Aerosol radiative forcings induced by substantial changes in anthropogenic emissions in China from 2008 to 2016

Anthropogenic emissions in China play an important role in altering the global radiation budget. Over the past decade, the strong clean-air policies in China have resulted in substantial reductions of anthropogenic emissions of sulfur dioxide (SO2) and primary particulate matter, and air quality in...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 21; no. 8; pp. 5965 - 5982
Main Authors Liu, Mingxu, Matsui, Hitoshi
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 21.04.2021
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1680-7324
1680-7316
1680-7324
DOI10.5194/acp-21-5965-2021

Cover

Loading…
Abstract Anthropogenic emissions in China play an important role in altering the global radiation budget. Over the past decade, the strong clean-air policies in China have resulted in substantial reductions of anthropogenic emissions of sulfur dioxide (SO2) and primary particulate matter, and air quality in China has consequently improved. However, the resultant aerosol radiative forcings have been poorly understood. In this study, we used an advanced global climate model integrated with the latest localized emission inventory to quantify the aerosol radiative forcings by the changes of anthropogenic emissions in China between 2008 and 2016. By comparing with multiple observation datasets, our simulations reproduced the considerable reductions of sulfate and black carbon (BC) mass loadings reasonably well over eastern China (the key region subject to stringent emission controls) during the period and accordingly showed a clear decline in both aerosol optical depth and absorption aerosol optical depth. The results revealed a regional annual mean positive direct radiative forcing (DRF) of +0.29 W m−2 at the top of the atmosphere (TOA) due to the reduction of SO2 emissions. This positive aerosol radiative forcing was comprised of diminished sulfate scattering (+0.58 W m−2), enhanced nitrate radiative effects (−0.29 W m−2), and could be completely offset by the concurrent reduction of BC emissions that induced a negative BC DRF of −0.33 W m−2. Despite the small net aerosol DRF (−0.05 W m−2) at the TOA, aerosol–radiation interactions could explain the surface brightening in China over the past decade. The overall reductions in aerosol burdens and associated optical effects mainly from BC and sulfate enhanced the regional annual mean downward solar radiation flux at the surface by +1.0 W m−2 between 2008 and 2016. The enhancement was in general agreement with a long-term observational record of surface energy fluxes in China. We also estimated that aerosol effects on cloud radiative forcings may have played a dominant role in the net aerosol radiative forcings at the TOA in China and over the northern Pacific Ocean during the study period. This study will facilitate more informed assessment of climate responses to projected emissions in the future as well as to sudden changes in human activities (e.g., the COVID-19 lockdown).
AbstractList Anthropogenic emissions in China play an important role in altering the global radiation budget. Over the past decade, the strong clean-air policies in China have resulted in substantial reductions of anthropogenic emissions of sulfur dioxide (SO.sub.2) and primary particulate matter, and air quality in China has consequently improved. However, the resultant aerosol radiative forcings have been poorly understood. In this study, we used an advanced global climate model integrated with the latest localized emission inventory to quantify the aerosol radiative forcings by the changes of anthropogenic emissions in China between 2008 and 2016. By comparing with multiple observation datasets, our simulations reproduced the considerable reductions of sulfate and black carbon (BC) mass loadings reasonably well over eastern China (the key region subject to stringent emission controls) during the period and accordingly showed a clear decline in both aerosol optical depth and absorption aerosol optical depth. The results revealed a regional annual mean positive direct radiative forcing (DRF) of +0.29 W m.sup.-2 at the top of the atmosphere (TOA) due to the reduction of SO.sub.2 emissions. This positive aerosol radiative forcing was comprised of diminished sulfate scattering (+0.58 W m.sup.-2 ), enhanced nitrate radiative effects (-0.29 W m.sup.-2 ), and could be completely offset by the concurrent reduction of BC emissions that induced a negative BC DRF of -0.33 W m.sup.-2 . Despite the small net aerosol DRF (-0.05 W m.sup.-2) at the TOA, aerosol-radiation interactions could explain the surface brightening in China over the past decade. The overall reductions in aerosol burdens and associated optical effects mainly from BC and sulfate enhanced the regional annual mean downward solar radiation flux at the surface by +1.0 W m.sup.-2 between 2008 and 2016. The enhancement was in general agreement with a long-term observational record of surface energy fluxes in China. We also estimated that aerosol effects on cloud radiative forcings may have played a dominant role in the net aerosol radiative forcings at the TOA in China and over the northern Pacific Ocean during the study period. This study will facilitate more informed assessment of climate responses to projected emissions in the future as well as to sudden changes in human activities (e.g., the COVID-19 lockdown).
Anthropogenic emissions in China play an important role in altering the global radiation budget. Over the past decade, the strong clean-air policies in China have resulted in substantial reductions of anthropogenic emissions of sulfur dioxide (SO2) and primary particulate matter, and air quality in China has consequently improved. However, the resultant aerosol radiative forcings have been poorly understood. In this study, we used an advanced global climate model integrated with the latest localized emission inventory to quantify the aerosol radiative forcings by the changes of anthropogenic emissions in China between 2008 and 2016. By comparing with multiple observation datasets, our simulations reproduced the considerable reductions of sulfate and black carbon (BC) mass loadings reasonably well over eastern China (the key region subject to stringent emission controls) during the period and accordingly showed a clear decline in both aerosol optical depth and absorption aerosol optical depth. The results revealed a regional annual mean positive direct radiative forcing (DRF) of +0.29 W m−2 at the top of the atmosphere (TOA) due to the reduction of SO2 emissions. This positive aerosol radiative forcing was comprised of diminished sulfate scattering (+0.58 W m−2), enhanced nitrate radiative effects (−0.29 W m−2), and could be completely offset by the concurrent reduction of BC emissions that induced a negative BC DRF of −0.33 W m−2. Despite the small net aerosol DRF (−0.05 W m−2) at the TOA, aerosol–radiation interactions could explain the surface brightening in China over the past decade. The overall reductions in aerosol burdens and associated optical effects mainly from BC and sulfate enhanced the regional annual mean downward solar radiation flux at the surface by +1.0 W m−2 between 2008 and 2016. The enhancement was in general agreement with a long-term observational record of surface energy fluxes in China. We also estimated that aerosol effects on cloud radiative forcings may have played a dominant role in the net aerosol radiative forcings at the TOA in China and over the northern Pacific Ocean during the study period. This study will facilitate more informed assessment of climate responses to projected emissions in the future as well as to sudden changes in human activities (e.g., the COVID-19 lockdown).
Anthropogenic emissions in China play an important role in altering the global radiation budget. Over the past decade, the strong clean-air policies in China have resulted in substantial reductions of anthropogenic emissions of sulfur dioxide (SO 2 ) and primary particulate matter, and air quality in China has consequently improved. However, the resultant aerosol radiative forcings have been poorly understood. In this study, we used an advanced global climate model integrated with the latest localized emission inventory to quantify the aerosol radiative forcings by the changes of anthropogenic emissions in China between 2008 and 2016. By comparing with multiple observation datasets, our simulations reproduced the considerable reductions of sulfate and black carbon (BC) mass loadings reasonably well over eastern China (the key region subject to stringent emission controls) during the period and accordingly showed a clear decline in both aerosol optical depth and absorption aerosol optical depth. The results revealed a regional annual mean positive direct radiative forcing (DRF) of + 0.29 W m −2 at the top of the atmosphere (TOA) due to the reduction of SO 2 emissions. This positive aerosol radiative forcing was comprised of diminished sulfate scattering ( + 0.58 W m −2 ), enhanced nitrate radiative effects ( − 0.29 W m −2 ), and could be completely offset by the concurrent reduction of BC emissions that induced a negative BC DRF of − 0.33 W m −2 . Despite the small net aerosol DRF ( − 0.05 W m −2 ) at the TOA, aerosol–radiation interactions could explain the surface brightening in China over the past decade. The overall reductions in aerosol burdens and associated optical effects mainly from BC and sulfate enhanced the regional annual mean downward solar radiation flux at the surface by + 1.0 W m −2 between 2008 and 2016. The enhancement was in general agreement with a long-term observational record of surface energy fluxes in China. We also estimated that aerosol effects on cloud radiative forcings may have played a dominant role in the net aerosol radiative forcings at the TOA in China and over the northern Pacific Ocean during the study period. This study will facilitate more informed assessment of climate responses to projected emissions in the future as well as to sudden changes in human activities (e.g., the COVID-19 lockdown).
Anthropogenic emissions in China play an important role in altering the global radiation budget. Over the past decade, the strong clean-air policies in China have resulted in substantial reductions of anthropogenic emissions of sulfur dioxide (SO2) and primary particulate matter, and air quality in China has consequently improved. However, the resultant aerosol radiative forcings have been poorly understood. In this study, we used an advanced global climate model integrated with the latest localized emission inventory to quantify the aerosol radiative forcings by the changes of anthropogenic emissions in China between 2008 and 2016. By comparing with multiple observation datasets, our simulations reproduced the considerable reductions of sulfate and black carbon (BC) mass loadings reasonably well over eastern China (the key region subject to stringent emission controls) during the period and accordingly showed a clear decline in both aerosol optical depth and absorption aerosol optical depth. The results revealed a regional annual mean positive direct radiative forcing (DRF) of +0.29 W m-2 at the top of the atmosphere (TOA) due to the reduction of SO2 emissions. This positive aerosol radiative forcing was comprised of diminished sulfate scattering (+0.58 W m-2), enhanced nitrate radiative effects (-0.29 W m-2), and could be completely offset by the concurrent reduction of BC emissions that induced a negative BC DRF of -0.33 W m-2. Despite the small net aerosol DRF (-0.05 W m-2) at the TOA, aerosol–radiation interactions could explain the surface brightening in China over the past decade. The overall reductions in aerosol burdens and associated optical effects mainly from BC and sulfate enhanced the regional annual mean downward solar radiation flux at the surface by +1.0 W m-2 between 2008 and 2016. The enhancement was in general agreement with a long-term observational record of surface energy fluxes in China. We also estimated that aerosol effects on cloud radiative forcings may have played a dominant role in the net aerosol radiative forcings at the TOA in China and over the northern Pacific Ocean during the study period. This study will facilitate more informed assessment of climate responses to projected emissions in the future as well as to sudden changes in human activities (e.g., the COVID-19 lockdown).
Audience Academic
Author Liu, Mingxu
Matsui, Hitoshi
Author_xml – sequence: 1
  givenname: Mingxu
  orcidid: 0000-0002-1419-1990
  surname: Liu
  fullname: Liu, Mingxu
– sequence: 2
  givenname: Hitoshi
  orcidid: 0000-0002-0376-0879
  surname: Matsui
  fullname: Matsui, Hitoshi
BookMark eNp1UkuLFDEQDrKCu6t3jwFPHnpN0p1-HIfBx8CCsOo5VOfRk6EnGZO0uP9-a3YUnUXJoULV933U47siFyEGS8hrzm4kH5p3oA-V4JUcWlkJJvgzcsnbnlVdLZqLv_4vyFXOO8aEZLy5JHFlU8xxpgmMh-J_WOpi0j5MmfpgFm0NHe9pXsZcIBQPM9VbCJM9lilmtike4mSD19Tufc4-hsfSeusDUJfingrGeloiRt6-JM8dzNm--hWvybcP77-uP1W3nz9u1qvbSsumLVXvuOWGdVZKzRrZMYwAthtMXWs2Cq1RTEo7GmtEy7UBKzrgNXfjiFMO9TXZnHRNhJ06JL-HdK8iePWYiGlSkIrXs1UjKphuAOlG1jR2ANEJ1_dOSN65sZWo9eakdUjx-2JzUbu4pIDtK8RI2WJ39R_UBCjqg4slgcaVaLVq5SC46FmDqJt_oPAZ3J7GkzqP-TPC2zMCYor9WSZYclabL3fn2PaE1XjTnKxT2hc8KlIS-Flxpo5eUegVJbg6ekUdvYJE9oT4e2P_pTwA8pbA9g
CitedBy_id crossref_primary_10_1016_j_atmosres_2024_107552
crossref_primary_10_1016_j_scitotenv_2022_154661
crossref_primary_10_1038_s41612_024_00811_1
crossref_primary_10_3390_su131810153
crossref_primary_10_3390_atmos12101254
crossref_primary_10_5194_acp_22_8989_2022
crossref_primary_10_1016_j_atmosenv_2021_118553
crossref_primary_10_1016_j_scitotenv_2022_158871
crossref_primary_10_5194_acp_23_10117_2023
crossref_primary_10_1088_1748_9326_aca16a
crossref_primary_10_5194_acp_22_8343_2022
crossref_primary_10_1016_j_scitotenv_2022_156731
crossref_primary_10_1029_2022JD036943
crossref_primary_10_1016_j_scitotenv_2024_170823
crossref_primary_10_1016_j_envint_2025_109318
crossref_primary_10_1016_j_atmosres_2024_107683
crossref_primary_10_1007_s11270_024_07224_z
crossref_primary_10_3390_atmos15060629
crossref_primary_10_1088_1748_9326_ad9294
crossref_primary_10_3390_atmos14071114
crossref_primary_10_3390_rs15235511
crossref_primary_10_1029_2022GL100543
crossref_primary_10_1038_s43017_022_00296_7
crossref_primary_10_1029_2022JD037623
crossref_primary_10_2151_sola_2021_042
crossref_primary_10_1016_j_atmosenv_2023_119659
crossref_primary_10_1038_s41467_024_48793_1
crossref_primary_10_3390_cli10040050
Cites_doi 10.1002/2013GL058134
10.5194/amt-13-593-2020
10.5194/acp-19-9989-2019
10.1038/s41467-018-03997-0
10.1038/35055518
10.1038/s41561-019-0528-y
10.1126/sciadv.1601530
10.5194/acp-20-5729-2020
10.1126/science.255.5043.423
10.1002/jgrd.50171
10.1098/rsta.2010.0313
10.5194/acp-19-9125-2019
10.1002/2017EA000288
10.1002/2014MS000360
10.5194/acp-18-14095-2018
10.1038/s41598-017-14639-8
10.5194/acp-10-7685-2010
10.3390/rs12020208
10.1002/2017MS000937
10.1016/0004-6981(74)90004-3
10.5194/acp-18-2835-2018
10.1029/2019RG000660
10.5194/acp-20-1901-2020
10.1029/2018GL079239
10.1029/2019JD032316
10.5194/amt-11-6107-2018
10.1038/s41598-018-20382-5
10.1088/1748-9326/aa6cb2
10.5194/acp-19-10773-2019
10.1002/2013GL057775
10.1073/pnas.1907956116
10.1038/srep43182
10.5194/acp-20-969-2020
10.1002/joc.4529
10.1016/j.earscirev.2008.03.001
10.5194/acp-18-17933-2018
10.1002/2016JD025319
10.1017/CBO9781107415324.016
10.5194/gmd-10-3329-2017
10.1016/j.envint.2020.105812
10.1002/2015RG000500
10.1175/JCLI-D-14-00365.1
10.5194/acp-13-1853-2013
10.1016/j.scitotenv.2016.11.025
10.5194/acp-20-10231-2020
10.1002/2014JD022453
10.1021/acs.est.5b01658
10.1029/2006JD007147
10.5194/gmd-11-369-2018
10.1029/2001JD001397
10.5194/gmd-5-369-2012
10.5194/gmd-5-709-2012
10.1029/2019JD031827
10.1016/j.chemosphere.2020.126849
10.5194/acp-20-6339-2020
10.1029/2020GL087721
10.1038/nature17165
10.5194/acp-14-10315-2014
10.5194/acp-18-13265-2018
10.1002/2014JD021710
10.1175/2008JCLI2105.1
10.1002/2016GL068707
10.1038/s41558-020-0840-y
10.1029/2019JD031301
10.1038/s41561-019-0424-5
10.1021/es971130j
10.1002/2014JD022301
10.1002/2017GL072617
10.5194/amt-12-169-2019
10.1002/2015JD023999
10.1002/2017MS000936
10.1038/s41467-018-05635-1
10.5194/acp-20-613-2020
10.1175/JCLI-D-18-0666.1
10.5194/acp-13-9971-2013
ContentType Journal Article
Copyright COPYRIGHT 2021 Copernicus GmbH
2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2021 Copernicus GmbH
– notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
DOA
DOI 10.5194/acp-21-5965-2021
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection (subscription)
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (subscription)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 5982
ExternalDocumentID oai_doaj_org_article_bd26d79a5fb044e9a272f88f2517fb65
A659212804
10_5194_acp_21_5965_2021
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 23N
2WC
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
K6-
KQ8
OK1
OVT
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
BBORY
PMFND
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
ID FETCH-LOGICAL-c546t-8f1e1d07e55c0457055caae79d33c0b2cc20155ebded261cdae27a131fbb73293
IEDL.DBID BENPR
ISSN 1680-7324
1680-7316
IngestDate Wed Aug 27 01:25:09 EDT 2025
Sat Jul 26 00:08:39 EDT 2025
Tue Jun 17 21:18:58 EDT 2025
Tue Jun 10 20:45:52 EDT 2025
Fri Jun 27 03:46:22 EDT 2025
Tue Jul 01 02:01:23 EDT 2025
Thu Apr 24 22:52:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-8f1e1d07e55c0457055caae79d33c0b2cc20155ebded261cdae27a131fbb73293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0376-0879
0000-0002-1419-1990
OpenAccessLink https://www.proquest.com/docview/2515560553?pq-origsite=%requestingapplication%
PQID 2515560553
PQPubID 105744
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_bd26d79a5fb044e9a272f88f2517fb65
proquest_journals_2515560553
gale_infotracmisc_A659212804
gale_infotracacademiconefile_A659212804
gale_incontextgauss_ISR_A659212804
crossref_citationtrail_10_5194_acp_21_5965_2021
crossref_primary_10_5194_acp_21_5965_2021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-21
PublicationDateYYYYMMDD 2021-04-21
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-21
  day: 21
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2021
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref33
  doi: 10.1002/2013GL058134
– ident: ref13
  doi: 10.5194/amt-13-593-2020
– ident: ref12
  doi: 10.5194/acp-19-9989-2019
– ident: ref47
  doi: 10.1038/s41467-018-03997-0
– ident: ref25
  doi: 10.1038/35055518
– ident: ref57
  doi: 10.1038/s41561-019-0528-y
– ident: ref10
  doi: 10.1126/sciadv.1601530
– ident: ref61
  doi: 10.5194/acp-20-5729-2020
– ident: ref8
  doi: 10.1126/science.255.5043.423
– ident: ref5
  doi: 10.1002/jgrd.50171
– ident: ref66
  doi: 10.1098/rsta.2010.0313
– ident: ref53
  doi: 10.5194/acp-19-9125-2019
– ident: ref59
  doi: 10.1002/2017EA000288
– ident: ref17
  doi: 10.1002/2014MS000360
– ident: ref77
  doi: 10.5194/acp-18-14095-2018
– ident: ref34
  doi: 10.1038/s41598-017-14639-8
– ident: ref28
  doi: 10.5194/acp-10-7685-2010
– ident: ref35
  doi: 10.3390/rs12020208
– ident: ref44
  doi: 10.1002/2017MS000937
– ident: ref62
  doi: 10.1016/0004-6981(74)90004-3
– ident: ref24
  doi: 10.5194/acp-18-2835-2018
– ident: ref3
  doi: 10.1029/2019RG000660
– ident: ref73
  doi: 10.5194/acp-20-1901-2020
– ident: ref50
– ident: ref22
  doi: 10.1029/2018GL079239
– ident: ref43
  doi: 10.1029/2019JD032316
– ident: ref27
  doi: 10.5194/amt-11-6107-2018
– ident: ref64
  doi: 10.1038/s41598-018-20382-5
– ident: ref76
  doi: 10.1088/1748-9326/aa6cb2
– ident: ref4
  doi: 10.5194/acp-19-10773-2019
– ident: ref56
  doi: 10.1002/2013GL057775
– ident: ref75
  doi: 10.1073/pnas.1907956116
– ident: ref70
  doi: 10.1038/srep43182
– ident: ref51
  doi: 10.5194/acp-20-969-2020
– ident: ref40
  doi: 10.1002/joc.4529
– ident: ref1
  doi: 10.1016/j.earscirev.2008.03.001
– ident: ref37
  doi: 10.5194/acp-18-17933-2018
– ident: ref68
  doi: 10.1002/2016JD025319
– ident: ref6
  doi: 10.1017/CBO9781107415324.016
– ident: ref63
  doi: 10.5194/gmd-10-3329-2017
– ident: ref58
– ident: ref67
  doi: 10.1016/j.envint.2020.105812
– ident: ref36
  doi: 10.1002/2015RG000500
– ident: ref21
  doi: 10.1175/JCLI-D-14-00365.1
– ident: ref49
  doi: 10.5194/acp-13-1853-2013
– ident: ref9
  doi: 10.1016/j.scitotenv.2016.11.025
– ident: ref7
  doi: 10.5194/acp-20-10231-2020
– ident: ref55
  doi: 10.1002/2014JD022453
– ident: ref23
  doi: 10.1021/acs.est.5b01658
– ident: ref60
  doi: 10.1029/2006JD007147
– ident: ref18
  doi: 10.5194/gmd-11-369-2018
– ident: ref11
  doi: 10.1029/2001JD001397
– ident: ref30
  doi: 10.5194/gmd-5-369-2012
– ident: ref39
  doi: 10.5194/gmd-5-709-2012
– ident: ref65
  doi: 10.1029/2019JD031827
– ident: ref69
  doi: 10.1016/j.chemosphere.2020.126849
– ident: ref26
  doi: 10.5194/acp-20-6339-2020
– ident: ref31
  doi: 10.1029/2020GL087721
– ident: ref32
  doi: 10.1038/nature17165
– ident: ref45
  doi: 10.5194/acp-14-10315-2014
– ident: ref52
  doi: 10.5194/acp-18-13265-2018
– ident: ref72
  doi: 10.1002/2014JD021710
– ident: ref48
  doi: 10.1175/2008JCLI2105.1
– ident: ref29
  doi: 10.1002/2016GL068707
– ident: ref19
  doi: 10.1038/s41558-020-0840-y
– ident: ref38
  doi: 10.1029/2019JD031301
– ident: ref54
  doi: 10.1038/s41561-019-0424-5
– ident: ref2
  doi: 10.1021/es971130j
– ident: ref20
  doi: 10.1002/2014JD022301
– ident: ref74
  doi: 10.1002/2017GL072617
– ident: ref15
  doi: 10.5194/amt-12-169-2019
– ident: ref41
  doi: 10.1002/2015JD023999
– ident: ref42
  doi: 10.1002/2017MS000936
– ident: ref46
  doi: 10.1038/s41467-018-05635-1
– ident: ref16
  doi: 10.5194/acp-20-613-2020
– ident: ref71
  doi: 10.1175/JCLI-D-18-0666.1
– ident: ref14
  doi: 10.5194/acp-13-9971-2013
SSID ssj0025014
Score 2.4936576
SecondaryResourceType review_article
Snippet Anthropogenic emissions in China play an important role in altering the global radiation budget. Over the past decade, the strong clean-air policies in China...
Anthropogenic emissions in China play an important role in altering the global radiation budget. Over the past decade, the strong clean-air policies in China...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5965
SubjectTerms Aerosol absorption
Aerosol effects
Aerosol optical depth
Aerosols
Air pollution
Air quality
Analysis
Anthropogenic factors
Black carbon
Brightening
Carbon
Climate
Climate models
Clouds
COVID-19
Emission inventories
Emissions
Emissions (Pollution)
Emissions control
Environmental aspects
Environmental assessment
Estimates
Experiments
Fluxes
Global climate
Global climate models
Global radiation
Human influences
Humidity
Industrial plant emissions
Optical analysis
Optical thickness
Particulate emissions
Particulate matter
Radiation budget
Radiation flux
Radiative forcing
Simulation
Solar radiation
Sulfates
Sulfur
Sulfur dioxide
Sulphur
Sulphur dioxide
Surface energy
Surface properties
Suspended particulate matter
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELWqnnqpgIJYKJWFEIiDlbXXXnuPadWqIMGBtlJvlj9RpShbJemBf8-M16maA3DhFCV2spuZWfuNPX6PkA9Ze52GyBn3LjLZR8O86DQbTBtMMFmYqUD2e395I7_eqtsnUl9YEzbRA0-Gm_ko-qgHp7JvpUyDE1pkAz-iuM6-L-ylMOdtk6maauFuGaZavWkZajNNG5SAVuTMhXsmOFMDlne1gu9MSIW3_0-jc5lyLp6Rw4oV6Xy6x-dkLy1fkOYbwNxxVVbD6Ud6trgDzFneHZFxnuAa44KukHEABzIKmDTgYjiF3Bu8GKn_RdcwWKB4MIQenQ7-YjN1VTMBQuouUNSBw5W00lRUtikeRaFYyUA3I7zy_iW5uTi_PrtkVVGBBSX7DTOZJx5bnZQKgOWQSSc4l_QQuy60XoQgEEMlHxOYnYfoktCOdzx7rztABq_I_nJcpteEAo5U8Lx7k_pOauU8CuJF5YQyKcsQGzLbmtWGSjeOqhcLC2kHOsKCI6zgFh1h0REN-fz4jfuJauMvfU_RU4_9kCS7fAChY2vo2H-FTkPeo58t0mAssc7mp3tYr-2Xqx92jrvNMHW3siGfaqc8wv0HV48tgBWQOWun5_FOT3BT2G3ehpOt48TaClTYgYxSdW_-xz96Sw7QOrjbJfgx2d-sHtI7AE0bf1Kej9_CThDO
  priority: 102
  providerName: Directory of Open Access Journals
Title Aerosol radiative forcings induced by substantial changes in anthropogenic emissions in China from 2008 to 2016
URI https://www.proquest.com/docview/2515560553
https://doaj.org/article/bd26d79a5fb044e9a272f88f2517fb65
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDBbW9rLL0O6BeesCYRg27CDEki1LPg1p0awb0GLrVqw3QS8XBYI4jdND_31JW0mRw3oyHNGIbVL0J5LiR8inRjkV68AZdzawsgqaOVEoVuvca68boYcC2fPq9LL8eSWvUsCtS2WVa5_YO-rQeoyRjwVykQD2lsW3xS1D1ijMriYKjR2yBy5Yg4XvHZ2c_7rYLLkwa4ZLrkrnDDmahkQloJZybP2CCc5kjWVeueBbH6a-f___vHT_6ZnukxcJM9LJoOQD8izOX5LsDOBuu-yj4vQzPZ7dAPbsz16RdhLhP9oZXWLnAXRoFLCpx6A4hTU4aDNQd087cBpIIgwmSIcNwDhMbeJOANO68RT54DCi1g_1bNsUt6RQrGigqxaOvHpNLqcnf49PWWJWYF6W1YrphkcechWl9IDpsKOOtzaqOhSFz53wXiCWii7EAEssH2wUyvKCN86pAhDCG7I7b-fxLaGAJyXMe6djVZRKWofEeEFaIXVsSh8yMl6_VuNT23Fkv5gZWH6gIgwowghuUBEGFZGRr5srFkPLjSdkj1BTGzlslt3_0C6vTZp7xsEzBFVb2bi8LGNthRKNBjuUXDWukhn5iHo22A5jjvU21_au68yPPxdmgllnsKy8zMiXJNS0cP_epu0L8Bawg9aW5OGWJKjJbw-vzckkf9GZR-t-9_Twe_IcnxvzWYIfkt3V8i5-AFi0ciOyo6ffR2kG4HF69vvfqA8yPADxhAzv
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEF5V6QEuvBGBAivEQxzceNde7_rAIS1ECW0qAa3obbsvVxFRXOUhVP4Kf4Ufx4wfQUGit0qcImcnUjyemf3GMzsfIS8LaWXIPYuYNT5KM68iyxMZ5Sp2yqmCq7pB9igbnqQfT8XpFvnZnoXBtso2JlaB2pcO35H3OHKRAPYWLVP1Qbj8DvnZ4t3oPTzMV5wPPhzvD6OGQiByIs2WkSpYYD6WQQgH4AVHxzhjgsx9krjYcuc4goZgffCQSzhvApeGJaywViYcJy1BfN9WuA93yPbeYPzp6zqfw5Ic5nOZiiMkgKqroACJ0p5xFxFnkcixhyzmbGPXq8gB_rUFVPva4Db51Wqkbmf5trta2l33469hkf-pyu6QWw2epv3aAe6SrTC7R7pjSAXKeVUxoK_p_nQCuLy6uk_KfgAVlVM6x6kMGOwp4HaHBQM6mXmwdE_tJV1AQEWCZXBPWh-OxmVqGl4JcLuJo8iVh28bq6WKiZzicR2K3R50WcInyx6Qk2u5_4ekMytn4RGhgLUFxESrQpakUhiLpIFeGC5UKFLnu6TXWoV2zUh2ZAaZakjN0I402JHmTKMdabSjLnm7_sVFPY7kCtk9NLS1HA4Sr74o5-e6iUvawj14mRtR2DhNQ2645IUCHxVMFjYTXfICzVTjqJAZ9iKdm9VioUdfPus-VuQB3sRpl7xphIoS_r8zzdEO0AJOF9uQ3NmQhMfkNpdbS9ZNLF3oP2b8-Orl5-TG8Hh8qA9HRwdPyE3UAdb9ONshneV8FZ4CfFzaZ40bU3J23W7wG4Kgezc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIiEuiPIQCy1YiIc4WFl712vvAaHQEhoKFQIq9eb6tVWlKBuyqVD_Gr-OmX0E5UBvPUWJJ8rG8_A3Hns-Ql5WyqlYBs64s4HlRdDMiUyxUqdee10J3R2QPS4OT_LPp_J0i_wZ7sLgscohJraBOtQe98hHArlIAHvLbFT1xyK-HUzeL34xZJDCSutAp9GZyFG8-g3pW_NuegC6fiXE5OPP_UPWMwwwL_NixXTFIw-pilJ6wDbYWcZbG1UZssynTngvEFNEF2KAVMMHG4WyPOOVcyoT2IgJwv8tlekU2RP05NM62cN6HSZ7hU4ZskN1JVLAS_nI-gUTnMkSD5ilgm8siS1zwP_Wh3bRm9wjd3u0Ssedee2QrTi_T5KvALTrZbsfT1_T_dkFoN723QNSjyP8Rj2jS-x5gKGUAir2uB1PIfsHOwrUXdEGwhXSF4Px0-7qMQ5T27M2gFFfeIpMdLiX1w61PN8UL8NQPEtBVzW88uIhObmRGX9Etuf1PD4mFJCshIjjdCyyXEnrkJIvSCukjlXuQ0JGw7Qa3zc8R96NmYHEBxVhQBFGcIOKMKiIhLxdf2PRNfu4RvYDamoth2262w_q5bnpvd44-A9BlVZWLs3zWFqhRKXBAyRXlStkQl6gng024pijSZ_by6Yx0x_fzRjr3QAe0jwhb3qhqobn97a_OAGzgL27NiR3NyRBTX5zeDAn00eqxvzzqyfXDz8nt8HhzJfp8dFTcgenAItqgu-S7dXyMu4BNlu5Z60TUHJ20173F7ryScc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aerosol+radiative+forcings+induced+by+substantial+changes+in+anthropogenic+emissions+in+China+from+2008+to+2016&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Liu%2C+Mingxu&rft.au=Matsui%2C+Hitoshi&rft.date=2021-04-21&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.volume=21&rft.issue=8&rft.spage=5965&rft_id=info:doi/10.5194%2Facp-21-5965-2021&rft.externalDocID=A659212804
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon