Predictive Efficacy of the Advanced Lung Cancer Inflammation Index in Hepatocellular Carcinoma After Hepatectomy

Hepatocellular carcinoma (HCC) presents a significant global health challenge due to its poor prognosis and high recurrence rates post-surgery. This study examines the predictive efficacy of the Advanced Lung Cancer Inflammation Index (ALI) in assessing the post-hepatectomy prognosis of patients wit...

Full description

Saved in:
Bibliographic Details
Published inJournal of inflammation research Vol. 17; pp. 5197 - 5210
Main Authors Qiu, Xin, Shen, Shuang, Lu, Donghong, Jiang, Nizhen, Feng, Yifei, Li, Jindu, Yang, Chenglei, Xiang, Bangde
Format Journal Article
LanguageEnglish
Published New Zealand Dove Medical Press Limited 01.01.2024
Dove
Dove Medical Press
Subjects
Online AccessGet full text
ISSN1178-7031
1178-7031
DOI10.2147/JIR.S468215

Cover

Loading…
Abstract Hepatocellular carcinoma (HCC) presents a significant global health challenge due to its poor prognosis and high recurrence rates post-surgery. This study examines the predictive efficacy of the Advanced Lung Cancer Inflammation Index (ALI) in assessing the post-hepatectomy prognosis of patients with HCC. A cohort comprising 1654 HCC patients who underwent hepatectomy at Guangxi Medical University Cancer Hospital from 2013 to 2019 was enrolled. Patients were stratified into two groups according to the median ALI level, and then subjected to propensity score matching (PSM) in a 1:1 ratio. Kaplan-Meier survival curves, the traditional Cox proportional hazards (CPH) model, and machine learning (ML) models were employed to analyze and evaluate ALI's prognostic significance. Furthermore, ALI's prognostic value in digestive system tumors was validated via analysis of the National Health and Nutrition Examination Survey (NHANES) database. After applying PSM, a final cohort of 1284 patients, categorized into high and low ALI groups, revealed a significantly reduced survival time in the low ALI cohort. Univariate and multivariate Cox analyses identified ALI, BCLC stage, CK19, Hepatitis B virus (HBV) DNA, lymph node metastasis, and microvascular invasion (MVI) as independent predictors of prognosis. Both traditional CPH and ML models incorporating ALI demonstrated excellent predictive accuracy, validated through calibration curves, time-dependent ROC curves, and decision curve analysis. Furthermore, the prognostic value of ALI in digestive tumors was confirmed in the NHANES database. The ALI exhibits potential as a prognostic predictor in patients with HCC following hepatectomy, providing valuable insights into postoperative survival.
AbstractList Hepatocellular carcinoma (HCC) presents a significant global health challenge due to its poor prognosis and high recurrence rates post-surgery. This study examines the predictive efficacy of the Advanced Lung Cancer Inflammation Index (ALI) in assessing the post-hepatectomy prognosis of patients with HCC. A cohort comprising 1654 HCC patients who underwent hepatectomy at Guangxi Medical University Cancer Hospital from 2013 to 2019 was enrolled. Patients were stratified into two groups according to the median ALI level, and then subjected to propensity score matching (PSM) in a 1:1 ratio. Kaplan-Meier survival curves, the traditional Cox proportional hazards (CPH) model, and machine learning (ML) models were employed to analyze and evaluate ALI's prognostic significance. Furthermore, ALI's prognostic value in digestive system tumors was validated via analysis of the National Health and Nutrition Examination Survey (NHANES) database. After applying PSM, a final cohort of 1284 patients, categorized into high and low ALI groups, revealed a significantly reduced survival time in the low ALI cohort. Univariate and multivariate Cox analyses identified ALI, BCLC stage, CK19, Hepatitis B virus (HBV) DNA, lymph node metastasis, and microvascular invasion (MVI) as independent predictors of prognosis. Both traditional CPH and ML models incorporating ALI demonstrated excellent predictive accuracy, validated through calibration curves, time-dependent ROC curves, and decision curve analysis. Furthermore, the prognostic value of ALI in digestive tumors was confirmed in the NHANES database. The ALI exhibits potential as a prognostic predictor in patients with HCC following hepatectomy, providing valuable insights into postoperative survival.
Background: Hepatocellular carcinoma (HCC) presents a significant global health challenge due to its poor prognosis and high recurrence rates post-surgery. This study examines the predictive efficacy of the Advanced Lung Cancer Inflammation Index (ALI) in assessing the post-hepatectomy prognosis of patients with HCC. Methods: A cohort comprising 1654 HCC patients who underwent hepatectomy at Guangxi Medical University Cancer Hospital from 2013 to 2019 was enrolled. Patients were stratified into two groups according to the median ALI level, and then subjected to propensity score matching (PSM) in a 1:1 ratio. Kaplan-Meier survival curves, the traditional Cox proportional hazards (CPH) model, and machine learning (ML) models were employed to analyze and evaluate ALI's prognostic significance. Furthermore, ALI's prognostic value in digestive system tumors was validated via analysis of the National Health and Nutrition Examination Survey (NHANES) database. Results: After applying PSM, a final cohort of 1284 patients, categorized into high and low ALI groups, revealed a significantly reduced survival time in the low ALI cohort. Univariate and multivariate Cox analyses identified ALI, BCLC stage, CK19, Hepatitis B virus (HBV) DNA, lymph node metastasis, and microvascular invasion (MVI) as independent predictors of prognosis. Both traditional CPH and ML models incorporating ALI demonstrated excellent predictive accuracy, validated through calibration curves, time-dependent ROC curves, and decision curve analysis. Furthermore, the prognostic value of ALI in digestive tumors was confirmed in the NHANES database. Conclusion: The ALI exhibits potential as a prognostic predictor in patients with HCC following hepatectomy, providing valuable insights into postoperative survival. Keywords: advanced lung cancer inflammatory index, ALI, hepatocellular carcinoma, HCC, prognosis, Cox regression, machine learning, ML
Xin Qiu,1,2,* Shuang Shen,1,* Donghong Lu,2 Nizhen Jiang,3 Yifei Feng,3 Jindu Li,1 Chenglei Yang,1 Bangde Xiang1,4,5 1Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China; 2Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China; 3Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China; 4Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, People’s Republic of China; 5Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, People’s Republic of China*These authors contributed equally to this workCorrespondence: Bangde Xiang; Chenglei Yang, Email xiangbangde@gxmu.edu.cn; chenglei2017yang@163.comBackground: Hepatocellular carcinoma (HCC) presents a significant global health challenge due to its poor prognosis and high recurrence rates post-surgery. This study examines the predictive efficacy of the Advanced Lung Cancer Inflammation Index (ALI) in assessing the post-hepatectomy prognosis of patients with HCC.Methods: A cohort comprising 1654 HCC patients who underwent hepatectomy at Guangxi Medical University Cancer Hospital from 2013 to 2019 was enrolled. Patients were stratified into two groups according to the median ALI level, and then subjected to propensity score matching (PSM) in a 1:1 ratio. Kaplan-Meier survival curves, the traditional Cox proportional hazards (CPH) model, and machine learning (ML) models were employed to analyze and evaluate ALI’s prognostic significance. Furthermore, ALI’s prognostic value in digestive system tumors was validated via analysis of the National Health and Nutrition Examination Survey (NHANES) database.Results: After applying PSM, a final cohort of 1284 patients, categorized into high and low ALI groups, revealed a significantly reduced survival time in the low ALI cohort. Univariate and multivariate Cox analyses identified ALI, BCLC stage, CK19, Hepatitis B virus (HBV) DNA, lymph node metastasis, and microvascular invasion (MVI) as independent predictors of prognosis. Both traditional CPH and ML models incorporating ALI demonstrated excellent predictive accuracy, validated through calibration curves, time-dependent ROC curves, and decision curve analysis. Furthermore, the prognostic value of ALI in digestive tumors was confirmed in the NHANES database.Conclusion: The ALI exhibits potential as a prognostic predictor in patients with HCC following hepatectomy, providing valuable insights into postoperative survival.Keywords: advanced lung cancer inflammatory index, ALI, hepatocellular carcinoma, HCC, prognosis, Cox regression, machine learning, ML
Hepatocellular carcinoma (HCC) presents a significant global health challenge due to its poor prognosis and high recurrence rates post-surgery. This study examines the predictive efficacy of the Advanced Lung Cancer Inflammation Index (ALI) in assessing the post-hepatectomy prognosis of patients with HCC.BackgroundHepatocellular carcinoma (HCC) presents a significant global health challenge due to its poor prognosis and high recurrence rates post-surgery. This study examines the predictive efficacy of the Advanced Lung Cancer Inflammation Index (ALI) in assessing the post-hepatectomy prognosis of patients with HCC.A cohort comprising 1654 HCC patients who underwent hepatectomy at Guangxi Medical University Cancer Hospital from 2013 to 2019 was enrolled. Patients were stratified into two groups according to the median ALI level, and then subjected to propensity score matching (PSM) in a 1:1 ratio. Kaplan-Meier survival curves, the traditional Cox proportional hazards (CPH) model, and machine learning (ML) models were employed to analyze and evaluate ALI's prognostic significance. Furthermore, ALI's prognostic value in digestive system tumors was validated via analysis of the National Health and Nutrition Examination Survey (NHANES) database.MethodsA cohort comprising 1654 HCC patients who underwent hepatectomy at Guangxi Medical University Cancer Hospital from 2013 to 2019 was enrolled. Patients were stratified into two groups according to the median ALI level, and then subjected to propensity score matching (PSM) in a 1:1 ratio. Kaplan-Meier survival curves, the traditional Cox proportional hazards (CPH) model, and machine learning (ML) models were employed to analyze and evaluate ALI's prognostic significance. Furthermore, ALI's prognostic value in digestive system tumors was validated via analysis of the National Health and Nutrition Examination Survey (NHANES) database.After applying PSM, a final cohort of 1284 patients, categorized into high and low ALI groups, revealed a significantly reduced survival time in the low ALI cohort. Univariate and multivariate Cox analyses identified ALI, BCLC stage, CK19, Hepatitis B virus (HBV) DNA, lymph node metastasis, and microvascular invasion (MVI) as independent predictors of prognosis. Both traditional CPH and ML models incorporating ALI demonstrated excellent predictive accuracy, validated through calibration curves, time-dependent ROC curves, and decision curve analysis. Furthermore, the prognostic value of ALI in digestive tumors was confirmed in the NHANES database.ResultsAfter applying PSM, a final cohort of 1284 patients, categorized into high and low ALI groups, revealed a significantly reduced survival time in the low ALI cohort. Univariate and multivariate Cox analyses identified ALI, BCLC stage, CK19, Hepatitis B virus (HBV) DNA, lymph node metastasis, and microvascular invasion (MVI) as independent predictors of prognosis. Both traditional CPH and ML models incorporating ALI demonstrated excellent predictive accuracy, validated through calibration curves, time-dependent ROC curves, and decision curve analysis. Furthermore, the prognostic value of ALI in digestive tumors was confirmed in the NHANES database.The ALI exhibits potential as a prognostic predictor in patients with HCC following hepatectomy, providing valuable insights into postoperative survival.ConclusionThe ALI exhibits potential as a prognostic predictor in patients with HCC following hepatectomy, providing valuable insights into postoperative survival.
Audience Academic
Author Jiang, Nizhen
Li, Jindu
Lu, Donghong
Feng, Yifei
Yang, Chenglei
Qiu, Xin
Shen, Shuang
Xiang, Bangde
Author_xml – sequence: 1
  givenname: Xin
  surname: Qiu
  fullname: Qiu, Xin
– sequence: 2
  givenname: Shuang
  orcidid: 0000-0002-0845-2533
  surname: Shen
  fullname: Shen, Shuang
– sequence: 3
  givenname: Donghong
  surname: Lu
  fullname: Lu, Donghong
– sequence: 4
  givenname: Nizhen
  orcidid: 0009-0006-1752-0397
  surname: Jiang
  fullname: Jiang, Nizhen
– sequence: 5
  givenname: Yifei
  surname: Feng
  fullname: Feng, Yifei
– sequence: 6
  givenname: Jindu
  surname: Li
  fullname: Li, Jindu
– sequence: 7
  givenname: Chenglei
  surname: Yang
  fullname: Yang, Chenglei
– sequence: 8
  givenname: Bangde
  surname: Xiang
  fullname: Xiang, Bangde
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39104905$$D View this record in MEDLINE/PubMed
BookMark eNptkluLEzEAhYOsuGvdJ99lQBBBWpNJZpI8SSmrWykoXp5DJpc2y0zSzWQW--_NtHVpZZOH3L5zcjsvwYUP3gDwGsFZiQj9-HX5Y_aT1KxE1TNwhRBlUwoxujjpX4Lrvr-DY6GQlOQFuMQcQcJhdQW236PRTiX3YIoba52SalcEW6SNKeb6QXpldLEa_LpYjP1YLL1tZdfJ5ILPA23-FM4Xt2YrU1CmbYdWxsxG5XzoZDG3KYv2y0al0O1egedWtr25PrYT8Pvzza_F7XT17ctyMV9NVUXqNGUVxwgiQiBjuG5YpXRV04byqiEQakkwNdRgi2rTcCMR08rY2tYV01TWtsQTsDz46iDvxDa6TsadCNKJ_USIayFjcqo1IqtxpSzjtGGEE8pZwxRhqsJIE5y3moBPB6_t0HQm7-RTlO2Z6fmKdxuxDg8CoZLzmrDs8P7oEMP9YPokOtePzyW9CUMvMGS8QpiiOqNvD-ha5rM5b0O2VCMu5gzykpU1HanZE1Su2nRO5YxYl-fPBO9OBBsj27TpQzuM_9ifg29OL_t4y3-ZycCHA6Bi6Pto7COCoBhDKXIoxTGUmUb_0cqlfXrygV37pOYvb6Dhmg
CitedBy_id crossref_primary_10_1186_s12876_025_03762_w
Cites_doi 10.1016/j.ijbiomac.2023.129070
10.1111/1759-7714.14646
10.21037/hbsn-23-631
10.5582/bst.2023.01212
10.3389/fonc.2023.1021672
10.1007/s11547-023-01753-z
10.21037/jgo-23-315
10.3945/an.115.009258
10.1038/s41571-023-00848-w
10.1002/1097-0142(19850815)56:4<918::AID-CNCR2820560437>3.0.CO;2-E
10.1002/jcsm.13358
10.3390/ijms242417626
10.1002/tox.24121
10.1111/liv.12818
10.1097/HEP.0000000000000466
10.1055/s-2007-1007122
10.1016/j.clnu.2024.05.039
10.1200/JCO.2002.20.6.1527
10.7150/ijms.88039
10.1096/fj.202001615RRR
10.3322/caac.21763
10.3390/biom13121803
10.1159/000530495
10.1093/bib/bbad487
10.1016/j.ccell.2020.04.005
10.1007/s10147-023-02410-1
10.3389/fonc.2022.936206
10.21873/anticanres.16714
10.1021/acsbiomaterials.3c01744
10.3389/pore.2022.1610315
10.1097/HEP.0000000000000237
10.1159/000531324
10.3389/fonc.2023.997314
10.1016/j.compbiomed.2024.108260
10.3389/fgene.2022.1047326
10.3389/fimmu.2022.808101
10.3389/fonc.2024.1294253
10.1016/j.cell.2011.02.013
10.1200/JCO.2014.57.9151
10.1093/annonc/mdy093
10.1038/s41416-022-01826-2
10.1186/s12885-022-10477-8
10.3892/ol.2023.14024
10.3390/cancers12071986
ContentType Journal Article
Copyright 2024 Qiu et al.
COPYRIGHT 2024 Dove Medical Press Limited
2024 Qiu et al. 2024 Qiu et al.
Copyright_xml – notice: 2024 Qiu et al.
– notice: COPYRIGHT 2024 Dove Medical Press Limited
– notice: 2024 Qiu et al. 2024 Qiu et al.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.2147/JIR.S468215
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Qiu et al
EISSN 1178-7031
EndPage 5210
ExternalDocumentID oai_doaj_org_article_a1835cf897b8494798b8c48c531d43a4
PMC11299648
A809282676
39104905
10_2147_JIR_S468215
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
GroupedDBID ---
0YH
29K
2WC
53G
5VS
7RV
8FE
8FH
8FI
8FJ
8G5
AAYXX
ABUWG
ADBBV
ADRAZ
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BKEYQ
BPHCQ
BVXVI
CCPQU
CITATION
D-I
DIK
DWQXO
E3Z
EBD
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
IHW
IPNFZ
ITC
KQ8
LK8
M2O
M48
M7P
M~E
NAPCQ
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RIG
RNS
RPM
TDBHL
TR2
UKHRP
VDV
NPM
PPXIY
PQGLB
PMFND
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c546t-85931014408836b85cd567b795b400da437e7e3f16eb9ea18dcef6f658d7a6f23
IEDL.DBID M48
ISSN 1178-7031
IngestDate Wed Aug 27 01:25:23 EDT 2025
Thu Aug 21 18:31:59 EDT 2025
Fri Jul 11 08:55:14 EDT 2025
Tue Jun 17 22:04:16 EDT 2025
Tue Jun 10 21:04:18 EDT 2025
Thu May 22 21:23:22 EDT 2025
Mon Jul 21 06:05:18 EDT 2025
Tue Jul 01 03:14:00 EDT 2025
Thu Apr 24 23:06:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords advanced lung cancer inflammatory index
HCC
Cox regression
machine learning
prognosis
ALI
hepatocellular carcinoma
ML
Language English
License https://creativecommons.org/licenses/by-nc/3.0
2024 Qiu et al.
This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-85931014408836b85cd567b795b400da437e7e3f16eb9ea18dcef6f658d7a6f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
ORCID 0000-0002-0845-2533
0009-0006-1752-0397
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2147/JIR.S468215
PMID 39104905
PQID 3089513716
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_a1835cf897b8494798b8c48c531d43a4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11299648
proquest_miscellaneous_3089513716
gale_infotracmisc_A809282676
gale_infotracacademiconefile_A809282676
gale_healthsolutions_A809282676
pubmed_primary_39104905
crossref_primary_10_2147_JIR_S468215
crossref_citationtrail_10_2147_JIR_S468215
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New Zealand
PublicationPlace_xml – name: New Zealand
PublicationTitle Journal of inflammation research
PublicationTitleAlternate J Inflamm Res
PublicationYear 2024
Publisher Dove Medical Press Limited
Dove
Dove Medical Press
Publisher_xml – name: Dove Medical Press Limited
– name: Dove
– name: Dove Medical Press
References Zhou (ref22) 2023; 12
Singal (ref1) 2023; 78
Xie (ref9) 2024; 43
Ruan (ref11) 2023; 14
Jia (ref34) 2023; 24
Duran-Güell (ref39) 2021; 35
Wen (ref17) 2024; 14
ref19
Nindra (ref43) 2022; 13
Johnson (ref23) 2015; 33
Zhang (ref38) 2023; 258
Wang (ref44) 2022; 12
Sonehara (ref12) 2023; 101
Vauthey (ref25) 2002; 20
Zhang (ref29) 2022; 13
Wang (ref33) 2024; 21
Polk (ref45) 2022; 28
Park (ref4) 2015; 35
Liu (ref18) 2023; 26
Llovet (ref21) 1999; 19
Okuda (ref24) 1985; 56
Wu (ref37) 2024; 10
Klobuch (ref42) 2024; 21
Hanahan (ref7) 2011; 144
Almasaudi (ref40) 2020; 12
Shi (ref6) 2024; 172
Liu (ref31) 2023; 25
Huo (ref15) 2023; 14
Cheng (ref16) 2022; 13
Arends (ref26) 2018; 29
Qu (ref30) 2024; 39
Siegel (ref2) 2023; 73
Ladd (ref3) 2023; 79
Li (ref5) 2023; 13
Hu (ref28) 2023; 17
McGovern (ref35) 2022; 127
Tajan (ref36) 2020; 37
Ahluwalia (ref20) 2016; 7
Yang (ref32) 2024
Gavriilidis (ref8) 2024; 13
Zhang (ref14) 2023; 28
Pang (ref27) 2023; 13
Asaka (ref10) 2023; 43
Huang (ref13) 2022; 22
Mosca (ref41) 2023; 13
References_xml – volume: 258
  start-page: 129070
  year: 2023
  ident: ref38
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2023.129070
– volume: 13
  start-page: 3058
  year: 2022
  ident: ref43
  publication-title: Thoracic Cancer
  doi: 10.1111/1759-7714.14646
– volume: 13
  start-page: 509
  year: 2024
  ident: ref8
  publication-title: Hepatobiliary Surg Nutr
  doi: 10.21037/hbsn-23-631
– volume: 17
  start-page: 369
  year: 2023
  ident: ref28
  publication-title: Biosci Trends
  doi: 10.5582/bst.2023.01212
– volume: 13
  start-page: 1021672
  year: 2023
  ident: ref27
  publication-title: Front Oncol
  doi: 10.3389/fonc.2023.1021672
– year: 2024
  ident: ref32
  publication-title: La Radiol Med
  doi: 10.1007/s11547-023-01753-z
– volume: 14
  start-page: 1653
  year: 2023
  ident: ref15
  publication-title: J Gastrointest Oncol
  doi: 10.21037/jgo-23-315
– volume: 7
  start-page: 121
  year: 2016
  ident: ref20
  publication-title: Adv Nutr
  doi: 10.3945/an.115.009258
– volume: 21
  start-page: 173
  year: 2024
  ident: ref42
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/s41571-023-00848-w
– volume: 56
  start-page: 918
  year: 1985
  ident: ref24
  publication-title: Cancer
  doi: 10.1002/1097-0142(19850815)56:4<918::AID-CNCR2820560437>3.0.CO;2-E
– volume: 14
  start-page: 2813
  year: 2023
  ident: ref11
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.13358
– volume: 24
  start-page: 17626
  year: 2023
  ident: ref34
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms242417626
– volume: 39
  start-page: 2512
  year: 2024
  ident: ref30
  publication-title: Environ Toxicol
  doi: 10.1002/tox.24121
– volume: 35
  start-page: 2155
  year: 2015
  ident: ref4
  publication-title: Liver Int
  doi: 10.1111/liv.12818
– volume: 78
  start-page: 1922
  year: 2023
  ident: ref1
  publication-title: Hepatology
  doi: 10.1097/HEP.0000000000000466
– ident: ref19
– volume: 19
  start-page: 329
  year: 1999
  ident: ref21
  publication-title: Semin Liver Disease
  doi: 10.1055/s-2007-1007122
– volume: 43
  start-page: 1791
  year: 2024
  ident: ref9
  publication-title: Clin Nutr
  doi: 10.1016/j.clnu.2024.05.039
– volume: 20
  start-page: 1527
  year: 2002
  ident: ref25
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2002.20.6.1527
– volume: 21
  start-page: 207
  year: 2024
  ident: ref33
  publication-title: Int J Med Sci
  doi: 10.7150/ijms.88039
– volume: 35
  start-page: e21365
  year: 2021
  ident: ref39
  publication-title: FASEB J
  doi: 10.1096/fj.202001615RRR
– volume: 73
  start-page: 17
  year: 2023
  ident: ref2
  publication-title: CA
  doi: 10.3322/caac.21763
– volume: 13
  start-page: 1803
  year: 2023
  ident: ref41
  publication-title: Biomolecules
  doi: 10.3390/biom13121803
– volume: 12
  start-page: 405
  year: 2023
  ident: ref22
  publication-title: Liver Cancer
  doi: 10.1159/000530495
– volume: 25
  year: 2023
  ident: ref31
  publication-title: Briefings Bioinf
  doi: 10.1093/bib/bbad487
– volume: 37
  start-page: 767
  year: 2020
  ident: ref36
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.04.005
– volume: 28
  start-page: 1616
  year: 2023
  ident: ref14
  publication-title: Int J Clin Oncol
  doi: 10.1007/s10147-023-02410-1
– volume: 12
  start-page: 936206
  year: 2022
  ident: ref44
  publication-title: Front Oncol
  doi: 10.3389/fonc.2022.936206
– volume: 43
  start-page: 5139
  year: 2023
  ident: ref10
  publication-title: Anticancer Res
  doi: 10.21873/anticanres.16714
– volume: 10
  start-page: 743
  year: 2024
  ident: ref37
  publication-title: ACS Biomater Sci Eng
  doi: 10.1021/acsbiomaterials.3c01744
– volume: 28
  start-page: 1610315
  year: 2022
  ident: ref45
  publication-title: Pathol Oncol Res
  doi: 10.3389/pore.2022.1610315
– volume: 79
  start-page: 926
  year: 2023
  ident: ref3
  publication-title: Hepatology
  doi: 10.1097/HEP.0000000000000237
– volume: 101
  start-page: 425
  year: 2023
  ident: ref12
  publication-title: Oncology
  doi: 10.1159/000531324
– volume: 13
  start-page: 997314
  year: 2023
  ident: ref5
  publication-title: Front Oncol
  doi: 10.3389/fonc.2023.997314
– volume: 172
  start-page: 108260
  year: 2024
  ident: ref6
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2024.108260
– volume: 13
  start-page: 1047326
  year: 2022
  ident: ref16
  publication-title: Front Genetics
  doi: 10.3389/fgene.2022.1047326
– volume: 13
  start-page: 808101
  year: 2022
  ident: ref29
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.808101
– volume: 14
  start-page: 1294253
  year: 2024
  ident: ref17
  publication-title: Front Oncol
  doi: 10.3389/fonc.2024.1294253
– volume: 144
  start-page: 646
  year: 2011
  ident: ref7
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 33
  start-page: 550
  year: 2015
  ident: ref23
  publication-title: J clin oncol
  doi: 10.1200/JCO.2014.57.9151
– volume: 29
  start-page: ii27
  year: 2018
  ident: ref26
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdy093
– volume: 127
  start-page: 379
  year: 2022
  ident: ref35
  publication-title: Br J Cancer
  doi: 10.1038/s41416-022-01826-2
– volume: 22
  start-page: 1370
  year: 2022
  ident: ref13
  publication-title: BMC Cancer
  doi: 10.1186/s12885-022-10477-8
– volume: 26
  start-page: 437
  year: 2023
  ident: ref18
  publication-title: Oncol Lett
  doi: 10.3892/ol.2023.14024
– volume: 12
  start-page: 1986
  year: 2020
  ident: ref40
  publication-title: Cancers
  doi: 10.3390/cancers12071986
SSID ssj0000070424
Score 2.3289356
Snippet Hepatocellular carcinoma (HCC) presents a significant global health challenge due to its poor prognosis and high recurrence rates post-surgery. This study...
Background: Hepatocellular carcinoma (HCC) presents a significant global health challenge due to its poor prognosis and high recurrence rates post-surgery....
Xin Qiu,1,2,* Shuang Shen,1,* Donghong Lu,2 Nizhen Jiang,3 Yifei Feng,3 Jindu Li,1 Chenglei Yang,1 Bangde Xiang1,4,5 1Department of Hepatobiliary Surgery,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5197
SubjectTerms advanced lung cancer inflammatory index
ali
Cancer
cox regression
Development and progression
Gastrointestinal diseases
hcc
Health surveys
hepatocellular carcinoma
Hepatoma
Inflammation
Lung cancer
Machine learning
Medical colleges
Metastasis
Oncology, Experimental
Original Research
Prognosis
World health
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bSxtBFB6KD6UvorXVrdaOIBQKq0lmdmb2MUokShXRBnwb5rYYaHZDjKD_vufsrGGXCr74tps5hD23mW9u3yHkEJCQ6VtrUm-cSHnf9lIlXJZaG_oquMB9vZhzeSXGE35xl921Sn3hmbBIDxwNd2wg5jJXqFxaxXMuc2WV48pB7HjOTM0ECmNeazIVga_EPb14IQ9L8RxfnN8c3XKhBlgAtzUE1Uz9__fHrQGpe1iyNfqcbZD1BjbSYfzcTfIhlJ_Jx8tmY3yLzK8X-Ix9Fx0hK4Rxz7QqKMA7Omy2-elvSGx6is8Lel4WEAvx3iK8-PBEpyUdw-C0rHAxH0-nguwC_r6aGTrEUuKxGZf5Z89fyORs9Od0nDbFFFKXcbFMkdcM6_Jy6FaYsCpzPhPSyjyzkMbecCaDDKzoi2DzAFYHhQtRAEDx0ohiwL6StbIqww6hwgcwecbZgBU8MG8AIxjFDWMCN1pdQn692Fe7hmkcC1781TDjQGdocIZunJGQw5XwPBJsvC52go5aiSArdv0DxIpuYkW_FSsJ-YFu1vGK6Sq39VD1cph6CikS8rOWwOyGTwZnxUsKoDjyZHUk9zqSkJWu03zwEkoam_AoWxmqxwfNegpQLYN5akK2Y2ittGIA3njeA21VJ-g6andbyul9TQqOuDkXXH17D0Ptkk8DAG9xqWmPrC0Xj-E7gK-l3a_z7B-cuytz
  priority: 102
  providerName: Directory of Open Access Journals
Title Predictive Efficacy of the Advanced Lung Cancer Inflammation Index in Hepatocellular Carcinoma After Hepatectomy
URI https://www.ncbi.nlm.nih.gov/pubmed/39104905
https://www.proquest.com/docview/3089513716
https://pubmed.ncbi.nlm.nih.gov/PMC11299648
https://doaj.org/article/a1835cf897b8494798b8c48c531d43a4
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1ba9swFBalhdKXse7qrcs0KAwG7uJIluSHMdKSLi1LKd0CeROSLG-F1u7cFJp_33MsJ8Rb9xKc6MRYPrdP0rkQsg9IyCTWmjg3TsQ8sf1YCZfG1vpEeed53mzmTM7EeMpPZ-lsgyybcbYv8PbRpR32k5rWVwf3fxZfQeG_YBhzwuXn05OLgx9cqAEmm2-BS5LYw2HS4vyAgyUe8YVGKyrGmu0hV-_v_--QbQYOlGfYzm7NUTX1_P-12mtuqxtSueajjp-SJy24pMMgDbtkw5fPyPakPT5_Tm7Oa7xGC0dHWDvCuAWtCgogkA7bYAD6HdSfHuF1TU_KAiQmZDfCl9zf08uSjsGFzSvc8scYVqCt4fbVtaFDbDgehvEw4HrxgkyPRz-PxnHbciF2KRfzGKufYfdeDsaHCatSl6dCWpmlFpQ9N5xJLz0rEuFt5k2iYMKFKADG5NKIYsBeks2yKv1rQkXuB4DfOBuwgnuWG0ASRnHDmMDjWBeRT8v3q11bjxzbYlxpWJcgXzTwRbd8icj-ivgmlOF4nOwQGbUiwdrZzQ9V_Uu3qqjhqVnqCpVJq3jGZaasclw5sEY5Z4ZH5D2yWYdE1JUF0EPVz2CBKqSIyMeGAqUSHhmYFVIZYOJYTatDudehBN11neEPS1HSOIQBb6Wv7m416yvAvgxWsxF5FURrNaulhEZEdYSuM-3uSHn5uykdjug6E1y9-e9N35KdAeC2sMu0Rzbn9Z1_B7hrbntk63B0dn7Ra_Yt4PPbLOk1evYAhOsq6w
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Efficacy+of+the+Advanced+Lung+Cancer+Inflammation+Index+in+Hepatocellular+Carcinoma+After+Hepatectomy&rft.jtitle=Journal+of+inflammation+research&rft.au=Qiu%2C+Xin&rft.au=Shen%2C+Shuang&rft.au=Lu%2C+Donghong&rft.au=Jiang%2C+Nizhen&rft.date=2024-01-01&rft.issn=1178-7031&rft.eissn=1178-7031&rft.volume=17&rft.spage=5197&rft_id=info:doi/10.2147%2FJIR.S468215&rft_id=info%3Apmid%2F39104905&rft.externalDocID=39104905
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1178-7031&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1178-7031&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1178-7031&client=summon