Production of Whey Protein-Based Aggregates Under Ohmic Heating

Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregat...

Full description

Saved in:
Bibliographic Details
Published inFood and bioprocess technology Vol. 9; no. 4; pp. 576 - 587
Main Authors Pereira, Ricardo N, Rodrigues, Rui M, Ramos, Óscar L, Xavier Malcata, F, Teixeira, José António, Vicente, António A
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1935-5130
1935-5149
DOI10.1007/s11947-015-1651-4

Cover

Loading…
Abstract Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating charge—by reducing the come-up time (CUT) needed to reach a target temperature—and increase of the electric field applied (from 6 to 12 V cm⁻¹). Exposure of reactive free thiol groups involved in molecular unfolding of β-lactoglobulin (β-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm⁻¹. Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments.
AbstractList Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating charge—by reducing the come-up time (CUT) needed to reach a target temperature—and increase of the electric field applied (from 6 to 12 V cm⁻¹). Exposure of reactive free thiol groups involved in molecular unfolding of β-lactoglobulin (β-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm⁻¹. Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments.
Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating charge—by reducing the come-up time (CUT) needed to reach a target temperature—and increase of the electric field applied (from 6 to 12 V cm −1 ). Exposure of reactive free thiol groups involved in molecular unfolding of β-lactoglobulin (β-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm −1 . Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments.
Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating charge—by reducing the come-up time (CUT) needed to reach a target temperature—and increase of the electric field applied (from 6 to 12 V cm⁻¹). Exposure of reactive free thiol groups involved in molecular unfolding of β-lactoglobulin (β-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm⁻¹. Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments.
Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating charge—by reducing the come-up time (CUT) needed to reach a target temperature—and increase of the electric field applied (from 6 to 12 V cm−1). Exposure of reactive free thiol groups involved in molecular unfolding of β-lactoglobulin (β-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm−1. Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments.
Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating charge-by reducing the come-up time (CUT) needed to reach a target temperature-and increase of the electric field applied (from 6 to 12 V cm super(-1)). Exposure of reactive free thiol groups involved in molecular unfolding of beta -lactoglobulin ( beta -lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm super(-1). Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments.
Author Vicente, António A
Rodrigues, Rui M
Pereira, Ricardo N
Xavier Malcata, F
Teixeira, José António
Ramos, Óscar L
Author_xml – sequence: 1
  fullname: Pereira, Ricardo N
– sequence: 2
  fullname: Rodrigues, Rui M
– sequence: 3
  fullname: Ramos, Óscar L
– sequence: 4
  fullname: Xavier Malcata, F
– sequence: 5
  fullname: Teixeira, José António
– sequence: 6
  fullname: Vicente, António A
BookMark eNqNkE1rFTEUhoNUsK3-AFcOuHEz9Zx8zCQrqUWtUKigF5chN_dkmnJvUpO5i_775jJioYviKofwPufjOWFHKSdi7C3CGQKMHyuikWMPqHocFPbyBTtGI1SvUJqjf7WAV-yk1luAASSKY_bpR8mbvZ9jTl0O3e8buu_a10wx9Z9dpU13Pk2FJjdT7VZpQ6W7vtlF312Sm2OaXrOXwW0rvfn7nrLV1y-_Li77q-tv3y_Or3qv5DD3Rmi-1iqIIIMENEoax4OgtfZKhI3xUoPXnpRCpwIflQYcuQBYG25IenHKPix970r-s6c6212snrZblyjvq0U9aCG0MuY_oiCarbZSi75_Er3N-5LaIZZLBK1QI28pXFK-5FoLBXtX4s6Ve4tgD_btYt82-_Zg38rGjE8YH2d30DwXF7fPknwha5uSJiqPOz0HvVug4LJ1U4nVrn5ywAGgnQFqFA-B1aCm
CitedBy_id crossref_primary_10_1016_j_fbio_2022_102200
crossref_primary_10_3389_fchem_2016_00031
crossref_primary_10_1007_s11483_019_09578_y
crossref_primary_10_1016_j_tifs_2024_104407
crossref_primary_10_1016_j_biortech_2018_01_068
crossref_primary_10_1007_s11947_022_02768_6
crossref_primary_10_1021_acsfoodscitech_4c00135
crossref_primary_10_1016_j_cofs_2018_01_014
crossref_primary_10_1016_j_foodres_2017_10_061
crossref_primary_10_1016_j_ifset_2021_102831
crossref_primary_10_1016_j_foodres_2019_108586
crossref_primary_10_3390_foods10030554
crossref_primary_10_1016_j_ifset_2020_102593
crossref_primary_10_1016_j_foodhyd_2022_107519
crossref_primary_10_1016_j_ijbiomac_2023_127540
crossref_primary_10_1016_j_foodres_2019_04_045
crossref_primary_10_1007_s10989_022_10465_3
crossref_primary_10_3390_foods12040818
crossref_primary_10_1016_j_foostr_2022_100259
crossref_primary_10_3390_foods13020283
crossref_primary_10_1016_j_lwt_2021_111710
crossref_primary_10_1039_C9FO02834J
crossref_primary_10_1016_j_ifset_2023_103333
crossref_primary_10_1007_s11947_020_02519_5
crossref_primary_10_3390_foods13091421
crossref_primary_10_1016_j_ifset_2018_11_010
crossref_primary_10_1016_j_heliyon_2023_e22061
crossref_primary_10_1016_j_fochx_2023_100722
crossref_primary_10_1080_87559129_2024_2366841
crossref_primary_10_1016_j_foodhyd_2019_105505
crossref_primary_10_1007_s11947_021_02607_0
crossref_primary_10_1016_j_foodhyd_2024_109748
crossref_primary_10_1016_j_foodres_2018_01_046
crossref_primary_10_1016_j_foodres_2022_111827
crossref_primary_10_1016_j_ijbiomac_2020_02_122
crossref_primary_10_1080_10408398_2022_2130154
crossref_primary_10_1016_j_tifs_2020_12_002
crossref_primary_10_1016_j_carbpol_2017_07_007
crossref_primary_10_1016_j_foodchem_2018_04_115
crossref_primary_10_3390_foods13040577
crossref_primary_10_1007_s11483_024_09836_8
crossref_primary_10_1016_j_ifset_2024_103587
crossref_primary_10_20473_jipk_v15i1_36078
crossref_primary_10_1016_j_foodres_2020_109709
crossref_primary_10_1016_j_foodres_2021_110179
crossref_primary_10_3390_gels5010009
crossref_primary_10_1016_j_fbio_2024_103708
crossref_primary_10_1016_j_jfoodeng_2019_109834
crossref_primary_10_1021_acs_jafc_8b03689
crossref_primary_10_3390_app14135460
crossref_primary_10_3390_molecules24234212
crossref_primary_10_1016_j_foodres_2024_114429
crossref_primary_10_1016_j_ifset_2023_103512
crossref_primary_10_1007_s11947_020_02478_x
crossref_primary_10_3168_jds_2021_21395
crossref_primary_10_1016_j_idairyj_2021_105170
crossref_primary_10_1016_j_tifs_2022_10_001
crossref_primary_10_1016_j_msec_2020_111784
crossref_primary_10_1016_j_foodres_2024_115033
Cites_doi 10.1039/c1sc00185j
10.1002/1097-0282(200012)54:7<578::AID-BIP100>3.0.CO;2-2
10.1007/s11947-011-0590-y
10.1021/jf970269a
10.1016/S0268-005X(09)80031-3
10.1016/S0924-2244(98)00031-4
10.1016/0009-2509(90)80006-Z
10.1021/jf404456q
10.1016/j.cocis.2009.11.002
10.1016/j.bpj.2013.11.2959
10.1110/ps.0217702
10.1017/S0022029900031939
10.1021/jf970751t
10.1016/j.foodres.2014.09.036
10.1016/S0268-005X(09)80122-7
10.1017/S0022029902005903
10.1021/jf060606s
10.3168/jds.S0022-0302(05)72836-8
10.1016/0003-9861(59)90090-6
10.1007/s11483-005-9003-y
10.1016/S0141-8130(00)00144-6
10.1021/la900501n
10.1016/j.foodhyd.2013.07.023
10.1016/j.tifs.2005.12.011
10.1007/s11483-010-9161-4
10.1016/j.colsurfb.2009.08.029
10.1016/S0268-005X(09)80046-5
10.1021/jp907284t
10.1021/jf201727s
10.1016/j.foodhyd.2014.06.002
10.1016/j.febslet.2006.03.002
10.3168/jds.S0022-0302(98)75613-9
10.1016/S1369-7021(09)70164-6
10.3168/jds.S0022-0302(76)84246-4
10.1021/bm100681a
10.1016/j.ejpb.2006.10.012
10.1038/nsmb1345
10.1016/j.ultramic.2010.10.011
10.1016/j.cocis.2013.03.001
10.1016/S0268-005X(09)80013-1
10.1016/j.idairyj.2013.02.002
10.1016/j.foodres.2007.07.005
10.1021/bm0156429
10.1021/jf981302b
10.1016/j.foodres.2008.05.003
10.1016/j.jfoodeng.2006.11.001
10.1016/j.addr.2012.09.024
10.1021/la203357p
10.1016/j.foodhyd.2011.02.006
10.1021/bm400347d
10.1002/9781118373903.ch10
10.1038/srep07992
10.1002/9781118373903.ch2
10.1002/9781118373903.ch6
10.1021/bm050540u
10.1088/0034-4885/76/4/046601
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Springer Science+Business Media New York 2015.
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: Springer Science+Business Media New York 2015.
DBID FBQ
AAYXX
CITATION
3V.
7X2
8FE
8FG
8FH
8FK
ABJCF
AEUYN
AFKRA
ATCPS
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
HCIFZ
L6V
M0K
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
7T7
8FD
C1K
FR3
P64
DOI 10.1007/s11947-015-1651-4
DatabaseName AGRIS
CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Agricultural Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Agricultural Science Database
Technology Collection
ProQuest One Academic Middle East (New)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

AGRICOLA
Agricultural Science Database
Engineering Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1935-5149
EndPage 587
ExternalDocumentID 10_1007_s11947_015_1651_4
US201600108057
GrantInformation_xml – fundername: Fundação para a Ciência e a Tecnologia
  grantid: SFRH/BPD/81887/2011; SFRH/BPD/80766/2011
  funderid: http://dx.doi.org/10.13039/501100001871
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
06C
06D
0R~
0VY
1N0
203
29H
2JN
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
5GY
5VS
67Z
6NX
7X2
875
8TC
8UJ
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ATCPS
AUKKA
AXYYD
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FBQ
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M0K
M4Y
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9N
PT4
PTHSS
QOR
QOS
R89
RLLFE
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z7Y
Z7Z
Z81
Z83
ZMTXR
~A9
~KM
AACDK
AAHBH
AAJBT
AASML
AAYZH
ABAKF
ACAOD
ACDTI
ACPIV
ACZOJ
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
H13
SJYHP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
3V.
8FE
8FG
8FH
8FK
ABRTQ
DWQXO
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7S9
L.6
7T7
8FD
C1K
FR3
P64
ID FETCH-LOGICAL-c546t-9382b85f3f4f4019549a2f3eb8c53fd9c480c8ce551a5f27580172300b929e4c3
IEDL.DBID BENPR
ISSN 1935-5130
IngestDate Fri Jul 11 03:12:15 EDT 2025
Tue Aug 05 10:25:41 EDT 2025
Fri Jul 25 11:17:26 EDT 2025
Thu Apr 24 23:08:29 EDT 2025
Tue Jul 01 02:06:57 EDT 2025
Fri Feb 21 02:41:24 EST 2025
Wed Dec 27 19:01:46 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Protein fibrillar aggregates
Aggregation kinetics
Ohmic heating
Protein solubility
Whey protein isolate
Electric fields
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-9382b85f3f4f4019549a2f3eb8c53fd9c480c8ce551a5f27580172300b929e4c3
Notes http://dx.doi.org/10.1007/s11947-015-1651-4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s11947-015-1651-4.pdf
PQID 2410851812
PQPubID 2043651
PageCount 12
ParticipantIDs proquest_miscellaneous_1868338599
proquest_miscellaneous_1803119938
proquest_journals_2410851812
crossref_primary_10_1007_s11947_015_1651_4
crossref_citationtrail_10_1007_s11947_015_1651_4
springer_journals_10_1007_s11947_015_1651_4
fao_agris_US201600108057
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Food and bioprocess technology
PublicationTitleAbbrev Food Bioprocess Technol
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Hoffmann, Roefs, Verheul, VanMil, DeKruif (CR23) 1996; 63
Ellman (CR17) 1959; 82
Ikeda, Morris (CR24) 2002; 3
Nicolai, Durand (CR35) 2013; 18
Hamada, Dobson (CR22) 2002; 11
Qiu, Park (CR43) 2012; 64
CR33
Rodrigues, Martins, Ramos, Malcata, Teixeira, Vicente (CR45) 2015; 43
Schuster, Hermansson, Ohgren, Rudemo, Loren (CR48) 2014; 106
Verheul, Roefs, de Kruif (CR58) 1998; 46
CR30
Patrick, Swaisgood (CR38) 1976; 59
Law, Leaver (CR28) 2000; 48
Gunasekaran, Ko, Xiao (CR21) 2007; 83
Nicorescu, Loisel, Vial, Riaublanc, Djelveh, Cuvelier (CR36) 2008; 41
Augustin (CR2) 2003; 58
Bolder, Hendrickx, Sagis, van der Linden (CR4) 2006; 54
Cornacchia, Forquenot de la Fortelle, Venema (CR11) 2014; 62
CR3
Kavanagh, Clark, Ross-Murphy (CR26) 2000; 28
CR5
Chen, Subirade (CR8) 2007; 65
CR49
Stading, Hermansson (CR52) 1991; 5
Sullivan, Tang, Kennedy, Talwar, Khan (CR56) 2014; 35
Prabakaran, Damodaran (CR42) 1997; 45
Soos, Lattuada, Sefcik (CR50) 2009; 113
Chen, Remondetto, Subirade (CR9) 2006; 17
Dalgleish, Banks (CR12) 1991; 46
Schmitt, Bovay, Vuilliomenet, Rouvet, Bovetto, Barbar (CR47) 2009; 25
Sava, Van der Plancken, Claeys, Hendrickx (CR46) 2005; 88
De Alwis, Fryer (CR13) 1990; 45
Foegeding (CR18) 2006; 1
Stading, Hermansson (CR51) 1990; 4
CR16
Lefevre, Subirade (CR29) 2000; 54
Pereira, Teixeira, Vicente (CR40) 2011; 59
Pereira, Souza, Cerqueira, Teixeira, Vicente (CR39) 2010; 11
CR55
Anema, Li (CR1) 2003; 70
Gordon, Pilosof (CR20) 2010; 5
Madureira, Pereira, Gomes, Pintado, Xavier Malcata (CR32) 2007; 40
Ramos, Pereira, Rodrigues, Teixeira, Vicente, Xavier Malcata (CR44) 2014; 66
Nobbmann, Morfesis (CR37) 2009; 12
Dissanayake, Ramchandran, Donkor, Vasiljevic (CR15) 2013; 31
Ziegler, Viehrig, Geimer, Rosch, Schwarzinger (CR59) 2006; 580
Phan-Xuan, Durand, Nicolai, Donato, Schmitt, Bovetto (CR41) 2013; 14
Gontard, Ozkaya, Dunin-Borkowski (CR19) 2011; 111
Chalker, Gunnoo, Boutureira, Gerstberger, Fernandez-Gonzalez, Bernardes (CR7) 2011; 2
Livney (CR31) 2010; 15
Stading, Langton, Hermansson (CR53) 1992; 6
Chimon, Shaibat, Jones, Calero, Aizezi, Ishii (CR10) 2007; 14
Bryant, McClements (CR6) 1998; 9
Nicolai, Britten, Schmitt (CR34) 2011; 25
Stanciuc, Dumitrascu, Ardelean, Stanciu, Rapeanu (CR54) 2012; 5
Tuan, Durand, Nicolai, Donato, Schmitt, Bovetto (CR57) 2011; 27
de Wit (CR14) 1998; 81
Langton, Hermansson (CR27) 1992; 5
Jensen, Dolatshahi-Pirouz, Foss, Baas, Lovmand, Duch (CR25) 2010; 75
S. Ikeda (1651_CR24) 2002; 3
D. G. Dalgleish (1651_CR12) 1991; 46
T. Phan-Xuan (1651_CR41) 2013; 14
1651_CR49
S. Prabakaran (1651_CR42) 1997; 45
1651_CR5
M. A. M. Hoffmann (1651_CR23) 1996; 63
T. Nicolai (1651_CR34) 2011; 25
O. L. Ramos (1651_CR44) 2014; 66
Y. D. Livney (1651_CR31) 2010; 15
L. Cornacchia (1651_CR11) 2014; 62
D. Hamada (1651_CR22) 2002; 11
1651_CR3
E. Schuster (1651_CR48) 2014; 106
M. Langton (1651_CR27) 1992; 5
S. T. Sullivan (1651_CR56) 2014; 35
I. Nicorescu (1651_CR36) 2008; 41
C. Schmitt (1651_CR47) 2009; 25
Y. Qiu (1651_CR43) 2012; 64
A. R. Madureira (1651_CR32) 2007; 40
M. Stading (1651_CR52) 1991; 5
1651_CR30
L. Chen (1651_CR8) 2007; 65
1651_CR33
R. N. Pereira (1651_CR40) 2011; 59
A. A. P. Alwis De (1651_CR13) 1990; 45
L. C. Gontard (1651_CR19) 2011; 111
S. Chimon (1651_CR10) 2007; 14
G. M. Kavanagh (1651_CR26) 2000; 28
T. Nicolai (1651_CR35) 2013; 18
T. Lefevre (1651_CR29) 2000; 54
J. Ziegler (1651_CR59) 2006; 580
L. Y. Chen (1651_CR9) 2006; 17
M. Soos (1651_CR50) 2009; 113
A. J. R. Law (1651_CR28) 2000; 48
M. A. Augustin (1651_CR2) 2003; 58
U. Nobbmann (1651_CR37) 2009; 12
M. Stading (1651_CR53) 1992; 6
L. Gordon (1651_CR20) 2010; 5
C. M. Bryant (1651_CR6) 1998; 9
S. Gunasekaran (1651_CR21) 2007; 83
N. Stanciuc (1651_CR54) 2012; 5
M. Verheul (1651_CR58) 1998; 46
M. Dissanayake (1651_CR15) 2013; 31
1651_CR16
E. A. Foegeding (1651_CR18) 2006; 1
S. G. Anema (1651_CR1) 2003; 70
S. G. Bolder (1651_CR4) 2006; 54
J. N. Wit de (1651_CR14) 1998; 81
R. M. Rodrigues (1651_CR45) 2015; 43
G. L. Ellman (1651_CR17) 1959; 82
T. Jensen (1651_CR25) 2010; 75
N. Sava (1651_CR46) 2005; 88
J. M. Chalker (1651_CR7) 2011; 2
P. X. Tuan (1651_CR57) 2011; 27
R. N. Pereira (1651_CR39) 2010; 11
1651_CR55
P. S. Patrick (1651_CR38) 1976; 59
M. Stading (1651_CR51) 1990; 4
References_xml – volume: 2
  start-page: 1666
  issue: 9
  year: 2011
  end-page: 1676
  ident: CR7
  article-title: Methods for converting cysteine to dehydroalanine on peptides and proteins
  publication-title: Chemical Science
  doi: 10.1039/c1sc00185j
– volume: 54
  start-page: 578
  issue: 7
  year: 2000
  end-page: 586
  ident: CR29
  article-title: Molecular differences in the formation and structure of fine-stranded and particulate beta-lactoglobulin gels
  publication-title: Biopolymers
  doi: 10.1002/1097-0282(200012)54:7<578::AID-BIP100>3.0.CO;2-2
– ident: CR49
– volume: 5
  start-page: 2160
  issue: 6
  year: 2012
  end-page: 2171
  ident: CR54
  article-title: A kinetic study on the heat-induced changes of whey proteins concentrate at two pH values
  publication-title: Food and Bioprocess Technology
  doi: 10.1007/s11947-011-0590-y
– volume: 45
  start-page: 4303
  issue: 11
  year: 1997
  end-page: 4308
  ident: CR42
  article-title: Thermal unfolding of beta-lactoglobulin: characterization of initial unfolding events responsible for heat-induced aggregation
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf970269a
– volume: 6
  start-page: 455
  issue: 5
  year: 1992
  end-page: 470
  ident: CR53
  article-title: Inhomogeneous fine-stranded β-lactoglobulin gels
  publication-title: Food Hydrocolloids
  doi: 10.1016/S0268-005X(09)80031-3
– ident: CR16
– volume: 9
  start-page: 143
  issue: 4
  year: 1998
  end-page: 151
  ident: CR6
  article-title: Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/S0924-2244(98)00031-4
– volume: 45
  start-page: 1547
  issue: 6
  year: 1990
  end-page: 1559
  ident: CR13
  article-title: A finite-element analysis of heat generation and transfer during ohmic heating of food
  publication-title: Chemical Engineering Science
  doi: 10.1016/0009-2509(90)80006-Z
– volume: 62
  start-page: 733
  issue: 3
  year: 2014
  end-page: 741
  ident: CR11
  article-title: Heat-induced aggregation of whey proteins in aqueous solutions below their isoelectric point
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf404456q
– volume: 15
  start-page: 73
  issue: 1–2
  year: 2010
  end-page: 83
  ident: CR31
  article-title: Milk proteins as vehicles for bioactives
  publication-title: Current Opinion in Colloid & Interface Science
  doi: 10.1016/j.cocis.2009.11.002
– volume: 106
  start-page: 253
  issue: 1
  year: 2014
  end-page: 262
  ident: CR48
  article-title: Interactions and diffusion in fine-stranded beta-lactoglobulin gels determined via FRAP and binding
  publication-title: Biophysical Journal
  doi: 10.1016/j.bpj.2013.11.2959
– volume: 11
  start-page: 2417
  issue: 10
  year: 2002
  end-page: 2426
  ident: CR22
  article-title: A kinetic study of β-lactoglobulin amyloid fibril formation promoted by urea
  publication-title: Protein Science
  doi: 10.1110/ps.0217702
– volume: 63
  start-page: 423
  issue: 3
  year: 1996
  end-page: 440
  ident: CR23
  article-title: Aggregation of beta-lactoglobulin studied by in situ light scattering
  publication-title: Journal of Dairy Research
  doi: 10.1017/S0022029900031939
– volume: 46
  start-page: 896
  issue: 3
  year: 1998
  end-page: 903
  ident: CR58
  article-title: Kinetics of heat-induced aggregation of beta-lactoglobulin
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf970751t
– volume: 66
  start-page: 344
  issue: 0
  year: 2014
  end-page: 355
  ident: CR44
  article-title: Physical effects upon whey protein aggregation for nano-coating production
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2014.09.036
– volume: 5
  start-page: 523
  issue: 6
  year: 1992
  end-page: 539
  ident: CR27
  article-title: Fine-stranded and particulate gels of beta-lactoglobulin and whey-protein at varying pH
  publication-title: Food Hydrocolloids
  doi: 10.1016/S0268-005X(09)80122-7
– volume: 70
  start-page: 73
  issue: 1
  year: 2003
  end-page: 83
  ident: CR1
  article-title: Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size
  publication-title: Journal of Dairy Research
  doi: 10.1017/S0022029902005903
– volume: 46
  start-page: 75
  year: 1991
  end-page: 78
  ident: CR12
  article-title: The formation of complexes between serum proteins and fat globules during heating of whole milk
  publication-title: Milchwissenschaft - Milk Science International
– volume: 54
  start-page: 4229
  issue: 12
  year: 2006
  end-page: 4234
  ident: CR4
  article-title: Fibril assemblies in aqueous whey protein mixtures
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf060606s
– volume: 88
  start-page: 1646
  issue: 5
  year: 2005
  end-page: 1653
  ident: CR46
  article-title: The kinetics of heat-induced structural changes of beta-lactoglobulin
  publication-title: Journal of Dairy Science
  doi: 10.3168/jds.S0022-0302(05)72836-8
– volume: 82
  start-page: 70
  issue: 1
  year: 1959
  end-page: 77
  ident: CR17
  article-title: Tissue sulfhydryl groups
  publication-title: Archives of Biochemistry and Biophysics
  doi: 10.1016/0003-9861(59)90090-6
– volume: 1
  start-page: 41
  issue: 1
  year: 2006
  end-page: 50
  ident: CR18
  article-title: Food biophysics of protein gels: a challenge of nano and macroscopic proportions
  publication-title: Food Biophysics
  doi: 10.1007/s11483-005-9003-y
– volume: 28
  start-page: 41
  issue: 1
  year: 2000
  end-page: 50
  ident: CR26
  article-title: Heat-induced gelation of globular proteins: part 3. Molecular studies on low pH β-lactoglobulin gels
  publication-title: Int J Biol Macromol
  doi: 10.1016/S0141-8130(00)00144-6
– volume: 25
  start-page: 7899
  issue: 14
  year: 2009
  end-page: 7909
  ident: CR47
  article-title: Multiscale characterization of individualized beta-lactoglobulin microgels formed upon heat treatment under narrow pH range conditions
  publication-title: Langmuir
  doi: 10.1021/la900501n
– volume: 35
  start-page: 36
  year: 2014
  end-page: 50
  ident: CR56
  article-title: Electrospinning and heat treatment of whey protein nanofibers
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2013.07.023
– ident: CR5
– volume: 17
  start-page: 272
  issue: 5
  year: 2006
  end-page: 283
  ident: CR9
  article-title: Food protein-based materials as nutraceutical delivery systems
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2005.12.011
– volume: 5
  start-page: 203
  issue: 3
  year: 2010
  end-page: 210
  ident: CR20
  article-title: Application of high-intensity ultrasounds to control the size of whey proteins particles
  publication-title: Food Biophysics
  doi: 10.1007/s11483-010-9161-4
– volume: 75
  start-page: 186
  issue: 1
  year: 2010
  end-page: 193
  ident: CR25
  article-title: Interaction of human mesenchymal stem cells with osteopontin coated hydroxyapatite surfaces
  publication-title: Colloids and Surfaces B-Biointerfaces
  doi: 10.1016/j.colsurfb.2009.08.029
– volume: 58
  start-page: 156
  issue: 2
  year: 2003
  end-page: 160
  ident: CR2
  article-title: The role of microencapsulation in the development of functional dairy foods
  publication-title: Australian Journal of Dairy Technology
– volume: 5
  start-page: 339
  issue: 4
  year: 1991
  end-page: 352
  ident: CR52
  article-title: Large deformation properties of β-lactoglobulin gel structures
  publication-title: Food Hydrocolloids
  doi: 10.1016/S0268-005X(09)80046-5
– ident: CR30
– volume: 113
  start-page: 14962
  issue: 45
  year: 2009
  end-page: 14970
  ident: CR50
  article-title: Interpretation of light scattering and turbidity measurements in aggregated systems: effect of intra-cluster multiple-light scattering
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp907284t
– volume: 59
  start-page: 11589
  issue: 21
  year: 2011
  end-page: 11597
  ident: CR40
  article-title: Exploring the denaturation of whey proteins upon application of moderate electric fields: a kinetic and thermodynamic study
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf201727s
– ident: CR33
– volume: 43
  start-page: 329
  issue: 0
  year: 2015
  end-page: 339
  ident: CR45
  article-title: ). Influence of moderate electric fields on gelation of whey protein isolate
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2014.06.002
– volume: 580
  start-page: 2033
  issue: 8
  year: 2006
  end-page: 2040
  ident: CR59
  article-title: Putative aggregation initiation sites in prion protein
  publication-title: FEBS Letters
  doi: 10.1016/j.febslet.2006.03.002
– volume: 81
  start-page: 597
  issue: 3
  year: 1998
  end-page: 608
  ident: CR14
  article-title: Nutritional and functional characteristics of whey proteins in food products
  publication-title: Journal of Dairy Science
  doi: 10.3168/jds.S0022-0302(98)75613-9
– volume: 12
  start-page: 52
  issue: 5
  year: 2009
  end-page: 54
  ident: CR37
  article-title: Light scattering and nanoparticles
  publication-title: Materials Today
  doi: 10.1016/S1369-7021(09)70164-6
– volume: 59
  start-page: 594
  issue: 4
  year: 1976
  end-page: 600
  ident: CR38
  article-title: Sulfhydryl and disulfide groups in skim milk as affected by direct ultra-high-temperature heating and subsequent storage
  publication-title: Journal of Dairy Science
  doi: 10.3168/jds.S0022-0302(76)84246-4
– volume: 11
  start-page: 2912
  issue: 11
  year: 2010
  end-page: 2918
  ident: CR39
  article-title: Effects of electric fields on protein unfolding and aggregation: influence on edible films formation
  publication-title: Biomacromolecules
  doi: 10.1021/bm100681a
– volume: 65
  start-page: 354
  issue: 3
  year: 2007
  end-page: 362
  ident: CR8
  article-title: Effect of preparation conditions on the nutrient release properties of alginate-whey protein granular microspheres
  publication-title: European Journal of Pharmaceutics and Biopharmaceutics
  doi: 10.1016/j.ejpb.2006.10.012
– volume: 14
  start-page: 1157
  issue: 12
  year: 2007
  end-page: 1164
  ident: CR10
  article-title: Evidence of fibril-like [beta]-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s [beta]-amyloid. [10.1038/nsmb1345]
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb1345
– volume: 111
  start-page: 101
  issue: 2
  year: 2011
  end-page: 106
  ident: CR19
  article-title: A simple algorithm for measuring particle size distributions on an uneven background from TEM images
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2010.10.011
– ident: CR3
– volume: 18
  start-page: 249
  issue: 4
  year: 2013
  end-page: 256
  ident: CR35
  article-title: Controlled food protein aggregation for new functionality
  publication-title: Current Opinion in Colloid & Interface Science
  doi: 10.1016/j.cocis.2013.03.001
– volume: 4
  start-page: 121
  issue: 2
  year: 1990
  end-page: 135
  ident: CR51
  article-title: Viscoelastic behaviour of β-lactoglobulin gel structures
  publication-title: Food Hydrocolloids
  doi: 10.1016/S0268-005X(09)80013-1
– volume: 31
  start-page: 93
  issue: 2
  year: 2013
  end-page: 99
  ident: CR15
  article-title: Denaturation of whey proteins as a function of heat, pH and protein concentration
  publication-title: International Dairy Journal
  doi: 10.1016/j.idairyj.2013.02.002
– volume: 40
  start-page: 1197
  issue: 10
  year: 2007
  end-page: 1211
  ident: CR32
  article-title: Bovine whey proteins—overview on their main biological properties
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2007.07.005
– volume: 3
  start-page: 382
  issue: 2
  year: 2002
  end-page: 389
  ident: CR24
  article-title: Fine-stranded and particulate aggregates of heat-denatured whey proteins visualized by atomic force microscopy
  publication-title: Biomacromolecules
  doi: 10.1021/bm0156429
– volume: 48
  start-page: 672
  issue: 3
  year: 2000
  end-page: 679
  ident: CR28
  article-title: Effect of pH on the thermal denaturation of whey proteins in milk
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf981302b
– ident: CR55
– volume: 41
  start-page: 707
  issue: 7
  year: 2008
  end-page: 713
  ident: CR36
  article-title: Combined effect of dynamic heat treatment and ionic strength on denaturation and aggregation of whey proteins—part I
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2008.05.003
– volume: 83
  start-page: 31
  issue: 1
  year: 2007
  end-page: 40
  ident: CR21
  article-title: Use of whey proteins for encapsulation and controlled delivery applications
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2006.11.001
– volume: 64
  start-page: 49
  year: 2012
  end-page: 60
  ident: CR43
  article-title: Environment-sensitive hydrogels for drug delivery
  publication-title: Advanced Drug Delivery Reviews
  doi: 10.1016/j.addr.2012.09.024
– volume: 27
  start-page: 15092
  issue: 24
  year: 2011
  end-page: 15101
  ident: CR57
  article-title: On the crucial importance of the pH for the formation and self-stabilization of protein microgels and strands
  publication-title: Langmuir
  doi: 10.1021/la203357p
– volume: 25
  start-page: 1945
  issue: 8
  year: 2011
  end-page: 1962
  ident: CR34
  article-title: β-Lactoglobulin and WPI aggregates: formation, structure and applications
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2011.02.006
– volume: 14
  start-page: 1980
  issue: 6
  year: 2013
  end-page: 1989
  ident: CR41
  article-title: Tuning the structure of protein particles and gels with calcium or sodium ions
  publication-title: Biomacromolecules
  doi: 10.1021/bm400347d
– volume: 25
  start-page: 1945
  issue: 8
  year: 2011
  ident: 1651_CR34
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2011.02.006
– volume: 25
  start-page: 7899
  issue: 14
  year: 2009
  ident: 1651_CR47
  publication-title: Langmuir
  doi: 10.1021/la900501n
– volume: 15
  start-page: 73
  issue: 1–2
  year: 2010
  ident: 1651_CR31
  publication-title: Current Opinion in Colloid & Interface Science
  doi: 10.1016/j.cocis.2009.11.002
– volume: 66
  start-page: 344
  issue: 0
  year: 2014
  ident: 1651_CR44
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2014.09.036
– volume: 43
  start-page: 329
  issue: 0
  year: 2015
  ident: 1651_CR45
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2014.06.002
– volume: 17
  start-page: 272
  issue: 5
  year: 2006
  ident: 1651_CR9
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2005.12.011
– volume: 5
  start-page: 523
  issue: 6
  year: 1992
  ident: 1651_CR27
  publication-title: Food Hydrocolloids
  doi: 10.1016/S0268-005X(09)80122-7
– volume: 58
  start-page: 156
  issue: 2
  year: 2003
  ident: 1651_CR2
  publication-title: Australian Journal of Dairy Technology
– volume: 45
  start-page: 4303
  issue: 11
  year: 1997
  ident: 1651_CR42
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf970269a
– ident: 1651_CR49
  doi: 10.1002/9781118373903.ch10
– volume: 580
  start-page: 2033
  issue: 8
  year: 2006
  ident: 1651_CR59
  publication-title: FEBS Letters
  doi: 10.1016/j.febslet.2006.03.002
– volume: 1
  start-page: 41
  issue: 1
  year: 2006
  ident: 1651_CR18
  publication-title: Food Biophysics
  doi: 10.1007/s11483-005-9003-y
– volume: 45
  start-page: 1547
  issue: 6
  year: 1990
  ident: 1651_CR13
  publication-title: Chemical Engineering Science
  doi: 10.1016/0009-2509(90)80006-Z
– volume: 5
  start-page: 2160
  issue: 6
  year: 2012
  ident: 1651_CR54
  publication-title: Food and Bioprocess Technology
  doi: 10.1007/s11947-011-0590-y
– volume: 31
  start-page: 93
  issue: 2
  year: 2013
  ident: 1651_CR15
  publication-title: International Dairy Journal
  doi: 10.1016/j.idairyj.2013.02.002
– volume: 27
  start-page: 15092
  issue: 24
  year: 2011
  ident: 1651_CR57
  publication-title: Langmuir
  doi: 10.1021/la203357p
– ident: 1651_CR16
  doi: 10.1038/srep07992
– volume: 5
  start-page: 203
  issue: 3
  year: 2010
  ident: 1651_CR20
  publication-title: Food Biophysics
  doi: 10.1007/s11483-010-9161-4
– volume: 82
  start-page: 70
  issue: 1
  year: 1959
  ident: 1651_CR17
  publication-title: Archives of Biochemistry and Biophysics
  doi: 10.1016/0003-9861(59)90090-6
– volume: 5
  start-page: 339
  issue: 4
  year: 1991
  ident: 1651_CR52
  publication-title: Food Hydrocolloids
  doi: 10.1016/S0268-005X(09)80046-5
– volume: 48
  start-page: 672
  issue: 3
  year: 2000
  ident: 1651_CR28
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf981302b
– volume: 35
  start-page: 36
  year: 2014
  ident: 1651_CR56
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2013.07.023
– volume: 75
  start-page: 186
  issue: 1
  year: 2010
  ident: 1651_CR25
  publication-title: Colloids and Surfaces B-Biointerfaces
  doi: 10.1016/j.colsurfb.2009.08.029
– volume: 54
  start-page: 4229
  issue: 12
  year: 2006
  ident: 1651_CR4
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf060606s
– volume: 63
  start-page: 423
  issue: 3
  year: 1996
  ident: 1651_CR23
  publication-title: Journal of Dairy Research
  doi: 10.1017/S0022029900031939
– ident: 1651_CR3
  doi: 10.1002/9781118373903.ch2
– volume: 14
  start-page: 1157
  issue: 12
  year: 2007
  ident: 1651_CR10
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb1345
– volume: 6
  start-page: 455
  issue: 5
  year: 1992
  ident: 1651_CR53
  publication-title: Food Hydrocolloids
  doi: 10.1016/S0268-005X(09)80031-3
– volume: 2
  start-page: 1666
  issue: 9
  year: 2011
  ident: 1651_CR7
  publication-title: Chemical Science
  doi: 10.1039/c1sc00185j
– volume: 83
  start-page: 31
  issue: 1
  year: 2007
  ident: 1651_CR21
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2006.11.001
– volume: 106
  start-page: 253
  issue: 1
  year: 2014
  ident: 1651_CR48
  publication-title: Biophysical Journal
  doi: 10.1016/j.bpj.2013.11.2959
– volume: 62
  start-page: 733
  issue: 3
  year: 2014
  ident: 1651_CR11
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf404456q
– volume: 59
  start-page: 594
  issue: 4
  year: 1976
  ident: 1651_CR38
  publication-title: Journal of Dairy Science
  doi: 10.3168/jds.S0022-0302(76)84246-4
– volume: 88
  start-page: 1646
  issue: 5
  year: 2005
  ident: 1651_CR46
  publication-title: Journal of Dairy Science
  doi: 10.3168/jds.S0022-0302(05)72836-8
– volume: 81
  start-page: 597
  issue: 3
  year: 1998
  ident: 1651_CR14
  publication-title: Journal of Dairy Science
  doi: 10.3168/jds.S0022-0302(98)75613-9
– ident: 1651_CR55
  doi: 10.1002/9781118373903.ch6
– ident: 1651_CR30
  doi: 10.1021/bm050540u
– volume: 9
  start-page: 143
  issue: 4
  year: 1998
  ident: 1651_CR6
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/S0924-2244(98)00031-4
– volume: 14
  start-page: 1980
  issue: 6
  year: 2013
  ident: 1651_CR41
  publication-title: Biomacromolecules
  doi: 10.1021/bm400347d
– volume: 46
  start-page: 896
  issue: 3
  year: 1998
  ident: 1651_CR58
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf970751t
– volume: 59
  start-page: 11589
  issue: 21
  year: 2011
  ident: 1651_CR40
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf201727s
– volume: 54
  start-page: 578
  issue: 7
  year: 2000
  ident: 1651_CR29
  publication-title: Biopolymers
  doi: 10.1002/1097-0282(200012)54:7<578::AID-BIP100>3.0.CO;2-2
– ident: 1651_CR33
  doi: 10.1088/0034-4885/76/4/046601
– volume: 18
  start-page: 249
  issue: 4
  year: 2013
  ident: 1651_CR35
  publication-title: Current Opinion in Colloid & Interface Science
  doi: 10.1016/j.cocis.2013.03.001
– volume: 41
  start-page: 707
  issue: 7
  year: 2008
  ident: 1651_CR36
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2008.05.003
– volume: 4
  start-page: 121
  issue: 2
  year: 1990
  ident: 1651_CR51
  publication-title: Food Hydrocolloids
  doi: 10.1016/S0268-005X(09)80013-1
– volume: 11
  start-page: 2417
  issue: 10
  year: 2002
  ident: 1651_CR22
  publication-title: Protein Science
  doi: 10.1110/ps.0217702
– volume: 70
  start-page: 73
  issue: 1
  year: 2003
  ident: 1651_CR1
  publication-title: Journal of Dairy Research
  doi: 10.1017/S0022029902005903
– volume: 3
  start-page: 382
  issue: 2
  year: 2002
  ident: 1651_CR24
  publication-title: Biomacromolecules
  doi: 10.1021/bm0156429
– volume: 40
  start-page: 1197
  issue: 10
  year: 2007
  ident: 1651_CR32
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2007.07.005
– volume: 12
  start-page: 52
  issue: 5
  year: 2009
  ident: 1651_CR37
  publication-title: Materials Today
  doi: 10.1016/S1369-7021(09)70164-6
– volume: 111
  start-page: 101
  issue: 2
  year: 2011
  ident: 1651_CR19
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2010.10.011
– volume: 65
  start-page: 354
  issue: 3
  year: 2007
  ident: 1651_CR8
  publication-title: European Journal of Pharmaceutics and Biopharmaceutics
  doi: 10.1016/j.ejpb.2006.10.012
– volume: 28
  start-page: 41
  issue: 1
  year: 2000
  ident: 1651_CR26
  publication-title: Int J Biol Macromol
  doi: 10.1016/S0141-8130(00)00144-6
– volume: 11
  start-page: 2912
  issue: 11
  year: 2010
  ident: 1651_CR39
  publication-title: Biomacromolecules
  doi: 10.1021/bm100681a
– volume: 113
  start-page: 14962
  issue: 45
  year: 2009
  ident: 1651_CR50
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp907284t
– ident: 1651_CR5
– volume: 64
  start-page: 49
  year: 2012
  ident: 1651_CR43
  publication-title: Advanced Drug Delivery Reviews
  doi: 10.1016/j.addr.2012.09.024
– volume: 46
  start-page: 75
  year: 1991
  ident: 1651_CR12
  publication-title: Milchwissenschaft - Milk Science International
SSID ssj0060413
Score 2.3924398
Snippet Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through...
SourceID proquest
crossref
springer
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 576
SubjectTerms Agglomeration
Aggregates
Aggregation behavior
Agriculture
beta-lactoglobulin
Biotechnology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Denaturation
electric field
Electric fields
Food Science
Heat transfer
Heat treatment
Heating
Lactoglobulin
microstructure
Multivariate analysis
ohmic heating
Original Paper
protein aggregates
Protein folding
protein unfolding
Proteins
solubility
thiols
Transmission electron microscopy
Whey
Whey protein
whey protein isolate
β-Lactoglobulin
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3RcgAOVSmghn7ISJxAlryxx7VP1bZqtaoEVIKVerMcx14qlSxqtgf-PeNs0m0RrdRznK8ZZ_xeZvwG4CPaOimFNfc4ClxJUfNKV5Ybr7WwlZDYlfx_-aonU3V2gRf9Pu52qHYfUpJdpF5tdiO-ncskkY80EvFZg-eYqTtN4mk5HsKvFqrriUzABDlShB5Smf-7xL3FaC35-T2c-U9qtFtxTjdho4eKbLz07Wt4FpsteDWeXfdyGXELXhwP_droyB1pwTdweL6UciWzs3liFHP_sPOsyXDZ8CNauWo2nhHVzj_RWtY1P2Lffv66DGySQWQzewvT05MfxxPeN0vgAZVecCtNWRlMMqmk8i5AZX2ZZKxMQJlqG5QRwYRICMljKokmZPYnhagIIEUV5DtYb-ZN3AZWeiQSQVDHR6vqYGypg_DlgZdaejJrAWKwmgu9knhuaHHlVhrI2dCODO2yoZ0q4NPtKb-XMhqPDd4mVzhP9mzd9HuZRfBEroXEgwJ2B_-4_mNrHYGQDBwJqhTw4fYwWT_nPnwT5zetGxmKXrlY0Tw2Rhti7GhtAZ8H369u8-Dzvn_S6B14md9oWf2zC-uL65u4R8BmUe13E_kvFDPoXQ
  priority: 102
  providerName: Springer Nature
Title Production of Whey Protein-Based Aggregates Under Ohmic Heating
URI https://link.springer.com/article/10.1007/s11947-015-1651-4
https://www.proquest.com/docview/2410851812
https://www.proquest.com/docview/1803119938
https://www.proquest.com/docview/1868338599
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB6R5gIHxFNdaKNF4gSycNaP2qcqrZJGIEoERCony-tdp5Vgt23SA_-emc1uQys1131ovWP7m--zxzMA75UtopSqYF4NA5OCFyzXuWXGa81tzoVqQv6_nurpXH4-U2ftgtuyDavsMLEB6qIOtEb-CT0NsQP0R4eXV4yqRtHualtCowd9hGCD4qt_ND6dfe-wWHPZFEhGlqKYQrju9jWbw3Oo3ynsUrGhViik7nimXvT1HdJ5b5-0cT-TZ_C05Y3paN3Rz-FRWb2AJ_9lE3wJh7N19la0dFrHFGH2bzqjNAwXFTtCZ1WkowWqa1o3W6ZNvaP02_mfi5BOiTdWi1cwn4x_Hk9ZWx-BBSX1illhstyoKKKMkg7-SeuzKMrcBCViYYM0PJhQIinyKmaoDEjwCc5z5ESlDOI17FR1Ve5CmnmFugHZjS-tLIKxmQ7cZwdeaOHReAnwzjYutMnDqYbFb7dJe0zmdGhOR-Z0MoEPt69crjNnbHt4Fw3u_AKRzc1_ZJT3jlP4ozpIYK_rBdfOr6XbjIYE3t3explB2x2-KuubpRsaBCyKTzTbntEGRbqyNoGPXQ9vPvNge99sb9RbeEy_sI7w2YOd1fVNuY_kZZUPoGcmJwPoj05-fRkP2vGKV-fZ6B9yDegQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4AHtSD8RkGENtEL5qOvdMPug-GILou8pBENuHW9PTMrCQwg-4Sw5_yN1o1s8OKiXvjPD2ven7VVV0F8Eq7vFRK5zzoXuRKipxnJnPcBmOEy4TUTcn__oEZDNWXY328AL-7szBUVtnZxMZQ53WkPfJ36GkIHaA_2rz4wWlqFGVXuxEarVjsFle_MGQbv9_5iPx9nab9T0fbAz6dKsCjVmbCnbRpZnUpS1UqOi6nXEhLWWQ2alnmLioroo0FQomgyxTxNIVJUogMkUShosTnLsIdJaUjjbL9z53lN0I145gRE2mu0Tl0WdTmqF7PKSry1LxnNIZtN_zgYhnqGxD3n6xs4-z6D-HBFKWyrVasHsFCUT2G-3_1LnwCm4dtr1jkK6tLhkb9ih1S04fTin9A15izrRHG8rRLN2bNdCX29fv5aWQDQqnV6CkMb4Vuz2CpqqtiGVgaNEYpiKVC4VQerUtNFCHdCNLIgMRLQHS08XHaqpwmZpz5WZNlIqdHcnoip1cJvLm-5aLt0zFv8TIS3IcR2lE__JZSlz1BxZZ6I4G1jgt-qs1jP5O9BF5eX0Y9pORKqIr6cux7Fs0jVUPaeWuMldJq5xJ423F49pr_fu_K_I96AXcHR_t7fm_nYHcV7tHvtLVFa7A0-XlZPEfYNMnWG1llcHLbyvEHRbweqA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bTxQxFD4RTBQfDKKEEYSa-KRp6E4vtE9kRTfrDTfRTXhrOp12IYFZwiwP_ntP58KKURKep3M7p3P6fXNOvwPwRpoyCiFL6uTAU8FZSQtVGKqdUswUjMum5P_bsRpPxecTedL1Oa37avc-JdnuaUgqTdVi_7KM-8uNb8i9U8mkpAMlkQStwEOMxoM0raf5sA_FiommPzKCFEklRus-rfmvS9xamFaim9_CnH-lSZvVZ7QOTzvYSIatn5_Bg1BtwJPh7KqTzggb8Pio792GR_6QGXwOh5NW1hVdQOaRYPz9RSZJn-Gsou9xFSvJcIa0O_1Qq0nTCIl8P70482ScAGU1ewHT0cefR2PaNU6gXgq1oIbrvNAy8iiiSDsChXF55KHQXvJYGi8089oHREtOxhwpQ2KCnLECwVIQnm_CajWvwhaQ3EkkFAh7XDCi9NrkyjOXHziuuEOzZsB6q1nfqYqn5hbndqmHnAxt0dA2GdqKDN7enHLZSmrcNXgLXWEd2rO20x95EsRjqS5SHmSw0_vHdh9ebRGQJBCJsCWD1zeH0fopD-KqML-u7UBjJEuFi_quMUoje5fGZPCu9_3yNv993pf3Gr0HjyYfRvbrp-Mv27CWXq4tCtqB1cXVdXiFeGdR7DZz-jcf2u-M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+of+Whey+Protein-Based+Aggregates+Under+Ohmic+Heating&rft.jtitle=Food+and+bioprocess+technology&rft.au=Pereira%2C+Ricardo+N&rft.au=Rodrigues%2C+Rui+M&rft.au=Ramos%2C+%C3%93scar+L&rft.au=Xavier%2C+Malcata+F&rft.date=2016-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1935-5130&rft.eissn=1935-5149&rft.volume=9&rft.issue=4&rft.spage=576&rft.epage=587&rft_id=info:doi/10.1007%2Fs11947-015-1651-4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-5130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-5130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-5130&client=summon