Classification of Simultaneous Movements Using Surface EMG Pattern Recognition

Advanced upper limb prostheses capable of actuating multiple degrees of freedom (DOFs) are now commercially available. Pattern recognition algorithms that use surface electromyography (EMG) signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition systems are li...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 60; no. 5; pp. 1250 - 1258
Main Authors Young, Aaron J., Smith, Lauren H., Rouse, Elliott J., Hargrove, Levi J.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Advanced upper limb prostheses capable of actuating multiple degrees of freedom (DOFs) are now commercially available. Pattern recognition algorithms that use surface electromyography (EMG) signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition systems are limited to activate only one DOF at a time. This study introduces a novel classifier based on Bayesian theory to provide classification of simultaneous movements. This approach and two other classification strategies for simultaneous movements were evaluated using nonamputee and amputee subjects classifying up to three DOFs, where any two DOFs could be classified simultaneously. Similar results were found for nonamputee and amputee subjects. The new approach, based on a set of conditional parallel classifiers was the most promising with errors significantly less ( p <; 0.05) than a single linear discriminant analysis (LDA) classifier or a parallel approach. For three-DOF classification, the conditional parallel approach had error rates of 6.6% on discrete and 10.9% on combined motions, while the single LDA had error rates of 9.4% on discrete and 14.1% on combined motions. The low error rates demonstrated suggest than pattern recognition techniques on surface EMG can be extended to identify simultaneous movements, which could provide more life-like motions for amputees compared to exclusively classifying sequential movements.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Conference-1
ObjectType-Feature-3
SourceType-Conference Papers & Proceedings-2
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2012.2232293