Production of Whey Protein-Based Aggregates Under Ohmic Heating
Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregat...
Saved in:
Published in | Food and bioprocess technology Vol. 9; no. 4; pp. 576 - 587 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1935-5130 1935-5149 |
DOI | 10.1007/s11947-015-1651-4 |
Cover
Loading…
Abstract | Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating charge—by reducing the come-up time (CUT) needed to reach a target temperature—and increase of the electric field applied (from 6 to 12 V cm⁻¹). Exposure of reactive free thiol groups involved in molecular unfolding of β-lactoglobulin (β-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm⁻¹. Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments. |
---|---|
AbstractList | Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating charge—by reducing the come-up time (CUT) needed to reach a target temperature—and increase of the electric field applied (from 6 to 12 V cm⁻¹). Exposure of reactive free thiol groups involved in molecular unfolding of β-lactoglobulin (β-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm⁻¹. Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments. Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating charge—by reducing the come-up time (CUT) needed to reach a target temperature—and increase of the electric field applied (from 6 to 12 V cm −1 ). Exposure of reactive free thiol groups involved in molecular unfolding of β-lactoglobulin (β-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm −1 . Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments. Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating charge—by reducing the come-up time (CUT) needed to reach a target temperature—and increase of the electric field applied (from 6 to 12 V cm⁻¹). Exposure of reactive free thiol groups involved in molecular unfolding of β-lactoglobulin (β-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm⁻¹. Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments. Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating charge—by reducing the come-up time (CUT) needed to reach a target temperature—and increase of the electric field applied (from 6 to 12 V cm−1). Exposure of reactive free thiol groups involved in molecular unfolding of β-lactoglobulin (β-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm−1. Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments. Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating charge-by reducing the come-up time (CUT) needed to reach a target temperature-and increase of the electric field applied (from 6 to 12 V cm super(-1)). Exposure of reactive free thiol groups involved in molecular unfolding of beta -lactoglobulin ( beta -lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm super(-1). Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments. |
Author | Vicente, António A Rodrigues, Rui M Pereira, Ricardo N Xavier Malcata, F Teixeira, José António Ramos, Óscar L |
Author_xml | – sequence: 1 fullname: Pereira, Ricardo N – sequence: 2 fullname: Rodrigues, Rui M – sequence: 3 fullname: Ramos, Óscar L – sequence: 4 fullname: Xavier Malcata, F – sequence: 5 fullname: Teixeira, José António – sequence: 6 fullname: Vicente, António A |
BookMark | eNqNkE1rFTEUhoNUsK3-AFcOuHEz9Zx8zCQrqUWtUKigF5chN_dkmnJvUpO5i_775jJioYviKofwPufjOWFHKSdi7C3CGQKMHyuikWMPqHocFPbyBTtGI1SvUJqjf7WAV-yk1luAASSKY_bpR8mbvZ9jTl0O3e8buu_a10wx9Z9dpU13Pk2FJjdT7VZpQ6W7vtlF312Sm2OaXrOXwW0rvfn7nrLV1y-_Li77q-tv3y_Or3qv5DD3Rmi-1iqIIIMENEoax4OgtfZKhI3xUoPXnpRCpwIflQYcuQBYG25IenHKPix970r-s6c6212snrZblyjvq0U9aCG0MuY_oiCarbZSi75_Er3N-5LaIZZLBK1QI28pXFK-5FoLBXtX4s6Ve4tgD_btYt82-_Zg38rGjE8YH2d30DwXF7fPknwha5uSJiqPOz0HvVug4LJ1U4nVrn5ywAGgnQFqFA-B1aCm |
CitedBy_id | crossref_primary_10_1016_j_fbio_2022_102200 crossref_primary_10_3389_fchem_2016_00031 crossref_primary_10_1007_s11483_019_09578_y crossref_primary_10_1016_j_tifs_2024_104407 crossref_primary_10_1016_j_biortech_2018_01_068 crossref_primary_10_1007_s11947_022_02768_6 crossref_primary_10_1021_acsfoodscitech_4c00135 crossref_primary_10_1016_j_cofs_2018_01_014 crossref_primary_10_1016_j_foodres_2017_10_061 crossref_primary_10_1016_j_ifset_2021_102831 crossref_primary_10_1016_j_foodres_2019_108586 crossref_primary_10_3390_foods10030554 crossref_primary_10_1016_j_ifset_2020_102593 crossref_primary_10_1016_j_foodhyd_2022_107519 crossref_primary_10_1016_j_ijbiomac_2023_127540 crossref_primary_10_1016_j_foodres_2019_04_045 crossref_primary_10_1007_s10989_022_10465_3 crossref_primary_10_3390_foods12040818 crossref_primary_10_1016_j_foostr_2022_100259 crossref_primary_10_3390_foods13020283 crossref_primary_10_1016_j_lwt_2021_111710 crossref_primary_10_1039_C9FO02834J crossref_primary_10_1016_j_ifset_2023_103333 crossref_primary_10_1007_s11947_020_02519_5 crossref_primary_10_3390_foods13091421 crossref_primary_10_1016_j_ifset_2018_11_010 crossref_primary_10_1016_j_heliyon_2023_e22061 crossref_primary_10_1016_j_fochx_2023_100722 crossref_primary_10_1080_87559129_2024_2366841 crossref_primary_10_1016_j_foodhyd_2019_105505 crossref_primary_10_1007_s11947_021_02607_0 crossref_primary_10_1016_j_foodhyd_2024_109748 crossref_primary_10_1016_j_foodres_2018_01_046 crossref_primary_10_1016_j_foodres_2022_111827 crossref_primary_10_1016_j_ijbiomac_2020_02_122 crossref_primary_10_1080_10408398_2022_2130154 crossref_primary_10_1016_j_tifs_2020_12_002 crossref_primary_10_1016_j_carbpol_2017_07_007 crossref_primary_10_1016_j_foodchem_2018_04_115 crossref_primary_10_3390_foods13040577 crossref_primary_10_1007_s11483_024_09836_8 crossref_primary_10_1016_j_ifset_2024_103587 crossref_primary_10_20473_jipk_v15i1_36078 crossref_primary_10_1016_j_foodres_2020_109709 crossref_primary_10_1016_j_foodres_2021_110179 crossref_primary_10_3390_gels5010009 crossref_primary_10_1016_j_fbio_2024_103708 crossref_primary_10_1016_j_jfoodeng_2019_109834 crossref_primary_10_1021_acs_jafc_8b03689 crossref_primary_10_3390_app14135460 crossref_primary_10_3390_molecules24234212 crossref_primary_10_1016_j_foodres_2024_114429 crossref_primary_10_1016_j_ifset_2023_103512 crossref_primary_10_1007_s11947_020_02478_x crossref_primary_10_3168_jds_2021_21395 crossref_primary_10_1016_j_idairyj_2021_105170 crossref_primary_10_1016_j_tifs_2022_10_001 crossref_primary_10_1016_j_msec_2020_111784 crossref_primary_10_1016_j_foodres_2024_115033 |
Cites_doi | 10.1039/c1sc00185j 10.1002/1097-0282(200012)54:7<578::AID-BIP100>3.0.CO;2-2 10.1007/s11947-011-0590-y 10.1021/jf970269a 10.1016/S0268-005X(09)80031-3 10.1016/S0924-2244(98)00031-4 10.1016/0009-2509(90)80006-Z 10.1021/jf404456q 10.1016/j.cocis.2009.11.002 10.1016/j.bpj.2013.11.2959 10.1110/ps.0217702 10.1017/S0022029900031939 10.1021/jf970751t 10.1016/j.foodres.2014.09.036 10.1016/S0268-005X(09)80122-7 10.1017/S0022029902005903 10.1021/jf060606s 10.3168/jds.S0022-0302(05)72836-8 10.1016/0003-9861(59)90090-6 10.1007/s11483-005-9003-y 10.1016/S0141-8130(00)00144-6 10.1021/la900501n 10.1016/j.foodhyd.2013.07.023 10.1016/j.tifs.2005.12.011 10.1007/s11483-010-9161-4 10.1016/j.colsurfb.2009.08.029 10.1016/S0268-005X(09)80046-5 10.1021/jp907284t 10.1021/jf201727s 10.1016/j.foodhyd.2014.06.002 10.1016/j.febslet.2006.03.002 10.3168/jds.S0022-0302(98)75613-9 10.1016/S1369-7021(09)70164-6 10.3168/jds.S0022-0302(76)84246-4 10.1021/bm100681a 10.1016/j.ejpb.2006.10.012 10.1038/nsmb1345 10.1016/j.ultramic.2010.10.011 10.1016/j.cocis.2013.03.001 10.1016/S0268-005X(09)80013-1 10.1016/j.idairyj.2013.02.002 10.1016/j.foodres.2007.07.005 10.1021/bm0156429 10.1021/jf981302b 10.1016/j.foodres.2008.05.003 10.1016/j.jfoodeng.2006.11.001 10.1016/j.addr.2012.09.024 10.1021/la203357p 10.1016/j.foodhyd.2011.02.006 10.1021/bm400347d 10.1002/9781118373903.ch10 10.1038/srep07992 10.1002/9781118373903.ch2 10.1002/9781118373903.ch6 10.1021/bm050540u 10.1088/0034-4885/76/4/046601 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2015 Springer Science+Business Media New York 2015. |
Copyright_xml | – notice: Springer Science+Business Media New York 2015 – notice: Springer Science+Business Media New York 2015. |
DBID | FBQ AAYXX CITATION 3V. 7X2 8FE 8FG 8FH 8FK ABJCF AEUYN AFKRA ATCPS BENPR BGLVJ BHPHI CCPQU DWQXO HCIFZ L6V M0K M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 7T7 8FD C1K FR3 P64 |
DOI | 10.1007/s11947-015-1651-4 |
DatabaseName | AGRIS CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Agricultural Science Database Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection AGRICOLA AGRICOLA - Academic Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Agricultural Science Database Technology Collection ProQuest One Academic Middle East (New) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic Engineering Research Database Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | AGRICOLA Agricultural Science Database Engineering Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1935-5149 |
EndPage | 587 |
ExternalDocumentID | 10_1007_s11947_015_1651_4 US201600108057 |
GrantInformation_xml | – fundername: Fundação para a Ciência e a Tecnologia grantid: SFRH/BPD/81887/2011; SFRH/BPD/80766/2011 funderid: http://dx.doi.org/10.13039/501100001871 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 06C 06D 0R~ 0VY 1N0 203 29H 2JN 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 5GY 5VS 67Z 6NX 7X2 875 8TC 8UJ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ATCPS AUKKA AXYYD AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FBQ FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M0K M4Y M7S MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9N PT4 PTHSS QOR QOS R89 RLLFE ROL RPX RSV S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z7U Z7V Z7W Z7Y Z7Z Z81 Z83 ZMTXR ~A9 ~KM AACDK AAHBH AAJBT AASML AAYZH ABAKF ACAOD ACDTI ACPIV ACZOJ AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU H13 SJYHP AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 3V. 8FE 8FG 8FH 8FK ABRTQ DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI 7S9 L.6 7T7 8FD C1K FR3 P64 |
ID | FETCH-LOGICAL-c546t-9382b85f3f4f4019549a2f3eb8c53fd9c480c8ce551a5f27580172300b929e4c3 |
IEDL.DBID | BENPR |
ISSN | 1935-5130 |
IngestDate | Fri Jul 11 03:12:15 EDT 2025 Tue Aug 05 10:25:41 EDT 2025 Fri Jul 25 11:17:26 EDT 2025 Thu Apr 24 23:08:29 EDT 2025 Tue Jul 01 02:06:57 EDT 2025 Fri Feb 21 02:41:24 EST 2025 Wed Dec 27 19:01:46 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Protein fibrillar aggregates Aggregation kinetics Ohmic heating Protein solubility Whey protein isolate Electric fields |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c546t-9382b85f3f4f4019549a2f3eb8c53fd9c480c8ce551a5f27580172300b929e4c3 |
Notes | http://dx.doi.org/10.1007/s11947-015-1651-4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s11947-015-1651-4.pdf |
PQID | 2410851812 |
PQPubID | 2043651 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1868338599 proquest_miscellaneous_1803119938 proquest_journals_2410851812 crossref_primary_10_1007_s11947_015_1651_4 crossref_citationtrail_10_1007_s11947_015_1651_4 springer_journals_10_1007_s11947_015_1651_4 fao_agris_US201600108057 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal |
PublicationTitle | Food and bioprocess technology |
PublicationTitleAbbrev | Food Bioprocess Technol |
PublicationYear | 2016 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Hoffmann, Roefs, Verheul, VanMil, DeKruif (CR23) 1996; 63 Ellman (CR17) 1959; 82 Ikeda, Morris (CR24) 2002; 3 Nicolai, Durand (CR35) 2013; 18 Hamada, Dobson (CR22) 2002; 11 Qiu, Park (CR43) 2012; 64 CR33 Rodrigues, Martins, Ramos, Malcata, Teixeira, Vicente (CR45) 2015; 43 Schuster, Hermansson, Ohgren, Rudemo, Loren (CR48) 2014; 106 Verheul, Roefs, de Kruif (CR58) 1998; 46 CR30 Patrick, Swaisgood (CR38) 1976; 59 Law, Leaver (CR28) 2000; 48 Gunasekaran, Ko, Xiao (CR21) 2007; 83 Nicorescu, Loisel, Vial, Riaublanc, Djelveh, Cuvelier (CR36) 2008; 41 Augustin (CR2) 2003; 58 Bolder, Hendrickx, Sagis, van der Linden (CR4) 2006; 54 Cornacchia, Forquenot de la Fortelle, Venema (CR11) 2014; 62 CR3 Kavanagh, Clark, Ross-Murphy (CR26) 2000; 28 CR5 Chen, Subirade (CR8) 2007; 65 CR49 Stading, Hermansson (CR52) 1991; 5 Sullivan, Tang, Kennedy, Talwar, Khan (CR56) 2014; 35 Prabakaran, Damodaran (CR42) 1997; 45 Soos, Lattuada, Sefcik (CR50) 2009; 113 Chen, Remondetto, Subirade (CR9) 2006; 17 Dalgleish, Banks (CR12) 1991; 46 Schmitt, Bovay, Vuilliomenet, Rouvet, Bovetto, Barbar (CR47) 2009; 25 Sava, Van der Plancken, Claeys, Hendrickx (CR46) 2005; 88 De Alwis, Fryer (CR13) 1990; 45 Foegeding (CR18) 2006; 1 Stading, Hermansson (CR51) 1990; 4 CR16 Lefevre, Subirade (CR29) 2000; 54 Pereira, Teixeira, Vicente (CR40) 2011; 59 Pereira, Souza, Cerqueira, Teixeira, Vicente (CR39) 2010; 11 CR55 Anema, Li (CR1) 2003; 70 Gordon, Pilosof (CR20) 2010; 5 Madureira, Pereira, Gomes, Pintado, Xavier Malcata (CR32) 2007; 40 Ramos, Pereira, Rodrigues, Teixeira, Vicente, Xavier Malcata (CR44) 2014; 66 Nobbmann, Morfesis (CR37) 2009; 12 Dissanayake, Ramchandran, Donkor, Vasiljevic (CR15) 2013; 31 Ziegler, Viehrig, Geimer, Rosch, Schwarzinger (CR59) 2006; 580 Phan-Xuan, Durand, Nicolai, Donato, Schmitt, Bovetto (CR41) 2013; 14 Gontard, Ozkaya, Dunin-Borkowski (CR19) 2011; 111 Chalker, Gunnoo, Boutureira, Gerstberger, Fernandez-Gonzalez, Bernardes (CR7) 2011; 2 Livney (CR31) 2010; 15 Stading, Langton, Hermansson (CR53) 1992; 6 Chimon, Shaibat, Jones, Calero, Aizezi, Ishii (CR10) 2007; 14 Bryant, McClements (CR6) 1998; 9 Nicolai, Britten, Schmitt (CR34) 2011; 25 Stanciuc, Dumitrascu, Ardelean, Stanciu, Rapeanu (CR54) 2012; 5 Tuan, Durand, Nicolai, Donato, Schmitt, Bovetto (CR57) 2011; 27 de Wit (CR14) 1998; 81 Langton, Hermansson (CR27) 1992; 5 Jensen, Dolatshahi-Pirouz, Foss, Baas, Lovmand, Duch (CR25) 2010; 75 S. Ikeda (1651_CR24) 2002; 3 D. G. Dalgleish (1651_CR12) 1991; 46 T. Phan-Xuan (1651_CR41) 2013; 14 1651_CR49 S. Prabakaran (1651_CR42) 1997; 45 1651_CR5 M. A. M. Hoffmann (1651_CR23) 1996; 63 T. Nicolai (1651_CR34) 2011; 25 O. L. Ramos (1651_CR44) 2014; 66 Y. D. Livney (1651_CR31) 2010; 15 L. Cornacchia (1651_CR11) 2014; 62 D. Hamada (1651_CR22) 2002; 11 1651_CR3 E. Schuster (1651_CR48) 2014; 106 M. Langton (1651_CR27) 1992; 5 S. T. Sullivan (1651_CR56) 2014; 35 I. Nicorescu (1651_CR36) 2008; 41 C. Schmitt (1651_CR47) 2009; 25 Y. Qiu (1651_CR43) 2012; 64 A. R. Madureira (1651_CR32) 2007; 40 M. Stading (1651_CR52) 1991; 5 1651_CR30 L. Chen (1651_CR8) 2007; 65 1651_CR33 R. N. Pereira (1651_CR40) 2011; 59 A. A. P. Alwis De (1651_CR13) 1990; 45 L. C. Gontard (1651_CR19) 2011; 111 S. Chimon (1651_CR10) 2007; 14 G. M. Kavanagh (1651_CR26) 2000; 28 T. Nicolai (1651_CR35) 2013; 18 T. Lefevre (1651_CR29) 2000; 54 J. Ziegler (1651_CR59) 2006; 580 L. Y. Chen (1651_CR9) 2006; 17 M. Soos (1651_CR50) 2009; 113 A. J. R. Law (1651_CR28) 2000; 48 M. A. Augustin (1651_CR2) 2003; 58 U. Nobbmann (1651_CR37) 2009; 12 M. Stading (1651_CR53) 1992; 6 L. Gordon (1651_CR20) 2010; 5 C. M. Bryant (1651_CR6) 1998; 9 S. Gunasekaran (1651_CR21) 2007; 83 N. Stanciuc (1651_CR54) 2012; 5 M. Verheul (1651_CR58) 1998; 46 M. Dissanayake (1651_CR15) 2013; 31 1651_CR16 E. A. Foegeding (1651_CR18) 2006; 1 S. G. Anema (1651_CR1) 2003; 70 S. G. Bolder (1651_CR4) 2006; 54 J. N. Wit de (1651_CR14) 1998; 81 R. M. Rodrigues (1651_CR45) 2015; 43 G. L. Ellman (1651_CR17) 1959; 82 T. Jensen (1651_CR25) 2010; 75 N. Sava (1651_CR46) 2005; 88 J. M. Chalker (1651_CR7) 2011; 2 P. X. Tuan (1651_CR57) 2011; 27 R. N. Pereira (1651_CR39) 2010; 11 1651_CR55 P. S. Patrick (1651_CR38) 1976; 59 M. Stading (1651_CR51) 1990; 4 |
References_xml | – volume: 2 start-page: 1666 issue: 9 year: 2011 end-page: 1676 ident: CR7 article-title: Methods for converting cysteine to dehydroalanine on peptides and proteins publication-title: Chemical Science doi: 10.1039/c1sc00185j – volume: 54 start-page: 578 issue: 7 year: 2000 end-page: 586 ident: CR29 article-title: Molecular differences in the formation and structure of fine-stranded and particulate beta-lactoglobulin gels publication-title: Biopolymers doi: 10.1002/1097-0282(200012)54:7<578::AID-BIP100>3.0.CO;2-2 – ident: CR49 – volume: 5 start-page: 2160 issue: 6 year: 2012 end-page: 2171 ident: CR54 article-title: A kinetic study on the heat-induced changes of whey proteins concentrate at two pH values publication-title: Food and Bioprocess Technology doi: 10.1007/s11947-011-0590-y – volume: 45 start-page: 4303 issue: 11 year: 1997 end-page: 4308 ident: CR42 article-title: Thermal unfolding of beta-lactoglobulin: characterization of initial unfolding events responsible for heat-induced aggregation publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf970269a – volume: 6 start-page: 455 issue: 5 year: 1992 end-page: 470 ident: CR53 article-title: Inhomogeneous fine-stranded β-lactoglobulin gels publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(09)80031-3 – ident: CR16 – volume: 9 start-page: 143 issue: 4 year: 1998 end-page: 151 ident: CR6 article-title: Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey publication-title: Trends in Food Science & Technology doi: 10.1016/S0924-2244(98)00031-4 – volume: 45 start-page: 1547 issue: 6 year: 1990 end-page: 1559 ident: CR13 article-title: A finite-element analysis of heat generation and transfer during ohmic heating of food publication-title: Chemical Engineering Science doi: 10.1016/0009-2509(90)80006-Z – volume: 62 start-page: 733 issue: 3 year: 2014 end-page: 741 ident: CR11 article-title: Heat-induced aggregation of whey proteins in aqueous solutions below their isoelectric point publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf404456q – volume: 15 start-page: 73 issue: 1–2 year: 2010 end-page: 83 ident: CR31 article-title: Milk proteins as vehicles for bioactives publication-title: Current Opinion in Colloid & Interface Science doi: 10.1016/j.cocis.2009.11.002 – volume: 106 start-page: 253 issue: 1 year: 2014 end-page: 262 ident: CR48 article-title: Interactions and diffusion in fine-stranded beta-lactoglobulin gels determined via FRAP and binding publication-title: Biophysical Journal doi: 10.1016/j.bpj.2013.11.2959 – volume: 11 start-page: 2417 issue: 10 year: 2002 end-page: 2426 ident: CR22 article-title: A kinetic study of β-lactoglobulin amyloid fibril formation promoted by urea publication-title: Protein Science doi: 10.1110/ps.0217702 – volume: 63 start-page: 423 issue: 3 year: 1996 end-page: 440 ident: CR23 article-title: Aggregation of beta-lactoglobulin studied by in situ light scattering publication-title: Journal of Dairy Research doi: 10.1017/S0022029900031939 – volume: 46 start-page: 896 issue: 3 year: 1998 end-page: 903 ident: CR58 article-title: Kinetics of heat-induced aggregation of beta-lactoglobulin publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf970751t – volume: 66 start-page: 344 issue: 0 year: 2014 end-page: 355 ident: CR44 article-title: Physical effects upon whey protein aggregation for nano-coating production publication-title: Food Research International doi: 10.1016/j.foodres.2014.09.036 – volume: 5 start-page: 523 issue: 6 year: 1992 end-page: 539 ident: CR27 article-title: Fine-stranded and particulate gels of beta-lactoglobulin and whey-protein at varying pH publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(09)80122-7 – volume: 70 start-page: 73 issue: 1 year: 2003 end-page: 83 ident: CR1 article-title: Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size publication-title: Journal of Dairy Research doi: 10.1017/S0022029902005903 – volume: 46 start-page: 75 year: 1991 end-page: 78 ident: CR12 article-title: The formation of complexes between serum proteins and fat globules during heating of whole milk publication-title: Milchwissenschaft - Milk Science International – volume: 54 start-page: 4229 issue: 12 year: 2006 end-page: 4234 ident: CR4 article-title: Fibril assemblies in aqueous whey protein mixtures publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf060606s – volume: 88 start-page: 1646 issue: 5 year: 2005 end-page: 1653 ident: CR46 article-title: The kinetics of heat-induced structural changes of beta-lactoglobulin publication-title: Journal of Dairy Science doi: 10.3168/jds.S0022-0302(05)72836-8 – volume: 82 start-page: 70 issue: 1 year: 1959 end-page: 77 ident: CR17 article-title: Tissue sulfhydryl groups publication-title: Archives of Biochemistry and Biophysics doi: 10.1016/0003-9861(59)90090-6 – volume: 1 start-page: 41 issue: 1 year: 2006 end-page: 50 ident: CR18 article-title: Food biophysics of protein gels: a challenge of nano and macroscopic proportions publication-title: Food Biophysics doi: 10.1007/s11483-005-9003-y – volume: 28 start-page: 41 issue: 1 year: 2000 end-page: 50 ident: CR26 article-title: Heat-induced gelation of globular proteins: part 3. Molecular studies on low pH β-lactoglobulin gels publication-title: Int J Biol Macromol doi: 10.1016/S0141-8130(00)00144-6 – volume: 25 start-page: 7899 issue: 14 year: 2009 end-page: 7909 ident: CR47 article-title: Multiscale characterization of individualized beta-lactoglobulin microgels formed upon heat treatment under narrow pH range conditions publication-title: Langmuir doi: 10.1021/la900501n – volume: 35 start-page: 36 year: 2014 end-page: 50 ident: CR56 article-title: Electrospinning and heat treatment of whey protein nanofibers publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2013.07.023 – ident: CR5 – volume: 17 start-page: 272 issue: 5 year: 2006 end-page: 283 ident: CR9 article-title: Food protein-based materials as nutraceutical delivery systems publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2005.12.011 – volume: 5 start-page: 203 issue: 3 year: 2010 end-page: 210 ident: CR20 article-title: Application of high-intensity ultrasounds to control the size of whey proteins particles publication-title: Food Biophysics doi: 10.1007/s11483-010-9161-4 – volume: 75 start-page: 186 issue: 1 year: 2010 end-page: 193 ident: CR25 article-title: Interaction of human mesenchymal stem cells with osteopontin coated hydroxyapatite surfaces publication-title: Colloids and Surfaces B-Biointerfaces doi: 10.1016/j.colsurfb.2009.08.029 – volume: 58 start-page: 156 issue: 2 year: 2003 end-page: 160 ident: CR2 article-title: The role of microencapsulation in the development of functional dairy foods publication-title: Australian Journal of Dairy Technology – volume: 5 start-page: 339 issue: 4 year: 1991 end-page: 352 ident: CR52 article-title: Large deformation properties of β-lactoglobulin gel structures publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(09)80046-5 – ident: CR30 – volume: 113 start-page: 14962 issue: 45 year: 2009 end-page: 14970 ident: CR50 article-title: Interpretation of light scattering and turbidity measurements in aggregated systems: effect of intra-cluster multiple-light scattering publication-title: Journal of Physical Chemistry B doi: 10.1021/jp907284t – volume: 59 start-page: 11589 issue: 21 year: 2011 end-page: 11597 ident: CR40 article-title: Exploring the denaturation of whey proteins upon application of moderate electric fields: a kinetic and thermodynamic study publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf201727s – ident: CR33 – volume: 43 start-page: 329 issue: 0 year: 2015 end-page: 339 ident: CR45 article-title: ). Influence of moderate electric fields on gelation of whey protein isolate publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2014.06.002 – volume: 580 start-page: 2033 issue: 8 year: 2006 end-page: 2040 ident: CR59 article-title: Putative aggregation initiation sites in prion protein publication-title: FEBS Letters doi: 10.1016/j.febslet.2006.03.002 – volume: 81 start-page: 597 issue: 3 year: 1998 end-page: 608 ident: CR14 article-title: Nutritional and functional characteristics of whey proteins in food products publication-title: Journal of Dairy Science doi: 10.3168/jds.S0022-0302(98)75613-9 – volume: 12 start-page: 52 issue: 5 year: 2009 end-page: 54 ident: CR37 article-title: Light scattering and nanoparticles publication-title: Materials Today doi: 10.1016/S1369-7021(09)70164-6 – volume: 59 start-page: 594 issue: 4 year: 1976 end-page: 600 ident: CR38 article-title: Sulfhydryl and disulfide groups in skim milk as affected by direct ultra-high-temperature heating and subsequent storage publication-title: Journal of Dairy Science doi: 10.3168/jds.S0022-0302(76)84246-4 – volume: 11 start-page: 2912 issue: 11 year: 2010 end-page: 2918 ident: CR39 article-title: Effects of electric fields on protein unfolding and aggregation: influence on edible films formation publication-title: Biomacromolecules doi: 10.1021/bm100681a – volume: 65 start-page: 354 issue: 3 year: 2007 end-page: 362 ident: CR8 article-title: Effect of preparation conditions on the nutrient release properties of alginate-whey protein granular microspheres publication-title: European Journal of Pharmaceutics and Biopharmaceutics doi: 10.1016/j.ejpb.2006.10.012 – volume: 14 start-page: 1157 issue: 12 year: 2007 end-page: 1164 ident: CR10 article-title: Evidence of fibril-like [beta]-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s [beta]-amyloid. [10.1038/nsmb1345] publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb1345 – volume: 111 start-page: 101 issue: 2 year: 2011 end-page: 106 ident: CR19 article-title: A simple algorithm for measuring particle size distributions on an uneven background from TEM images publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2010.10.011 – ident: CR3 – volume: 18 start-page: 249 issue: 4 year: 2013 end-page: 256 ident: CR35 article-title: Controlled food protein aggregation for new functionality publication-title: Current Opinion in Colloid & Interface Science doi: 10.1016/j.cocis.2013.03.001 – volume: 4 start-page: 121 issue: 2 year: 1990 end-page: 135 ident: CR51 article-title: Viscoelastic behaviour of β-lactoglobulin gel structures publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(09)80013-1 – volume: 31 start-page: 93 issue: 2 year: 2013 end-page: 99 ident: CR15 article-title: Denaturation of whey proteins as a function of heat, pH and protein concentration publication-title: International Dairy Journal doi: 10.1016/j.idairyj.2013.02.002 – volume: 40 start-page: 1197 issue: 10 year: 2007 end-page: 1211 ident: CR32 article-title: Bovine whey proteins—overview on their main biological properties publication-title: Food Research International doi: 10.1016/j.foodres.2007.07.005 – volume: 3 start-page: 382 issue: 2 year: 2002 end-page: 389 ident: CR24 article-title: Fine-stranded and particulate aggregates of heat-denatured whey proteins visualized by atomic force microscopy publication-title: Biomacromolecules doi: 10.1021/bm0156429 – volume: 48 start-page: 672 issue: 3 year: 2000 end-page: 679 ident: CR28 article-title: Effect of pH on the thermal denaturation of whey proteins in milk publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf981302b – ident: CR55 – volume: 41 start-page: 707 issue: 7 year: 2008 end-page: 713 ident: CR36 article-title: Combined effect of dynamic heat treatment and ionic strength on denaturation and aggregation of whey proteins—part I publication-title: Food Research International doi: 10.1016/j.foodres.2008.05.003 – volume: 83 start-page: 31 issue: 1 year: 2007 end-page: 40 ident: CR21 article-title: Use of whey proteins for encapsulation and controlled delivery applications publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2006.11.001 – volume: 64 start-page: 49 year: 2012 end-page: 60 ident: CR43 article-title: Environment-sensitive hydrogels for drug delivery publication-title: Advanced Drug Delivery Reviews doi: 10.1016/j.addr.2012.09.024 – volume: 27 start-page: 15092 issue: 24 year: 2011 end-page: 15101 ident: CR57 article-title: On the crucial importance of the pH for the formation and self-stabilization of protein microgels and strands publication-title: Langmuir doi: 10.1021/la203357p – volume: 25 start-page: 1945 issue: 8 year: 2011 end-page: 1962 ident: CR34 article-title: β-Lactoglobulin and WPI aggregates: formation, structure and applications publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2011.02.006 – volume: 14 start-page: 1980 issue: 6 year: 2013 end-page: 1989 ident: CR41 article-title: Tuning the structure of protein particles and gels with calcium or sodium ions publication-title: Biomacromolecules doi: 10.1021/bm400347d – volume: 25 start-page: 1945 issue: 8 year: 2011 ident: 1651_CR34 publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2011.02.006 – volume: 25 start-page: 7899 issue: 14 year: 2009 ident: 1651_CR47 publication-title: Langmuir doi: 10.1021/la900501n – volume: 15 start-page: 73 issue: 1–2 year: 2010 ident: 1651_CR31 publication-title: Current Opinion in Colloid & Interface Science doi: 10.1016/j.cocis.2009.11.002 – volume: 66 start-page: 344 issue: 0 year: 2014 ident: 1651_CR44 publication-title: Food Research International doi: 10.1016/j.foodres.2014.09.036 – volume: 43 start-page: 329 issue: 0 year: 2015 ident: 1651_CR45 publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2014.06.002 – volume: 17 start-page: 272 issue: 5 year: 2006 ident: 1651_CR9 publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2005.12.011 – volume: 5 start-page: 523 issue: 6 year: 1992 ident: 1651_CR27 publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(09)80122-7 – volume: 58 start-page: 156 issue: 2 year: 2003 ident: 1651_CR2 publication-title: Australian Journal of Dairy Technology – volume: 45 start-page: 4303 issue: 11 year: 1997 ident: 1651_CR42 publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf970269a – ident: 1651_CR49 doi: 10.1002/9781118373903.ch10 – volume: 580 start-page: 2033 issue: 8 year: 2006 ident: 1651_CR59 publication-title: FEBS Letters doi: 10.1016/j.febslet.2006.03.002 – volume: 1 start-page: 41 issue: 1 year: 2006 ident: 1651_CR18 publication-title: Food Biophysics doi: 10.1007/s11483-005-9003-y – volume: 45 start-page: 1547 issue: 6 year: 1990 ident: 1651_CR13 publication-title: Chemical Engineering Science doi: 10.1016/0009-2509(90)80006-Z – volume: 5 start-page: 2160 issue: 6 year: 2012 ident: 1651_CR54 publication-title: Food and Bioprocess Technology doi: 10.1007/s11947-011-0590-y – volume: 31 start-page: 93 issue: 2 year: 2013 ident: 1651_CR15 publication-title: International Dairy Journal doi: 10.1016/j.idairyj.2013.02.002 – volume: 27 start-page: 15092 issue: 24 year: 2011 ident: 1651_CR57 publication-title: Langmuir doi: 10.1021/la203357p – ident: 1651_CR16 doi: 10.1038/srep07992 – volume: 5 start-page: 203 issue: 3 year: 2010 ident: 1651_CR20 publication-title: Food Biophysics doi: 10.1007/s11483-010-9161-4 – volume: 82 start-page: 70 issue: 1 year: 1959 ident: 1651_CR17 publication-title: Archives of Biochemistry and Biophysics doi: 10.1016/0003-9861(59)90090-6 – volume: 5 start-page: 339 issue: 4 year: 1991 ident: 1651_CR52 publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(09)80046-5 – volume: 48 start-page: 672 issue: 3 year: 2000 ident: 1651_CR28 publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf981302b – volume: 35 start-page: 36 year: 2014 ident: 1651_CR56 publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2013.07.023 – volume: 75 start-page: 186 issue: 1 year: 2010 ident: 1651_CR25 publication-title: Colloids and Surfaces B-Biointerfaces doi: 10.1016/j.colsurfb.2009.08.029 – volume: 54 start-page: 4229 issue: 12 year: 2006 ident: 1651_CR4 publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf060606s – volume: 63 start-page: 423 issue: 3 year: 1996 ident: 1651_CR23 publication-title: Journal of Dairy Research doi: 10.1017/S0022029900031939 – ident: 1651_CR3 doi: 10.1002/9781118373903.ch2 – volume: 14 start-page: 1157 issue: 12 year: 2007 ident: 1651_CR10 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb1345 – volume: 6 start-page: 455 issue: 5 year: 1992 ident: 1651_CR53 publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(09)80031-3 – volume: 2 start-page: 1666 issue: 9 year: 2011 ident: 1651_CR7 publication-title: Chemical Science doi: 10.1039/c1sc00185j – volume: 83 start-page: 31 issue: 1 year: 2007 ident: 1651_CR21 publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2006.11.001 – volume: 106 start-page: 253 issue: 1 year: 2014 ident: 1651_CR48 publication-title: Biophysical Journal doi: 10.1016/j.bpj.2013.11.2959 – volume: 62 start-page: 733 issue: 3 year: 2014 ident: 1651_CR11 publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf404456q – volume: 59 start-page: 594 issue: 4 year: 1976 ident: 1651_CR38 publication-title: Journal of Dairy Science doi: 10.3168/jds.S0022-0302(76)84246-4 – volume: 88 start-page: 1646 issue: 5 year: 2005 ident: 1651_CR46 publication-title: Journal of Dairy Science doi: 10.3168/jds.S0022-0302(05)72836-8 – volume: 81 start-page: 597 issue: 3 year: 1998 ident: 1651_CR14 publication-title: Journal of Dairy Science doi: 10.3168/jds.S0022-0302(98)75613-9 – ident: 1651_CR55 doi: 10.1002/9781118373903.ch6 – ident: 1651_CR30 doi: 10.1021/bm050540u – volume: 9 start-page: 143 issue: 4 year: 1998 ident: 1651_CR6 publication-title: Trends in Food Science & Technology doi: 10.1016/S0924-2244(98)00031-4 – volume: 14 start-page: 1980 issue: 6 year: 2013 ident: 1651_CR41 publication-title: Biomacromolecules doi: 10.1021/bm400347d – volume: 46 start-page: 896 issue: 3 year: 1998 ident: 1651_CR58 publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf970751t – volume: 59 start-page: 11589 issue: 21 year: 2011 ident: 1651_CR40 publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf201727s – volume: 54 start-page: 578 issue: 7 year: 2000 ident: 1651_CR29 publication-title: Biopolymers doi: 10.1002/1097-0282(200012)54:7<578::AID-BIP100>3.0.CO;2-2 – ident: 1651_CR33 doi: 10.1088/0034-4885/76/4/046601 – volume: 18 start-page: 249 issue: 4 year: 2013 ident: 1651_CR35 publication-title: Current Opinion in Colloid & Interface Science doi: 10.1016/j.cocis.2013.03.001 – volume: 41 start-page: 707 issue: 7 year: 2008 ident: 1651_CR36 publication-title: Food Research International doi: 10.1016/j.foodres.2008.05.003 – volume: 4 start-page: 121 issue: 2 year: 1990 ident: 1651_CR51 publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(09)80013-1 – volume: 11 start-page: 2417 issue: 10 year: 2002 ident: 1651_CR22 publication-title: Protein Science doi: 10.1110/ps.0217702 – volume: 70 start-page: 73 issue: 1 year: 2003 ident: 1651_CR1 publication-title: Journal of Dairy Research doi: 10.1017/S0022029902005903 – volume: 3 start-page: 382 issue: 2 year: 2002 ident: 1651_CR24 publication-title: Biomacromolecules doi: 10.1021/bm0156429 – volume: 40 start-page: 1197 issue: 10 year: 2007 ident: 1651_CR32 publication-title: Food Research International doi: 10.1016/j.foodres.2007.07.005 – volume: 12 start-page: 52 issue: 5 year: 2009 ident: 1651_CR37 publication-title: Materials Today doi: 10.1016/S1369-7021(09)70164-6 – volume: 111 start-page: 101 issue: 2 year: 2011 ident: 1651_CR19 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2010.10.011 – volume: 65 start-page: 354 issue: 3 year: 2007 ident: 1651_CR8 publication-title: European Journal of Pharmaceutics and Biopharmaceutics doi: 10.1016/j.ejpb.2006.10.012 – volume: 28 start-page: 41 issue: 1 year: 2000 ident: 1651_CR26 publication-title: Int J Biol Macromol doi: 10.1016/S0141-8130(00)00144-6 – volume: 11 start-page: 2912 issue: 11 year: 2010 ident: 1651_CR39 publication-title: Biomacromolecules doi: 10.1021/bm100681a – volume: 113 start-page: 14962 issue: 45 year: 2009 ident: 1651_CR50 publication-title: Journal of Physical Chemistry B doi: 10.1021/jp907284t – ident: 1651_CR5 – volume: 64 start-page: 49 year: 2012 ident: 1651_CR43 publication-title: Advanced Drug Delivery Reviews doi: 10.1016/j.addr.2012.09.024 – volume: 46 start-page: 75 year: 1991 ident: 1651_CR12 publication-title: Milchwissenschaft - Milk Science International |
SSID | ssj0060413 |
Score | 2.3924398 |
Snippet | Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through... |
SourceID | proquest crossref springer fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 576 |
SubjectTerms | Agglomeration Aggregates Aggregation behavior Agriculture beta-lactoglobulin Biotechnology Chemistry Chemistry and Materials Science Chemistry/Food Science Denaturation electric field Electric fields Food Science Heat transfer Heat treatment Heating Lactoglobulin microstructure Multivariate analysis ohmic heating Original Paper protein aggregates Protein folding protein unfolding Proteins solubility thiols Transmission electron microscopy Whey Whey protein whey protein isolate β-Lactoglobulin |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3RcgAOVSmghn7ISJxAlryxx7VP1bZqtaoEVIKVerMcx14qlSxqtgf-PeNs0m0RrdRznK8ZZ_xeZvwG4CPaOimFNfc4ClxJUfNKV5Ybr7WwlZDYlfx_-aonU3V2gRf9Pu52qHYfUpJdpF5tdiO-ncskkY80EvFZg-eYqTtN4mk5HsKvFqrriUzABDlShB5Smf-7xL3FaC35-T2c-U9qtFtxTjdho4eKbLz07Wt4FpsteDWeXfdyGXELXhwP_droyB1pwTdweL6UciWzs3liFHP_sPOsyXDZ8CNauWo2nhHVzj_RWtY1P2Lffv66DGySQWQzewvT05MfxxPeN0vgAZVecCtNWRlMMqmk8i5AZX2ZZKxMQJlqG5QRwYRICMljKokmZPYnhagIIEUV5DtYb-ZN3AZWeiQSQVDHR6vqYGypg_DlgZdaejJrAWKwmgu9knhuaHHlVhrI2dCODO2yoZ0q4NPtKb-XMhqPDd4mVzhP9mzd9HuZRfBEroXEgwJ2B_-4_mNrHYGQDBwJqhTw4fYwWT_nPnwT5zetGxmKXrlY0Tw2Rhti7GhtAZ8H369u8-Dzvn_S6B14md9oWf2zC-uL65u4R8BmUe13E_kvFDPoXQ priority: 102 providerName: Springer Nature |
Title | Production of Whey Protein-Based Aggregates Under Ohmic Heating |
URI | https://link.springer.com/article/10.1007/s11947-015-1651-4 https://www.proquest.com/docview/2410851812 https://www.proquest.com/docview/1803119938 https://www.proquest.com/docview/1868338599 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB6R5gIHxFNdaKNF4gSycNaP2qcqrZJGIEoERCony-tdp5Vgt23SA_-emc1uQys1131ovWP7m--zxzMA75UtopSqYF4NA5OCFyzXuWXGa81tzoVqQv6_nurpXH4-U2ftgtuyDavsMLEB6qIOtEb-CT0NsQP0R4eXV4yqRtHualtCowd9hGCD4qt_ND6dfe-wWHPZFEhGlqKYQrju9jWbw3Oo3ynsUrGhViik7nimXvT1HdJ5b5-0cT-TZ_C05Y3paN3Rz-FRWb2AJ_9lE3wJh7N19la0dFrHFGH2bzqjNAwXFTtCZ1WkowWqa1o3W6ZNvaP02_mfi5BOiTdWi1cwn4x_Hk9ZWx-BBSX1illhstyoKKKMkg7-SeuzKMrcBCViYYM0PJhQIinyKmaoDEjwCc5z5ESlDOI17FR1Ve5CmnmFugHZjS-tLIKxmQ7cZwdeaOHReAnwzjYutMnDqYbFb7dJe0zmdGhOR-Z0MoEPt69crjNnbHt4Fw3u_AKRzc1_ZJT3jlP4ozpIYK_rBdfOr6XbjIYE3t3explB2x2-KuubpRsaBCyKTzTbntEGRbqyNoGPXQ9vPvNge99sb9RbeEy_sI7w2YOd1fVNuY_kZZUPoGcmJwPoj05-fRkP2vGKV-fZ6B9yDegQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4AHtSD8RkGENtEL5qOvdMPug-GILou8pBENuHW9PTMrCQwg-4Sw5_yN1o1s8OKiXvjPD2ven7VVV0F8Eq7vFRK5zzoXuRKipxnJnPcBmOEy4TUTcn__oEZDNWXY328AL-7szBUVtnZxMZQ53WkPfJ36GkIHaA_2rz4wWlqFGVXuxEarVjsFle_MGQbv9_5iPx9nab9T0fbAz6dKsCjVmbCnbRpZnUpS1UqOi6nXEhLWWQ2alnmLioroo0FQomgyxTxNIVJUogMkUShosTnLsIdJaUjjbL9z53lN0I145gRE2mu0Tl0WdTmqF7PKSry1LxnNIZtN_zgYhnqGxD3n6xs4-z6D-HBFKWyrVasHsFCUT2G-3_1LnwCm4dtr1jkK6tLhkb9ih1S04fTin9A15izrRHG8rRLN2bNdCX29fv5aWQDQqnV6CkMb4Vuz2CpqqtiGVgaNEYpiKVC4VQerUtNFCHdCNLIgMRLQHS08XHaqpwmZpz5WZNlIqdHcnoip1cJvLm-5aLt0zFv8TIS3IcR2lE__JZSlz1BxZZ6I4G1jgt-qs1jP5O9BF5eX0Y9pORKqIr6cux7Fs0jVUPaeWuMldJq5xJ423F49pr_fu_K_I96AXcHR_t7fm_nYHcV7tHvtLVFa7A0-XlZPEfYNMnWG1llcHLbyvEHRbweqA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bTxQxFD4RTBQfDKKEEYSa-KRp6E4vtE9kRTfrDTfRTXhrOp12IYFZwiwP_ntP58KKURKep3M7p3P6fXNOvwPwRpoyCiFL6uTAU8FZSQtVGKqdUswUjMum5P_bsRpPxecTedL1Oa37avc-JdnuaUgqTdVi_7KM-8uNb8i9U8mkpAMlkQStwEOMxoM0raf5sA_FiommPzKCFEklRus-rfmvS9xamFaim9_CnH-lSZvVZ7QOTzvYSIatn5_Bg1BtwJPh7KqTzggb8Pio792GR_6QGXwOh5NW1hVdQOaRYPz9RSZJn-Gsou9xFSvJcIa0O_1Qq0nTCIl8P70482ScAGU1ewHT0cefR2PaNU6gXgq1oIbrvNAy8iiiSDsChXF55KHQXvJYGi8089oHREtOxhwpQ2KCnLECwVIQnm_CajWvwhaQ3EkkFAh7XDCi9NrkyjOXHziuuEOzZsB6q1nfqYqn5hbndqmHnAxt0dA2GdqKDN7enHLZSmrcNXgLXWEd2rO20x95EsRjqS5SHmSw0_vHdh9ebRGQJBCJsCWD1zeH0fopD-KqML-u7UBjJEuFi_quMUoje5fGZPCu9_3yNv993pf3Gr0HjyYfRvbrp-Mv27CWXq4tCtqB1cXVdXiFeGdR7DZz-jcf2u-M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+of+Whey+Protein-Based+Aggregates+Under+Ohmic+Heating&rft.jtitle=Food+and+bioprocess+technology&rft.au=Pereira%2C+Ricardo+N&rft.au=Rodrigues%2C+Rui+M&rft.au=Ramos%2C+%C3%93scar+L&rft.au=Xavier%2C+Malcata+F&rft.date=2016-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1935-5130&rft.eissn=1935-5149&rft.volume=9&rft.issue=4&rft.spage=576&rft.epage=587&rft_id=info:doi/10.1007%2Fs11947-015-1651-4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-5130&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-5130&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-5130&client=summon |