_10408398_2022_2054937
crossref_primary_10_1016_j_ijhydene_2020_06_117
crossref_primary_10_1016_j_desal_2022_115908
crossref_primary_10_1016_j_molliq_2022_120248
crossref_primary_10_1007_s00894_024_05872_w
crossref_primary_10_1016_j_memsci_2025_123861
crossref_primary_10_1002_cben_202000038
crossref_primary_10_7498_aps_66_056601
crossref_primary_10_1002_anie_201409563
crossref_primary_10_1021_acs_jpcc_9b10615
crossref_primary_10_1016_j_carbon_2019_08_058
crossref_primary_10_1021_acssuschemeng_7b01351
crossref_primary_10_1016_j_coche_2016_04_002
crossref_primary_10_1039_C5TA00366K
crossref_primary_10_1016_j_colsurfa_2019_123942
crossref_primary_10_1039_C5CP03382A
crossref_primary_10_1016_j_seppur_2022_121465
crossref_primary_10_1002_adma_202301589
crossref_primary_10_1039_C5TA09152G
crossref_primary_10_1038_s41467_023_44626_9
crossref_primary_10_1016_j_scib_2020_04_017
crossref_primary_10_1016_j_carbon_2017_09_088
crossref_primary_10_1039_C7GC03345A
crossref_primary_10_1146_annurev_chembioeng_060817_084046
crossref_primary_10_1016_j_apmt_2017_02_010
crossref_primary_10_1016_j_cej_2019_122138
crossref_primary_10_1002_adma_201502595
crossref_primary_10_1039_C8CY00082D
crossref_primary_10_1002_adfm_201503858
crossref_primary_10_1016_j_memsci_2017_11_065
crossref_primary_10_1155_2020_9087595
crossref_primary_10_1002_admi_202300554
crossref_primary_10_1002_asia_202100875
crossref_primary_10_1038_s41545_019_0044_z
crossref_primary_10_1002_admi_201600169
crossref_primary_10_1016_j_apsusc_2020_146524
crossref_primary_10_1016_j_memsci_2017_10_039
crossref_primary_10_1039_C9TA05909A
crossref_primary_10_1016_j_jhazmat_2025_137277
crossref_primary_10_1186_s42480_019_0012_x
crossref_primary_10_1039_D0CC04204H
crossref_primary_10_1039_D0TA05449F
crossref_primary_10_1016_j_rser_2022_112527
crossref_primary_10_1002_adfm_201606652
crossref_primary_10_1016_j_memsci_2014_01_062
crossref_primary_10_1016_j_pmatsci_2024_101324
crossref_primary_10_1016_j_trechm_2021_04_005
crossref_primary_10_1126_science_aab0530
crossref_primary_10_1016_j_jece_2020_104454
crossref_primary_10_1039_C5CP06569K
crossref_primary_10_1016_j_memsci_2018_07_027
crossref_primary_10_1002_ange_201809548
crossref_primary_10_1002_adma_202408364
crossref_primary_10_1038_s41467_022_34849_7
crossref_primary_10_1021_acsami_9b22345
crossref_primary_10_1016_j_carbon_2015_01_024
crossref_primary_10_1039_C9TA01902B
crossref_primary_10_1021_acsanm_9b02277
crossref_primary_10_1038_ncomms9335
crossref_primary_10_1016_j_cej_2019_02_042
crossref_primary_10_1039_D3RA00617D
crossref_primary_10_1016_j_cjche_2017_04_015
crossref_primary_10_1021_acsnano_1c03194
crossref_primary_10_1016_j_memsci_2018_08_050
crossref_primary_10_1039_C7RA08098K
crossref_primary_10_1016_j_ceja_2020_100066
crossref_primary_10_1021_acsami_7b12103
crossref_primary_10_1016_j_coelec_2023_101257
crossref_primary_10_1039_D1NA00483B
crossref_primary_10_1557_adv_2016_205
crossref_primary_10_1016_j_memsci_2022_120548
crossref_primary_10_1039_C4CC08186B
crossref_primary_10_1002_ange_201701288
crossref_primary_10_1039_C4CC10103K
crossref_primary_10_1016_j_apsusc_2019_05_319
crossref_primary_10_1016_j_memsci_2017_12_063
crossref_primary_10_1002_admi_201800032
crossref_primary_10_1016_j_memsci_2018_05_029
crossref_primary_10_1039_C4TA04006F
crossref_primary_10_1080_02678292_2020_1783705
crossref_primary_10_1016_j_seppur_2024_129158
crossref_primary_10_5360_membrane_39_132
crossref_primary_10_1039_C9CP06372B
crossref_primary_10_1021_acsanm_3c03526
crossref_primary_10_1039_C6TA06381K
crossref_primary_10_1039_C8CS00376A
crossref_primary_10_1039_C4RA12967A
crossref_primary_10_1016_j_memsci_2017_11_016
crossref_primary_10_1039_C8NJ06045B
crossref_primary_10_1016_j_jece_2021_105605
crossref_primary_10_1186_s11671_015_1199_2
crossref_primary_10_14579_MEMBRANE_JOURNAL_2019_29_3_130
crossref_primary_10_1002_adfm_202001549
crossref_primary_10_1016_j_desal_2019_04_028
crossref_primary_10_1007_s40242_022_1474_6
crossref_primary_10_1021_acs_nanolett_8b03155
crossref_primary_10_1016_j_seppur_2020_117200
crossref_primary_10_1002_admi_201800286
crossref_primary_10_1016_j_cartre_2025_100486
crossref_primary_10_1016_j_memsci_2022_120533
crossref_primary_10_1021_acs_est_8b03661
crossref_primary_10_1016_j_advmem_2021_100015
crossref_primary_10_1039_C4RA06184E
crossref_primary_10_1016_j_carbon_2021_04_087
crossref_primary_10_1039_C4CC07734B
crossref_primary_10_1039_C8CS00268A
crossref_primary_10_1016_j_desal_2016_08_012
crossref_primary_10_1002_asia_202100834
crossref_primary_10_1021_acs_accounts_2c00434
crossref_primary_10_1016_j_seppur_2018_02_032
crossref_primary_10_1002_smll_201502061
crossref_primary_10_1021_acsnano_4c12051
crossref_primary_10_1016_j_memsci_2017_12_081
crossref_primary_10_1021_acs_energyfuels_3c01348
crossref_primary_10_1016_j_commatsci_2017_09_010
crossref_primary_10_1039_D0CS01347A
crossref_primary_10_1002_sstr_202200109
crossref_primary_10_1016_j_jiec_2018_05_040
crossref_primary_10_1016_j_carbon_2016_12_097
crossref_primary_10_1016_j_mtcomm_2022_104274
crossref_primary_10_1088_0957_4484_27_27_274002
crossref_primary_10_1016_j_carbon_2019_09_028
crossref_primary_10_1134_S0965545X16050084
crossref_primary_10_1021_acsanm_3c02459
crossref_primary_10_1039_C7TA08598B
crossref_primary_10_5360_membrane_39_118
crossref_primary_10_1002_asia_202100839
crossref_primary_10_1007_s42791_020_00032_6
crossref_primary_10_1126_sciadv_abb6011
crossref_primary_10_1007_s10853_017_1246_8
crossref_primary_10_1039_C4QI00230J
crossref_primary_10_1016_j_fuel_2022_126285
crossref_primary_10_1002_cssc_202001572
crossref_primary_10_1038_s41565_017_0031_9
crossref_primary_10_1146_annurev_chembioeng_080615_034455
crossref_primary_10_1021_acs_iecr_0c02103
crossref_primary_10_1021_acsanm_0c03336
crossref_primary_10_1007_s11705_020_1990_1
crossref_primary_10_1002_adma_202106785
crossref_primary_10_1016_j_molliq_2018_04_116
crossref_primary_10_1038_s41560_021_00946_y
crossref_primary_10_1016_j_jhazmat_2021_125661
crossref_primary_10_1016_j_surfin_2023_103764
crossref_primary_10_1016_j_seppur_2019_116029
crossref_primary_10_1021_acsnano_4c05461
crossref_primary_10_1002_adfm_201804189
crossref_primary_10_1021_am5015953
crossref_primary_10_1016_j_physb_2024_416063
crossref_primary_10_1039_C8TA03701A
crossref_primary_10_1021_acsami_7b11777
crossref_primary_10_1021_acs_nanolett_8b01866
crossref_primary_10_1016_j_memsci_2020_118938
crossref_primary_10_1126_sciadv_abf0116
crossref_primary_10_1016_j_carbon_2017_02_022
crossref_primary_10_1016_j_mencom_2021_03_001
crossref_primary_10_1016_j_mset_2018_11_002
crossref_primary_10_1002_adfm_201500998
crossref_primary_10_1016_j_susmat_2023_e00698
crossref_primary_10_1039_D2NR06984A
crossref_primary_10_1016_j_desal_2022_115621
crossref_primary_10_1016_j_memsci_2020_117844
crossref_primary_10_1002_ange_201915797
crossref_primary_10_1021_acsanm_1c01919
crossref_primary_10_3390_ma16052105
crossref_primary_10_1016_j_carbon_2020_01_002
crossref_primary_10_1039_C5CC00871A
crossref_primary_10_1038_s41467_021_23325_3
crossref_primary_10_1016_j_memsci_2017_04_032
crossref_primary_10_1088_1361_6463_abafdd
crossref_primary_10_1016_j_rser_2021_111343
crossref_primary_10_3390_coatings9090558
crossref_primary_10_1016_j_desal_2014_12_046
crossref_primary_10_1063_5_0142808
crossref_primary_10_1016_j_ijhydene_2024_12_222
crossref_primary_10_1016_j_memsci_2017_12_018
crossref_primary_10_1126_sciadv_abl8160
crossref_primary_10_1016_j_ces_2018_05_010
crossref_primary_10_1016_j_carbon_2016_08_060
crossref_primary_10_1016_j_memsci_2014_06_047
crossref_primary_10_1039_C4RA09062D
crossref_primary_10_1039_D0CP03785K
crossref_primary_10_1016_j_chemosphere_2022_134184
crossref_primary_10_3390_pr11051520
crossref_primary_10_1002_elps_201800529
crossref_primary_10_1016_j_jiec_2018_02_030
crossref_primary_10_1016_j_arabjc_2021_103565
crossref_primary_10_1002_cssc_201800479
crossref_primary_10_1021_acsapm_0c00558
crossref_primary_10_1038_s42004_017_0002_y
crossref_primary_10_1039_C6TA08858A
crossref_primary_10_1039_C7EE02865B
crossref_primary_10_1016_j_cclet_2021_07_013
crossref_primary_10_1039_C8QM00351C
crossref_primary_10_1016_j_memsci_2014_06_053
crossref_primary_10_1039_C4CC05295A
crossref_primary_10_1016_j_seppur_2015_02_032
crossref_primary_10_1002_admi_201901514
crossref_primary_10_4491_KSEE_2015_37_11_649
crossref_primary_10_1016_j_ijhydene_2022_01_049
crossref_primary_10_1021_acsanm_8b01375
crossref_primary_10_1039_C8TA09070J
crossref_primary_10_1016_j_joule_2019_07_003
crossref_primary_10_1016_j_memsci_2020_117883
crossref_primary_10_1039_D2CP03044F
crossref_primary_10_1021_cm502098e
crossref_primary_10_1088_2053_1583_ad5bf0
crossref_primary_10_1016_j_addr_2018_01_004
crossref_primary_10_1016_j_memsci_2019_117394
crossref_primary_10_1038_s41598_023_37080_6
crossref_primary_10_1126_sciadv_ade7871
crossref_primary_10_1016_j_seppur_2020_116933
crossref_primary_10_1021_acsami_6b14371
crossref_primary_10_1016_j_jpowsour_2019_227589
crossref_primary_10_1039_C5RA27349H
crossref_primary_10_1088_2053_1583_ab1519
crossref_primary_10_1002_ange_201409563
crossref_primary_10_1016_j_apsusc_2017_02_253
crossref_primary_10_1063_5_0037873
crossref_primary_10_1002_macp_202300169
crossref_primary_10_1002_adfm_201704316
crossref_primary_10_1021_am5040945
crossref_primary_10_1007_s12274_017_1803_0
crossref_primary_10_1039_D2RA00271J
crossref_primary_10_1002_anie_201904385
crossref_primary_10_1016_j_seppur_2022_121674
crossref_primary_10_1007_s00343_018_6088_y
crossref_primary_10_1021_bc500503e
crossref_primary_10_1039_C7SC00223H
crossref_primary_10_1002_smll_202205542
crossref_primary_10_1021_acs_nanolett_0c02860
crossref_primary_10_1016_j_memsci_2022_121238
crossref_primary_10_1039_D3NR04885C
crossref_primary_10_1021_acs_accounts_4c00398
crossref_primary_10_1016_j_cej_2022_136870
crossref_primary_10_1016_j_memsci_2021_119281
crossref_primary_10_1039_C9CP00137A
crossref_primary_10_3389_fchem_2020_598562
crossref_primary_10_1021_acs_jpclett_5b00914
crossref_primary_10_1016_j_carbon_2019_06_006
crossref_primary_10_1002_anie_201411550
crossref_primary_10_1021_acs_nanolett_4c03094
crossref_primary_10_1039_C6EE03566C
crossref_primary_10_1016_j_memsci_2016_09_040
crossref_primary_10_1002_cnma_201700357
crossref_primary_10_1016_j_apsusc_2023_158822
crossref_primary_10_1021_acs_est_6b05711
crossref_primary_10_1103_PhysRevApplied_14_014075
crossref_primary_10_1016_j_seppur_2022_122752
crossref_primary_10_3390_w16070967
crossref_primary_10_1016_j_memsci_2023_121529
crossref_primary_10_1021_acs_nanolett_4c05275
crossref_primary_10_1039_C5CC01411E
crossref_primary_10_1016_j_carbon_2019_07_052
crossref_primary_10_1016_j_memsci_2021_120036
crossref_primary_10_1149_1945_7111_ac3593
crossref_primary_10_1021_acs_energyfuels_0c00311
crossref_primary_10_1039_D0MH01453B
crossref_primary_10_1016_j_memsci_2023_121771
crossref_primary_10_1088_2053_1591_ab1ffd
crossref_primary_10_1016_j_carbon_2020_12_082
crossref_primary_10_1016_j_ces_2015_08_019
crossref_primary_10_1039_C6TA00296J
crossref_primary_10_1016_j_cis_2024_103269
crossref_primary_10_1021_acs_jpcc_1c00327
crossref_primary_10_1016_j_seppur_2017_12_019
crossref_primary_10_1016_j_memsci_2016_09_031
crossref_primary_10_1016_j_ces_2016_12_061
crossref_primary_10_4236_graphene_2015_41001
crossref_primary_10_1016_j_cjche_2021_09_022
crossref_primary_10_1016_j_dwt_2025_101033
crossref_primary_10_1016_j_ceramint_2015_02_094
crossref_primary_10_1016_j_cej_2024_158366
crossref_primary_10_1016_j_carbon_2016_07_065
crossref_primary_10_1016_j_matpr_2020_04_806
crossref_primary_10_1016_j_ijhydene_2024_04_216
crossref_primary_10_1063_1_4975150
crossref_primary_10_1038_s41467_019_09178_x
crossref_primary_10_1002_adfm_201502955
crossref_primary_10_1016_j_ces_2015_08_049
crossref_primary_10_1016_j_memsci_2019_117189
crossref_primary_10_1039_C7TA06800J
crossref_primary_10_1039_C8RA03156H
crossref_primary_10_1002_ange_201911359
crossref_primary_10_1021_acs_iecr_5b03251
crossref_primary_10_1039_C5CC07406A
crossref_primary_10_1002_anie_201311324
crossref_primary_10_1016_j_seppur_2015_03_020
crossref_primary_10_1038_nature24044
crossref_primary_10_1039_C6RA08441A
crossref_primary_10_1002_anie_201609306
crossref_primary_10_1016_j_memsci_2015_10_046
crossref_primary_10_1016_j_seppur_2020_116730
crossref_primary_10_1039_D3CC02175K
crossref_primary_10_1126_sciadv_aau1698
crossref_primary_10_1039_C8CC10283J
crossref_primary_10_1039_C4TA02359E
crossref_primary_10_3390_ijms20225609
crossref_primary_10_1002_adfm_201805026
crossref_primary_10_1021_acsami_5b00106
crossref_primary_10_1038_nature14015
crossref_primary_10_1002_anie_202106346
crossref_primary_10_1088_2632_2153_ac9bca
crossref_primary_10_1016_j_apsusc_2017_02_054
crossref_primary_10_1002_aic_18167
crossref_primary_10_1002_smsc_202300264
crossref_primary_10_1021_acsami_7b04803
crossref_primary_10_1016_j_seppur_2022_121447
crossref_primary_10_1021_acs_iecr_2c02042
crossref_primary_10_1021_acsami_7b05497
crossref_primary_10_1021_acsami_0c02192
crossref_primary_10_1016_j_memsci_2019_117568
crossref_primary_10_1021_acsnano_8b00367
crossref_primary_10_1002_adma_202206627
crossref_primary_10_1016_j_memsci_2016_08_049
crossref_primary_10_1007_s40843_018_9276_8
crossref_primary_10_3390_ma11010074
crossref_primary_10_1002_admi_201701449
crossref_primary_10_1016_j_seppur_2021_119440
crossref_primary_10_1002_ange_201703959
crossref_primary_10_1002_adma_201500975
crossref_primary_10_1016_j_memsci_2021_119924
crossref_primary_10_1002_admi_201600734
crossref_primary_10_1016_j_ijmecsci_2018_11_021
crossref_primary_10_1016_j_est_2024_113931
crossref_primary_10_1021_acs_nanolett_7b02910
crossref_primary_10_1039_C9CE00259F
crossref_primary_10_1016_j_apmt_2021_100971
crossref_primary_10_1016_j_isci_2021_102576
crossref_primary_10_1002_adfm_201801511
crossref_primary_10_1038_nmat5025
crossref_primary_10_1002_tcr_201900024
crossref_primary_10_1038_srep28052
crossref_primary_10_1007_s10311_017_0653_z
crossref_primary_10_1016_j_memsci_2018_10_075
crossref_primary_10_1002_adfm_202316247
crossref_primary_10_1016_j_carbon_2024_118855
crossref_primary_10_1016_j_memsci_2018_01_031
crossref_primary_10_1039_C6EE01984F
crossref_primary_10_1002_adma_201606093
crossref_primary_10_1002_cite_202100084
crossref_primary_10_1016_j_memsci_2019_117785
crossref_primary_10_1016_j_memsci_2019_117786
crossref_primary_10_1038_s41586_018_0203_2
crossref_primary_10_1039_C5RA21604D
crossref_primary_10_1021_acs_analchem_6b02175
crossref_primary_10_1016_j_watres_2020_115674
crossref_primary_10_1039_C9TA07370A
crossref_primary_10_1016_j_desal_2022_115684
crossref_primary_10_1016_j_seppur_2024_127316
crossref_primary_10_1126_sciadv_aav1851
crossref_primary_10_1007_s10853_018_3045_2
crossref_primary_10_1016_j_mtener_2022_101124
crossref_primary_10_1149_1945_7111_abb4f5
crossref_primary_10_1038_s41467_017_02318_1
crossref_primary_10_1016_j_memsci_2019_117308
crossref_primary_10_1016_j_apsusc_2017_01_292
crossref_primary_10_1016_j_seppur_2017_03_026
crossref_primary_10_1126_sciadv_abl3521
crossref_primary_10_1016_j_memsci_2021_119706
crossref_primary_10_1021_acs_jpcc_1c07542
crossref_primary_10_1126_science_1249097
crossref_primary_10_1016_j_carbon_2014_06_007
crossref_primary_10_3390_fermentation11010019
crossref_primary_10_1016_j_memsci_2018_10_068
crossref_primary_10_1088_1361_6528_acbf56
crossref_primary_10_1016_j_ces_2016_03_003
crossref_primary_10_1088_1674_4926_39_1_013002
crossref_primary_10_1021_acs_estlett_0c00143
crossref_primary_10_1007_s12043_018_1638_6
crossref_primary_10_1016_j_memsci_2022_121011
crossref_primary_10_1088_1742_6596_2369_1_012026
crossref_primary_10_1016_j_scitotenv_2018_02_043
crossref_primary_10_1007_s10853_020_05756_3
crossref_primary_10_1016_j_memsci_2020_118985
crossref_primary_10_1088_1361_6528_aab73e
crossref_primary_10_1002_cssc_201700801
crossref_primary_10_1016_j_porgcoat_2019_105345
crossref_primary_10_1016_j_psep_2019_08_021
crossref_primary_10_1038_s41598_022_09365_9
crossref_primary_10_1016_j_rser_2016_11_118
crossref_primary_10_1016_j_surfrep_2018_09_001
crossref_primary_10_1039_C4NR04453C
crossref_primary_10_1080_10420150_2018_1442464
crossref_primary_10_1007_s11814_017_0339_z
crossref_primary_10_1016_j_cej_2021_133001
crossref_primary_10_1016_j_ijhydene_2022_10_027
crossref_primary_10_1002_ange_202304734
crossref_primary_10_1002_adfm_201902014
crossref_primary_10_1039_D1TA00090J
crossref_primary_10_1021_nl404118f
crossref_primary_10_1007_s11705_020_2016_8
crossref_primary_10_1021_la403969g
crossref_primary_10_1038_s41467_019_10971_x
crossref_primary_10_1080_01496395_2024_2339865
crossref_primary_10_1126_science_1254227
crossref_primary_10_1002_smll_202207313
crossref_primary_10_3390_membranes10110336
crossref_primary_10_1016_j_apsusc_2014_04_088
crossref_primary_10_1002_aic_17022
crossref_primary_10_1038_ncomms10804
crossref_primary_10_1016_j_ijhydene_2014_01_046
crossref_primary_10_1039_D0CE01751E
crossref_primary_10_1002_ange_202017089
crossref_primary_10_1021_acs_jpclett_9b01780
crossref_primary_10_1021_acs_chemrev_8b00091
crossref_primary_10_1021_acssuschemeng_8b05333
crossref_primary_10_1016_j_cej_2018_04_069
crossref_primary_10_1002_adma_201506237
crossref_primary_10_1016_j_apsusc_2017_08_124
crossref_primary_10_1039_C6CC02013E
crossref_primary_10_1016_j_coche_2023_100901
crossref_primary_10_1088_2043_6262_7_2_023002
crossref_primary_10_1002_anie_201809548
crossref_primary_10_1007_s11434_015_0914_9
crossref_primary_10_1039_C6QI00042H
crossref_primary_10_1016_j_ces_2018_06_031
crossref_primary_10_1016_j_memsci_2018_02_034
crossref_primary_10_1021_acs_jpcc_7b04921
crossref_primary_10_1088_1361_6528_aa5e68
crossref_primary_10_1021_acs_iecr_1c01919
crossref_primary_10_1021_acsnano_8b02373
crossref_primary_10_1021_acsnano_0c01550
crossref_primary_10_1038_ncomms5843
crossref_primary_10_1002_anie_201708835
crossref_primary_10_1016_j_memsci_2023_121583
crossref_primary_10_1039_C7TA02462B
crossref_primary_10_1016_j_memsci_2016_08_067
crossref_primary_10_1002_app_52377
crossref_primary_10_1039_C8TA10872B
crossref_primary_10_1002_advs_201800241
crossref_primary_10_1021_acs_jpcb_6b12757
crossref_primary_10_1021_acsanm_8b01575
crossref_primary_10_1088_1742_6596_2671_1_012007
crossref_primary_10_1016_j_memsci_2014_03_008
crossref_primary_10_1021_acsanm_8b00241
crossref_primary_10_1039_D3EE02095A
crossref_primary_10_1039_D2EE02449G
crossref_primary_10_1126_sciadv_abc7927
crossref_primary_10_1038_s41545_022_00209_7
crossref_primary_10_1021_acsami_5b00986
crossref_primary_10_1016_j_desal_2016_04_030
crossref_primary_10_3390_membranes8040100
crossref_primary_10_1016_j_memsci_2016_08_059
crossref_primary_10_1016_j_memsci_2022_121293
crossref_primary_10_1002_aic_16144
crossref_primary_10_1016_j_desal_2018_07_020
crossref_primary_10_3390_chemosensors8030082
crossref_primary_10_1051_e3sconf_20199001004
crossref_primary_10_1002_adma_201802922
crossref_primary_10_1002_ange_201801094
crossref_primary_10_1021_acs_langmuir_5b02414
crossref_primary_10_1039_D2CP03548K
crossref_primary_10_1088_1361_6528_aa510d
crossref_primary_10_1126_sciadv_aba9471
crossref_primary_10_1016_j_memsci_2024_123617
crossref_primary_10_1103_PhysRevMaterials_2_074004
crossref_primary_10_1016_j_memsci_2018_10_017
crossref_primary_10_1002_anie_202017089
crossref_primary_10_1007_s10853_023_08262_4
crossref_primary_10_1002_adma_202206349
crossref_primary_10_1002_adfm_201904357
crossref_primary_10_1039_D1TA07883F
crossref_primary_10_1016_j_jpowsour_2015_10_035
crossref_primary_10_1088_1361_6528_aaad50
crossref_primary_10_1021_acsami_0c00615
crossref_primary_10_1016_j_cej_2021_129574
crossref_primary_10_1016_j_coche_2015_04_003
crossref_primary_10_1021_nn405537u
crossref_primary_10_1039_C6SC02865A
crossref_primary_10_1016_j_psep_2020_07_027
crossref_primary_10_1016_j_ssc_2023_115344
crossref_primary_10_1002_tcr_202300163
crossref_primary_10_1016_j_cherd_2018_03_033
crossref_primary_10_1038_s41563_020_00822_2
crossref_primary_10_1016_j_gce_2020_11_005
crossref_primary_10_1016_j_memsci_2019_117733
crossref_primary_10_1016_j_chemosphere_2016_04_060
crossref_primary_10_1039_C8DT00082D
crossref_primary_10_1021_acsmaterialslett_2c00175
crossref_primary_10_1039_C5EE03856A
crossref_primary_10_1002_aic_17576
crossref_primary_10_1016_j_coche_2018_02_003
crossref_primary_10_1038_s41467_018_06097_1
crossref_primary_10_1016_j_coche_2018_02_004
crossref_primary_10_1016_j_cjche_2020_05_024
crossref_primary_10_1016_j_indcrop_2022_114554
crossref_primary_10_1038_nature_2014_16425
crossref_primary_10_1021_acsanm_9b02322
crossref_primary_10_1021_acs_iecr_1c02098
crossref_primary_10_1039_C7EN00548B
crossref_primary_10_1039_C7TA04692H
crossref_primary_10_1039_C7TA10814A
crossref_primary_10_1039_C5NR06321C
crossref_primary_10_1016_j_micromeso_2022_111825
crossref_primary_10_1016_j_seppur_2019_04_005
crossref_primary_10_1038_s41467_024_49961_z
crossref_primary_10_1039_C9TA12293A
crossref_primary_10_1007_s11581_024_05940_4
crossref_primary_10_1016_j_flatc_2023_100594
crossref_primary_10_1016_j_seppur_2023_123431
crossref_primary_10_1039_C8NR02625D
crossref_primary_10_1002_adfm_201902394
crossref_primary_10_1002_jctb_5505
crossref_primary_10_1039_C7TA04015F
crossref_primary_10_1002_adma_201601010
crossref_primary_10_1155_2021_9934118
crossref_primary_10_1016_j_memsci_2020_118178
crossref_primary_10_1063_5_0241089
crossref_primary_10_1021_acsami_8b19480
crossref_primary_10_1016_j_apsusc_2023_157194
crossref_primary_10_1016_j_ces_2023_119194
crossref_primary_10_1039_C8NH00335A
crossref_primary_10_1002_adma_201404054
crossref_primary_10_1016_j_jnnfm_2020_104426
crossref_primary_10_1021_acs_analchem_9b03869
crossref_primary_10_1039_C6RA18396D
crossref_primary_10_1016_j_colsurfa_2018_07_002
crossref_primary_10_1016_j_jclepro_2020_124194
crossref_primary_10_1016_j_memsci_2019_05_057
crossref_primary_10_1021_acscatal_0c02203
crossref_primary_10_1021_acs_langmuir_5b03984
crossref_primary_10_1002_adma_201606949
crossref_primary_10_1016_j_jhazmat_2021_127012
crossref_primary_10_1021_acs_jpcc_8b01616
crossref_primary_10_1007_s12274_020_3082_4
crossref_primary_10_1039_C8TA05774E
crossref_primary_10_1002_anie_202410441
crossref_primary_10_1039_C8RA05596C
crossref_primary_10_1021_acs_est_9b00408
crossref_primary_10_1002_adma_202002723
crossref_primary_10_1016_j_cej_2022_137047
crossref_primary_10_1016_j_memsci_2022_120821
crossref_primary_10_1016_j_cej_2024_153250
crossref_primary_10_1016_j_coche_2015_03_004
crossref_primary_10_1016_j_coche_2015_03_003
crossref_primary_10_1016_j_memsci_2017_01_003
crossref_primary_10_1016_j_seppur_2023_123691
crossref_primary_10_1002_pat_4245
crossref_primary_10_1002_adfm_202005629
crossref_primary_10_1002_admt_201901069
crossref_primary_10_3390_membranes13010053
crossref_primary_10_3390_membranes12121268
crossref_primary_10_1016_j_oceram_2025_100763
crossref_primary_10_1021_acsami_5b06470
crossref_primary_10_3390_membranes12121274
crossref_primary_10_1016_j_memsci_2017_02_043
crossref_primary_10_1016_j_desal_2022_116096
crossref_primary_10_1039_D0GC04077K
crossref_primary_10_1016_j_memsci_2015_03_001
crossref_primary_10_1021_acsnano_6b08538
crossref_primary_10_1007_BF03353757
crossref_primary_10_1016_j_cap_2017_08_019
crossref_primary_10_1016_j_ces_2025_121407
crossref_primary_10_1016_j_carbon_2015_12_087
crossref_primary_10_1016_j_memsci_2018_11_080
crossref_primary_10_1016_j_memsci_2025_123946
crossref_primary_10_1088_1361_6463_adbf2b
crossref_primary_10_1088_1757_899X_269_1_012012
crossref_primary_10_1002_adfm_201402952
crossref_primary_10_1039_D0RA02254C
crossref_primary_10_1016_j_memsci_2022_120801
crossref_primary_10_1063_1_5024317
crossref_primary_10_1016_j_carbon_2020_04_026
crossref_primary_10_1016_j_memsci_2017_07_055
crossref_primary_10_1016_j_memsci_2020_118363
crossref_primary_10_1016_j_nxener_2023_100079
crossref_primary_10_1039_C6RA06425F
crossref_primary_10_1016_j_memsci_2019_05_005
crossref_primary_10_1016_j_psep_2023_03_002
crossref_primary_10_1016_j_mtnano_2020_100074
crossref_primary_10_1016_j_carbon_2017_01_086
crossref_primary_10_1016_j_ces_2018_11_055
crossref_primary_10_1021_acs_iecr_9b05169
crossref_primary_10_1002_admi_201600918
crossref_primary_10_3390_membranes11040269
crossref_primary_10_1002_admi_202400166
crossref_primary_10_1021_acsami_3c15966
crossref_primary_10_1002_anie_201401061
crossref_primary_10_1016_j_memsci_2017_06_011
crossref_primary_10_1021_acs_jpcc_7b12700
crossref_primary_10_1039_C5TA00506J
crossref_primary_10_1002_ange_202410441
crossref_primary_10_1016_j_memsci_2018_11_076
crossref_primary_10_1039_C5CC00924C
crossref_primary_10_1021_acs_jpcc_7b02915
crossref_primary_10_1016_j_carbon_2023_118524
crossref_primary_10_1002_adfm_201905229
crossref_primary_10_1016_j_apsusc_2016_03_119
crossref_primary_10_1039_C5CP01789K
crossref_primary_10_1039_C5NR04096E
crossref_primary_10_1002_ange_201904385
crossref_primary_10_1021_acsnano_0c04533
crossref_primary_10_1016_j_envres_2020_109984
crossref_primary_10_1016_j_memsci_2017_06_005
crossref_primary_10_1002_adma_202312566
crossref_primary_10_1002_anie_201601135
crossref_primary_10_1002_ange_201609306
crossref_primary_10_1039_C6RA24974D
crossref_primary_10_1002_adfm_202006949
crossref_primary_10_1002_ange_201509213
crossref_primary_10_1039_C9NJ03962G
crossref_primary_10_1002_chem_201800556
crossref_primary_10_1039_C7SC04815G
crossref_primary_10_1039_C8SC03012J
crossref_primary_10_1016_j_radphyschem_2022_110355
crossref_primary_10_1002_ange_201708835
crossref_primary_10_1021_acs_chemmater_9b01102
crossref_primary_10_1016_j_memsci_2022_120863
crossref_primary_10_1016_j_memsci_2023_122099
crossref_primary_10_3390_polym10020129
crossref_primary_10_1021_acs_chemmater_9b00494
crossref_primary_10_3390_su15010476
crossref_primary_10_1021_am403790s
crossref_primary_10_1021_acsami_8b22015
crossref_primary_10_1039_C5RA12550B
crossref_primary_10_1016_j_cej_2021_129507
crossref_primary_10_1039_C4CS00423J
crossref_primary_10_3390_ma14227012
crossref_primary_10_1038_nmat4621
crossref_primary_10_1016_j_cej_2023_142943
crossref_primary_10_1016_j_ultsonch_2022_106202
crossref_primary_10_1016_j_pmatsci_2023_101154
crossref_primary_10_1142_S0218625X21400047
crossref_primary_10_1039_C7TA05033J
crossref_primary_10_1016_j_carbon_2016_02_016
crossref_primary_10_1016_j_chemosphere_2021_130487
crossref_primary_10_1039_D3NR05874C
crossref_primary_10_1016_j_seppur_2019_03_037
crossref_primary_10_1016_j_memsci_2021_119136
crossref_primary_10_1038_s41467_020_20298_7
crossref_primary_10_1016_j_jcou_2021_101544
crossref_primary_10_1007_s10853_016_0075_5
crossref_primary_10_1016_j_desal_2025_118567
crossref_primary_10_1021_acs_iecr_9b06881
crossref_primary_10_1038_s41467_020_15503_6
crossref_primary_10_1016_j_ceja_2022_100392
crossref_primary_10_1016_j_ijhydene_2019_02_225
crossref_primary_10_1021_acs_chemmater_5b04475
crossref_primary_10_1038_s41467_017_00990_x
crossref_primary_10_1039_C5NR08697C
crossref_primary_10_1007_s11837_014_1245_z
crossref_primary_10_1016_j_memsci_2024_123237
crossref_primary_10_1002_pat_6250
crossref_primary_10_1007_s10853_020_04774_5
crossref_primary_10_1038_s41570_022_00458_7
crossref_primary_10_1038_ncomms11315
crossref_primary_10_1016_j_micromeso_2016_01_001
crossref_primary_10_1021_acs_jpcc_9b09715
crossref_primary_10_1016_j_memsci_2021_119146
crossref_primary_10_1021_acsami_6b15752
crossref_primary_10_1021_acs_iecr_1c04668
crossref_primary_10_1002_adma_201603036
crossref_primary_10_1016_j_seppur_2022_121122
crossref_primary_10_1016_j_memsci_2022_120838
crossref_primary_10_1002_anie_201801094
crossref_primary_10_1021_acsnano_8b04187
crossref_primary_10_1038_srep28509
crossref_primary_10_1088_1757_899X_395_1_012005
crossref_primary_10_1016_j_cjche_2018_08_019
crossref_primary_10_1039_D0NR07042D
crossref_primary_10_1073_pnas_1414215111
crossref_primary_10_1007_s11664_020_07992_4
crossref_primary_10_3390_nano10112093
crossref_primary_10_1021_jacs_9b13825
crossref_primary_10_1021_acsami_4c03088
crossref_primary_10_1016_j_ijhydene_2024_09_435
crossref_primary_10_1021_ar400288h
crossref_primary_10_1016_j_memsci_2021_119397
crossref_primary_10_1016_j_memsci_2019_06_003
crossref_primary_10_1021_acsami_6b14895
crossref_primary_10_1016_j_memsci_2019_06_006
crossref_primary_10_1016_j_progpolymsci_2022_101504
crossref_primary_10_1088_0957_4484_27_33_332001
crossref_primary_10_1002_adfm_202207265
crossref_primary_10_1021_jacs_0c00927
crossref_primary_10_1016_j_colsurfa_2022_130066
crossref_primary_10_1021_acsami_8b01103
crossref_primary_10_1007_s40843_018_9401_1
crossref_primary_10_1016_j_measurement_2022_111156
crossref_primary_10_1021_acsami_5b08824
crossref_primary_10_1016_j_memsci_2020_118184
crossref_primary_10_1002_anie_201703959
crossref_primary_10_1002_smll_201401549
crossref_primary_10_1016_j_cattod_2018_05_047
crossref_primary_10_1038_nnano_2015_158
crossref_primary_10_1016_j_jpowsour_2019_227516
crossref_primary_10_1016_j_desal_2024_118415
crossref_primary_10_1038_s41467_024_48419_6
crossref_primary_10_1088_1361_665X_ab3c2e
crossref_primary_10_1016_j_memsci_2021_119326
crossref_primary_10_1080_17583004_2014_923237
crossref_primary_10_1021_acsami_0c07277
crossref_primary_10_1038_srep06798
crossref_primary_10_1002_smsc_202100013
crossref_primary_10_1039_C5NR08129G
crossref_primary_10_1016_j_jece_2023_110243
crossref_primary_10_1021_acsnano_1c03492
crossref_primary_10_2139_ssrn_4088714
crossref_primary_10_1016_j_memsci_2020_119040
crossref_primary_10_1021_acsami_7b14217
crossref_primary_10_1016_j_memsci_2015_01_014
crossref_primary_10_1016_j_compositesb_2019_03_053
crossref_primary_10_1016_j_memsci_2016_10_045
crossref_primary_10_1016_j_renene_2022_06_137
crossref_primary_10_1016_j_seppur_2024_130014
crossref_primary_10_1038_nchem_2218
crossref_primary_10_1002_adfm_201502205
crossref_primary_10_1002_chem_201400175
crossref_primary_10_1016_j_cej_2021_132942
crossref_primary_10_1016_j_micromeso_2020_110120
crossref_primary_10_1016_j_desal_2023_117277
crossref_primary_10_1039_C5CC04999G
crossref_primary_10_1038_nmat4638
crossref_primary_10_1007_s10562_019_02702_0
crossref_primary_10_1016_j_pmatsci_2020_100665
crossref_primary_10_1016_j_molliq_2022_120787
crossref_primary_10_1016_j_mtcomm_2017_04_002
crossref_primary_10_1038_srep38583
crossref_primary_10_1039_C4CC09370D
crossref_primary_10_5004_dwt_2020_25231
crossref_primary_10_1039_C8TA04178D
crossref_primary_10_1016_j_cej_2017_07_064
crossref_primary_10_1016_j_apmt_2015_06_002
crossref_primary_10_1016_j_cis_2024_103330
crossref_primary_10_1016_j_rser_2025_115524
crossref_primary_10_1116_1_5035347
crossref_primary_10_1016_j_gee_2020_09_015
crossref_primary_10_1039_C7NR07612F
crossref_primary_10_1016_j_ces_2023_119392
crossref_primary_10_1016_j_ces_2023_119393
crossref_primary_10_1016_j_memsci_2018_12_011
crossref_primary_10_1039_C7TA01862B
crossref_primary_10_1246_cl_171070
crossref_primary_10_1360_TB_2022_0503
crossref_primary_10_1002_adfm_201504604
crossref_primary_10_1080_19475411_2023_2300348
crossref_primary_10_1039_C8CS00254A
crossref_primary_10_1016_j_memsci_2021_119110
Cites_doi 10.1002/aic.11457
10.1016/j.memsci.2009.09.009
10.1021/nl201432g
10.1038/nature06016
10.1016/S0376-7388(02)00544-6
10.1021/nn103028d
10.1126/science.285.5435.1902
10.1021/nl9021946
10.1021/jp206258u
10.1021/ja076473o
10.1126/science.1211694
10.1038/nnano.2012.162
10.1016/j.micromeso.2003.11.016
10.1103/PhysRevB.61.14095
10.1016/j.memsci.2006.11.027
10.1126/science.1082169
10.1021/jp060936f
10.1021/ar200083e
10.1016/j.susc.2012.08.024
10.1021/ie048739v
10.1021/cr0501792
10.1126/science.1157996
10.1038/nnano.2011.130
10.1021/la900474y
10.1016/S0008-6223(01)00262-7
10.1016/j.ijggc.2010.04.001
10.1016/j.memsci.2010.02.074
10.1016/j.memsci.2008.04.030
10.1021/ie8019032
10.1126/science.1146744
10.1016/j.memsci.2009.11.040
10.1063/1.3021413
10.1021/ja8074874
10.1016/j.memsci.2007.09.031
10.1126/science.279.5357.1710
10.1021/ja108681n
10.1021/nl061702a
10.1021/nl801457b
10.1016/j.memsci.2004.06.046
ContentType Journal Article
Copyright Copyright © 2013 American Association for the Advancement of Science
2015 INIST-CNRS
Copyright © 2013, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2013 American Association for the Advancement of Science
– notice: 2015 INIST-CNRS
– notice: Copyright © 2013, American Association for the Advancement of Science
DBID AAYXX
CITATION
IQODW
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1126/science.1236686
DatabaseName CrossRef
Pascal-Francis
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
Materials Research Database
MEDLINE - Academic
CrossRef
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Applied Sciences
EISSN 1095-9203
EndPage 98
ExternalDocumentID 3089573651
24092739
27895684
10_1126_science_1236686
42619729
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
4.4
4R4
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~KM
~ZZ
AAYXX
AGFXO
ALIPV
CITATION
.GJ
.GO
0-V
186
3EH
41~
42X
692
79B
7X7
7XC
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AADHG
AAFWJ
AAKAS
AAYOK
ABDPE
ABJCF
ABTAH
ABUWG
ACQAM
ACTDY
ADBBV
ADZCM
AEUYN
AFKRA
AFQQW
AJUXI
ARALO
ARAPS
ATCPS
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C2-
CCPQU
CJNVE
D0S
D1I
D1J
D1K
DWQXO
D~A
EAU
EGS
EWM
EX3
FYUFA
GICCO
GNUQQ
GUQSH
GX1
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HVGLF
IAG
IBG
IEP
IER
IPC
IQODW
ISN
ITC
J5H
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
LPU
M0K
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
OK1
P62
PATMY
PCBAR
PDBOC
PHGZT
PQEDU
PROAC
PSQYO
PTHSS
PV9
PYCSY
QS-
R05
RNS
RZL
SJFOW
SKT
UBY
UHU
UIG
UKHRP
VOH
WOQ
WOW
X7L
XIH
XKJ
XOL
YCJ
YJ6
YXB
ZCG
ZGI
ZKG
ZVL
ZVM
ZXP
ZY4
~G0
~H1
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c546t-995280808fba9608d5c948e0760d401993648baee1d297c8214e8216c88bcd043
ISSN 0036-8075
1095-9203
IngestDate Thu Jul 10 16:36:33 EDT 2025
Fri Jul 11 09:03:09 EDT 2025
Fri Jul 11 13:28:07 EDT 2025
Fri Jul 25 10:34:11 EDT 2025
Mon Jul 21 06:04:25 EDT 2025
Wed Apr 02 07:16:13 EDT 2025
Thu Apr 24 23:02:09 EDT 2025
Tue Jul 01 04:10:02 EDT 2025
Sun Aug 24 12:10:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6154
Keywords Ultrathin films
Aluminium oxide
Gas permeability
Hydrogen
Morphology
Carbon dioxide
Selective permeability
Membrane
Manufacturing
Nitrogen
Experimental study
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c546t-995280808fba9608d5c948e0760d401993648baee1d297c8214e8216c88bcd043
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24092739
PQID 1439269317
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_2000342085
proquest_miscellaneous_1559693193
proquest_miscellaneous_1443391433
proquest_journals_1439269317
pubmed_primary_24092739
pascalfrancis_primary_27895684
crossref_citationtrail_10_1126_science_1236686
crossref_primary_10_1126_science_1236686
jstor_primary_42619729
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-04
PublicationDateYYYYMMDD 2013-10-04
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-04
  day: 04
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2013
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_32_2
  doi: 10.1002/aic.11457
– ident: e_1_3_2_33_2
  doi: 10.1016/j.memsci.2009.09.009
– ident: e_1_3_2_40_2
  doi: 10.1021/nl201432g
– ident: e_1_3_2_7_2
  doi: 10.1038/nature06016
– ident: e_1_3_2_24_2
  doi: 10.1016/S0376-7388(02)00544-6
– ident: e_1_3_2_8_2
  doi: 10.1021/nn103028d
– ident: e_1_3_2_5_2
  doi: 10.1126/science.285.5435.1902
– ident: e_1_3_2_16_2
  doi: 10.1021/nl9021946
– ident: e_1_3_2_17_2
  doi: 10.1021/jp206258u
– ident: e_1_3_2_35_2
  doi: 10.1021/ja076473o
– ident: e_1_3_2_11_2
  doi: 10.1126/science.1211694
– ident: e_1_3_2_13_2
  doi: 10.1038/nnano.2012.162
– ident: e_1_3_2_25_2
  doi: 10.1016/j.micromeso.2003.11.016
– ident: e_1_3_2_38_2
  doi: 10.1103/PhysRevB.61.14095
– ident: e_1_3_2_27_2
  doi: 10.1016/j.memsci.2006.11.027
– ident: e_1_3_2_2_2
  doi: 10.1126/science.1082169
– ident: e_1_3_2_37_2
  doi: 10.1021/jp060936f
– ident: e_1_3_2_3_2
  doi: 10.1021/ar200083e
– ident: e_1_3_2_18_2
  doi: 10.1016/j.susc.2012.08.024
– ident: e_1_3_2_28_2
  doi: 10.1021/ie048739v
– ident: e_1_3_2_19_2
  doi: 10.1021/cr0501792
– ident: e_1_3_2_9_2
  doi: 10.1126/science.1157996
– ident: e_1_3_2_36_2
  doi: 10.1038/nnano.2011.130
– ident: e_1_3_2_31_2
  doi: 10.1021/la900474y
– ident: e_1_3_2_41_2
  doi: 10.1016/S0008-6223(01)00262-7
– ident: e_1_3_2_22_2
  doi: 10.1016/j.ijggc.2010.04.001
– ident: e_1_3_2_29_2
  doi: 10.1016/j.memsci.2010.02.074
– ident: e_1_3_2_26_2
  doi: 10.1016/j.memsci.2008.04.030
– ident: e_1_3_2_20_2
  doi: 10.1021/ie8019032
– ident: e_1_3_2_6_2
  doi: 10.1126/science.1146744
– ident: e_1_3_2_21_2
  doi: 10.1016/j.memsci.2009.11.040
– ident: e_1_3_2_12_2
  doi: 10.1063/1.3021413
– ident: e_1_3_2_34_2
  doi: 10.1021/ja8074874
– ident: e_1_3_2_23_2
  doi: 10.1016/j.memsci.2007.09.031
– ident: e_1_3_2_4_2
  doi: 10.1126/science.279.5357.1710
– ident: e_1_3_2_30_2
  doi: 10.1021/ja108681n
– ident: e_1_3_2_39_2
  doi: 10.1021/nl061702a
– ident: e_1_3_2_10_2
  doi: 10.1021/nl801457b
– ident: e_1_3_2_15_2
  doi: 10.1016/j.memsci.2004.06.046
SSID ssj0009593
Score 2.6345882
Snippet Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous...
When gas separation membranes are made thinner, they usually allow permeating gases to pass through faster. However, a thinner membrane may be poorer at...
Gas SeparationsWhen gas separation membranes are made thinner, they usually allow permeating gases to pass through faster. However, a thinner membrane may be...
Gas Separations When gas separation membranes are made thinner, they usually allow permeating gases to pass through faster. However, a thinner membrane may be...
SourceID proquest
pubmed
pascalfrancis
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 95
SubjectTerms Adsorption
Applied sciences
Carbon dioxide
Channels
Chemical engineering
Diffusion
Exact sciences and technology
Filtration
Gases
Graphene
graphene oxide
Hydrogen
Materials science
Membrane separation (reverse osmosis, dialysis...)
Membranes
Micropores
Molecules
nitrogen
Oxides
P branes
permeability
Pore size
Porosity
Solvents
String theory
Title Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation
URI https://www.jstor.org/stable/42619729
https://www.ncbi.nlm.nih.gov/pubmed/24092739
https://www.proquest.com/docview/1439269317
https://www.proquest.com/docview/1443391433
https://www.proquest.com/docview/1559693193
https://www.proquest.com/docview/2000342085
Volume 342
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJyReEBuMBcZkJB6GIFXqr8SPHTBViMHDVlF4iZzE1YJGi9YWMf4b_43r2HE9RifYS1S5Tpr6HNv32Nf3IvSsLCnYwUwBAhIEiiRFnIHKiAmnouBi0peVWe84ei-GI_Z2zMedzq_Aa2m5KHrlz7-eK7kJqlAGuJpTsv-BrH8oFMBnwBeugDBc_wnj0ZmJLXtqwwActYlu4-Naf7frSsp4cOkXH37UFXRf_RWkMQxtjWvhcZMAx_gNDS-q8xn8BhTZQOAOKWeytr0fTFG_vROA6v0UB9aboHUucLcFKw3vbIJs5eZKs6zj_IE_ny5BEHia-kXsca1mX-qAeq78Ux0uVvSt29tqsfIGrxkO3i52sp267HidmFSTJKHhgE4ZCZgLJhsLRmjJg7neJsC-OosEeS91z8SnEX_G624sgEZ-gjq5hTYIqBTSRRuDg9cHh2ujPrvYUsGprfbpl8wi6xlr3HTVHHrqxKZYWa-BGlvo5B6660QMHlhGbqKOnm6h2zat6cUW2nSNOsf7Lqr58_vooyfrS3yFqrilKm6oij1VMcCGPVVxS1W8ouoDNDp8c_JqGLusHnHJmVjEUnJigplmk0KBfM4qXkqWabNDXIHYB3tZsKxQWvcrItMyI32m4SLKLCvKKmF0G3Wns6neQVinSqS0SBOVUqYyXSRSGZt-IkptNrQj1GsbNS9dyHuTeeUsb6QvEblDIXcoRGjf3_DNRntZX3W7QcnXa8kQob1LsPkK5sw5FxmL0G6LY-4GkzkocBAqQoI1H6Gn_msY6s3-HbT3bGnqMEol1KTX1OFcmsfIa-qQJiqVSc4boYeWR6uXZIkERSMfrft7j9GdVcfeRd3F-VI_Abt8Uew59v8GTZ3jfQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin%2C+Molecular-Sieving+Graphene+Oxide+Membranes+for+Selective+Hydrogen+Separation&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Li%2C+Hang&rft.au=Song%2C+Zhuonan&rft.au=Zhang%2C+Xiaojie&rft.au=Huang%2C+Yi&rft.date=2013-10-04&rft.pub=American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=342&rft.issue=6154&rft.spage=95&rft.epage=98&rft_id=info:doi/10.1126%2Fscience.1236686&rft.externalDocID=42619729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon