Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives
Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 61; no. 5; pp. 1425 - 1435 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2014.2312397 |
Cover
Loading…
Abstract | Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e., the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g., electroencephalography (EEG), and have demonstrated the capability of multidimensional prosthesis control. This paper reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications, are reviewed. Finally, limitations of SMR-BCIs and future outlooks are also discussed. |
---|---|
AbstractList | Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e., the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g., electroencephalography (EEG), and have demonstrated the capability of multidimensional prosthesis control. This paper reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications, are reviewed. Finally, limitations of SMR-BCIs and future outlooks are also discussed.Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e., the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g., electroencephalography (EEG), and have demonstrated the capability of multidimensional prosthesis control. This paper reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications, are reviewed. Finally, limitations of SMR-BCIs and future outlooks are also discussed. Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e. the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g. electroencephalography (EEG), and have demonstrated the capability of multi-dimensional prosthesis control. This article reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications are reviewed. Lastly, limitations of SMR-BCIs and future outlooks are also discussed. Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e., the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g., electroencephalography (EEG), and have demonstrated the capability of multidimensional prosthesis control. This paper reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications, are reviewed. Finally, limitations of SMR-BCIs and future outlooks are also discussed. |
Author | Yuan, Han He, Bin |
Author_xml | – sequence: 1 givenname: Han surname: Yuan fullname: Yuan, Han email: hyuan@laureateinstitute.org organization: Laureate Institute for Brain Research, Tulsa, OK, USA – sequence: 2 givenname: Bin surname: He fullname: He, Bin email: binhe@umn.edu organization: Department of Biomedical Engineering , University of Minnesota, Minneapolis, MN, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24759276$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl9rFDEUxYNU7Lb6AUSQAV98mTXJ5K8Pgl3aWqgotn3yIWRm73RTZpM1yRT67c2w20X7IL4khPzOvecm5wgd-OABodcEzwnB-sP1ydfTOcWEzWlDaKPlMzQjnKua8oYcoBnGRNWaanaIjlK6K0emmHiBDimTXFMpZujnSbTO14uw3owZYnXhy9rbDlJ1k5y_ra7ApxDdOuQQqx-rh7xap4_VYowRfK6uss1QWb-szsY8Rqi-Q0wb6LK7h_QSPe_tkODVbj9GN2en14sv9eW384vF58u640zkmgElPbacKaFa2beyUyBbzbjSuiFL3CmqccsFlkQTarHgSnTaMmL7npIWN8fo07buZmzXsOyKsWgHsymubXwwwTrz9413K3Mb7g3Diko6FXi_KxDDrxFSNmuXOhgG6yGMyRAuhGpIafwfKNG0WJW0oO-eoHdhjL68RKHKdEoJIgv19k_ze9ePX1QAsgW6GFKK0O8Rgs0UAzPFwEwxMLsYFI18oulc-SkXpvnd8E_lm63SAcC-k5CSU900vwHF9r7P |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1016_j_dsp_2024_104720 crossref_primary_10_1016_j_neucom_2017_09_030 crossref_primary_10_3389_fnbot_2023_1271967 crossref_primary_10_1142_S0218126621500304 crossref_primary_10_1038_s41597_021_00883_1 crossref_primary_10_3390_e22060703 crossref_primary_10_1109_JPROC_2015_2407272 crossref_primary_10_1109_TNSRE_2023_3321640 crossref_primary_10_1016_j_bspc_2024_106215 crossref_primary_10_3389_fnbot_2019_00111 crossref_primary_10_1016_j_compbiomed_2018_03_018 crossref_primary_10_1186_s12938_023_01102_1 crossref_primary_10_3390_electronics12030623 crossref_primary_10_1016_j_bspc_2022_104153 crossref_primary_10_1097_JCE_0000000000000238 crossref_primary_10_1016_j_bspc_2021_103101 crossref_primary_10_1016_j_neucom_2017_03_082 crossref_primary_10_1016_j_cmpb_2022_106692 crossref_primary_10_1109_JBHI_2019_2892379 crossref_primary_10_3389_fneur_2018_00822 crossref_primary_10_1109_ACCESS_2021_3112218 crossref_primary_10_1016_j_bspc_2022_103857 crossref_primary_10_1038_s41598_024_69222_9 crossref_primary_10_1142_S233954781450023X crossref_primary_10_1109_TBME_2021_3115799 crossref_primary_10_1109_TNSRE_2022_3220884 crossref_primary_10_3389_fnins_2017_00246 crossref_primary_10_3390_s20082403 crossref_primary_10_1097_AUD_0000000000000856 crossref_primary_10_1016_j_procs_2017_03_096 crossref_primary_10_1109_JBHI_2024_3452701 crossref_primary_10_1109_TNSRE_2019_2936411 crossref_primary_10_1007_s44163_022_00022_8 crossref_primary_10_1088_1741_2552_ac23c0 crossref_primary_10_1109_JSEN_2025_3528009 crossref_primary_10_3389_fnins_2020_584971 crossref_primary_10_1371_journal_pone_0191673 crossref_primary_10_3390_electronics5040069 crossref_primary_10_1088_1757_899X_402_1_012017 crossref_primary_10_1109_TFUZZ_2017_2728521 crossref_primary_10_1109_TNSRE_2016_2523565 crossref_primary_10_1016_j_bspc_2023_105745 crossref_primary_10_1007_s11517_024_03193_x crossref_primary_10_1111_ner_12628 crossref_primary_10_3389_fnins_2018_00680 crossref_primary_10_1109_RBME_2024_3449790 crossref_primary_10_1016_j_tics_2021_04_003 crossref_primary_10_3390_bioengineering11050418 crossref_primary_10_1007_s40846_023_00798_9 crossref_primary_10_1016_j_measurement_2023_113673 crossref_primary_10_3389_fpsyg_2018_02280 crossref_primary_10_1016_j_gaitpost_2020_11_014 crossref_primary_10_1109_JBHI_2022_3224506 crossref_primary_10_1109_TCYB_2015_2498974 crossref_primary_10_1007_s10484_017_9384_y crossref_primary_10_1016_j_neuroimage_2016_11_007 crossref_primary_10_1088_1741_2552_ab21fd crossref_primary_10_1016_j_bspc_2020_102069 crossref_primary_10_1109_TNSRE_2019_2915801 crossref_primary_10_1038_s41597_024_03222_2 crossref_primary_10_1109_TNSRE_2016_2601240 crossref_primary_10_1016_j_ijlp_2018_10_002 crossref_primary_10_1109_ACCESS_2022_3228164 crossref_primary_10_3389_fmech_2017_00003 crossref_primary_10_1002_inf2_12234 crossref_primary_10_1016_j_irbm_2021_01_002 crossref_primary_10_3389_fnhum_2023_1223307 crossref_primary_10_1109_ACCESS_2020_2990384 crossref_primary_10_1088_1741_2552_ac0584 crossref_primary_10_3390_s21165309 crossref_primary_10_1371_journal_pone_0184245 crossref_primary_10_1371_journal_pone_0303553 crossref_primary_10_3390_s20216321 crossref_primary_10_1016_j_bandc_2018_05_010 crossref_primary_10_1016_j_neucom_2017_10_013 crossref_primary_10_1080_2326263X_2020_1763060 crossref_primary_10_1016_j_physrep_2021_03_002 crossref_primary_10_1088_1741_2552_ad01de crossref_primary_10_1109_ACCESS_2019_2915614 crossref_primary_10_3389_fnhum_2021_647908 crossref_primary_10_3389_fnhum_2017_00213 crossref_primary_10_1109_ACCESS_2022_3229143 crossref_primary_10_3389_fninf_2021_642766 crossref_primary_10_1080_10255842_2024_2371036 crossref_primary_10_3390_brainsci13091288 crossref_primary_10_1088_1741_2560_13_2_026014 crossref_primary_10_1155_2021_6645322 crossref_primary_10_1007_s11042_023_15653_x crossref_primary_10_1016_j_cmpb_2020_105325 crossref_primary_10_1371_journal_pone_0178410 crossref_primary_10_3389_fnins_2022_865594 crossref_primary_10_1088_1741_2552_abca17 crossref_primary_10_1088_1741_2552_ab3471 crossref_primary_10_1016_j_bspc_2021_102574 crossref_primary_10_1088_1741_2560_12_6_066021 crossref_primary_10_1111_ejn_14342 crossref_primary_10_3389_fnhum_2022_951591 crossref_primary_10_1109_TBME_2015_2467312 crossref_primary_10_1016_j_bspc_2023_105438 crossref_primary_10_3389_fncom_2024_1431815 crossref_primary_10_1016_j_neuroscience_2018_03_013 crossref_primary_10_3390_bios13100930 crossref_primary_10_1109_ACCESS_2024_3394696 crossref_primary_10_1109_TNSRE_2022_3198041 crossref_primary_10_3390_app142110062 crossref_primary_10_1093_pnasnexus_pgae145 crossref_primary_10_1109_TNSRE_2015_2398573 crossref_primary_10_1016_j_bspc_2024_106943 crossref_primary_10_1109_TNNLS_2020_3048385 crossref_primary_10_1186_s42490_019_0022_z crossref_primary_10_1016_j_bspc_2020_101882 crossref_primary_10_3389_fnins_2017_00691 crossref_primary_10_1088_1741_2552_ac2a6f crossref_primary_10_1109_JSEN_2019_2958210 crossref_primary_10_1109_TNSRE_2023_3249831 crossref_primary_10_1088_1741_2552_ab20e5 crossref_primary_10_3389_fnhum_2022_1019279 crossref_primary_10_1152_jn_00346_2021 crossref_primary_10_3390_electronics9101584 crossref_primary_10_1109_TNSRE_2022_3198970 crossref_primary_10_1016_j_cogsys_2022_11_003 crossref_primary_10_1080_10255842_2023_2301421 crossref_primary_10_1088_1741_2552_aaf12e crossref_primary_10_1007_s11517_016_1493_x crossref_primary_10_1186_s12910_019_0354_1 crossref_primary_10_3389_fnins_2018_00307 crossref_primary_10_1145_3699732 crossref_primary_10_3389_fnbot_2024_1383089 crossref_primary_10_1038_s41598_020_57489_7 crossref_primary_10_1109_TNSRE_2020_3037326 crossref_primary_10_1186_s12938_023_01091_1 crossref_primary_10_1109_JSEN_2024_3471699 crossref_primary_10_3390_electronics9111834 crossref_primary_10_1109_TBME_2015_2487738 crossref_primary_10_1016_j_compbiomed_2019_103441 crossref_primary_10_1016_j_clinph_2024_08_009 crossref_primary_10_1016_j_cmpb_2019_03_009 crossref_primary_10_2139_ssrn_3993055 crossref_primary_10_1007_s11042_023_14659_9 crossref_primary_10_3390_electronics10020112 crossref_primary_10_3389_fnhum_2015_00716 crossref_primary_10_1109_TNSRE_2023_3315717 crossref_primary_10_1016_j_bspc_2022_104389 crossref_primary_10_1007_s00422_024_00984_1 crossref_primary_10_3233_THC_202619 crossref_primary_10_1016_j_bspc_2015_06_014 crossref_primary_10_29121_ijoest_v5_i3_2021_186 crossref_primary_10_1080_2326263X_2016_1213603 crossref_primary_10_1007_s12152_018_9364_9 crossref_primary_10_1186_s12938_018_0534_0 crossref_primary_10_1109_TNSRE_2024_3451015 crossref_primary_10_1109_TNSRE_2019_2920748 crossref_primary_10_1186_s12984_018_0431_6 crossref_primary_10_3389_fnins_2018_00540 crossref_primary_10_1016_j_compbiomed_2018_09_021 crossref_primary_10_1016_j_brs_2016_07_003 crossref_primary_10_1088_1741_2552_aba7cd crossref_primary_10_1016_j_bspc_2019_04_034 crossref_primary_10_1109_TBME_2015_2402283 crossref_primary_10_1016_j_nbd_2014_10_014 crossref_primary_10_1142_S0129065721500301 crossref_primary_10_3389_fnrgo_2024_1341790 crossref_primary_10_3389_fnsys_2019_00066 crossref_primary_10_1007_s41315_018_0049_7 crossref_primary_10_1016_j_clinph_2018_03_015 crossref_primary_10_3389_fnhum_2022_1007136 crossref_primary_10_3390_electronics13030565 crossref_primary_10_1109_MSMC_2016_2576638 crossref_primary_10_1016_j_cobme_2017_11_004 crossref_primary_10_3389_fnhum_2019_00128 crossref_primary_10_1109_TNSRE_2019_2890968 crossref_primary_10_1016_j_measurement_2019_07_070 crossref_primary_10_1088_1741_2552_14_1_011001 crossref_primary_10_4018_IJCINI_2019070103 crossref_primary_10_1007_s11042_019_7607_3 crossref_primary_10_1016_j_bspc_2020_101845 crossref_primary_10_1109_ACCESS_2020_3040286 crossref_primary_10_1016_j_bspc_2016_09_005 crossref_primary_10_1016_j_neunet_2021_06_022 crossref_primary_10_1007_s11042_017_4458_7 crossref_primary_10_1016_j_measurement_2016_05_054 crossref_primary_10_1016_j_autcon_2020_103523 crossref_primary_10_1016_j_jneumeth_2021_109274 crossref_primary_10_1109_TBCAS_2020_2972733 crossref_primary_10_3934_mbe_2021213 crossref_primary_10_1109_MSP_2023_3278074 crossref_primary_10_1088_1741_2552_aadea0 crossref_primary_10_1371_journal_pone_0282268 crossref_primary_10_1016_j_jad_2021_08_071 crossref_primary_10_1109_TNSRE_2018_2817924 crossref_primary_10_3390_inventions8040091 crossref_primary_10_1109_TBME_2018_2872855 crossref_primary_10_1063_1_5136246 crossref_primary_10_3390_s21196593 crossref_primary_10_15302_J_ENG_2015078 crossref_primary_10_1088_1741_2552_ac1ade crossref_primary_10_1016_j_bspc_2021_102550 crossref_primary_10_3389_fnhum_2024_1358809 crossref_primary_10_1088_1741_2552_ad4914 crossref_primary_10_3390_s19112620 crossref_primary_10_3390_brainsci9120372 crossref_primary_10_1016_j_compbiomed_2024_109260 crossref_primary_10_1186_s12984_023_01272_y crossref_primary_10_3390_mi13091485 crossref_primary_10_3390_app13116364 crossref_primary_10_1016_j_neunet_2018_02_011 crossref_primary_10_3389_fnins_2021_660032 crossref_primary_10_1007_s11277_018_5932_x crossref_primary_10_3389_fnins_2015_00308 crossref_primary_10_1109_TNSRE_2016_2528167 crossref_primary_10_3390_s23115064 crossref_primary_10_1088_1741_2552_abd51f crossref_primary_10_1080_2326263X_2020_1783170 crossref_primary_10_3390_brainsci5030318 crossref_primary_10_1007_s10489_021_02622_w crossref_primary_10_1136_jnis_2023_021434 crossref_primary_10_1155_2019_5618303 crossref_primary_10_1109_TNNLS_2023_3307470 crossref_primary_10_1016_j_cmpb_2020_105722 crossref_primary_10_1016_j_irbm_2018_08_001 crossref_primary_10_3390_brainsci13020221 crossref_primary_10_5604_01_3001_0016_1778 crossref_primary_10_1007_s10916_018_1106_3 crossref_primary_10_1109_TNSRE_2016_2646763 crossref_primary_10_1109_TBME_2014_2358536 crossref_primary_10_1007_s11571_016_9398_9 crossref_primary_10_3390_s24237611 crossref_primary_10_1007_s10548_018_00696_3 crossref_primary_10_1080_09593985_2020_1831114 crossref_primary_10_1088_1741_2552_abbd21 crossref_primary_10_1007_s11571_022_09923_x crossref_primary_10_3390_brainsci14050498 crossref_primary_10_3389_fnhum_2022_902183 crossref_primary_10_1109_TNSRE_2020_3038717 crossref_primary_10_1109_TBME_2018_2852755 crossref_primary_10_1088_1741_2552_ad9cc1 crossref_primary_10_3389_fnins_2020_00528 crossref_primary_10_3390_s150305518 crossref_primary_10_3389_fnins_2015_00527 crossref_primary_10_3389_fnins_2023_1195066 crossref_primary_10_1109_TBME_2017_2677902 crossref_primary_10_1088_1741_2552_aa5559 crossref_primary_10_3389_fnbot_2019_00023 crossref_primary_10_1007_s11948_017_9928_9 crossref_primary_10_1016_j_bspc_2020_102100 crossref_primary_10_1016_j_jneumeth_2021_109199 crossref_primary_10_1080_2326263X_2022_2033073 crossref_primary_10_1016_j_cogr_2021_02_001 crossref_primary_10_3390_electronics12051234 crossref_primary_10_1109_ACCESS_2018_2809453 crossref_primary_10_1038_s41597_024_04090_6 crossref_primary_10_1186_s12938_015_0087_4 crossref_primary_10_3233_ICA_180586 crossref_primary_10_1016_j_brainres_2016_05_039 crossref_primary_10_3390_s20164485 crossref_primary_10_1016_j_artmed_2023_102738 crossref_primary_10_3389_fninf_2022_961089 crossref_primary_10_1016_j_measurement_2021_110116 crossref_primary_10_1109_ACCESS_2017_2751069 crossref_primary_10_3389_fnhum_2017_00523 crossref_primary_10_1016_j_neuroimage_2016_12_004 crossref_primary_10_1109_TNSRE_2017_2769686 crossref_primary_10_3389_fnins_2023_1146146 crossref_primary_10_1088_1741_2552_ac636a crossref_primary_10_1109_TCYB_2018_2841847 crossref_primary_10_1016_j_neucom_2015_02_034 crossref_primary_10_1063_5_0047237 crossref_primary_10_1586_17434440_2016_1159511 crossref_primary_10_1109_TNSRE_2015_2494378 crossref_primary_10_1109_TBCAS_2022_3209542 crossref_primary_10_1016_j_neunet_2024_106847 crossref_primary_10_1088_1741_2552_acb102 crossref_primary_10_1038_s41598_021_02750_w crossref_primary_10_1109_ACCESS_2018_2841051 crossref_primary_10_1088_1741_2552_ad7a24 crossref_primary_10_1109_JSEN_2022_3220930 |
Cites_doi | 10.1109/TNSRE.2003.814800 10.1088/1741-2560/8/3/036010 10.1109/TBME.2011.2177523 10.1002/hbm.20352 10.1212/01.WNL.0000158616.43002.6D 10.1109/TBME.2009.2026181 10.1109/TNSRE.2006.875528 10.1088/1741-2560/2/4/001 10.1016/j.clinph.2004.06.022 10.1038/35084005 10.1126/science.1070291 10.1088/1741-2560/5/2/006 10.1016/0013-4694(91)90040-B 10.1126/science.3749885 10.1109/86.847823 10.1152/jn.1999.82.5.2676 10.1038/nature04970 10.1088/1741-2560/8/3/036012 10.1109/TNSRE.2011.2168542 10.1155/2013/243257 10.1088/1741-2560/4/2/002 10.1016/j.neuroimage.2005.01.050 10.1016/0013-4694(94)90135-X 10.1109/TBME.2008.2009768 10.1023/A:1023437823106 10.1088/1741-2560/8/2/025020 10.1109/TNSRE.2006.875549 10.1523/JNEUROSCI.5506-08.2009 10.1016/j.neuroimage.2009.10.028 10.1109/86.847821 10.1016/S1388-2457(02)00057-3 10.1371/journal.pone.0085192 10.1109/TBME.2011.2172210 10.1152/jn.00721.2004 10.1109/TNSRE.2007.916289 10.1088/1741-2560/1/3/002 10.1523/JNEUROSCI.6107-09.2010 10.1016/S1053-8119(03)00145-9 10.1016/j.neuron.2010.04.020 10.1109/7333.918276 10.1038/416141a 10.3389/fnpro.2010.00003 10.1088/1741-2560/7/2/026001 10.1109/TBME.2004.826697 10.1109/86.895947 10.1523/JNEUROSCI.2041-09.2009 10.1007/0-306-48610-5_3 10.1016/S1053-8119(03)00344-6 10.1523/JNEUROSCI.5171-07.2008 10.1152/jn.01092.2012 10.1088/1741-2560/4/3/012 10.1016/j.neuroimage.2005.12.003 10.1109/TBME.2004.827072 10.1371/journal.pone.0000637 10.1016/S0013-4694(97)00080-1 10.1073/pnas.0913697107 10.1073/pnas.0403504101 10.1016/j.neuroimage.2009.06.023 10.1002/hbm.20585 10.1016/j.clinph.2010.02.153 10.1109/TNSRE.2006.875567 10.1088/1741-2560/1/1/001 10.1016/S0140-6736(12)61816-9 10.1038/35042582 10.1088/1741-2560/5/4/010 10.1109/TNSRE.2005.847386 10.1161/STROKEAHA.107.505313 10.1109/86.712230 10.1097/00001756-200212200-00022 10.1016/S1474-4422(08)70223-0 10.1038/nature07418 10.1088/1741-2560/7/3/036007 10.1109/TBME.2012.2209882 10.1016/S1388-2457(99)00141-8 10.1109/TNSRE.2005.848627 10.1073/pnas.0609632104 10.1088/1741-2560/8/3/036004 10.1007/978-1-4614-5227-0 10.1088/1741-2560/10/4/046003 10.1523/JNEUROSCI.02-11-01527.1982 10.1109/TBME.2011.2167718 10.1109/TBME.2011.2131142 10.1109/TNSRE.2010.2077654 10.1016/S0167-8760(01)00178-7 10.1088/1741-2560/6/6/066001 10.3389/fnins.2010.00161 10.1109/TNSRE.2008.2003384 10.1016/j.jneumeth.2012.06.022 10.2174/1874440001105010074 10.1080/16501970410035387 10.1109/RBME.2008.2008233 10.1088/1741-2560/4/2/R01 10.1088/1741-2560/1/2/001 10.1109/TNSRE.2003.814435 10.1093/brain/121.12.2301 10.1038/nature11076 10.1109/7333.948456 10.1523/JNEUROSCI.5312-10.2011 10.1523/JNEUROSCI.3886-06.2007 10.1109/TNSRE.2011.2174652 10.1109/86.808944 10.1371/journal.pone.0026322 10.1109/TNSRE.2003.814454 10.1109/TNSRE.2006.875577 10.1088/1741-2560/8/2/025027 10.1016/S1388-2457(03)00067-1 10.1109/86.895946 10.1093/brain/121.12.2271 10.1016/j.jneumeth.2007.06.031 10.1016/j.neuron.2006.09.019 10.1016/S0304-3940(03)00947-9 10.1682/JRRD.2005.02.0048 10.1109/TBME.2011.2139210 10.1006/jmca.1993.1030 10.1016/j.neuroimage.2008.02.032 10.1109/TBME.2007.913986 10.1088/1741-2560/5/1/008 10.1126/science.1128115 10.1093/acprof:oso/9780195050387.001.0001 10.1109/TNSRE.2003.814442 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014 Copyright (©) 2013 IEEE. 2013 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014 – notice: Copyright (©) 2013 IEEE. 2013 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1109/TBME.2014.2312397 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 1435 |
ExternalDocumentID | PMC4082720 3377113481 24759276 10_1109_TBME_2014_2312397 6775293 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Review Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Science Foundation CBET-0933067, CBET-1264782, DGE-1069104, ONR N000141110690, and NIH R01 EB006433 – fundername: NIBIB NIH HHS grantid: R01 EB006433 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c546t-4e21f0a54868b7fb7c8e7b94589931d0c8290b56071912a06586c9a41aff21b03 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Aug 21 17:33:55 EDT 2025 Fri Jul 11 06:08:36 EDT 2025 Fri Jul 11 08:16:57 EDT 2025 Mon Jun 30 08:27:40 EDT 2025 Thu Apr 03 07:07:42 EDT 2025 Tue Jul 01 02:15:50 EDT 2025 Thu Apr 24 22:56:30 EDT 2025 Wed Aug 27 02:52:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c546t-4e21f0a54868b7fb7c8e7b94589931d0c8290b56071912a06586c9a41aff21b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4082720 |
PMID | 24759276 |
PQID | 1545888617 |
PQPubID | 85474 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TBME_2014_2312397 proquest_miscellaneous_1519260772 crossref_citationtrail_10_1109_TBME_2014_2312397 proquest_miscellaneous_1566831658 proquest_journals_1545888617 pubmed_primary_24759276 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4082720 ieee_primary_6775293 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2014 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref59 ref58 ref53 ref55 ref54 wessberg (ref6) 2000; 408 canolty (ref50) 2006; 313 (ref1) 2012 ref51 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 moran (ref103) 1999; 82 ref49 ref7 ref9 ref3 ref5 ref100 ref101 ref40 ref35 ref34 ref37 georgopoulos (ref4) 1982; 2 ref36 ref31 ref30 pfurtscheller (ref21) 2003; 114 ref32 ref39 ref38 ref24 wolpaw (ref75) 2002; 113 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 niedermeyer (ref52) 2005 ref13 ref12 ref15 ref97 ref96 ref99 ref11 ref98 ref10 ref17 ref16 ref19 taylor (ref8) 2002; 296 ref18 ref93 ref92 ref95 ref94 simeral (ref14) 2011; 8 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref104 ref74 ref105 ref77 ref102 ref76 ref2 wang (ref33) 2004; 115 ref71 ref111 ref70 ref112 ref72 ref110 doud (ref116) 2013 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref66 ref113 ref65 ref114 (ref124) 0 he (ref73) 2011; 58 ref60 ref122 ref123 ref62 ref120 ref61 ref121 15876616 - J Neural Eng. 2004 Mar;1(1):1-7 24416360 - PLoS One. 2014;9(1):e85192 12899267 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):177-80 11742684 - Int J Psychophysiol. 2001 Dec;43(1):41-58 16680610 - J Rehabil Res Dev. 2005 Nov-Dec;42(6):723-36 17409476 - J Neural Eng. 2007 Jun;4(2):17-25 22596161 - Nature. 2012 May 17;485(7398):372-5 22010143 - IEEE Trans Biomed Eng. 2012 Apr;59(4):920-8 21984520 - IEEE Trans Neural Syst Rehabil Eng. 2011 Dec;19(6):617-27 18310813 - J Neural Eng. 2008 Mar;5(1):75-84 20582271 - Front Neurosci. 2010 Apr 21;4:30 17653264 - PLoS One. 2007;2(7):e637 10609628 - IEEE Trans Rehabil Eng. 1999 Dec;7(4):413-9 16317229 - J Neural Eng. 2005 Dec;2(4):65-72 17015237 - Neuron. 2006 Oct 5;52(1):205-20 9749909 - IEEE Trans Rehabil Eng. 1998 Sep;6(3):316-25 10561437 - J Neurophysiol. 1999 Nov;82(5):2676-92 15188875 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43 7143039 - J Neurosci. 1982 Nov;2(11):1527-37 21436514 - J Neural Eng. 2011 Apr;8(2):025020 16792301 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):229-33 16792295 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):205-10 21471638 - J Neural Eng. 2011 Jun;8(3):036004 19794237 - J Neural Eng. 2009 Dec;6(6):066001 10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57 22771715 - J Neurosci Methods. 2012 Aug 15;209(2):299-307 18835541 - Lancet Neurol. 2008 Nov;7(11):1032-43 18424182 - Neuroimage. 2008 Jun;41(2):302-10 18216207 - J Neurosci. 2008 Jan 23;28(4):1000-8 9874480 - Brain. 1998 Dec;121 ( Pt 12):2271-99 15911809 - Neurology. 2005 May 24;64(10):1775-7 23735712 - J Neural Eng. 2013 Aug;10(4):046003 22147288 - IEEE Trans Biomed Eng. 2012 Mar;59(3):653-62 16792306 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):250-4 22851229 - IEEE Trans Biomed Eng. 2012 Oct;59(10):2755-65 12052948 - Science. 2002 Jun 7;296(5574):1829-32 18258825 - Stroke. 2008 Mar;39(3):910-7 20378397 - Clin Neurophysiol. 2010 Aug;121(8):1240-50 18990646 - IEEE Trans Neural Syst Rehabil Eng. 2008 Oct;16(5):425-31 18923392 - Nature. 2008 Dec 4;456(7222):639-42 16443377 - Neuroimage. 2006 May 15;31(1):153-9 17329441 - J Neurosci. 2007 Feb 28;27(9):2424-32 21493978 - J Neural Eng. 2011 Jun;8(3):036010 15188883 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1081-6 20203202 - J Neurosci. 2010 Mar 3;30(9):3432-7 18303800 - IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):3-14 21427014 - IEEE Trans Biomed Eng. 2011 Jun;58(6):1865-73 16792288 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):180-3 16200760 - IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):372-9 19423426 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1209-19 20460690 - J Neural Eng. 2010 Jun;7(3):036007 17442753 - Proc Natl Acad Sci U S A. 2007 May 1;104(18):7676-81 15876624 - J Neural Eng. 2004 Jun;1(2):63-71 21715623 - J Neurosci. 2011 Jun 29;31(26):9585-93 20876032 - IEEE Trans Neural Syst Rehabil Eng. 2010 Dec;18(6):581-9 22216080 - Open Neuroimag J. 2011;5:74-89 17409472 - J Neural Eng. 2007 Jun;4(2):R1-R13 20168002 - J Neural Eng. 2010 Apr;7(2):26001 10896194 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):222-6 21508492 - J Neural Eng. 2011 Jun;8(3):036012 11099043 - Nature. 2000 Nov 16;408(6810):361-5 18465747 - Hum Brain Mapp. 2009 Apr;30(4):1168-87 12880789 - Neuroimage. 2003 Jul;19(3):577-86 22180514 - IEEE Trans Neural Syst Rehabil Eng. 2012 Mar;20(2):228-35 16838014 - Nature. 2006 Jul 13;442(7099):164-71 3749885 - Science. 1986 Sep 26;233(4771):1416-9 22046274 - PLoS One. 2011;6(10):e26322 11204035 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):447-56 11894084 - Nature. 2002 Mar 14;416(6877):141-2 11449264 - Nature. 2001 Jul 12;412(6843):150-7 15788330 - J Rehabil Med. 2005 Jan;37(1):32-6 12899262 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):159-61 10896192 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):216-9 20471349 - Neuron. 2010 May 13;66(3):353-69 20160084 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4430-5 21436513 - J Neural Eng. 2011 Apr;8(2):025027 10791681 - Brain Topogr. 2000 Spring;12(3):177-86 19605314 - IEEE Trans Biomed Eng. 2009 Nov;56(11 Pt 2):2730-3 23710250 - Comput Math Methods Med. 2013;2013:243257 14550907 - Neurosci Lett. 2003 Nov 6;351(1):33-6 12048038 - Clin Neurophysiol. 2002 Jun;113(6):767-91 11561664 - IEEE Trans Neural Syst Rehabil Eng. 2001 Sep;9(3):283-8 16003895 - IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):166-71 9546492 - Electroencephalogr Clin Neurophysiol. 1997 Dec;103(6):642-51 19015583 - J Neural Eng. 2008 Dec;5(4):455-76 16973878 - Science. 2006 Sep 15;313(5793):1626-8 11482363 - IEEE Trans Neural Syst Rehabil Eng. 2001 Mar;9(1):49-58 15546783 - Clin Neurophysiol. 2004 Dec;115(12):2744-53 20877434 - Front Neurosci. 2010 Sep 07;4:null 15876632 - J Neural Eng. 2004 Sep;1(3):135-41 19279250 - J Neurosci. 2009 Mar 11;29(10):3132-7 19864573 - J Neurosci. 2009 Oct 28;29(43):13613-20 19850134 - Neuroimage. 2010 Feb 1;49(3):2596-606 12842719 - Clin Neurophysiol. 2003 Jul;114(7):1226-36 15862231 - Neuroimage. 2005 May 15;26(1):302-8 17274021 - Hum Brain Mapp. 2007 Dec;28(12):1368-75 15585584 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54 21478071 - IEEE Trans Biomed Eng. 2011 Jul;58(7):1918-31 1707798 - Electroencephalogr Clin Neurophysiol. 1991 Mar;78(3):252-9 20634915 - IEEE Rev Biomed Eng. 2008;1:23-40 9874481 - Brain. 1998 Dec;121 ( Pt 12):2301-15 21926016 - IEEE Trans Biomed Eng. 2012 Jan;59(1):132-40 23761697 - J Neurophysiol. 2013 Sep;110(5):1158-66 12499854 - Neuroreport. 2002 Dec 20;13(18):2487-92 17706292 - J Neurosci Methods. 2008 Jan 15;167(1):31-42 11204034 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):441-6 12899275 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):204-7 23253623 - Lancet. 2013 Feb 16;381(9866):557-64 12899270 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):186-8 14527577 - Neuroimage. 2003 Sep;20(1):145-58 15601739 - J Neurophysiol. 2005 May;93(5):2864-72 7515787 - Electroencephalogr Clin Neurophysiol. 1994 Jun;90(6):444-9 19539036 - Neuroimage. 2009 Oct 1;47(4):1691-700 18430974 - J Neural Eng. 2008 Jun;5(2):155-62 18440905 - IEEE Trans Biomed Eng. 2008 May;55(5):1592-601 17873429 - J Neural Eng. 2007 Sep;4(3):264-75 |
References_xml | – year: 2005 ident: ref52 publication-title: Electroencephalography Basic Principles Clinical Applications and Related Fields – ident: ref13 doi: 10.1109/TNSRE.2003.814800 – ident: ref48 doi: 10.1088/1741-2560/8/3/036010 – ident: ref122 doi: 10.1109/TBME.2011.2177523 – ident: ref60 doi: 10.1002/hbm.20352 – ident: ref28 doi: 10.1212/01.WNL.0000158616.43002.6D – ident: ref37 doi: 10.1109/TBME.2009.2026181 – ident: ref84 doi: 10.1109/TNSRE.2006.875528 – ident: ref65 doi: 10.1088/1741-2560/2/4/001 – volume: 115 start-page: 2744 year: 2004 ident: ref33 article-title: Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2004.06.022 – ident: ref59 doi: 10.1038/35084005 – volume: 296 start-page: 1829 year: 2002 ident: ref8 article-title: Direct cortical control of 3D neuroprosthetic devices publication-title: Science doi: 10.1126/science.1070291 – ident: ref90 doi: 10.1088/1741-2560/5/2/006 – ident: ref25 doi: 10.1016/0013-4694(91)90040-B – ident: ref5 doi: 10.1126/science.3749885 – ident: ref91 doi: 10.1109/86.847823 – volume: 82 start-page: 2676 year: 1999 ident: ref103 article-title: Motor cortical representation of speed and direction during reaching publication-title: J Neurophysiol doi: 10.1152/jn.1999.82.5.2676 – ident: ref9 doi: 10.1038/nature04970 – ident: ref99 doi: 10.1088/1741-2560/8/3/036012 – ident: ref96 doi: 10.1109/TNSRE.2011.2168542 – ident: ref106 doi: 10.1155/2013/243257 – ident: ref67 doi: 10.1088/1741-2560/4/2/002 – ident: ref61 doi: 10.1016/j.neuroimage.2005.01.050 – ident: ref26 doi: 10.1016/0013-4694(94)90135-X – ident: ref71 doi: 10.1109/TBME.2008.2009768 – ident: ref32 doi: 10.1023/A:1023437823106 – ident: ref113 doi: 10.1088/1741-2560/8/2/025020 – ident: ref101 doi: 10.1109/TNSRE.2006.875549 – ident: ref108 doi: 10.1523/JNEUROSCI.5506-08.2009 – ident: ref39 doi: 10.1016/j.neuroimage.2009.10.028 – ident: ref82 doi: 10.1109/86.847821 – volume: 113 start-page: 767 year: 2002 ident: ref75 article-title: Brain-computer interfaces for communication and control publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00057-3 – ident: ref107 doi: 10.1371/journal.pone.0085192 – ident: ref121 doi: 10.1109/TBME.2011.2172210 – ident: ref55 doi: 10.1152/jn.00721.2004 – ident: ref104 doi: 10.1109/TNSRE.2007.916289 – ident: ref68 doi: 10.1088/1741-2560/1/3/002 – ident: ref102 doi: 10.1523/JNEUROSCI.6107-09.2010 – ident: ref74 doi: 10.1016/S1053-8119(03)00145-9 – ident: ref51 doi: 10.1016/j.neuron.2010.04.020 – ident: ref83 doi: 10.1109/7333.918276 – ident: ref7 doi: 10.1038/416141a – ident: ref110 doi: 10.3389/fnpro.2010.00003 – ident: ref57 doi: 10.1088/1741-2560/7/2/026001 – ident: ref120 doi: 10.1109/TBME.2004.826697 – ident: ref87 doi: 10.1109/86.895947 – ident: ref117 doi: 10.1523/JNEUROSCI.2041-09.2009 – ident: ref2 doi: 10.1007/0-306-48610-5_3 – ident: ref54 doi: 10.1016/S1053-8119(03)00344-6 – ident: ref46 doi: 10.1523/JNEUROSCI.5171-07.2008 – ident: ref114 doi: 10.1152/jn.01092.2012 – ident: ref49 doi: 10.1088/1741-2560/4/3/012 – ident: ref41 doi: 10.1016/j.neuroimage.2005.12.003 – ident: ref119 doi: 10.1109/TBME.2004.827072 – ident: ref63 doi: 10.1371/journal.pone.0000637 – ident: ref31 doi: 10.1016/S0013-4694(97)00080-1 – ident: ref34 doi: 10.1073/pnas.0913697107 – ident: ref15 doi: 10.1073/pnas.0403504101 – ident: ref47 doi: 10.1016/j.neuroimage.2009.06.023 – ident: ref58 doi: 10.1002/hbm.20585 – year: 2012 ident: ref1 publication-title: Brain-Computer Interfaces Principles and Practice – ident: ref56 doi: 10.1016/j.clinph.2010.02.153 – ident: ref36 doi: 10.1109/TNSRE.2006.875567 – ident: ref35 doi: 10.1088/1741-2560/1/1/001 – ident: ref12 doi: 10.1016/S0140-6736(12)61816-9 – volume: 408 start-page: 361 year: 2000 ident: ref6 article-title: Real-time prediction of hand trajectory by ensembles of cortical neurons in primates publication-title: Nature doi: 10.1038/35042582 – ident: ref10 doi: 10.1088/1741-2560/5/4/010 – ident: ref66 doi: 10.1109/TNSRE.2005.847386 – ident: ref29 doi: 10.1161/STROKEAHA.107.505313 – ident: ref85 doi: 10.1109/86.712230 – ident: ref53 doi: 10.1097/00001756-200212200-00022 – ident: ref115 doi: 10.1016/S1474-4422(08)70223-0 – ident: ref95 doi: 10.1038/nature07418 – ident: ref16 doi: 10.1088/1741-2560/7/3/036007 – ident: ref123 doi: 10.1109/TBME.2012.2209882 – ident: ref30 doi: 10.1016/S1388-2457(99)00141-8 – ident: ref94 doi: 10.1109/TNSRE.2005.848627 – ident: ref45 doi: 10.1073/pnas.0609632104 – ident: ref24 doi: 10.1088/1741-2560/8/3/036004 – ident: ref3 doi: 10.1007/978-1-4614-5227-0 – ident: ref19 doi: 10.1088/1741-2560/10/4/046003 – volume: 2 start-page: 1527 year: 1982 ident: ref4 article-title: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.02-11-01527.1982 – ident: ref112 doi: 10.1109/TBME.2011.2167718 – ident: ref38 doi: 10.1109/TBME.2011.2131142 – ident: ref17 doi: 10.1109/TNSRE.2010.2077654 – ident: ref76 doi: 10.1016/S0167-8760(01)00178-7 – ident: ref109 doi: 10.1088/1741-2560/6/6/066001 – ident: ref118 doi: 10.3389/fnins.2010.00161 – year: 2013 ident: ref116 article-title: A portable immersive virtual reality platform for motor-imagery guided rehabilitation of hemiparetic stroke publication-title: Proc 5th Int Brain-Comput Interface Meeting – ident: ref27 doi: 10.1109/TNSRE.2008.2003384 – ident: ref111 doi: 10.1016/j.jneumeth.2012.06.022 – ident: ref105 doi: 10.2174/1874440001105010074 – ident: ref97 doi: 10.1080/16501970410035387 – ident: ref72 doi: 10.1109/RBME.2008.2008233 – ident: ref88 doi: 10.1088/1741-2560/4/2/R01 – ident: ref22 doi: 10.1088/1741-2560/1/2/001 – ident: ref78 doi: 10.1109/TNSRE.2003.814435 – ident: ref43 doi: 10.1093/brain/121.12.2301 – ident: ref11 doi: 10.1038/nature11076 – ident: ref89 doi: 10.1109/7333.948456 – ident: ref40 doi: 10.1523/JNEUROSCI.5312-10.2011 – ident: ref44 doi: 10.1523/JNEUROSCI.3886-06.2007 – ident: ref64 doi: 10.1109/TNSRE.2011.2174652 – ident: ref86 doi: 10.1109/86.808944 – ident: ref18 doi: 10.1371/journal.pone.0026322 – ident: ref77 doi: 10.1109/TNSRE.2003.814454 – ident: ref93 doi: 10.1109/TNSRE.2006.875577 – volume: 8 year: 2011 ident: ref14 article-title: Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array publication-title: J Neural Eng doi: 10.1088/1741-2560/8/2/025027 – volume: 114 start-page: 1226 year: 2003 ident: ref21 article-title: Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(03)00067-1 – ident: ref81 doi: 10.1109/86.895946 – ident: ref42 doi: 10.1093/brain/121.12.2271 – ident: ref69 doi: 10.1016/j.jneumeth.2007.06.031 – ident: ref100 doi: 10.1016/j.neuron.2006.09.019 – ident: ref79 doi: 10.1016/S0304-3940(03)00947-9 – ident: ref98 doi: 10.1682/JRRD.2005.02.0048 – volume: 58 start-page: 1918 year: 2011 ident: ref73 article-title: Electrophysiological imaging of brain activity and connectivity-challenges and opportunities publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2139210 – ident: ref80 doi: 10.1006/jmca.1993.1030 – ident: ref62 doi: 10.1016/j.neuroimage.2008.02.032 – ident: ref70 doi: 10.1109/TBME.2007.913986 – ident: ref23 doi: 10.1088/1741-2560/5/1/008 – volume: 313 start-page: 1626 year: 2006 ident: ref50 article-title: High gamma power is phase-locked to theta oscillations in human neocortex publication-title: Science doi: 10.1126/science.1128115 – ident: ref20 doi: 10.1093/acprof:oso/9780195050387.001.0001 – year: 0 ident: ref124 – ident: ref92 doi: 10.1109/TNSRE.2003.814442 – reference: 16792306 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):250-4 – reference: 21478071 - IEEE Trans Biomed Eng. 2011 Jul;58(7):1918-31 – reference: 19279250 - J Neurosci. 2009 Mar 11;29(10):3132-7 – reference: 15862231 - Neuroimage. 2005 May 15;26(1):302-8 – reference: 22046274 - PLoS One. 2011;6(10):e26322 – reference: 10609628 - IEEE Trans Rehabil Eng. 1999 Dec;7(4):413-9 – reference: 24416360 - PLoS One. 2014;9(1):e85192 – reference: 12880789 - Neuroimage. 2003 Jul;19(3):577-86 – reference: 16973878 - Science. 2006 Sep 15;313(5793):1626-8 – reference: 16792301 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):229-33 – reference: 20876032 - IEEE Trans Neural Syst Rehabil Eng. 2010 Dec;18(6):581-9 – reference: 20168002 - J Neural Eng. 2010 Apr;7(2):26001 – reference: 17706292 - J Neurosci Methods. 2008 Jan 15;167(1):31-42 – reference: 15546783 - Clin Neurophysiol. 2004 Dec;115(12):2744-53 – reference: 21493978 - J Neural Eng. 2011 Jun;8(3):036010 – reference: 11894084 - Nature. 2002 Mar 14;416(6877):141-2 – reference: 9874481 - Brain. 1998 Dec;121 ( Pt 12):2301-15 – reference: 10561437 - J Neurophysiol. 1999 Nov;82(5):2676-92 – reference: 12842719 - Clin Neurophysiol. 2003 Jul;114(7):1226-36 – reference: 12499854 - Neuroreport. 2002 Dec 20;13(18):2487-92 – reference: 16317229 - J Neural Eng. 2005 Dec;2(4):65-72 – reference: 18424182 - Neuroimage. 2008 Jun;41(2):302-10 – reference: 11204034 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):441-6 – reference: 23253623 - Lancet. 2013 Feb 16;381(9866):557-64 – reference: 16003895 - IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):166-71 – reference: 21436514 - J Neural Eng. 2011 Apr;8(2):025020 – reference: 20378397 - Clin Neurophysiol. 2010 Aug;121(8):1240-50 – reference: 12048038 - Clin Neurophysiol. 2002 Jun;113(6):767-91 – reference: 23710250 - Comput Math Methods Med. 2013;2013:243257 – reference: 17329441 - J Neurosci. 2007 Feb 28;27(9):2424-32 – reference: 12899275 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):204-7 – reference: 23735712 - J Neural Eng. 2013 Aug;10(4):046003 – reference: 17442753 - Proc Natl Acad Sci U S A. 2007 May 1;104(18):7676-81 – reference: 9874480 - Brain. 1998 Dec;121 ( Pt 12):2271-99 – reference: 11561664 - IEEE Trans Neural Syst Rehabil Eng. 2001 Sep;9(3):283-8 – reference: 11742684 - Int J Psychophysiol. 2001 Dec;43(1):41-58 – reference: 19423426 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1209-19 – reference: 17015237 - Neuron. 2006 Oct 5;52(1):205-20 – reference: 1707798 - Electroencephalogr Clin Neurophysiol. 1991 Mar;78(3):252-9 – reference: 15788330 - J Rehabil Med. 2005 Jan;37(1):32-6 – reference: 22147288 - IEEE Trans Biomed Eng. 2012 Mar;59(3):653-62 – reference: 18216207 - J Neurosci. 2008 Jan 23;28(4):1000-8 – reference: 11449264 - Nature. 2001 Jul 12;412(6843):150-7 – reference: 11204035 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):447-56 – reference: 16200760 - IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):372-9 – reference: 18303800 - IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):3-14 – reference: 19850134 - Neuroimage. 2010 Feb 1;49(3):2596-606 – reference: 15911809 - Neurology. 2005 May 24;64(10):1775-7 – reference: 7143039 - J Neurosci. 1982 Nov;2(11):1527-37 – reference: 9546492 - Electroencephalogr Clin Neurophysiol. 1997 Dec;103(6):642-51 – reference: 20471349 - Neuron. 2010 May 13;66(3):353-69 – reference: 18258825 - Stroke. 2008 Mar;39(3):910-7 – reference: 15188875 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43 – reference: 16838014 - Nature. 2006 Jul 13;442(7099):164-71 – reference: 12899270 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):186-8 – reference: 17653264 - PLoS One. 2007;2(7):e637 – reference: 18465747 - Hum Brain Mapp. 2009 Apr;30(4):1168-87 – reference: 14550907 - Neurosci Lett. 2003 Nov 6;351(1):33-6 – reference: 18430974 - J Neural Eng. 2008 Jun;5(2):155-62 – reference: 18440905 - IEEE Trans Biomed Eng. 2008 May;55(5):1592-601 – reference: 22771715 - J Neurosci Methods. 2012 Aug 15;209(2):299-307 – reference: 18835541 - Lancet Neurol. 2008 Nov;7(11):1032-43 – reference: 22010143 - IEEE Trans Biomed Eng. 2012 Apr;59(4):920-8 – reference: 22216080 - Open Neuroimag J. 2011;5:74-89 – reference: 20634915 - IEEE Rev Biomed Eng. 2008;1:23-40 – reference: 14527577 - Neuroimage. 2003 Sep;20(1):145-58 – reference: 22596161 - Nature. 2012 May 17;485(7398):372-5 – reference: 17873429 - J Neural Eng. 2007 Sep;4(3):264-75 – reference: 19864573 - J Neurosci. 2009 Oct 28;29(43):13613-20 – reference: 19605314 - IEEE Trans Biomed Eng. 2009 Nov;56(11 Pt 2):2730-3 – reference: 10896194 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):222-6 – reference: 21508492 - J Neural Eng. 2011 Jun;8(3):036012 – reference: 10791681 - Brain Topogr. 2000 Spring;12(3):177-86 – reference: 21984520 - IEEE Trans Neural Syst Rehabil Eng. 2011 Dec;19(6):617-27 – reference: 20582271 - Front Neurosci. 2010 Apr 21;4:30 – reference: 21436513 - J Neural Eng. 2011 Apr;8(2):025027 – reference: 20203202 - J Neurosci. 2010 Mar 3;30(9):3432-7 – reference: 21926016 - IEEE Trans Biomed Eng. 2012 Jan;59(1):132-40 – reference: 16792288 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):180-3 – reference: 20460690 - J Neural Eng. 2010 Jun;7(3):036007 – reference: 10896192 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):216-9 – reference: 16792295 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):205-10 – reference: 16443377 - Neuroimage. 2006 May 15;31(1):153-9 – reference: 19794237 - J Neural Eng. 2009 Dec;6(6):066001 – reference: 20877434 - Front Neurosci. 2010 Sep 07;4:null – reference: 18990646 - IEEE Trans Neural Syst Rehabil Eng. 2008 Oct;16(5):425-31 – reference: 21471638 - J Neural Eng. 2011 Jun;8(3):036004 – reference: 20160084 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4430-5 – reference: 11099043 - Nature. 2000 Nov 16;408(6810):361-5 – reference: 18923392 - Nature. 2008 Dec 4;456(7222):639-42 – reference: 15188883 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1081-6 – reference: 21715623 - J Neurosci. 2011 Jun 29;31(26):9585-93 – reference: 12899267 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):177-80 – reference: 7515787 - Electroencephalogr Clin Neurophysiol. 1994 Jun;90(6):444-9 – reference: 16680610 - J Rehabil Res Dev. 2005 Nov-Dec;42(6):723-36 – reference: 15876624 - J Neural Eng. 2004 Jun;1(2):63-71 – reference: 10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57 – reference: 23761697 - J Neurophysiol. 2013 Sep;110(5):1158-66 – reference: 19015583 - J Neural Eng. 2008 Dec;5(4):455-76 – reference: 9749909 - IEEE Trans Rehabil Eng. 1998 Sep;6(3):316-25 – reference: 17409472 - J Neural Eng. 2007 Jun;4(2):R1-R13 – reference: 17274021 - Hum Brain Mapp. 2007 Dec;28(12):1368-75 – reference: 21427014 - IEEE Trans Biomed Eng. 2011 Jun;58(6):1865-73 – reference: 3749885 - Science. 1986 Sep 26;233(4771):1416-9 – reference: 11482363 - IEEE Trans Neural Syst Rehabil Eng. 2001 Mar;9(1):49-58 – reference: 12052948 - Science. 2002 Jun 7;296(5574):1829-32 – reference: 19539036 - Neuroimage. 2009 Oct 1;47(4):1691-700 – reference: 17409476 - J Neural Eng. 2007 Jun;4(2):17-25 – reference: 15876632 - J Neural Eng. 2004 Sep;1(3):135-41 – reference: 15876616 - J Neural Eng. 2004 Mar;1(1):1-7 – reference: 22851229 - IEEE Trans Biomed Eng. 2012 Oct;59(10):2755-65 – reference: 15601739 - J Neurophysiol. 2005 May;93(5):2864-72 – reference: 22180514 - IEEE Trans Neural Syst Rehabil Eng. 2012 Mar;20(2):228-35 – reference: 15585584 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54 – reference: 18310813 - J Neural Eng. 2008 Mar;5(1):75-84 – reference: 12899262 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):159-61 |
SSID | ssj0014846 |
Score | 2.5897105 |
SecondaryResourceType | review_article |
Snippet | Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1425 |
SubjectTerms | Brain Brain Waves - physiology Brain-computer interface (BCI) Brain-Computer Interfaces brain-machine interface (BMI) Electrodes Electrodes, Implanted Electroencephalography electroencephalography (EEG) Feature extraction Feedback, Physiological Frequency modulation Humans neural interface sensorimotor rhythm (SMR) Signal Processing, Computer-Assisted Spatial resolution Spinal Cord Diseases - rehabilitation Three-dimensional displays |
Title | Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives |
URI | https://ieeexplore.ieee.org/document/6775293 https://www.ncbi.nlm.nih.gov/pubmed/24759276 https://www.proquest.com/docview/1545888617 https://www.proquest.com/docview/1519260772 https://www.proquest.com/docview/1566831658 https://pubmed.ncbi.nlm.nih.gov/PMC4082720 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_aPog--NH6Ea2ygk9irpvNJpv1zUqPIpyItlDwIWSTXU7URO5yD_rXO7PZxGspxbdAJiSbmcn-JjPzG4BXCLkzLZyLrZB5LGtbxUZxFbtE1UWKCCT1Hd6Lj_npufxwkV3swJupF8Za64vP7IwOfS6_6eoN_So7ypXKcHvahV0M3IZerSljIIuhKYcn6MBCy5DBTLg-OjtenFARl5whmBG4ARMDMPHcCWIa2dqO_HyV66Dm1YrJrS1ofg8W48MPlSffZ5vezOo_V3gd_3d19-FuwKLs3WA8D2DHtvtwZ4uhcB9uLULu_QC-HtM0iXgcA8H8v0RHFV3M1x2wLxgRdyvSfbdin5e_--XP9VsWCKCYR7Wsahs29zQm7NO_Ns_1Qzifn5y9P43DaIa4zmTex9KKxPEKw528MMoZVKxVRssMw7c0aXhN-VmTEXmdTkRFOCevdSWTyjmRGJ4-gr22a-0TYEanshJOFZWWGGyKwogslbrBV4FfF9lEwEcNlXXgLafxGT9KH79wXZJ-S9JvGfQbwevpkl8DacdNwgeki0kwqCGCw9EMyuDW69KnGYsCUV8EL6fT6JCUZala221IBkEzLlyJm2TyHD0B30oEjwfLmu4_WmYE6pLNTQJECH75TPtt6YnBaXi4Evzp9St6Brdp3UO15iHs9auNfY6IqjcvvCv9BdhUGZg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48Gh5BAoYiRMiW8dx4pgbRV0t0FQItlKlHqI4cbQISNBu9gC_nhnnwbaqKm4rZaKsPTOZz5mZbwBeIeSOtKgq3woZ-7KwuW8UV34VqCIJEYGErsM7PY5nJ_LjaXS6BW_GXhhrrSs-sxP66XL5ZVOs6VPZfqxUhOHpGlzHuB8FXbfWmDOQSdeWwwN0YaFln8MMuN6fH6SHVMYlJwhnBIZg4gAmpjtBXCMbAclNWLkMbF6smdwIQtO7kA5_v6s9-T5Zt2ZS_LnA7Pi_67sHd3o0yt515nMftmy9A7c3OAp34EbaZ9934eyA5kn4wyAI5r4mVlTTxVzlAfuKZ-JmSdpvluzL4ne7-Ll6y3oKKOZwLcvrkk0dkQn7_K_Rc_UATqaH8_czvx_O4BeRjFtfWhFUPMcDT5wYVRlUrVVGywgPcGFQ8oIytCYi-jodiJyQTlzoXAZ5VYnA8PAhbNdNbR8DMzqUuahUkmuJx02RGBGFUpe4Ffh-kaUHfNBQVvTM5TRA40fmTjBcZ6TfjPSb9fr14PV4y6-OtuMq4V3SxSjYq8GDvcEMst6xV5lLNCYJ4j4PXo6X0SUpz5LXtlmTDMJmXLgSV8nEMfoC7ooHjzrLGp8_WKYH6pzNjQJECX7-Sv1t4ajBaXy4EvzJ5St6ATdn8_QoO_pw_Okp3KI96Go392C7Xa7tM8RXrXnu3OovpOIc4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain-Computer+Interfaces+Using+Sensorimotor+Rhythms%3A+Current+State+and+Future+Perspectives&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Yuan%2C+Han&rft.au=He%2C+Bin&rft.date=2014-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=61&rft.issue=5&rft.spage=1425&rft_id=info:doi/10.1109%2FTBME.2014.2312397&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3377113481 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |