Classification of Simultaneous Movements Using Surface EMG Pattern Recognition
Advanced upper limb prostheses capable of actuating multiple degrees of freedom (DOFs) are now commercially available. Pattern recognition algorithms that use surface electromyography (EMG) signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition systems are li...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 60; no. 5; pp. 1250 - 1258 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Advanced upper limb prostheses capable of actuating multiple degrees of freedom (DOFs) are now commercially available. Pattern recognition algorithms that use surface electromyography (EMG) signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition systems are limited to activate only one DOF at a time. This study introduces a novel classifier based on Bayesian theory to provide classification of simultaneous movements. This approach and two other classification strategies for simultaneous movements were evaluated using nonamputee and amputee subjects classifying up to three DOFs, where any two DOFs could be classified simultaneously. Similar results were found for nonamputee and amputee subjects. The new approach, based on a set of conditional parallel classifiers was the most promising with errors significantly less ( p <; 0.05) than a single linear discriminant analysis (LDA) classifier or a parallel approach. For three-DOF classification, the conditional parallel approach had error rates of 6.6% on discrete and 10.9% on combined motions, while the single LDA had error rates of 9.4% on discrete and 14.1% on combined motions. The low error rates demonstrated suggest than pattern recognition techniques on surface EMG can be extended to identify simultaneous movements, which could provide more life-like motions for amputees compared to exclusively classifying sequential movements. |
---|---|
AbstractList | Advanced upper limb prostheses capable of actuating multiple degrees of freedom (DOFs) are now commercially available. Pattern recognition algorithms that use surface electromyography (EMG) signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition systems are limited to activate only one DOF at a time. This study introduces a novel classifier based on Bayesian theory to provide classification of simultaneous movements. This approach and two other classification strategies for simultaneous movements were evaluated using nonamputee and amputee subjects classifying up to three DOFs, where any two DOFs could be classified simultaneously. Similar results were found for nonamputee and amputee subjects. The new approach, based on a set of conditional parallel classifiers was the most promising with errors significantly less ( p <; 0.05) than a single linear discriminant analysis (LDA) classifier or a parallel approach. For three-DOF classification, the conditional parallel approach had error rates of 6.6% on discrete and 10.9% on combined motions, while the single LDA had error rates of 9.4% on discrete and 14.1% on combined motions. The low error rates demonstrated suggest than pattern recognition techniques on surface EMG can be extended to identify simultaneous movements, which could provide more life-like motions for amputees compared to exclusively classifying sequential movements. Advanced upper-limb prostheses capable of actuating multiple degrees of freedom (DOF) are now commercially available. Pattern recognition algorithms that use surface electromyography (EMG) signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition systems are limited to activate only one degree of freedom at a time. This study introduces a novel classifier based on Bayesian theory to provide classification of simultaneous movements. This approach and two other classification strategies for simultaneous movements were evaluated using non-amputee and amputee subjects classifying up to three DOFs, where any two DOFs could be classified simultaneously. Similar results were found for non-amputee and amputee subjects. The new approach, based on a set of conditional parallel classifiers was the most promising with errors significantly less (p<0.05) than a single LDA classifier or a parallel approach. For 3-DOF classification, the conditional parallel approach had error rates of 6.6% on discrete and 10.9% on combined motions, while the single LDA had error rates of 9.4% on discrete and 14.1% on combined motions. The low error rates demonstrated suggest than pattern recognition techniques on surface EMG can be extended to identify simultaneous movements, which could provide more life-like motions for amputees compared to exclusively classifying sequential movements. Advanced upper limb prostheses capable of actuating multiple degrees of freedom (DOFs) are now commercially available. Pattern recognition algorithms that use surface electromyography (EMG) signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition systems are limited to activate only one DOF at a time. This study introduces a novel classifier based on Bayesian theory to provide classification of simultaneous movements. This approach and two other classification strategies for simultaneous movements were evaluated using nonamputee and amputee subjects classifying up to three DOFs, where any two DOFs could be classified simultaneously. Similar results were found for nonamputee and amputee subjects. The new approach, based on a set of conditional parallel classifiers was the most promising with errors significantly less ([Formula Omitted]) than a single linear discriminant analysis (LDA) classifier or a parallel approach. For three-DOF classification, the conditional parallel approach had error rates of 6.6% on discrete and 10.9% on combined motions, while the single LDA had error rates of 9.4% on discrete and 14.1% on combined motions. The low error rates demonstrated suggest than pattern recognition techniques on surface EMG can be extended to identify simultaneous movements, which could provide more life-like motions for amputees compared to exclusively classifying sequential movements. Advanced upper limb prostheses capable of actuating multiple degrees of freedom (DOFs) are now commercially available. Pattern recognition algorithms that use surface electromyography (EMG) signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition systems are limited to activate only one DOF at a time. This study introduces a novel classifier based on Bayesian theory to provide classification of simultaneous movements. This approach and two other classification strategies for simultaneous movements were evaluated using nonamputee and amputee subjects classifying up to three DOFs, where any two DOFs could be classified simultaneously. Similar results were found for nonamputee and amputee subjects. The new approach, based on a set of conditional parallel classifiers was the most promising with errors significantly less (p < 0.05) than a single linear discriminant analysis (LDA) classifier or a parallel approach. For three-DOF classification, the conditional parallel approach had error rates of 6.6% on discrete and 10.9% on combined motions, while the single LDA had error rates of 9.4% on discrete and 14.1% on combined motions. The low error rates demonstrated suggest than pattern recognition techniques on surface EMG can be extended to identify simultaneous movements, which could provide more life-like motions for amputees compared to exclusively classifying sequential movements.Advanced upper limb prostheses capable of actuating multiple degrees of freedom (DOFs) are now commercially available. Pattern recognition algorithms that use surface electromyography (EMG) signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition systems are limited to activate only one DOF at a time. This study introduces a novel classifier based on Bayesian theory to provide classification of simultaneous movements. This approach and two other classification strategies for simultaneous movements were evaluated using nonamputee and amputee subjects classifying up to three DOFs, where any two DOFs could be classified simultaneously. Similar results were found for nonamputee and amputee subjects. The new approach, based on a set of conditional parallel classifiers was the most promising with errors significantly less (p < 0.05) than a single linear discriminant analysis (LDA) classifier or a parallel approach. For three-DOF classification, the conditional parallel approach had error rates of 6.6% on discrete and 10.9% on combined motions, while the single LDA had error rates of 9.4% on discrete and 14.1% on combined motions. The low error rates demonstrated suggest than pattern recognition techniques on surface EMG can be extended to identify simultaneous movements, which could provide more life-like motions for amputees compared to exclusively classifying sequential movements. |
Author | Smith, Lauren H. Hargrove, Levi J. Rouse, Elliott J. Young, Aaron J. |
Author_xml | – sequence: 1 givenname: Aaron J. surname: Young fullname: Young, Aaron J. email: ajyoung@u.northwestern.edu organization: Center for Bionic Medicine, Rehabilitation Institute of Chicago, Northwestern University, Chicago, IL, USA – sequence: 2 givenname: Lauren H. surname: Smith fullname: Smith, Lauren H. email: lauren-smith@fsm.northwestern.lauren-smith@fsm.northwestern.lauren-smith@fsm.northwestern.edu organization: Department of Biomedical Engineering , Northwestern University, Chicago, IL, USA – sequence: 3 givenname: Elliott J. surname: Rouse fullname: Rouse, Elliott J. email: e-rouse@u.northwestern.edu organization: Department of Biomedical Engineering , Northwestern University, Chicago, IL, USA – sequence: 4 givenname: Levi J. surname: Hargrove fullname: Hargrove, Levi J. email: l-hargrove@northwestern.edu organization: Department of Physical Medicine and Rehabilitation and the Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23247839$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFB0BIKBKbbjL4384GCUZDQeoAou3acpybwVVilzip1LfH6Qwj6AJWluXvHJ97zwk6CjEAQi8JXhKCq7dXHzbrJcWELilllFbsCVoQIXRJBSNHaIEx0WVFK36MTlK6yVeuuXyGjjPNlWbVAn1ZdTYl33pnRx9DEdvi0vdTN9oAcUrFJt5BD2FMxXXyYVtcTkNrHRTrzXnxzY4jDKH4Di5ug5_1z9HT1nYJXuzPU3T9cX21-lRefD3_vHp_UTrB5VgKUKJqGtVS0QAGirltrLQUbF3hRhOlHcOtVNgBp02tOdVNrQDqtpWcQcVO0bud7-1U99C4nHCwnbkdfG-HexOtN3-_BP_DbOOd4RRrTWU2ONsbDPHnBGk0vU8Oum43tyFMzAtVeUv_R7kkRArGM_rmEXoTpyHkTTxQtKKSzoav_wx_SP27lQyQHeCGmNIA7QEh2MzNm7l5Mzdv9s1njXqkcX586DTP77t_Kl_tlB4ADj_JPDtVgv0C04O7bg |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1088_1741_2560_11_5_056008 crossref_primary_10_1142_S0219519416400327 crossref_primary_10_1109_TNSRE_2022_3171394 crossref_primary_10_1007_s42835_019_00083_3 crossref_primary_10_1016_j_irbm_2024_100866 crossref_primary_10_1109_TBME_2018_2840848 crossref_primary_10_1109_MCI_2014_2307224 crossref_primary_10_1186_s12984_022_00982_z crossref_primary_10_1016_j_cmpb_2020_105486 crossref_primary_10_1186_s12984_018_0361_3 crossref_primary_10_1109_JSEN_2024_3479239 crossref_primary_10_1016_j_eswa_2014_11_044 crossref_primary_10_1109_TII_2020_2971643 crossref_primary_10_3390_s150409022 crossref_primary_10_1016_j_sna_2020_112046 crossref_primary_10_1109_TIM_2023_3279873 crossref_primary_10_1109_ACCESS_2023_3246950 crossref_primary_10_1109_TBME_2020_2967154 crossref_primary_10_1109_TNSRE_2014_2305520 crossref_primary_10_3390_s150100394 crossref_primary_10_3389_fnbot_2016_00009 crossref_primary_10_1007_s12553_016_0153_3 crossref_primary_10_1016_j_bspc_2021_102482 crossref_primary_10_1142_S0219477515500285 crossref_primary_10_1109_TNSRE_2022_3166800 crossref_primary_10_1109_TNSRE_2013_2278411 crossref_primary_10_1016_j_robot_2014_08_012 crossref_primary_10_1109_TBME_2017_2719400 crossref_primary_10_1088_1741_2552_ac4851 crossref_primary_10_1016_j_robot_2016_12_014 crossref_primary_10_3390_s21124204 crossref_primary_10_1109_TNSRE_2020_2999505 crossref_primary_10_1371_journal_pone_0242921 crossref_primary_10_1109_TNSRE_2015_2501979 crossref_primary_10_1371_journal_pone_0192938 crossref_primary_10_1007_s00521_018_3909_z crossref_primary_10_1097_JPO_0000000000000401 crossref_primary_10_1016_j_bea_2023_100088 crossref_primary_10_1109_TBME_2022_3232067 crossref_primary_10_1371_journal_pone_0203835 crossref_primary_10_3390_robotics13070097 crossref_primary_10_1109_TNSRE_2016_2554884 crossref_primary_10_1088_1741_2552_ac1adc crossref_primary_10_1016_j_ifacol_2017_08_1602 crossref_primary_10_1109_ACCESS_2020_3047828 crossref_primary_10_1109_JSEN_2019_2937979 crossref_primary_10_1016_j_bspc_2014_03_006 crossref_primary_10_1109_TBME_2019_2935182 crossref_primary_10_1061_JCEMD4_COENG_15475 crossref_primary_10_1109_TNSRE_2020_2977908 crossref_primary_10_1109_TNSRE_2023_3342050 crossref_primary_10_1186_s12984_016_0151_8 crossref_primary_10_1186_s12984_021_00832_4 crossref_primary_10_1016_j_bspc_2021_102948 crossref_primary_10_1038_s41597_024_04296_8 crossref_primary_10_1016_j_bspc_2015_02_009 crossref_primary_10_1007_s11062_020_09851_8 crossref_primary_10_1097_CORR_0000000000002213 crossref_primary_10_1109_TBME_2022_3194104 crossref_primary_10_3390_s19092203 crossref_primary_10_1038_s41598_024_82676_1 crossref_primary_10_1088_1741_2560_11_5_051001 crossref_primary_10_3390_app11104335 crossref_primary_10_1109_TBME_2022_3153448 crossref_primary_10_1109_TCYB_2014_2386856 crossref_primary_10_1109_ACCESS_2019_2953302 crossref_primary_10_3390_electronics8111244 crossref_primary_10_1007_s11517_016_1608_4 crossref_primary_10_1088_1741_2552_aad727 crossref_primary_10_1007_s12652_020_01980_6 crossref_primary_10_1016_j_bspc_2014_05_007 crossref_primary_10_1109_TNSRE_2015_2478138 crossref_primary_10_3390_s24103101 crossref_primary_10_1088_1741_2560_12_6_066030 crossref_primary_10_1080_10255842_2016_1255943 crossref_primary_10_1186_s12984_018_0396_5 crossref_primary_10_1016_j_bspc_2022_103522 crossref_primary_10_1088_1741_2552_ab0e2e crossref_primary_10_1682_JRRD_2014_05_0134 crossref_primary_10_1109_TNSRE_2022_3200485 crossref_primary_10_1007_s13534_023_00281_z crossref_primary_10_1109_TNSRE_2014_2305111 crossref_primary_10_3390_sym8120148 crossref_primary_10_3389_fneur_2019_00444 crossref_primary_10_1016_j_bspc_2021_102817 crossref_primary_10_1109_TNSRE_2013_2287383 crossref_primary_10_1126_scirobotics_aat3630 crossref_primary_10_3156_jsoft_27_885 crossref_primary_10_1016_j_bbe_2017_03_001 crossref_primary_10_1371_journal_pone_0186318 crossref_primary_10_3934_mbe_2023152 crossref_primary_10_1016_j_bspc_2024_106776 crossref_primary_10_3389_fnbot_2019_00031 crossref_primary_10_1016_j_ifacol_2025_01_019 crossref_primary_10_1016_j_bspc_2020_101872 crossref_primary_10_1016_j_engappai_2017_10_017 crossref_primary_10_1088_1741_2552_ab0cf0 crossref_primary_10_1109_ACCESS_2025_3528902 crossref_primary_10_1109_TNSRE_2017_2682642 crossref_primary_10_3389_fnbot_2018_00058 crossref_primary_10_3390_s19081864 crossref_primary_10_1016_S1672_6529_14_60044_5 crossref_primary_10_1088_1741_2560_11_6_066013 crossref_primary_10_1109_TCDS_2018_2830388 crossref_primary_10_1142_S0218001417500185 crossref_primary_10_1177_09544119231225528 crossref_primary_10_3390_s21061953 crossref_primary_10_1186_s12984_021_00833_3 crossref_primary_10_1109_TNSRE_2015_2401134 crossref_primary_10_1109_TNSRE_2020_2992885 crossref_primary_10_1146_annurev_control_061417_041727 crossref_primary_10_1109_TNSRE_2017_2687761 crossref_primary_10_1186_s12984_017_0284_4 crossref_primary_10_1177_02783649241231298 crossref_primary_10_1186_s12938_018_0539_8 crossref_primary_10_1038_s41598_020_72574_7 crossref_primary_10_3389_fnins_2016_00116 crossref_primary_10_1016_j_bspc_2014_01_007 crossref_primary_10_1109_JBHI_2022_3159792 crossref_primary_10_1109_TIE_2021_3050367 crossref_primary_10_1109_TNSRE_2022_3197875 crossref_primary_10_1371_journal_pone_0112091 crossref_primary_10_1080_03091902_2018_1430184 crossref_primary_10_1088_1741_2552_aa61bc crossref_primary_10_1142_S0219519424500453 crossref_primary_10_1016_j_irbm_2020_08_003 crossref_primary_10_1007_s40137_013_0044_8 crossref_primary_10_1016_j_robot_2020_103515 crossref_primary_10_1016_j_bspc_2018_06_012 crossref_primary_10_1007_s12555_019_1058_5 crossref_primary_10_1115_1_4051140 crossref_primary_10_1109_TCYB_2020_3007173 crossref_primary_10_3389_fneur_2020_00231 crossref_primary_10_1016_j_ifacol_2019_12_108 crossref_primary_10_1186_s12984_021_00839_x crossref_primary_10_1109_TBME_2019_2913431 crossref_primary_10_1109_TNSRE_2015_2410755 crossref_primary_10_1109_TCDS_2018_2884942 crossref_primary_10_1682_JRRD_2014_01_0014 crossref_primary_10_1088_2516_1091_acc625 crossref_primary_10_3390_s19204457 crossref_primary_10_1038_s41598_017_04255_x crossref_primary_10_3109_21691401_2013_875034 crossref_primary_10_1109_TNSRE_2019_2894464 crossref_primary_10_1016_j_ifacol_2017_12_028 crossref_primary_10_1109_TNSRE_2018_2859833 crossref_primary_10_1016_j_hcl_2021_04_003 crossref_primary_10_1088_1741_2552_aa9666 crossref_primary_10_1109_TNSRE_2022_3186266 crossref_primary_10_1007_s10586_017_0985_2 crossref_primary_10_1109_TBME_2019_2947089 crossref_primary_10_1038_s41598_023_30716_7 crossref_primary_10_3389_fnsys_2015_00162 crossref_primary_10_1186_s13104_016_2232_y crossref_primary_10_3390_computers13010029 crossref_primary_10_1002_jsid_749 crossref_primary_10_1088_1741_2552_ac47db crossref_primary_10_1109_TNSRE_2018_2807360 crossref_primary_10_7746_jkros_2024_19_2_203 crossref_primary_10_3390_s24227301 crossref_primary_10_1109_TNSRE_2020_3007803 crossref_primary_10_1007_s12553_019_00315_6 crossref_primary_10_1088_1741_2552_aacbfe crossref_primary_10_1016_j_jelekin_2017_06_001 crossref_primary_10_1016_j_bspc_2021_103153 crossref_primary_10_1109_TMRB_2019_2912453 crossref_primary_10_1109_TNSRE_2015_2398112 crossref_primary_10_1109_TNSRE_2022_3157710 crossref_primary_10_1016_j_bspc_2020_101981 crossref_primary_10_1016_j_bspc_2022_103695 crossref_primary_10_3389_fnins_2017_00033 crossref_primary_10_1155_2013_346047 crossref_primary_10_1007_s11771_015_2698_0 crossref_primary_10_1109_TMRB_2023_3292451 crossref_primary_10_1088_1741_2560_13_4_046002 crossref_primary_10_1109_TBME_2022_3141308 crossref_primary_10_1016_j_procs_2015_04_227 crossref_primary_10_1109_TBME_2021_3131650 crossref_primary_10_1109_TNSRE_2019_2903986 crossref_primary_10_1142_S0218001421510125 |
Cites_doi | 10.1109/TBME.2008.923917 10.1109/TBME.2011.2159216 10.1007/BF02447427 10.1109/ICSMC.2011.6084102 10.1109/TBME.2010.2068298 10.1001/jama.2009.116 10.1109/IEMBS.2007.4353749 10.1109/TBME.2011.2177662 10.1682/JRRD.2010.09.0177 10.1109/TBME.2011.2155063 10.1109/TNSRE.2010.2100828 10.1682/JRRD.2010.07.0137 10.1109/IEMBS.2010.5627622 10.1109/TBME.2003.813539 10.1682/JRRD.2010.03.0034 10.1109/BIOROB.2010.5627764 10.3109/03093641003767207 10.1109/TNSRE.2009.2039619 10.3109/03093640409167756 10.1109/TNSRE.2011.2182525 10.1109/TNSRE.2009.2039590 10.1109/10.204774 10.1088/1741-2560/6/3/036004 10.1109/TBME.2008.2010392 10.1109/TNSRE.2010.2047590 10.1109/TBME.2008.2007967 10.1109/TBME.2006.889192 10.1109/IEMBS.2005.1616284 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2013 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2013 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1109/TBME.2012.2232293 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 1258 |
ExternalDocumentID | PMC4208826 2955458051 23247839 10_1109_TBME_2012_2232293 6377275 |
Genre | orig-research Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R01 HD058000 – fundername: NICHD NIH HHS grantid: R01-HD-05-8000 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c546t-5e759dd7f25de0e204ada6a2eab90d8178c30f670ce42db8428db7eebff643e93 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Aug 21 13:57:51 EDT 2025 Sun Aug 24 03:11:24 EDT 2025 Fri Jul 11 04:54:52 EDT 2025 Mon Jun 30 10:22:38 EDT 2025 Thu Apr 03 07:04:25 EDT 2025 Tue Jul 01 02:15:47 EDT 2025 Thu Apr 24 23:03:13 EDT 2025 Wed Aug 27 02:53:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c546t-5e759dd7f25de0e204ada6a2eab90d8178c30f670ce42db8428db7eebff643e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Conference-1 ObjectType-Feature-3 SourceType-Conference Papers & Proceedings-2 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4208826 |
PMID | 23247839 |
PQID | 1346292628 |
PQPubID | 85474 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1346116534 pubmed_primary_23247839 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4208826 proquest_journals_1346292628 proquest_miscellaneous_1352293778 crossref_primary_10_1109_TBME_2012_2232293 ieee_primary_6377275 crossref_citationtrail_10_1109_TBME_2012_2232293 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2013 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref17 ref16 schulz (ref2) 2011 ref19 ref18 medynski (ref1) 2011 miguelez (ref5) 2011 ref23 ref26 ref25 ref20 waryck (ref4) 2011 ref21 ref28 ref27 ref29 ref8 boschmann (ref24) 2011 ref7 williams (ref9) 2004 kuiken (ref10) 2004; 28 ref3 ref6 davidge (ref22) 1999 20665342 - J Rehabil Res Dev. 2010;47(3):ix-x 3449724 - Med Biol Eng Comput. 1987 May;25(3):294-8 20071269 - IEEE Trans Neural Syst Rehabil Eng. 2010 Apr;18(2):185-92 18713689 - IEEE Trans Biomed Eng. 2008 Sep;55(9):2198-211 15658637 - Prosthet Orthot Int. 2004 Dec;28(3):245-53 19692302 - IEEE Trans Biomed Eng. 2009 Sep;56(9):2197-201 21938649 - J Rehabil Res Dev. 2011;48(6):609-17 20729161 - IEEE Trans Biomed Eng. 2011 Mar;58(3):681-8 17518281 - IEEE Trans Biomed Eng. 2007 May;54(5):847-53 22147289 - IEEE Trans Biomed Eng. 2012 Mar;59(3):645-52 17282053 - Conf Proc IEEE Eng Med Biol Soc. 2005;7:7652-5 21097125 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:6066-9 19436081 - J Neural Eng. 2009 Jun;6(3):036004 21659017 - IEEE Trans Biomed Eng. 2011 Sep;58(9):2537-44 21592916 - IEEE Trans Biomed Eng. 2011 Aug;58(8). doi: 10.1109/TBME.2011.2155063 12848352 - IEEE Trans Biomed Eng. 2003 Jul;50(7):848-54 22262686 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):239-46 21938652 - J Rehabil Res Dev. 2011;48(6):643-59 19272889 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1070-80 20378481 - IEEE Trans Neural Syst Rehabil Eng. 2010 Aug;18(4):424-32 18003415 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:6134-7 8468080 - IEEE Trans Biomed Eng. 1993 Jan;40(1):82-94 20071277 - IEEE Trans Neural Syst Rehabil Eng. 2010 Feb;18(1):49-57 19211469 - JAMA. 2009 Feb 11;301(6):619-28 21193383 - IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):186-92 20470060 - Prosthet Orthot Int. 2010 Jun;34(2):216-20 |
References_xml | – ident: ref34 doi: 10.1109/TBME.2008.923917 – ident: ref37 doi: 10.1109/TBME.2011.2159216 – ident: ref33 doi: 10.1007/BF02447427 – ident: ref7 doi: 10.1109/ICSMC.2011.6084102 – ident: ref12 doi: 10.1109/TBME.2010.2068298 – year: 2011 ident: ref2 article-title: First experiences with the vincent hand publication-title: Proc Myoelectr Controls/Powered Prosthet Symp – ident: ref26 doi: 10.1001/jama.2009.116 – ident: ref16 doi: 10.1109/IEMBS.2007.4353749 – ident: ref35 doi: 10.1109/TBME.2011.2177662 – year: 2011 ident: ref5 article-title: Clinical experiences with the michelangelo hand, A four-year review publication-title: Proc Myoelectr Controls/Powered Prosthet Symp – ident: ref18 doi: 10.1682/JRRD.2010.09.0177 – ident: ref21 doi: 10.1109/TBME.2011.2155063 – ident: ref36 doi: 10.1109/TNSRE.2010.2100828 – ident: ref8 doi: 10.1682/JRRD.2010.07.0137 – ident: ref11 doi: 10.1109/IEMBS.2010.5627622 – ident: ref17 doi: 10.1109/TBME.2003.813539 – year: 2011 ident: ref4 article-title: Comparison of two myoelectric multi-articulating prosthetic hands publication-title: Proc Myoelectr Controls/Powered Prosthet Symp – ident: ref27 doi: 10.1109/TNSRE.2010.2100828 – start-page: 207 year: 2004 ident: ref9 publication-title: Functional Restoration of Adults and Children with Upper Extremity Amputation – ident: ref6 doi: 10.1682/JRRD.2010.03.0034 – ident: ref13 doi: 10.1109/BIOROB.2010.5627764 – ident: ref3 doi: 10.3109/03093641003767207 – ident: ref31 doi: 10.1109/TNSRE.2009.2039619 – volume: 28 start-page: 245 year: 2004 ident: ref10 article-title: The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee publication-title: Prosthetics Orthotics Int doi: 10.3109/03093640409167756 – ident: ref32 doi: 10.1109/TNSRE.2011.2182525 – ident: ref30 doi: 10.1109/TNSRE.2009.2039590 – ident: ref28 doi: 10.1109/10.204774 – ident: ref15 doi: 10.1088/1741-2560/6/3/036004 – year: 2011 ident: ref24 article-title: Development of a pattern recognition-based myoelectric transhumeral prosthesis with multifunctional simultaneous control using a model-driven approach for mechatronic systems publication-title: Proc Myoelectr Controls/Powered Prosthet Symp – ident: ref20 doi: 10.1109/TBME.2008.2010392 – ident: ref19 doi: 10.1001/jama.2009.116 – ident: ref23 doi: 10.1109/TNSRE.2010.2047590 – year: 1999 ident: ref22 publication-title: Multifunction Myoelectric Control Using a Linear Electrode Array – ident: ref14 doi: 10.1109/TBME.2008.2007967 – ident: ref29 doi: 10.1109/TBME.2006.889192 – ident: ref25 doi: 10.1109/IEMBS.2005.1616284 – year: 2011 ident: ref1 article-title: Bebionic prosthetic design publication-title: Proc Myoelectr Controls/Powered Prosthet Symp – reference: 22262686 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):239-46 – reference: 19692302 - IEEE Trans Biomed Eng. 2009 Sep;56(9):2197-201 – reference: 19436081 - J Neural Eng. 2009 Jun;6(3):036004 – reference: 20071269 - IEEE Trans Neural Syst Rehabil Eng. 2010 Apr;18(2):185-92 – reference: 21938649 - J Rehabil Res Dev. 2011;48(6):609-17 – reference: 22147289 - IEEE Trans Biomed Eng. 2012 Mar;59(3):645-52 – reference: 20729161 - IEEE Trans Biomed Eng. 2011 Mar;58(3):681-8 – reference: 21938652 - J Rehabil Res Dev. 2011;48(6):643-59 – reference: 21097125 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:6066-9 – reference: 19211469 - JAMA. 2009 Feb 11;301(6):619-28 – reference: 20378481 - IEEE Trans Neural Syst Rehabil Eng. 2010 Aug;18(4):424-32 – reference: 18713689 - IEEE Trans Biomed Eng. 2008 Sep;55(9):2198-211 – reference: 21659017 - IEEE Trans Biomed Eng. 2011 Sep;58(9):2537-44 – reference: 17518281 - IEEE Trans Biomed Eng. 2007 May;54(5):847-53 – reference: 20665342 - J Rehabil Res Dev. 2010;47(3):ix-x – reference: 20071277 - IEEE Trans Neural Syst Rehabil Eng. 2010 Feb;18(1):49-57 – reference: 18003415 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:6134-7 – reference: 20470060 - Prosthet Orthot Int. 2010 Jun;34(2):216-20 – reference: 8468080 - IEEE Trans Biomed Eng. 1993 Jan;40(1):82-94 – reference: 12848352 - IEEE Trans Biomed Eng. 2003 Jul;50(7):848-54 – reference: 17282053 - Conf Proc IEEE Eng Med Biol Soc. 2005;7:7652-5 – reference: 3449724 - Med Biol Eng Comput. 1987 May;25(3):294-8 – reference: 19272889 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1070-80 – reference: 21592916 - IEEE Trans Biomed Eng. 2011 Aug;58(8). doi: 10.1109/TBME.2011.2155063 – reference: 21193383 - IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):186-92 – reference: 15658637 - Prosthet Orthot Int. 2004 Dec;28(3):245-53 |
SSID | ssj0014846 |
Score | 2.5387077 |
Snippet | Advanced upper limb prostheses capable of actuating multiple degrees of freedom (DOFs) are now commercially available. Pattern recognition algorithms that use... Advanced upper-limb prostheses capable of actuating multiple degrees of freedom (DOF) are now commercially available. Pattern recognition algorithms that use... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1250 |
SubjectTerms | Algorithms Amputation Artificial Limbs Bayes Theorem Classification Discriminant analysis Elbow Electromyography Electromyography (EMG) Electromyography - methods Error analysis Female Humans Male multi-DOF powered prosthesis classification Pattern recognition Pattern Recognition, Automated - methods Prosthetics Range of Motion, Articular Signal Processing, Computer-Assisted simultaneous/coordinated movements Studies Wrist |
Title | Classification of Simultaneous Movements Using Surface EMG Pattern Recognition |
URI | https://ieeexplore.ieee.org/document/6377275 https://www.ncbi.nlm.nih.gov/pubmed/23247839 https://www.proquest.com/docview/1346292628 https://www.proquest.com/docview/1346116534 https://www.proquest.com/docview/1352293778 https://pubmed.ncbi.nlm.nih.gov/PMC4208826 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9UwDLa2HRAcBmzACgMFiROib2maJu0R0BsTUifENmm3Km0cbQK1aO_1wl9PnP7Q2zRN3CrFbZrYaez6y2eAD0JZbp1Rcc2ljaU1Mi4wkbEqjEhclhml6DRyeapOLuT3y-xyCz7NZ2EQMYDPcEGXIZdvu6anX2VHKvW-oM62YdsHbsNZrTljIPPhUA5P_AIWhRwzmAkvjs6_lEsCcYmF3wuF39-IAdg7EjqnEuEb21Gor3Kfq3kXMbmxBR0_hXJ6-QF58mvRr-tF8_cOr-P_ju4Z7I6-KPs8GM9z2MJ2D55sMBTuwaNyzL3vw2mon0nIoqBM1jl2dk14RNNi169Y2QXq8fWKBRgCO-tvnGmQLctv7Edg8WzZzwmu1LUv4OJ4ef71JB6rMcRNJtU6zlBnhbXaicwiR8GlsUYZgaYuuM0TnTcpd0rzBqWwde7jGqJuxto57_Vgkb6EnbZr8QCYF2u4TdDVxkqUunYoUue_JIm3mKTBCPiklKoZqcqpYsbvKoQsvKhIpRWptBpVGsHH-ZY_A0_HQ8L7NP2z4DjzERxOmq_GlbyqklQqQaSKeQTv52a_BimxMkxwkCEao1Q-JJNR11r757wajGnufzLGCPQtM5sFiAP8dkt7fRW4wAkd4SPE1_eP6A08FqF8BwE0D2FnfdPjW-9Eret3YfX8A-9IGHA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB5VReJx4NHyWChgJLggZet4HSc5cOCxZUubFaJbqbfUiceiAiWouysEv4W_wn_D4zy0rareKnGL5Emi2J9nxvHnbwBeCmW4sVoFBZcmkEbLIMVQBirVIrRRpJWi08jZVE0O5aej6GgN_vRnYRDRk89wSJd-L9_U5ZJ-lW2rkcsF445CuYe_froF2vzN7gc3mq-E2BnP3k-CtoZAUEZSLYII4yg1JrYiMshRcKmNVlqgLlJukjBOyhG3KuYlSmGKxGXjJDiMhbUuViNJLTkHf83lGZFoTof1exQyaY4B8dC5DJHKds805On27F02JtqYGLroK1xEJc1hl7rECRUlXwmAvqLLRcnteY7mStDbuQN_u-5quC7fhstFMSx_n1OS_F_78y7cbrNt9raZHvdgDasNuLWiwbgB17OWXbAJU18hlLhTHq6stuzghBiXusJ6OWdZ7cXVF3PmiRbsYHlqdYlsnH1kn71OacW-dISsuroPh1fybQ9gvaorfATMmZXchGgLbSTKuLAoRtb5ytDNibDEAfAOBHnZirFTTZDvuV-U8TQnCOUEobyF0ABe97f8aJRILjPepOHuDduRHsBWh7S89VXzPBxJJUg2MhnAi77ZeRnaOmo62NuQUNNIXmYT0avj2D3nYQPe_v0d-AcQn4F1b0Aq52dbqpOvXu2c-B9uDfz44i96Djcms2w_39-d7j2Bm8IXKyE66hasL06X-NSljIvimZ-5DI6vGtr_AJhteI8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Simultaneous+Movements+Using+Surface+EMG+Pattern+Recognition&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Young%2C+Aaron+J&rft.au=Smith%2C+Lauren+H&rft.au=Rouse%2C+Elliott+J&rft.au=Hargrove%2C+Levi+J&rft.date=2013-05-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=60&rft.issue=5&rft.spage=1250&rft.epage=1258&rft_id=info:doi/10.1109%2FTBME.2012.2232293&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |