Sensitivity of Arctic sulfate aerosol and clouds to changes in future surface seawater dimethylsulfide concentrations

Dimethylsulfide (DMS), outgassed from ocean waters, plays an important role in the climate system, as it oxidizes to methane sulfonic acid (MSA) and sulfur dioxide (SO2), which can lead to the formation of sulfate aerosol. Newly formed sulfate aerosol resulting from DMS oxidation may grow by condens...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 19; no. 9; pp. 6419 - 6435
Main Authors Mahmood, Rashed, von Salzen, Knut, Norman, Ann-Lise, Gali, Marti, Levasseur, Maurice
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 16.05.2019
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dimethylsulfide (DMS), outgassed from ocean waters, plays an important role in the climate system, as it oxidizes to methane sulfonic acid (MSA) and sulfur dioxide (SO2), which can lead to the formation of sulfate aerosol. Newly formed sulfate aerosol resulting from DMS oxidation may grow by condensation of gases, in-cloud oxidation, and coagulation to sizes where they may act as cloud condensation nuclei (CCN) and influence cloud properties. Under future global warming conditions, sea ice in the Arctic region is expected to decline significantly, which may lead to increased emissions of DMS from the open ocean and changes in cloud regimes. In this study we evaluate impacts of DMS on Arctic sulfate aerosol budget, changes in cloud droplet number concentration (CDNC), and cloud radiative forcing in the Arctic region under current and future sea ice conditions using an atmospheric global climate model. Given that future DMS concentrations are highly uncertain, several simulations with different surface seawater DMS concentrations and spatial distributions in the Arctic were performed in order to determine the sensitivity of sulfate aerosol budgets, CDNC, and cloud radiative forcing to Arctic surface seawater DMS concentrations. For any given amount and distribution of Arctic surface seawater DMS, similar amounts of sulfate are produced by oxidation of DMS in 2000 and 2050 despite large increases in DMS emission in the latter period due to sea ice retreat in the simulations. This relatively low sensitivity of sulfate burden is related to enhanced sulfate wet removal by precipitation in 2050. However simulated aerosol nucleation rates are higher in 2050, which results in an overall increase in CDNC and substantially more negative cloud radiative forcing. Thus potential future reductions in sea ice extent may cause cloud albedos to increase, resulting in a negative climate feedback on radiative forcing in the Arctic associated with ocean DMS emissions.
AbstractList Dimethylsulfide (DMS), outgassed from ocean waters, plays an important role in the climate system, as it oxidizes to methane sulfonic acid (MSA) and sulfur dioxide ( SO2 ), which can lead to the formation of sulfate aerosol. Newly formed sulfate aerosol resulting from DMS oxidation may grow by condensation of gases, in-cloud oxidation, and coagulation to sizes where they may act as cloud condensation nuclei (CCN) and influence cloud properties. Under future global warming conditions, sea ice in the Arctic region is expected to decline significantly, which may lead to increased emissions of DMS from the open ocean and changes in cloud regimes. In this study we evaluate impacts of DMS on Arctic sulfate aerosol budget, changes in cloud droplet number concentration (CDNC), and cloud radiative forcing in the Arctic region under current and future sea ice conditions using an atmospheric global climate model. Given that future DMS concentrations are highly uncertain, several simulations with different surface seawater DMS concentrations and spatial distributions in the Arctic were performed in order to determine the sensitivity of sulfate aerosol budgets, CDNC, and cloud radiative forcing to Arctic surface seawater DMS concentrations. For any given amount and distribution of Arctic surface seawater DMS, similar amounts of sulfate are produced by oxidation of DMS in 2000 and 2050 despite large increases in DMS emission in the latter period due to sea ice retreat in the simulations. This relatively low sensitivity of sulfate burden is related to enhanced sulfate wet removal by precipitation in 2050. However simulated aerosol nucleation rates are higher in 2050, which results in an overall increase in CDNC and substantially more negative cloud radiative forcing. Thus potential future reductions in sea ice extent may cause cloud albedos to increase, resulting in a negative climate feedback on radiative forcing in the Arctic associated with ocean DMS emissions.
Dimethylsulfide (DMS), outgassed from ocean waters, plays an important role in the climate system, as it oxidizes to methane sulfonic acid (MSA) and sulfur dioxide (SO2), which can lead to the formation of sulfate aerosol. Newly formed sulfate aerosol resulting from DMS oxidation may grow by condensation of gases, in-cloud oxidation, and coagulation to sizes where they may act as cloud condensation nuclei (CCN) and influence cloud properties. Under future global warming conditions, sea ice in the Arctic region is expected to decline significantly, which may lead to increased emissions of DMS from the open ocean and changes in cloud regimes. In this study we evaluate impacts of DMS on Arctic sulfate aerosol budget, changes in cloud droplet number concentration (CDNC), and cloud radiative forcing in the Arctic region under current and future sea ice conditions using an atmospheric global climate model. Given that future DMS concentrations are highly uncertain, several simulations with different surface seawater DMS concentrations and spatial distributions in the Arctic were performed in order to determine the sensitivity of sulfate aerosol budgets, CDNC, and cloud radiative forcing to Arctic surface seawater DMS concentrations. For any given amount and distribution of Arctic surface seawater DMS, similar amounts of sulfate are produced by oxidation of DMS in 2000 and 2050 despite large increases in DMS emission in the latter period due to sea ice retreat in the simulations. This relatively low sensitivity of sulfate burden is related to enhanced sulfate wet removal by precipitation in 2050. However simulated aerosol nucleation rates are higher in 2050, which results in an overall increase in CDNC and substantially more negative cloud radiative forcing. Thus potential future reductions in sea ice extent may cause cloud albedos to increase, resulting in a negative climate feedback on radiative forcing in the Arctic associated with ocean DMS emissions.
Dimethylsulfide (DMS), outgassed from ocean waters, plays an important role in the climate system, as it oxidizes to methane sulfonic acid (MSA) and sulfur dioxide (SO2), which can lead to the formation of sulfate aerosol. Newly formed sulfate aerosol resulting from DMS oxidation may grow by condensation of gases, in-cloud oxidation, and coagulation to sizes where they may act as cloud condensation nuclei (CCN) and influence cloud properties. Under future global warming conditions, sea ice in the Arctic region is expected to decline significantly, which may lead to increased emissions of DMS from the open ocean and changes in cloud regimes. In this study we evaluate impacts of DMS on Arctic sulfate aerosol budget, changes in cloud droplet number concentration (CDNC), and cloud radiative forcing in the Arctic region under current and future sea ice conditions using an atmospheric global climate model. Given that future DMS concentrations are highly uncertain, several simulations with different surface seawater DMS concentrations and spatial distributions in the Arctic were performed in order to determine the sensitivity of sulfate aerosol budgets, CDNC, and cloud radiative forcing to Arctic surface seawater DMS concentrations. For any given amount and distribution of Arctic surface seawater DMS, similar amounts of sulfate are produced by oxidation of DMS in 2000 and 2050 despite large increases in DMS emission in the latter period due to sea ice retreat in the simulations. This relatively low sensitivity of sulfate burden is related to enhanced sulfate wet removal by precipitation in 2050. However simulated aerosol nucleation rates are higher in 2050, which results in an overall increase in CDNC and substantially more negative cloud radiative forcing. Thus potential future reductions in sea ice extent may cause cloud albedos to increase, resulting in a negative climate feedback on radiative forcing in the Arctic associated with ocean DMS emissions.
Dimethylsulfide (DMS), outgassed from ocean waters, plays an important role in the climate system, as it oxidizes to methane sulfonic acid (MSA) and sulfur dioxide (SO.sub.2 ), which can lead to the formation of sulfate aerosol. Newly formed sulfate aerosol resulting from DMS oxidation may grow by condensation of gases, in-cloud oxidation, and coagulation to sizes where they may act as cloud condensation nuclei (CCN) and influence cloud properties. Under future global warming conditions, sea ice in the Arctic region is expected to decline significantly, which may lead to increased emissions of DMS from the open ocean and changes in cloud regimes. In this study we evaluate impacts of DMS on Arctic sulfate aerosol budget, changes in cloud droplet number concentration (CDNC), and cloud radiative forcing in the Arctic region under current and future sea ice conditions using an atmospheric global climate model. Given that future DMS concentrations are highly uncertain, several simulations with different surface seawater DMS concentrations and spatial distributions in the Arctic were performed in order to determine the sensitivity of sulfate aerosol budgets, CDNC, and cloud radiative forcing to Arctic surface seawater DMS concentrations. For any given amount and distribution of Arctic surface seawater DMS, similar amounts of sulfate are produced by oxidation of DMS in 2000 and 2050 despite large increases in DMS emission in the latter period due to sea ice retreat in the simulations. This relatively low sensitivity of sulfate burden is related to enhanced sulfate wet removal by precipitation in 2050. However simulated aerosol nucleation rates are higher in 2050, which results in an overall increase in CDNC and substantially more negative cloud radiative forcing. Thus potential future reductions in sea ice extent may cause cloud albedos to increase, resulting in a negative climate feedback on radiative forcing in the Arctic associated with ocean DMS emissions.
Audience Academic
Author Norman, Ann-Lise
Mahmood, Rashed
von Salzen, Knut
Gali, Marti
Levasseur, Maurice
Author_xml – sequence: 1
  fullname: Mahmood, Rashed
– sequence: 2
  fullname: von Salzen, Knut
– sequence: 3
  fullname: Norman, Ann-Lise
– sequence: 4
  fullname: Gali, Marti
– sequence: 5
  fullname: Levasseur, Maurice
BookMark eNptkk2LFDEQhhtZwd3Vu8eAJw-9m6pO0p3jsPgxsLDg6jmk08lshp5kTNLq_HszjqgDEkgVxVMvVcl71VyEGGzTvAZ6w0GyW232LchWsHohBfmsuQQx0LbvkF38k79ornLeUoqcArtslkcbsi_-my8HEh1ZJVO8IXmZnS6WaJtijjPRYSJmjsuUSYnEPOmwsZn4QNxSlmQrn5w2NVr9vfYlMvmdLU-H-SjkJ0tMDMaGknTxMeSXzXOn52xf_Y7XzZf37z7ffWzvHz6s71b3reFMlFYI5Ej5AIyOfOqp6IAj6qHTTFonAUY044CaCYlsFFwMcuBypCidG8au666b9Ul3inqr9snvdDqoqL36VYhpo3Sq-85WoTFApeQ9dz3DgeoOAYE5PiIIAVC13py09il-XWwuahuXFOr4ChF5nRKh_0ttdBX1wcW6s9n5bNSKD3VCoMArdfMfqp7J7nx9Kut8rZ81vD1rqEyxP8pGLzmr9eOnc5aeWFP_Lifr_iwOVB29oqpXFEh19Io6eqX7CeTosLA
CitedBy_id crossref_primary_10_1007_s00376_023_2329_x
crossref_primary_10_1016_j_scitotenv_2021_145054
crossref_primary_10_3390_atmos12010122
crossref_primary_10_5194_bg_19_5021_2022
crossref_primary_10_7717_peerj_10023
crossref_primary_10_5194_bg_19_1021_2022
crossref_primary_10_1029_2020GL091334
crossref_primary_10_1029_2022JD036880
crossref_primary_10_1039_C9EM00195F
crossref_primary_10_5194_acp_22_3067_2022
crossref_primary_10_1029_2022JD037271
crossref_primary_10_1073_pnas_1904378116
crossref_primary_10_5194_acp_21_1889_2021
crossref_primary_10_5194_bg_18_3823_2021
crossref_primary_10_5194_acp_21_10413_2021
crossref_primary_10_1029_2021JD034962
crossref_primary_10_5194_essd_16_2717_2024
crossref_primary_10_5194_acp_22_5775_2022
crossref_primary_10_1029_2020JD033291
crossref_primary_10_5194_bg_17_1557_2020
crossref_primary_10_5194_acp_19_14455_2019
crossref_primary_10_1016_j_earscirev_2021_103753
crossref_primary_10_1029_2020GB006796
crossref_primary_10_1016_j_atmosenv_2023_119618
crossref_primary_10_1525_elementa_2020_00113
crossref_primary_10_1038_s43247_022_00661_w
Cites_doi 10.5194/acp-15-9413-2015
10.1002/2013JC009425
10.1111/j.1600-0889.2005.00163.x
10.1029/2000JD900027
10.5194/acp-16-10847-2016
10.1029/JC092iC02p01937
10.1029/2012GL053738
10.1038/ngeo2071
10.5194/acp-11-3459-2011
10.5194/acp-16-11107-2016
10.1038/ngeo3003
10.1029/2006GL027028
10.5194/acp-14-7543-2014
10.1080/07055900.2012.755610
10.5194/acp-6-1351-2006
10.1038/326655a0
10.1016/S1352-2310(00)00326-5
10.1029/97JD03718
10.3402/polar.v34.23349
10.1038/nclimate3069
10.1111/j.1600-0889.1985.tb00075.x
10.1002/2015JC011167
10.12952/journal.elementa.000017
10.1029/98JD02397
10.1016/j.marchem.2010.07.003
10.5194/acp-10-9851-2010
10.1029/97JD02987
10.1002/2013JD020511
10.5194/acp-16-6665-2016
10.1038/nature08823
10.5194/acp-16-5191-2016
10.5194/acp-10-7425-2010
10.1525/elementa.331
10.1029/JC088iC01p00707
10.1038/nature10580
10.1029/2010JD014150
10.1029/2000JD900252
10.1029/2011JD017074
10.5194/acp-18-10177-2018
10.5194/bg-15-3169-2018
10.1016/j.gloplacha.2015.11.005
10.1038/ngeo1910
10.5194/acp-17-13119-2017
10.1016/j.ecolind.2015.10.001
10.1071/EN14255
10.1029/2004JD004922
10.1146/annurev.marine.010908.163742
10.5194/acp-10-7545-2010
10.5194/acp-16-7663-2016
10.1038/s41598-017-03328-1
10.1029/2001GB001829
10.1029/2012GL052676
10.1073/pnas.1904378116
10.1175/JCLI-D-12-00823.1
10.1029/1999JD900078
10.5194/bg-14-3129-2017
10.1002/gbc.20055
10.1007/s10533-007-9091-5
10.1007/s10584-016-1772-4
10.1038/nclimate1981
10.1002/2015GL065504
10.1016/S0169-5347(01)02152-8
10.1063/1.882420
10.5194/bg-15-3497-2018
10.1002/2016JD024849
10.5194/acp-12-6891-2012
10.1007/978-94-017-1660-4_45
10.1029/2012JD018588
10.1093/plankt/fbt110
10.1029/2008GL035028
10.5194/acp-10-7017-2010
10.1038/nature08281
10.1175/1520-0442(2004)017<3661:OTUOCF>2.0.CO;2
10.1029/1999GB900091
10.1034/j.1600-0889.2003.042.x
10.5194/acp-8-1311-2008
10.5670/oceanog.2011.65
10.1016/j.pocean.2015.05.002
10.5194/bg-14-3633-2017
10.5194/acp-19-2527-2019
10.1029/97JD01810
10.1016/0016-7037(94)90277-1
10.1029/2010GB003850
10.5194/acp-17-5515-2017
10.1038/srep13055
10.1063/1.460261
ContentType Journal Article
Copyright COPYRIGHT 2019 Copernicus GmbH
2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2019 Copernicus GmbH
– notice: 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.5194/acp-19-6419-2019
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 6435
ExternalDocumentID oai_doaj_org_article_2cc1099575f74280a321214f5b216611
A585681015
10_5194_acp_19_6419_2019
GeographicLocations Arctic
Arctic region
GeographicLocations_xml – name: Arctic
– name: Arctic region
GroupedDBID 23N
2WC
3V.
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BBORY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
K6-
KQ8
M~E
OK1
P2P
P62
PATMY
PCBAR
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c546t-66252058140b5d70631522a83a49ef911b2cb82a46924b65689859b029ff8b333
IEDL.DBID DOA
ISSN 1680-7324
1680-7316
IngestDate Tue Oct 22 15:16:36 EDT 2024
Thu Oct 10 20:49:41 EDT 2024
Thu Feb 22 23:55:15 EST 2024
Wed Oct 25 09:01:08 EDT 2023
Thu Aug 01 19:04:16 EDT 2024
Fri Aug 23 00:42:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-66252058140b5d70631522a83a49ef911b2cb82a46924b65689859b029ff8b333
ORCID 0000-0002-5587-1271
0000-0002-2991-6181
0000-0002-3583-2232
OpenAccessLink https://doaj.org/article/2cc1099575f74280a321214f5b216611
PQID 2225581217
PQPubID 105744
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_2cc1099575f74280a321214f5b216611
proquest_journals_2225581217
gale_infotracmisc_A585681015
gale_infotracacademiconefile_A585681015
gale_incontextgauss_ISR_A585681015
crossref_primary_10_5194_acp_19_6419_2019
PublicationCentury 2000
PublicationDate 2019-05-16
PublicationDateYYYYMMDD 2019-05-16
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-16
  day: 16
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2019
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref91
ref90
ref46
ref45
ref89
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref17
  doi: 10.5194/acp-15-9413-2015
– ident: ref45
  doi: 10.1002/2013JC009425
– ident: ref20
  doi: 10.1111/j.1600-0889.2005.00163.x
– ident: ref82
  doi: 10.1029/2000JD900027
– ident: ref78
  doi: 10.5194/acp-16-10847-2016
– ident: ref31
  doi: 10.1029/JC092iC02p01937
– ident: ref43
– ident: ref52
  doi: 10.1029/2012GL053738
– ident: ref58
  doi: 10.1038/ngeo2071
– ident: ref76
  doi: 10.5194/acp-11-3459-2011
– ident: ref39
  doi: 10.5194/acp-16-11107-2016
– ident: ref60
  doi: 10.1038/ngeo3003
– ident: ref7
  doi: 10.1029/2006GL027028
– ident: ref11
  doi: 10.5194/acp-14-7543-2014
– ident: ref83
  doi: 10.1080/07055900.2012.755610
– ident: ref81
  doi: 10.5194/acp-6-1351-2006
– ident: ref13
  doi: 10.1038/326655a0
– ident: ref90
  doi: 10.1016/S1352-2310(00)00326-5
– ident: ref35
  doi: 10.1029/97JD03718
– ident: ref55
  doi: 10.3402/polar.v34.23349
– ident: ref67
  doi: 10.1038/nclimate3069
– ident: ref46
  doi: 10.1111/j.1600-0889.1985.tb00075.x
– ident: ref89
  doi: 10.1002/2015JC011167
– ident: ref38
  doi: 10.12952/journal.elementa.000017
– ident: ref10
  doi: 10.1029/98JD02397
– ident: ref22
  doi: 10.1016/j.marchem.2010.07.003
– ident: ref42
  doi: 10.5194/acp-10-9851-2010
– ident: ref34
– ident: ref14
  doi: 10.1029/97JD02987
– ident: ref2
– ident: ref18
  doi: 10.1002/2013JD020511
– ident: ref50
  doi: 10.5194/acp-16-6665-2016
– ident: ref49
  doi: 10.1038/nature08823
– ident: ref25
  doi: 10.5194/acp-16-5191-2016
– ident: ref79
  doi: 10.5194/acp-10-7425-2010
– ident: ref51
  doi: 10.1525/elementa.331
– ident: ref47
  doi: 10.1029/JC088iC01p00707
– ident: ref59
  doi: 10.1038/nature10580
– ident: ref91
  doi: 10.1029/2010JD014150
– ident: ref32
  doi: 10.1029/2000JD900252
– ident: ref66
  doi: 10.1029/2011JD017074
– ident: ref19
  doi: 10.5194/acp-18-10177-2018
– ident: ref27
  doi: 10.5194/bg-15-3169-2018
– ident: ref29
  doi: 10.1016/j.gloplacha.2015.11.005
– ident: ref40
  doi: 10.1038/ngeo1910
– ident: ref3
– ident: ref15
  doi: 10.5194/acp-17-13119-2017
– ident: ref72
  doi: 10.1016/j.ecolind.2015.10.001
– ident: ref77
  doi: 10.1071/EN14255
– ident: ref56
  doi: 10.1029/2004JD004922
– ident: ref84
  doi: 10.1146/annurev.marine.010908.163742
– ident: ref87
  doi: 10.5194/acp-10-7545-2010
– ident: ref85
  doi: 10.5194/acp-16-7663-2016
– ident: ref16
  doi: 10.1038/s41598-017-03328-1
– ident: ref69
  doi: 10.1029/2001GB001829
– ident: ref75
  doi: 10.1029/2012GL052676
– ident: ref24
  doi: 10.1073/pnas.1904378116
– ident: ref63
  doi: 10.1175/JCLI-D-12-00823.1
– ident: ref54
  doi: 10.1029/1999JD900078
– ident: ref30
  doi: 10.5194/bg-14-3129-2017
– ident: ref80
  doi: 10.1002/gbc.20055
– ident: ref73
  doi: 10.1007/s10533-007-9091-5
– ident: ref62
  doi: 10.1007/s10584-016-1772-4
– ident: ref70
  doi: 10.1038/nclimate1981
– ident: ref21
  doi: 10.1002/2015GL065504
– ident: ref68
  doi: 10.1016/S0169-5347(01)02152-8
– ident: ref65
  doi: 10.1063/1.882420
– ident: ref23
  doi: 10.5194/bg-15-3497-2018
– ident: ref44
  doi: 10.1002/2016JD024849
– ident: ref57
  doi: 10.5194/acp-12-6891-2012
– ident: ref48
  doi: 10.1007/978-94-017-1660-4_45
– ident: ref4
– ident: ref33
  doi: 10.1029/2012JD018588
– ident: ref86
  doi: 10.1093/plankt/fbt110
– ident: ref6
  doi: 10.1029/2008GL035028
– ident: ref36
  doi: 10.5194/acp-10-7017-2010
– ident: ref74
  doi: 10.1038/nature08281
– ident: ref71
  doi: 10.1175/1520-0442(2004)017<3661:OTUOCF>2.0.CO;2
– ident: ref53
  doi: 10.1029/1999GB900091
– ident: ref9
  doi: 10.1034/j.1600-0889.2003.042.x
– ident: ref41
  doi: 10.5194/acp-8-1311-2008
– ident: ref61
  doi: 10.5670/oceanog.2011.65
– ident: ref5
  doi: 10.1016/j.pocean.2015.05.002
– ident: ref64
  doi: 10.5194/bg-14-3633-2017
– ident: ref1
  doi: 10.5194/acp-19-2527-2019
– ident: ref26
  doi: 10.1029/97JD01810
– ident: ref8
  doi: 10.1016/0016-7037(94)90277-1
– ident: ref37
  doi: 10.1029/2010GB003850
– ident: ref12
  doi: 10.5194/acp-17-5515-2017
– ident: ref28
  doi: 10.1038/srep13055
– ident: ref88
  doi: 10.1063/1.460261
SSID ssj0025014
Score 2.4660363
Snippet Dimethylsulfide (DMS), outgassed from ocean waters, plays an important role in the climate system, as it oxidizes to methane sulfonic acid (MSA) and sulfur...
Dimethylsulfide (DMS), outgassed from ocean waters, plays an important role in the climate system, as it oxidizes to methane sulfonic acid (MSA) and sulfur...
Dimethylsulfide (DMS), outgassed from ocean waters, plays an important role in the climate system, as it oxidizes to methane sulfonic acid (MSA) and sulfur...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 6419
SubjectTerms Aerosol effects
Aerosol nucleation
Aerosols
Albedo
Analysis
Arctic aerosols
Arctic clouds
Arctic sea ice
Arctic zone
Budgets
Climate
Climate change
Climate models
Climate system
Cloud condensation nuclei
Cloud droplet concentration
Cloud properties
Clouds
Clouds (Meteorology)
Coagulation
Composition
Computer simulation
Condensation
Condensation nuclei
Dimethyl sulfide
Emissions
Environmental aspects
Gases
Global climate
Global climate models
Global temperature changes
Global warming
Ice
Ice conditions
Ice environments
Methane
Nucleation
Ocean-atmosphere interaction
Oceans
Oxidation
Oxidation-reduction reactions
Polar environments
Precipitation
Precipitation (Meteorology)
Radiative forcing
Sea ice
Sea ice conditions
Seawater
Sensitivity
Spatial distribution
Sulfates
Sulfides
Sulfonic acid
Sulfur
Sulfur compounds
Sulfur dioxide
Sulphur
Sulphur dioxide
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBVtcuml9JM6TYsopaUHEVuWtdKpJCEhLSSUpIHchCRLYcHYW3tNyb_PjK1Nu4f24sXr8bLWyDNvNJo3hHysJXjlqAqmPUQ6wrvAtA6aVTJIG4NWYYHVyOcX8uxafL-pbtKC25C2VW5s4mSo687jGvkBxiUVeKNi8XX1i2HXKMyuphYaj8kuLwSmaXePTi5-XD6EXJg1w5BLqpxhj6Y5UQmoRRxYv2KFZlLAgU9MO385pom__19WenI9p8_I04QZ6eGs5OfkUWhfkOwc4G7XT6vi9BM9bpaAPaezl2S8wm3pc18I2kW4Eyuh6DA2EaAltQH-QddQ29bUN91YD3Td0bkEeKDLls5EIyDfR-vhM9jfcF9P6yU2nL5r8IeWdaAeax7bRLw7vCLXpyc_j89Y6q_AfCXkmkmIfXheIeeVq-oFgBVw5tyq0godIlhBx71T3EIEzYUD4Ke0qrTLuY5RubIsX5OdtmvDG0JdXZYgHPgi5qLG_opSqIrH3OURAJnPyJfN4JrVTKNhIPxARRhQhCm0QUUYVERGjnD0H-SQAHv6outvTXqfDPcec3oANiME9yq3JfjgQsTK8QIgR5GRD6g7gxQXLe6hubXjMJhvV5fmECIkZGErqox8TkKxg7HyNpUkwDMhK9aW5P6WJLyDfvvyZoqYZAMG82fG7v3_8lvyBJ8b9yQUcp_srPsxvAOos3bv03y-B_AX-0s
  priority: 102
  providerName: ProQuest
Title Sensitivity of Arctic sulfate aerosol and clouds to changes in future surface seawater dimethylsulfide concentrations
URI https://www.proquest.com/docview/2225581217
https://doaj.org/article/2cc1099575f74280a321214f5b216611
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgXLggPkWgrCyEQByiJo7ttY9t1aUgbQUtFb1ZtmNXK0VJtdkI9d93Js6i7gFx4ZIou5NVMv6Y99aeN4R8qCVE5ajKXHtgOty7kGsddC5kkDYGrcIcs5GXZ_L0kn-7Elf3Sn3hnrAkD5wcd8C8x8UbQBURWJwqbAWTbcmjcKyE2JKITym2ZGqiWrhahlRLqiLH2kxpgRLQCj-w_iYvdS45HNiosHMvII26_X-bnceQs3hKnkxYkR6mZ3xGHoT2OcmWAHO79fhvOP1Ij5sVYM7x6gUZLnA7eqoHQbsId2IGFO2HJgKkpDbAE3QNtW1NfdMNdU83HU2pvz1dtTQJjID9OloP52B_w31rWq-w0PRtgz-0qgP1mOvYToK7_UtyuTj5eXyaT3UVci-43OQSOA8rBGpdOVHPAaRAEGdWVZbrEGH2c8w7xSwwZ8YdAD6lldCuYDpG5aqqekX22q4Nrwl1dVWBcWDzWPAa6ypKrgSLhSsiADGfkc9b55qbJJ9hgHZgQxhoCFNqgw1hsCEycoTe_2OHwtfjB9AdzNQdzL-6Q0beY9sZlLZoce_MtR363ny9ODeHwIxQfa0UGfk0GcUOfOXtlIoA74RqWDuW-zuWMPb87tfbLmKmsd8bZNDgXOB6b_7HG70lj9E7uGOhlPtkb7MewjsAQhs3Iw_V4suMPDo6Oft-jufF8sev2TgS7gCyBARg
link.rule.ids 315,786,790,870,2115,12792,21416,27955,27956,33406,33777,43633,43838,74390,74657
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgHOCC-BSBAhZCIA5WE8fx2idUKpYtdHugrdSbZTt2tVKULMlGVf89M0m2sAe4JEoyiRKPM_PG9rwh5H0pwStHlTHtIdIR3gWmddCskEHaGLQKM8xGXp7KxYX4fllcTgNu3bSscmsTB0NdNh7HyA8wLinAG2Wzz-tfDKtG4ezqVELjLrkncpljP1fzb7cBF86ZYcAlVcqwQtM4TQmYRRxYv2aZZlLAhg88O3-5pYG9_182enA880fk4YQY6eGo4sfkTqifkGQJYLdphzFx-oEeVStAnsPRU9Kf4aL0sSoEbSLciXlQtOurCMCS2gBv0FTU1iX1VdOXHd00dEwA7uiqpiPNCMi30XrYB3sN97W0XGG56ZsKH7QqA_WY8VhPtLvdM3Ix_3p-tGBTdQXmCyE3TELkw9MCGa9cUc4AqoAr51blVugQwQY67p3iFuJnLhzAPqVVoV3KdYzK5Xn-nOzVTR1eEOrKPAfhwGcxFSVWV5RCFTymLo0Ax3xCPm0b16xHEg0DwQcqwoAiTKYNKsKgIhLyBVv_Vg7pr4cTTXtlpr_JcO9xRg-gZoTQXqU2Bw-ciVg4ngHgyBLyDnVnkOCixhU0V7bvOnN89tMcQnyEHGxZkZCPk1BsoK28nRIS4JuQE2tHcn9HEv5Av3t520XMZAE686e_vvz_5bfk_uJ8eWJOjk9_vCIPsA1wdUIm98nepu3DawA9G_dm6Nm_AZyQ_NI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgSIgXxE8RGGAhBOLBauLErv2ExqBswCbEmLQ3y3bsqVKVlKQR4r_nLnEHfYCXVm0uUeu73H0X331HyMtaQlSOqmDaQ6ZTeReY1kEzIYO0MWgV5tiNfHIqj86rTxfiItU_9amscusTR0ddtx6fkc8wLxEQjYr5LKayiK_vF2_XPxhOkMKd1jRO4zq5gSAbxzioxcer5Av3zzD5kipnOK1p2rIE_FLNrF-zQjNZwQsfOXf-ClEjk_-__PUYhBZ3yO2EHunBpO675Fpo7pHsBIBv243Px-krerhaAgodP90nwxkWqE8TImgb4UzsiaL9sIoAMqkN8AvaFbVNTf2qHeqeblo6NQP3dNnQiXIE5LtoPbwH-xPO62i9xNHTv1Z4oWUdqMfuxyZR8PYPyPniw_fDI5YmLTAvKrlhErIgngtkv3KingNsgbDOrSptpUMEf-i4d4pbyKV55QACKq2EdjnXMSpXluVDste0TXhEqKvLEoQDn8e8qnHSoqyU4DF3eQRo5jPyZru4Zj0RahhIRFARBhRhCm1QEQYVkZF3uPpXckiFPX7Rdpcm3VmGe4-7ewA7I6T5KrclROOiisLxAsBHkZEXqDuDZBcNms2lHfreHJ99MweQKyEfWyEy8joJxRbWytvUnAD_CfmxdiT3dyThbvS7h7cmYpI36M0f2338_8PPyU0wavPl-PTzE3ILlwALFQq5T_Y23RCeAv7ZuGejYf8GnrsBFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+of+Arctic+sulfate+aerosol+and+clouds+to+changes+in+future+surface+seawater+dimethylsulfide+concentrations&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Mahmood%2C+Rashed&rft.au=von+Salzen%2C+Knut&rft.au=Norman%2C+Ann-Lise&rft.au=Gal%C3%AD%2C+Mart%C3%AD&rft.date=2019-05-16&rft.issn=1680-7324&rft.eissn=1680-7324&rft.volume=19&rft.issue=9&rft.spage=6419&rft.epage=6435&rft_id=info:doi/10.5194%2Facp-19-6419-2019&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_acp_19_6419_2019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon