Classification of Simultaneous Movements Using Surface EMG Pattern Recognition

Advanced upper limb prostheses capable of actuating multiple degrees of freedom (DOFs) are now commercially available. Pattern recognition algorithms that use surface electromyography (EMG) signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition systems are li...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 60; no. 5; pp. 1250 - 1258
Main Authors Young, Aaron J., Smith, Lauren H., Rouse, Elliott J., Hargrove, Levi J.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Advanced upper limb prostheses capable of actuating multiple degrees of freedom (DOFs) are now commercially available. Pattern recognition algorithms that use surface electromyography (EMG) signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition systems are limited to activate only one DOF at a time. This study introduces a novel classifier based on Bayesian theory to provide classification of simultaneous movements. This approach and two other classification strategies for simultaneous movements were evaluated using nonamputee and amputee subjects classifying up to three DOFs, where any two DOFs could be classified simultaneously. Similar results were found for nonamputee and amputee subjects. The new approach, based on a set of conditional parallel classifiers was the most promising with errors significantly less ( p <; 0.05) than a single linear discriminant analysis (LDA) classifier or a parallel approach. For three-DOF classification, the conditional parallel approach had error rates of 6.6% on discrete and 10.9% on combined motions, while the single LDA had error rates of 9.4% on discrete and 14.1% on combined motions. The low error rates demonstrated suggest than pattern recognition techniques on surface EMG can be extended to identify simultaneous movements, which could provide more life-like motions for amputees compared to exclusively classifying sequential movements.
AbstractList Advanced upper limb prostheses capable of actuating multiple degrees of freedom (DOFs) are now commercially available. Pattern recognition algorithms that use surface electromyography (EMG) signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition systems are limited to activate only one DOF at a time. This study introduces a novel classifier based on Bayesian theory to provide classification of simultaneous movements. This approach and two other classification strategies for simultaneous movements were evaluated using nonamputee and amputee subjects classifying up to three DOFs, where any two DOFs could be classified simultaneously. Similar results were found for nonamputee and amputee subjects. The new approach, based on a set of conditional parallel classifiers was the most promising with errors significantly less ( p <; 0.05) than a single linear discriminant analysis (LDA) classifier or a parallel approach. For three-DOF classification, the conditional parallel approach had error rates of 6.6% on discrete and 10.9% on combined motions, while the single LDA had error rates of 9.4% on discrete and 14.1% on combined motions. The low error rates demonstrated suggest than pattern recognition techniques on surface EMG can be extended to identify simultaneous movements, which could provide more life-like motions for amputees compared to exclusively classifying sequential movements.
Advanced upper-limb prostheses capable of actuating multiple degrees of freedom (DOF) are now commercially available. Pattern recognition algorithms that use surface electromyography (EMG) signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition systems are limited to activate only one degree of freedom at a time. This study introduces a novel classifier based on Bayesian theory to provide classification of simultaneous movements. This approach and two other classification strategies for simultaneous movements were evaluated using non-amputee and amputee subjects classifying up to three DOFs, where any two DOFs could be classified simultaneously. Similar results were found for non-amputee and amputee subjects. The new approach, based on a set of conditional parallel classifiers was the most promising with errors significantly less (p<0.05) than a single LDA classifier or a parallel approach. For 3-DOF classification, the conditional parallel approach had error rates of 6.6% on discrete and 10.9% on combined motions, while the single LDA had error rates of 9.4% on discrete and 14.1% on combined motions. The low error rates demonstrated suggest than pattern recognition techniques on surface EMG can be extended to identify simultaneous movements, which could provide more life-like motions for amputees compared to exclusively classifying sequential movements.
Advanced upper limb prostheses capable of actuating multiple degrees of freedom (DOFs) are now commercially available. Pattern recognition algorithms that use surface electromyography (EMG) signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition systems are limited to activate only one DOF at a time. This study introduces a novel classifier based on Bayesian theory to provide classification of simultaneous movements. This approach and two other classification strategies for simultaneous movements were evaluated using nonamputee and amputee subjects classifying up to three DOFs, where any two DOFs could be classified simultaneously. Similar results were found for nonamputee and amputee subjects. The new approach, based on a set of conditional parallel classifiers was the most promising with errors significantly less ([Formula Omitted]) than a single linear discriminant analysis (LDA) classifier or a parallel approach. For three-DOF classification, the conditional parallel approach had error rates of 6.6% on discrete and 10.9% on combined motions, while the single LDA had error rates of 9.4% on discrete and 14.1% on combined motions. The low error rates demonstrated suggest than pattern recognition techniques on surface EMG can be extended to identify simultaneous movements, which could provide more life-like motions for amputees compared to exclusively classifying sequential movements.
Advanced upper limb prostheses capable of actuating multiple degrees of freedom (DOFs) are now commercially available. Pattern recognition algorithms that use surface electromyography (EMG) signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition systems are limited to activate only one DOF at a time. This study introduces a novel classifier based on Bayesian theory to provide classification of simultaneous movements. This approach and two other classification strategies for simultaneous movements were evaluated using nonamputee and amputee subjects classifying up to three DOFs, where any two DOFs could be classified simultaneously. Similar results were found for nonamputee and amputee subjects. The new approach, based on a set of conditional parallel classifiers was the most promising with errors significantly less (p < 0.05) than a single linear discriminant analysis (LDA) classifier or a parallel approach. For three-DOF classification, the conditional parallel approach had error rates of 6.6% on discrete and 10.9% on combined motions, while the single LDA had error rates of 9.4% on discrete and 14.1% on combined motions. The low error rates demonstrated suggest than pattern recognition techniques on surface EMG can be extended to identify simultaneous movements, which could provide more life-like motions for amputees compared to exclusively classifying sequential movements.Advanced upper limb prostheses capable of actuating multiple degrees of freedom (DOFs) are now commercially available. Pattern recognition algorithms that use surface electromyography (EMG) signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition systems are limited to activate only one DOF at a time. This study introduces a novel classifier based on Bayesian theory to provide classification of simultaneous movements. This approach and two other classification strategies for simultaneous movements were evaluated using nonamputee and amputee subjects classifying up to three DOFs, where any two DOFs could be classified simultaneously. Similar results were found for nonamputee and amputee subjects. The new approach, based on a set of conditional parallel classifiers was the most promising with errors significantly less (p < 0.05) than a single linear discriminant analysis (LDA) classifier or a parallel approach. For three-DOF classification, the conditional parallel approach had error rates of 6.6% on discrete and 10.9% on combined motions, while the single LDA had error rates of 9.4% on discrete and 14.1% on combined motions. The low error rates demonstrated suggest than pattern recognition techniques on surface EMG can be extended to identify simultaneous movements, which could provide more life-like motions for amputees compared to exclusively classifying sequential movements.
Author Smith, Lauren H.
Hargrove, Levi J.
Rouse, Elliott J.
Young, Aaron J.
Author_xml – sequence: 1
  givenname: Aaron J.
  surname: Young
  fullname: Young, Aaron J.
  email: ajyoung@u.northwestern.edu
  organization: Center for Bionic Medicine, Rehabilitation Institute of Chicago, Northwestern University, Chicago, IL, USA
– sequence: 2
  givenname: Lauren H.
  surname: Smith
  fullname: Smith, Lauren H.
  email: lauren-smith@fsm.northwestern.lauren-smith@fsm.northwestern.lauren-smith@fsm.northwestern.edu
  organization: Department of Biomedical Engineering , Northwestern University, Chicago, IL, USA
– sequence: 3
  givenname: Elliott J.
  surname: Rouse
  fullname: Rouse, Elliott J.
  email: e-rouse@u.northwestern.edu
  organization: Department of Biomedical Engineering , Northwestern University, Chicago, IL, USA
– sequence: 4
  givenname: Levi J.
  surname: Hargrove
  fullname: Hargrove, Levi J.
  email: l-hargrove@northwestern.edu
  organization: Department of Physical Medicine and Rehabilitation and the Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23247839$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFB0BIKBKbbjL4384GCUZDQeoAou3acpybwVVilzip1LfH6Qwj6AJWluXvHJ97zwk6CjEAQi8JXhKCq7dXHzbrJcWELilllFbsCVoQIXRJBSNHaIEx0WVFK36MTlK6yVeuuXyGjjPNlWbVAn1ZdTYl33pnRx9DEdvi0vdTN9oAcUrFJt5BD2FMxXXyYVtcTkNrHRTrzXnxzY4jDKH4Di5ug5_1z9HT1nYJXuzPU3T9cX21-lRefD3_vHp_UTrB5VgKUKJqGtVS0QAGirltrLQUbF3hRhOlHcOtVNgBp02tOdVNrQDqtpWcQcVO0bud7-1U99C4nHCwnbkdfG-HexOtN3-_BP_DbOOd4RRrTWU2ONsbDPHnBGk0vU8Oum43tyFMzAtVeUv_R7kkRArGM_rmEXoTpyHkTTxQtKKSzoav_wx_SP27lQyQHeCGmNIA7QEh2MzNm7l5Mzdv9s1njXqkcX586DTP77t_Kl_tlB4ADj_JPDtVgv0C04O7bg
CODEN IEBEAX
CitedBy_id crossref_primary_10_1088_1741_2560_11_5_056008
crossref_primary_10_1142_S0219519416400327
crossref_primary_10_1109_TNSRE_2022_3171394
crossref_primary_10_1007_s42835_019_00083_3
crossref_primary_10_1016_j_irbm_2024_100866
crossref_primary_10_1109_TBME_2018_2840848
crossref_primary_10_1109_MCI_2014_2307224
crossref_primary_10_1186_s12984_022_00982_z
crossref_primary_10_1016_j_cmpb_2020_105486
crossref_primary_10_1186_s12984_018_0361_3
crossref_primary_10_1109_JSEN_2024_3479239
crossref_primary_10_1016_j_eswa_2014_11_044
crossref_primary_10_1109_TII_2020_2971643
crossref_primary_10_3390_s150409022
crossref_primary_10_1016_j_sna_2020_112046
crossref_primary_10_1109_TIM_2023_3279873
crossref_primary_10_1109_ACCESS_2023_3246950
crossref_primary_10_1109_TBME_2020_2967154
crossref_primary_10_1109_TNSRE_2014_2305520
crossref_primary_10_3390_s150100394
crossref_primary_10_3389_fnbot_2016_00009
crossref_primary_10_1007_s12553_016_0153_3
crossref_primary_10_1016_j_bspc_2021_102482
crossref_primary_10_1142_S0219477515500285
crossref_primary_10_1109_TNSRE_2022_3166800
crossref_primary_10_1109_TNSRE_2013_2278411
crossref_primary_10_1016_j_robot_2014_08_012
crossref_primary_10_1109_TBME_2017_2719400
crossref_primary_10_1088_1741_2552_ac4851
crossref_primary_10_1016_j_robot_2016_12_014
crossref_primary_10_3390_s21124204
crossref_primary_10_1109_TNSRE_2020_2999505
crossref_primary_10_1371_journal_pone_0242921
crossref_primary_10_1109_TNSRE_2015_2501979
crossref_primary_10_1371_journal_pone_0192938
crossref_primary_10_1007_s00521_018_3909_z
crossref_primary_10_1097_JPO_0000000000000401
crossref_primary_10_1016_j_bea_2023_100088
crossref_primary_10_1109_TBME_2022_3232067
crossref_primary_10_1371_journal_pone_0203835
crossref_primary_10_3390_robotics13070097
crossref_primary_10_1109_TNSRE_2016_2554884
crossref_primary_10_1088_1741_2552_ac1adc
crossref_primary_10_1016_j_ifacol_2017_08_1602
crossref_primary_10_1109_ACCESS_2020_3047828
crossref_primary_10_1109_JSEN_2019_2937979
crossref_primary_10_1016_j_bspc_2014_03_006
crossref_primary_10_1109_TBME_2019_2935182
crossref_primary_10_1061_JCEMD4_COENG_15475
crossref_primary_10_1109_TNSRE_2020_2977908
crossref_primary_10_1109_TNSRE_2023_3342050
crossref_primary_10_1186_s12984_016_0151_8
crossref_primary_10_1186_s12984_021_00832_4
crossref_primary_10_1016_j_bspc_2021_102948
crossref_primary_10_1038_s41597_024_04296_8
crossref_primary_10_1016_j_bspc_2015_02_009
crossref_primary_10_1007_s11062_020_09851_8
crossref_primary_10_1097_CORR_0000000000002213
crossref_primary_10_1109_TBME_2022_3194104
crossref_primary_10_3390_s19092203
crossref_primary_10_1038_s41598_024_82676_1
crossref_primary_10_1088_1741_2560_11_5_051001
crossref_primary_10_3390_app11104335
crossref_primary_10_1109_TBME_2022_3153448
crossref_primary_10_1109_TCYB_2014_2386856
crossref_primary_10_1109_ACCESS_2019_2953302
crossref_primary_10_3390_electronics8111244
crossref_primary_10_1007_s11517_016_1608_4
crossref_primary_10_1088_1741_2552_aad727
crossref_primary_10_1007_s12652_020_01980_6
crossref_primary_10_1016_j_bspc_2014_05_007
crossref_primary_10_1109_TNSRE_2015_2478138
crossref_primary_10_3390_s24103101
crossref_primary_10_1088_1741_2560_12_6_066030
crossref_primary_10_1080_10255842_2016_1255943
crossref_primary_10_1186_s12984_018_0396_5
crossref_primary_10_1016_j_bspc_2022_103522
crossref_primary_10_1088_1741_2552_ab0e2e
crossref_primary_10_1682_JRRD_2014_05_0134
crossref_primary_10_1109_TNSRE_2022_3200485
crossref_primary_10_1007_s13534_023_00281_z
crossref_primary_10_1109_TNSRE_2014_2305111
crossref_primary_10_3390_sym8120148
crossref_primary_10_3389_fneur_2019_00444
crossref_primary_10_1016_j_bspc_2021_102817
crossref_primary_10_1109_TNSRE_2013_2287383
crossref_primary_10_1126_scirobotics_aat3630
crossref_primary_10_3156_jsoft_27_885
crossref_primary_10_1016_j_bbe_2017_03_001
crossref_primary_10_1371_journal_pone_0186318
crossref_primary_10_3934_mbe_2023152
crossref_primary_10_1016_j_bspc_2024_106776
crossref_primary_10_3389_fnbot_2019_00031
crossref_primary_10_1016_j_ifacol_2025_01_019
crossref_primary_10_1016_j_bspc_2020_101872
crossref_primary_10_1016_j_engappai_2017_10_017
crossref_primary_10_1088_1741_2552_ab0cf0
crossref_primary_10_1109_ACCESS_2025_3528902
crossref_primary_10_1109_TNSRE_2017_2682642
crossref_primary_10_3389_fnbot_2018_00058
crossref_primary_10_3390_s19081864
crossref_primary_10_1016_S1672_6529_14_60044_5
crossref_primary_10_1088_1741_2560_11_6_066013
crossref_primary_10_1109_TCDS_2018_2830388
crossref_primary_10_1142_S0218001417500185
crossref_primary_10_1177_09544119231225528
crossref_primary_10_3390_s21061953
crossref_primary_10_1186_s12984_021_00833_3
crossref_primary_10_1109_TNSRE_2015_2401134
crossref_primary_10_1109_TNSRE_2020_2992885
crossref_primary_10_1146_annurev_control_061417_041727
crossref_primary_10_1109_TNSRE_2017_2687761
crossref_primary_10_1186_s12984_017_0284_4
crossref_primary_10_1177_02783649241231298
crossref_primary_10_1186_s12938_018_0539_8
crossref_primary_10_1038_s41598_020_72574_7
crossref_primary_10_3389_fnins_2016_00116
crossref_primary_10_1016_j_bspc_2014_01_007
crossref_primary_10_1109_JBHI_2022_3159792
crossref_primary_10_1109_TIE_2021_3050367
crossref_primary_10_1109_TNSRE_2022_3197875
crossref_primary_10_1371_journal_pone_0112091
crossref_primary_10_1080_03091902_2018_1430184
crossref_primary_10_1088_1741_2552_aa61bc
crossref_primary_10_1142_S0219519424500453
crossref_primary_10_1016_j_irbm_2020_08_003
crossref_primary_10_1007_s40137_013_0044_8
crossref_primary_10_1016_j_robot_2020_103515
crossref_primary_10_1016_j_bspc_2018_06_012
crossref_primary_10_1007_s12555_019_1058_5
crossref_primary_10_1115_1_4051140
crossref_primary_10_1109_TCYB_2020_3007173
crossref_primary_10_3389_fneur_2020_00231
crossref_primary_10_1016_j_ifacol_2019_12_108
crossref_primary_10_1186_s12984_021_00839_x
crossref_primary_10_1109_TBME_2019_2913431
crossref_primary_10_1109_TNSRE_2015_2410755
crossref_primary_10_1109_TCDS_2018_2884942
crossref_primary_10_1682_JRRD_2014_01_0014
crossref_primary_10_1088_2516_1091_acc625
crossref_primary_10_3390_s19204457
crossref_primary_10_1038_s41598_017_04255_x
crossref_primary_10_3109_21691401_2013_875034
crossref_primary_10_1109_TNSRE_2019_2894464
crossref_primary_10_1016_j_ifacol_2017_12_028
crossref_primary_10_1109_TNSRE_2018_2859833
crossref_primary_10_1016_j_hcl_2021_04_003
crossref_primary_10_1088_1741_2552_aa9666
crossref_primary_10_1109_TNSRE_2022_3186266
crossref_primary_10_1007_s10586_017_0985_2
crossref_primary_10_1109_TBME_2019_2947089
crossref_primary_10_1038_s41598_023_30716_7
crossref_primary_10_3389_fnsys_2015_00162
crossref_primary_10_1186_s13104_016_2232_y
crossref_primary_10_3390_computers13010029
crossref_primary_10_1002_jsid_749
crossref_primary_10_1088_1741_2552_ac47db
crossref_primary_10_1109_TNSRE_2018_2807360
crossref_primary_10_7746_jkros_2024_19_2_203
crossref_primary_10_3390_s24227301
crossref_primary_10_1109_TNSRE_2020_3007803
crossref_primary_10_1007_s12553_019_00315_6
crossref_primary_10_1088_1741_2552_aacbfe
crossref_primary_10_1016_j_jelekin_2017_06_001
crossref_primary_10_1016_j_bspc_2021_103153
crossref_primary_10_1109_TMRB_2019_2912453
crossref_primary_10_1109_TNSRE_2015_2398112
crossref_primary_10_1109_TNSRE_2022_3157710
crossref_primary_10_1016_j_bspc_2020_101981
crossref_primary_10_1016_j_bspc_2022_103695
crossref_primary_10_3389_fnins_2017_00033
crossref_primary_10_1155_2013_346047
crossref_primary_10_1007_s11771_015_2698_0
crossref_primary_10_1109_TMRB_2023_3292451
crossref_primary_10_1088_1741_2560_13_4_046002
crossref_primary_10_1109_TBME_2022_3141308
crossref_primary_10_1016_j_procs_2015_04_227
crossref_primary_10_1109_TBME_2021_3131650
crossref_primary_10_1109_TNSRE_2019_2903986
crossref_primary_10_1142_S0218001421510125
Cites_doi 10.1109/TBME.2008.923917
10.1109/TBME.2011.2159216
10.1007/BF02447427
10.1109/ICSMC.2011.6084102
10.1109/TBME.2010.2068298
10.1001/jama.2009.116
10.1109/IEMBS.2007.4353749
10.1109/TBME.2011.2177662
10.1682/JRRD.2010.09.0177
10.1109/TBME.2011.2155063
10.1109/TNSRE.2010.2100828
10.1682/JRRD.2010.07.0137
10.1109/IEMBS.2010.5627622
10.1109/TBME.2003.813539
10.1682/JRRD.2010.03.0034
10.1109/BIOROB.2010.5627764
10.3109/03093641003767207
10.1109/TNSRE.2009.2039619
10.3109/03093640409167756
10.1109/TNSRE.2011.2182525
10.1109/TNSRE.2009.2039590
10.1109/10.204774
10.1088/1741-2560/6/3/036004
10.1109/TBME.2008.2010392
10.1109/TNSRE.2010.2047590
10.1109/TBME.2008.2007967
10.1109/TBME.2006.889192
10.1109/IEMBS.2005.1616284
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2013
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2012.2232293
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database

Materials Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1258
ExternalDocumentID PMC4208826
2955458051
23247839
10_1109_TBME_2012_2232293
6377275
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD058000
– fundername: NICHD NIH HHS
  grantid: R01-HD-05-8000
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c546t-5e759dd7f25de0e204ada6a2eab90d8178c30f670ce42db8428db7eebff643e93
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 13:57:51 EDT 2025
Sun Aug 24 03:11:24 EDT 2025
Fri Jul 11 04:54:52 EDT 2025
Mon Jun 30 10:22:38 EDT 2025
Thu Apr 03 07:04:25 EDT 2025
Tue Jul 01 02:15:47 EDT 2025
Thu Apr 24 23:03:13 EDT 2025
Wed Aug 27 02:53:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-5e759dd7f25de0e204ada6a2eab90d8178c30f670ce42db8428db7eebff643e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Conference-1
ObjectType-Feature-3
SourceType-Conference Papers & Proceedings-2
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4208826
PMID 23247839
PQID 1346292628
PQPubID 85474
PageCount 9
ParticipantIDs proquest_miscellaneous_1346116534
pubmed_primary_23247839
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4208826
proquest_journals_1346292628
proquest_miscellaneous_1352293778
crossref_primary_10_1109_TBME_2012_2232293
ieee_primary_6377275
crossref_citationtrail_10_1109_TBME_2012_2232293
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2013
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref17
ref16
schulz (ref2) 2011
ref19
ref18
medynski (ref1) 2011
miguelez (ref5) 2011
ref23
ref26
ref25
ref20
waryck (ref4) 2011
ref21
ref28
ref27
ref29
ref8
boschmann (ref24) 2011
ref7
williams (ref9) 2004
kuiken (ref10) 2004; 28
ref3
ref6
davidge (ref22) 1999
20665342 - J Rehabil Res Dev. 2010;47(3):ix-x
3449724 - Med Biol Eng Comput. 1987 May;25(3):294-8
20071269 - IEEE Trans Neural Syst Rehabil Eng. 2010 Apr;18(2):185-92
18713689 - IEEE Trans Biomed Eng. 2008 Sep;55(9):2198-211
15658637 - Prosthet Orthot Int. 2004 Dec;28(3):245-53
19692302 - IEEE Trans Biomed Eng. 2009 Sep;56(9):2197-201
21938649 - J Rehabil Res Dev. 2011;48(6):609-17
20729161 - IEEE Trans Biomed Eng. 2011 Mar;58(3):681-8
17518281 - IEEE Trans Biomed Eng. 2007 May;54(5):847-53
22147289 - IEEE Trans Biomed Eng. 2012 Mar;59(3):645-52
17282053 - Conf Proc IEEE Eng Med Biol Soc. 2005;7:7652-5
21097125 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:6066-9
19436081 - J Neural Eng. 2009 Jun;6(3):036004
21659017 - IEEE Trans Biomed Eng. 2011 Sep;58(9):2537-44
21592916 - IEEE Trans Biomed Eng. 2011 Aug;58(8). doi: 10.1109/TBME.2011.2155063
12848352 - IEEE Trans Biomed Eng. 2003 Jul;50(7):848-54
22262686 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):239-46
21938652 - J Rehabil Res Dev. 2011;48(6):643-59
19272889 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1070-80
20378481 - IEEE Trans Neural Syst Rehabil Eng. 2010 Aug;18(4):424-32
18003415 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:6134-7
8468080 - IEEE Trans Biomed Eng. 1993 Jan;40(1):82-94
20071277 - IEEE Trans Neural Syst Rehabil Eng. 2010 Feb;18(1):49-57
19211469 - JAMA. 2009 Feb 11;301(6):619-28
21193383 - IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):186-92
20470060 - Prosthet Orthot Int. 2010 Jun;34(2):216-20
References_xml – ident: ref34
  doi: 10.1109/TBME.2008.923917
– ident: ref37
  doi: 10.1109/TBME.2011.2159216
– ident: ref33
  doi: 10.1007/BF02447427
– ident: ref7
  doi: 10.1109/ICSMC.2011.6084102
– ident: ref12
  doi: 10.1109/TBME.2010.2068298
– year: 2011
  ident: ref2
  article-title: First experiences with the vincent hand
  publication-title: Proc Myoelectr Controls/Powered Prosthet Symp
– ident: ref26
  doi: 10.1001/jama.2009.116
– ident: ref16
  doi: 10.1109/IEMBS.2007.4353749
– ident: ref35
  doi: 10.1109/TBME.2011.2177662
– year: 2011
  ident: ref5
  article-title: Clinical experiences with the michelangelo hand, A four-year review
  publication-title: Proc Myoelectr Controls/Powered Prosthet Symp
– ident: ref18
  doi: 10.1682/JRRD.2010.09.0177
– ident: ref21
  doi: 10.1109/TBME.2011.2155063
– ident: ref36
  doi: 10.1109/TNSRE.2010.2100828
– ident: ref8
  doi: 10.1682/JRRD.2010.07.0137
– ident: ref11
  doi: 10.1109/IEMBS.2010.5627622
– ident: ref17
  doi: 10.1109/TBME.2003.813539
– year: 2011
  ident: ref4
  article-title: Comparison of two myoelectric multi-articulating prosthetic hands
  publication-title: Proc Myoelectr Controls/Powered Prosthet Symp
– ident: ref27
  doi: 10.1109/TNSRE.2010.2100828
– start-page: 207
  year: 2004
  ident: ref9
  publication-title: Functional Restoration of Adults and Children with Upper Extremity Amputation
– ident: ref6
  doi: 10.1682/JRRD.2010.03.0034
– ident: ref13
  doi: 10.1109/BIOROB.2010.5627764
– ident: ref3
  doi: 10.3109/03093641003767207
– ident: ref31
  doi: 10.1109/TNSRE.2009.2039619
– volume: 28
  start-page: 245
  year: 2004
  ident: ref10
  article-title: The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee
  publication-title: Prosthetics Orthotics Int
  doi: 10.3109/03093640409167756
– ident: ref32
  doi: 10.1109/TNSRE.2011.2182525
– ident: ref30
  doi: 10.1109/TNSRE.2009.2039590
– ident: ref28
  doi: 10.1109/10.204774
– ident: ref15
  doi: 10.1088/1741-2560/6/3/036004
– year: 2011
  ident: ref24
  article-title: Development of a pattern recognition-based myoelectric transhumeral prosthesis with multifunctional simultaneous control using a model-driven approach for mechatronic systems
  publication-title: Proc Myoelectr Controls/Powered Prosthet Symp
– ident: ref20
  doi: 10.1109/TBME.2008.2010392
– ident: ref19
  doi: 10.1001/jama.2009.116
– ident: ref23
  doi: 10.1109/TNSRE.2010.2047590
– year: 1999
  ident: ref22
  publication-title: Multifunction Myoelectric Control Using a Linear Electrode Array
– ident: ref14
  doi: 10.1109/TBME.2008.2007967
– ident: ref29
  doi: 10.1109/TBME.2006.889192
– ident: ref25
  doi: 10.1109/IEMBS.2005.1616284
– year: 2011
  ident: ref1
  article-title: Bebionic prosthetic design
  publication-title: Proc Myoelectr Controls/Powered Prosthet Symp
– reference: 22262686 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):239-46
– reference: 19692302 - IEEE Trans Biomed Eng. 2009 Sep;56(9):2197-201
– reference: 19436081 - J Neural Eng. 2009 Jun;6(3):036004
– reference: 20071269 - IEEE Trans Neural Syst Rehabil Eng. 2010 Apr;18(2):185-92
– reference: 21938649 - J Rehabil Res Dev. 2011;48(6):609-17
– reference: 22147289 - IEEE Trans Biomed Eng. 2012 Mar;59(3):645-52
– reference: 20729161 - IEEE Trans Biomed Eng. 2011 Mar;58(3):681-8
– reference: 21938652 - J Rehabil Res Dev. 2011;48(6):643-59
– reference: 21097125 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:6066-9
– reference: 19211469 - JAMA. 2009 Feb 11;301(6):619-28
– reference: 20378481 - IEEE Trans Neural Syst Rehabil Eng. 2010 Aug;18(4):424-32
– reference: 18713689 - IEEE Trans Biomed Eng. 2008 Sep;55(9):2198-211
– reference: 21659017 - IEEE Trans Biomed Eng. 2011 Sep;58(9):2537-44
– reference: 17518281 - IEEE Trans Biomed Eng. 2007 May;54(5):847-53
– reference: 20665342 - J Rehabil Res Dev. 2010;47(3):ix-x
– reference: 20071277 - IEEE Trans Neural Syst Rehabil Eng. 2010 Feb;18(1):49-57
– reference: 18003415 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:6134-7
– reference: 20470060 - Prosthet Orthot Int. 2010 Jun;34(2):216-20
– reference: 8468080 - IEEE Trans Biomed Eng. 1993 Jan;40(1):82-94
– reference: 12848352 - IEEE Trans Biomed Eng. 2003 Jul;50(7):848-54
– reference: 17282053 - Conf Proc IEEE Eng Med Biol Soc. 2005;7:7652-5
– reference: 3449724 - Med Biol Eng Comput. 1987 May;25(3):294-8
– reference: 19272889 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1070-80
– reference: 21592916 - IEEE Trans Biomed Eng. 2011 Aug;58(8). doi: 10.1109/TBME.2011.2155063
– reference: 21193383 - IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):186-92
– reference: 15658637 - Prosthet Orthot Int. 2004 Dec;28(3):245-53
SSID ssj0014846
Score 2.5387077
Snippet Advanced upper limb prostheses capable of actuating multiple degrees of freedom (DOFs) are now commercially available. Pattern recognition algorithms that use...
Advanced upper-limb prostheses capable of actuating multiple degrees of freedom (DOF) are now commercially available. Pattern recognition algorithms that use...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1250
SubjectTerms Algorithms
Amputation
Artificial Limbs
Bayes Theorem
Classification
Discriminant analysis
Elbow
Electromyography
Electromyography (EMG)
Electromyography - methods
Error analysis
Female
Humans
Male
multi-DOF powered prosthesis classification
Pattern recognition
Pattern Recognition, Automated - methods
Prosthetics
Range of Motion, Articular
Signal Processing, Computer-Assisted
simultaneous/coordinated movements
Studies
Wrist
Title Classification of Simultaneous Movements Using Surface EMG Pattern Recognition
URI https://ieeexplore.ieee.org/document/6377275
https://www.ncbi.nlm.nih.gov/pubmed/23247839
https://www.proquest.com/docview/1346292628
https://www.proquest.com/docview/1346116534
https://www.proquest.com/docview/1352293778
https://pubmed.ncbi.nlm.nih.gov/PMC4208826
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9UwDLa2HRAcBmzACgMFiROib2maJu0R0BsTUifENmm3Km0cbQK1aO_1wl9PnP7Q2zRN3CrFbZrYaez6y2eAD0JZbp1Rcc2ljaU1Mi4wkbEqjEhclhml6DRyeapOLuT3y-xyCz7NZ2EQMYDPcEGXIZdvu6anX2VHKvW-oM62YdsHbsNZrTljIPPhUA5P_AIWhRwzmAkvjs6_lEsCcYmF3wuF39-IAdg7EjqnEuEb21Gor3Kfq3kXMbmxBR0_hXJ6-QF58mvRr-tF8_cOr-P_ju4Z7I6-KPs8GM9z2MJ2D55sMBTuwaNyzL3vw2mon0nIoqBM1jl2dk14RNNi169Y2QXq8fWKBRgCO-tvnGmQLctv7Edg8WzZzwmu1LUv4OJ4ef71JB6rMcRNJtU6zlBnhbXaicwiR8GlsUYZgaYuuM0TnTcpd0rzBqWwde7jGqJuxto57_Vgkb6EnbZr8QCYF2u4TdDVxkqUunYoUue_JIm3mKTBCPiklKoZqcqpYsbvKoQsvKhIpRWptBpVGsHH-ZY_A0_HQ8L7NP2z4DjzERxOmq_GlbyqklQqQaSKeQTv52a_BimxMkxwkCEao1Q-JJNR11r757wajGnufzLGCPQtM5sFiAP8dkt7fRW4wAkd4SPE1_eP6A08FqF8BwE0D2FnfdPjW-9Eret3YfX8A-9IGHA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB5VReJx4NHyWChgJLggZet4HSc5cOCxZUubFaJbqbfUiceiAiWouysEv4W_wn_D4zy0rareKnGL5Emi2J9nxvHnbwBeCmW4sVoFBZcmkEbLIMVQBirVIrRRpJWi08jZVE0O5aej6GgN_vRnYRDRk89wSJd-L9_U5ZJ-lW2rkcsF445CuYe_froF2vzN7gc3mq-E2BnP3k-CtoZAUEZSLYII4yg1JrYiMshRcKmNVlqgLlJukjBOyhG3KuYlSmGKxGXjJDiMhbUuViNJLTkHf83lGZFoTof1exQyaY4B8dC5DJHKds805On27F02JtqYGLroK1xEJc1hl7rECRUlXwmAvqLLRcnteY7mStDbuQN_u-5quC7fhstFMSx_n1OS_F_78y7cbrNt9raZHvdgDasNuLWiwbgB17OWXbAJU18hlLhTHq6stuzghBiXusJ6OWdZ7cXVF3PmiRbsYHlqdYlsnH1kn71OacW-dISsuroPh1fybQ9gvaorfATMmZXchGgLbSTKuLAoRtb5ytDNibDEAfAOBHnZirFTTZDvuV-U8TQnCOUEobyF0ABe97f8aJRILjPepOHuDduRHsBWh7S89VXzPBxJJUg2MhnAi77ZeRnaOmo62NuQUNNIXmYT0avj2D3nYQPe_v0d-AcQn4F1b0Aq52dbqpOvXu2c-B9uDfz44i96Djcms2w_39-d7j2Bm8IXKyE66hasL06X-NSljIvimZ-5DI6vGtr_AJhteI8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Simultaneous+Movements+Using+Surface+EMG+Pattern+Recognition&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Young%2C+Aaron+J&rft.au=Smith%2C+Lauren+H&rft.au=Rouse%2C+Elliott+J&rft.au=Hargrove%2C+Levi+J&rft.date=2013-05-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=60&rft.issue=5&rft.spage=1250&rft.epage=1258&rft_id=info:doi/10.1109%2FTBME.2012.2232293&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon