Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives

Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 61; no. 5; pp. 1425 - 1435
Main Authors Yuan, Han, He, Bin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2014.2312397

Cover

Loading…
Abstract Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e., the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g., electroencephalography (EEG), and have demonstrated the capability of multidimensional prosthesis control. This paper reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications, are reviewed. Finally, limitations of SMR-BCIs and future outlooks are also discussed.
AbstractList Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e., the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g., electroencephalography (EEG), and have demonstrated the capability of multidimensional prosthesis control. This paper reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications, are reviewed. Finally, limitations of SMR-BCIs and future outlooks are also discussed.Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e., the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g., electroencephalography (EEG), and have demonstrated the capability of multidimensional prosthesis control. This paper reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications, are reviewed. Finally, limitations of SMR-BCIs and future outlooks are also discussed.
Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e. the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g. electroencephalography (EEG), and have demonstrated the capability of multi-dimensional prosthesis control. This article reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications are reviewed. Lastly, limitations of SMR-BCIs and future outlooks are also discussed.
Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e., the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g., electroencephalography (EEG), and have demonstrated the capability of multidimensional prosthesis control. This paper reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications, are reviewed. Finally, limitations of SMR-BCIs and future outlooks are also discussed.
Author Yuan, Han
He, Bin
Author_xml – sequence: 1
  givenname: Han
  surname: Yuan
  fullname: Yuan, Han
  email: hyuan@laureateinstitute.org
  organization: Laureate Institute for Brain Research, Tulsa, OK, USA
– sequence: 2
  givenname: Bin
  surname: He
  fullname: He, Bin
  email: binhe@umn.edu
  organization: Department of Biomedical Engineering , University of Minnesota, Minneapolis, MN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24759276$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9rFDEUxYNU7Lb6AUSQAV98mTXJ5K8Pgl3aWqgotn3yIWRm73RTZpM1yRT67c2w20X7IL4khPzOvecm5wgd-OABodcEzwnB-sP1ydfTOcWEzWlDaKPlMzQjnKua8oYcoBnGRNWaanaIjlK6K0emmHiBDimTXFMpZujnSbTO14uw3owZYnXhy9rbDlJ1k5y_ra7ApxDdOuQQqx-rh7xap4_VYowRfK6uss1QWb-szsY8Rqi-Q0wb6LK7h_QSPe_tkODVbj9GN2en14sv9eW384vF58u640zkmgElPbacKaFa2beyUyBbzbjSuiFL3CmqccsFlkQTarHgSnTaMmL7npIWN8fo07buZmzXsOyKsWgHsymubXwwwTrz9413K3Mb7g3Diko6FXi_KxDDrxFSNmuXOhgG6yGMyRAuhGpIafwfKNG0WJW0oO-eoHdhjL68RKHKdEoJIgv19k_ze9ePX1QAsgW6GFKK0O8Rgs0UAzPFwEwxMLsYFI18oulc-SkXpvnd8E_lm63SAcC-k5CSU900vwHF9r7P
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_dsp_2024_104720
crossref_primary_10_1016_j_neucom_2017_09_030
crossref_primary_10_3389_fnbot_2023_1271967
crossref_primary_10_1142_S0218126621500304
crossref_primary_10_1038_s41597_021_00883_1
crossref_primary_10_3390_e22060703
crossref_primary_10_1109_JPROC_2015_2407272
crossref_primary_10_1109_TNSRE_2023_3321640
crossref_primary_10_1016_j_bspc_2024_106215
crossref_primary_10_3389_fnbot_2019_00111
crossref_primary_10_1016_j_compbiomed_2018_03_018
crossref_primary_10_1186_s12938_023_01102_1
crossref_primary_10_3390_electronics12030623
crossref_primary_10_1016_j_bspc_2022_104153
crossref_primary_10_1097_JCE_0000000000000238
crossref_primary_10_1016_j_bspc_2021_103101
crossref_primary_10_1016_j_neucom_2017_03_082
crossref_primary_10_1016_j_cmpb_2022_106692
crossref_primary_10_1109_JBHI_2019_2892379
crossref_primary_10_3389_fneur_2018_00822
crossref_primary_10_1109_ACCESS_2021_3112218
crossref_primary_10_1016_j_bspc_2022_103857
crossref_primary_10_1038_s41598_024_69222_9
crossref_primary_10_1142_S233954781450023X
crossref_primary_10_1109_TBME_2021_3115799
crossref_primary_10_1109_TNSRE_2022_3220884
crossref_primary_10_3389_fnins_2017_00246
crossref_primary_10_3390_s20082403
crossref_primary_10_1097_AUD_0000000000000856
crossref_primary_10_1016_j_procs_2017_03_096
crossref_primary_10_1109_JBHI_2024_3452701
crossref_primary_10_1109_TNSRE_2019_2936411
crossref_primary_10_1007_s44163_022_00022_8
crossref_primary_10_1088_1741_2552_ac23c0
crossref_primary_10_1109_JSEN_2025_3528009
crossref_primary_10_3389_fnins_2020_584971
crossref_primary_10_1371_journal_pone_0191673
crossref_primary_10_3390_electronics5040069
crossref_primary_10_1088_1757_899X_402_1_012017
crossref_primary_10_1109_TFUZZ_2017_2728521
crossref_primary_10_1109_TNSRE_2016_2523565
crossref_primary_10_1016_j_bspc_2023_105745
crossref_primary_10_1007_s11517_024_03193_x
crossref_primary_10_1111_ner_12628
crossref_primary_10_3389_fnins_2018_00680
crossref_primary_10_1109_RBME_2024_3449790
crossref_primary_10_1016_j_tics_2021_04_003
crossref_primary_10_3390_bioengineering11050418
crossref_primary_10_1007_s40846_023_00798_9
crossref_primary_10_1016_j_measurement_2023_113673
crossref_primary_10_3389_fpsyg_2018_02280
crossref_primary_10_1016_j_gaitpost_2020_11_014
crossref_primary_10_1109_JBHI_2022_3224506
crossref_primary_10_1109_TCYB_2015_2498974
crossref_primary_10_1007_s10484_017_9384_y
crossref_primary_10_1016_j_neuroimage_2016_11_007
crossref_primary_10_1088_1741_2552_ab21fd
crossref_primary_10_1016_j_bspc_2020_102069
crossref_primary_10_1109_TNSRE_2019_2915801
crossref_primary_10_1038_s41597_024_03222_2
crossref_primary_10_1109_TNSRE_2016_2601240
crossref_primary_10_1016_j_ijlp_2018_10_002
crossref_primary_10_1109_ACCESS_2022_3228164
crossref_primary_10_3389_fmech_2017_00003
crossref_primary_10_1002_inf2_12234
crossref_primary_10_1016_j_irbm_2021_01_002
crossref_primary_10_3389_fnhum_2023_1223307
crossref_primary_10_1109_ACCESS_2020_2990384
crossref_primary_10_1088_1741_2552_ac0584
crossref_primary_10_3390_s21165309
crossref_primary_10_1371_journal_pone_0184245
crossref_primary_10_1371_journal_pone_0303553
crossref_primary_10_3390_s20216321
crossref_primary_10_1016_j_bandc_2018_05_010
crossref_primary_10_1016_j_neucom_2017_10_013
crossref_primary_10_1080_2326263X_2020_1763060
crossref_primary_10_1016_j_physrep_2021_03_002
crossref_primary_10_1088_1741_2552_ad01de
crossref_primary_10_1109_ACCESS_2019_2915614
crossref_primary_10_3389_fnhum_2021_647908
crossref_primary_10_3389_fnhum_2017_00213
crossref_primary_10_1109_ACCESS_2022_3229143
crossref_primary_10_3389_fninf_2021_642766
crossref_primary_10_1080_10255842_2024_2371036
crossref_primary_10_3390_brainsci13091288
crossref_primary_10_1088_1741_2560_13_2_026014
crossref_primary_10_1155_2021_6645322
crossref_primary_10_1007_s11042_023_15653_x
crossref_primary_10_1016_j_cmpb_2020_105325
crossref_primary_10_1371_journal_pone_0178410
crossref_primary_10_3389_fnins_2022_865594
crossref_primary_10_1088_1741_2552_abca17
crossref_primary_10_1088_1741_2552_ab3471
crossref_primary_10_1016_j_bspc_2021_102574
crossref_primary_10_1088_1741_2560_12_6_066021
crossref_primary_10_1111_ejn_14342
crossref_primary_10_3389_fnhum_2022_951591
crossref_primary_10_1109_TBME_2015_2467312
crossref_primary_10_1016_j_bspc_2023_105438
crossref_primary_10_3389_fncom_2024_1431815
crossref_primary_10_1016_j_neuroscience_2018_03_013
crossref_primary_10_3390_bios13100930
crossref_primary_10_1109_ACCESS_2024_3394696
crossref_primary_10_1109_TNSRE_2022_3198041
crossref_primary_10_3390_app142110062
crossref_primary_10_1093_pnasnexus_pgae145
crossref_primary_10_1109_TNSRE_2015_2398573
crossref_primary_10_1016_j_bspc_2024_106943
crossref_primary_10_1109_TNNLS_2020_3048385
crossref_primary_10_1186_s42490_019_0022_z
crossref_primary_10_1016_j_bspc_2020_101882
crossref_primary_10_3389_fnins_2017_00691
crossref_primary_10_1088_1741_2552_ac2a6f
crossref_primary_10_1109_JSEN_2019_2958210
crossref_primary_10_1109_TNSRE_2023_3249831
crossref_primary_10_1088_1741_2552_ab20e5
crossref_primary_10_3389_fnhum_2022_1019279
crossref_primary_10_1152_jn_00346_2021
crossref_primary_10_3390_electronics9101584
crossref_primary_10_1109_TNSRE_2022_3198970
crossref_primary_10_1016_j_cogsys_2022_11_003
crossref_primary_10_1080_10255842_2023_2301421
crossref_primary_10_1088_1741_2552_aaf12e
crossref_primary_10_1007_s11517_016_1493_x
crossref_primary_10_1186_s12910_019_0354_1
crossref_primary_10_3389_fnins_2018_00307
crossref_primary_10_1145_3699732
crossref_primary_10_3389_fnbot_2024_1383089
crossref_primary_10_1038_s41598_020_57489_7
crossref_primary_10_1109_TNSRE_2020_3037326
crossref_primary_10_1186_s12938_023_01091_1
crossref_primary_10_1109_JSEN_2024_3471699
crossref_primary_10_3390_electronics9111834
crossref_primary_10_1109_TBME_2015_2487738
crossref_primary_10_1016_j_compbiomed_2019_103441
crossref_primary_10_1016_j_clinph_2024_08_009
crossref_primary_10_1016_j_cmpb_2019_03_009
crossref_primary_10_2139_ssrn_3993055
crossref_primary_10_1007_s11042_023_14659_9
crossref_primary_10_3390_electronics10020112
crossref_primary_10_3389_fnhum_2015_00716
crossref_primary_10_1109_TNSRE_2023_3315717
crossref_primary_10_1016_j_bspc_2022_104389
crossref_primary_10_1007_s00422_024_00984_1
crossref_primary_10_3233_THC_202619
crossref_primary_10_1016_j_bspc_2015_06_014
crossref_primary_10_29121_ijoest_v5_i3_2021_186
crossref_primary_10_1080_2326263X_2016_1213603
crossref_primary_10_1007_s12152_018_9364_9
crossref_primary_10_1186_s12938_018_0534_0
crossref_primary_10_1109_TNSRE_2024_3451015
crossref_primary_10_1109_TNSRE_2019_2920748
crossref_primary_10_1186_s12984_018_0431_6
crossref_primary_10_3389_fnins_2018_00540
crossref_primary_10_1016_j_compbiomed_2018_09_021
crossref_primary_10_1016_j_brs_2016_07_003
crossref_primary_10_1088_1741_2552_aba7cd
crossref_primary_10_1016_j_bspc_2019_04_034
crossref_primary_10_1109_TBME_2015_2402283
crossref_primary_10_1016_j_nbd_2014_10_014
crossref_primary_10_1142_S0129065721500301
crossref_primary_10_3389_fnrgo_2024_1341790
crossref_primary_10_3389_fnsys_2019_00066
crossref_primary_10_1007_s41315_018_0049_7
crossref_primary_10_1016_j_clinph_2018_03_015
crossref_primary_10_3389_fnhum_2022_1007136
crossref_primary_10_3390_electronics13030565
crossref_primary_10_1109_MSMC_2016_2576638
crossref_primary_10_1016_j_cobme_2017_11_004
crossref_primary_10_3389_fnhum_2019_00128
crossref_primary_10_1109_TNSRE_2019_2890968
crossref_primary_10_1016_j_measurement_2019_07_070
crossref_primary_10_1088_1741_2552_14_1_011001
crossref_primary_10_4018_IJCINI_2019070103
crossref_primary_10_1007_s11042_019_7607_3
crossref_primary_10_1016_j_bspc_2020_101845
crossref_primary_10_1109_ACCESS_2020_3040286
crossref_primary_10_1016_j_bspc_2016_09_005
crossref_primary_10_1016_j_neunet_2021_06_022
crossref_primary_10_1007_s11042_017_4458_7
crossref_primary_10_1016_j_measurement_2016_05_054
crossref_primary_10_1016_j_autcon_2020_103523
crossref_primary_10_1016_j_jneumeth_2021_109274
crossref_primary_10_1109_TBCAS_2020_2972733
crossref_primary_10_3934_mbe_2021213
crossref_primary_10_1109_MSP_2023_3278074
crossref_primary_10_1088_1741_2552_aadea0
crossref_primary_10_1371_journal_pone_0282268
crossref_primary_10_1016_j_jad_2021_08_071
crossref_primary_10_1109_TNSRE_2018_2817924
crossref_primary_10_3390_inventions8040091
crossref_primary_10_1109_TBME_2018_2872855
crossref_primary_10_1063_1_5136246
crossref_primary_10_3390_s21196593
crossref_primary_10_15302_J_ENG_2015078
crossref_primary_10_1088_1741_2552_ac1ade
crossref_primary_10_1016_j_bspc_2021_102550
crossref_primary_10_3389_fnhum_2024_1358809
crossref_primary_10_1088_1741_2552_ad4914
crossref_primary_10_3390_s19112620
crossref_primary_10_3390_brainsci9120372
crossref_primary_10_1016_j_compbiomed_2024_109260
crossref_primary_10_1186_s12984_023_01272_y
crossref_primary_10_3390_mi13091485
crossref_primary_10_3390_app13116364
crossref_primary_10_1016_j_neunet_2018_02_011
crossref_primary_10_3389_fnins_2021_660032
crossref_primary_10_1007_s11277_018_5932_x
crossref_primary_10_3389_fnins_2015_00308
crossref_primary_10_1109_TNSRE_2016_2528167
crossref_primary_10_3390_s23115064
crossref_primary_10_1088_1741_2552_abd51f
crossref_primary_10_1080_2326263X_2020_1783170
crossref_primary_10_3390_brainsci5030318
crossref_primary_10_1007_s10489_021_02622_w
crossref_primary_10_1136_jnis_2023_021434
crossref_primary_10_1155_2019_5618303
crossref_primary_10_1109_TNNLS_2023_3307470
crossref_primary_10_1016_j_cmpb_2020_105722
crossref_primary_10_1016_j_irbm_2018_08_001
crossref_primary_10_3390_brainsci13020221
crossref_primary_10_5604_01_3001_0016_1778
crossref_primary_10_1007_s10916_018_1106_3
crossref_primary_10_1109_TNSRE_2016_2646763
crossref_primary_10_1109_TBME_2014_2358536
crossref_primary_10_1007_s11571_016_9398_9
crossref_primary_10_3390_s24237611
crossref_primary_10_1007_s10548_018_00696_3
crossref_primary_10_1080_09593985_2020_1831114
crossref_primary_10_1088_1741_2552_abbd21
crossref_primary_10_1007_s11571_022_09923_x
crossref_primary_10_3390_brainsci14050498
crossref_primary_10_3389_fnhum_2022_902183
crossref_primary_10_1109_TNSRE_2020_3038717
crossref_primary_10_1109_TBME_2018_2852755
crossref_primary_10_1088_1741_2552_ad9cc1
crossref_primary_10_3389_fnins_2020_00528
crossref_primary_10_3390_s150305518
crossref_primary_10_3389_fnins_2015_00527
crossref_primary_10_3389_fnins_2023_1195066
crossref_primary_10_1109_TBME_2017_2677902
crossref_primary_10_1088_1741_2552_aa5559
crossref_primary_10_3389_fnbot_2019_00023
crossref_primary_10_1007_s11948_017_9928_9
crossref_primary_10_1016_j_bspc_2020_102100
crossref_primary_10_1016_j_jneumeth_2021_109199
crossref_primary_10_1080_2326263X_2022_2033073
crossref_primary_10_1016_j_cogr_2021_02_001
crossref_primary_10_3390_electronics12051234
crossref_primary_10_1109_ACCESS_2018_2809453
crossref_primary_10_1038_s41597_024_04090_6
crossref_primary_10_1186_s12938_015_0087_4
crossref_primary_10_3233_ICA_180586
crossref_primary_10_1016_j_brainres_2016_05_039
crossref_primary_10_3390_s20164485
crossref_primary_10_1016_j_artmed_2023_102738
crossref_primary_10_3389_fninf_2022_961089
crossref_primary_10_1016_j_measurement_2021_110116
crossref_primary_10_1109_ACCESS_2017_2751069
crossref_primary_10_3389_fnhum_2017_00523
crossref_primary_10_1016_j_neuroimage_2016_12_004
crossref_primary_10_1109_TNSRE_2017_2769686
crossref_primary_10_3389_fnins_2023_1146146
crossref_primary_10_1088_1741_2552_ac636a
crossref_primary_10_1109_TCYB_2018_2841847
crossref_primary_10_1016_j_neucom_2015_02_034
crossref_primary_10_1063_5_0047237
crossref_primary_10_1586_17434440_2016_1159511
crossref_primary_10_1109_TNSRE_2015_2494378
crossref_primary_10_1109_TBCAS_2022_3209542
crossref_primary_10_1016_j_neunet_2024_106847
crossref_primary_10_1088_1741_2552_acb102
crossref_primary_10_1038_s41598_021_02750_w
crossref_primary_10_1109_ACCESS_2018_2841051
crossref_primary_10_1088_1741_2552_ad7a24
crossref_primary_10_1109_JSEN_2022_3220930
Cites_doi 10.1109/TNSRE.2003.814800
10.1088/1741-2560/8/3/036010
10.1109/TBME.2011.2177523
10.1002/hbm.20352
10.1212/01.WNL.0000158616.43002.6D
10.1109/TBME.2009.2026181
10.1109/TNSRE.2006.875528
10.1088/1741-2560/2/4/001
10.1016/j.clinph.2004.06.022
10.1038/35084005
10.1126/science.1070291
10.1088/1741-2560/5/2/006
10.1016/0013-4694(91)90040-B
10.1126/science.3749885
10.1109/86.847823
10.1152/jn.1999.82.5.2676
10.1038/nature04970
10.1088/1741-2560/8/3/036012
10.1109/TNSRE.2011.2168542
10.1155/2013/243257
10.1088/1741-2560/4/2/002
10.1016/j.neuroimage.2005.01.050
10.1016/0013-4694(94)90135-X
10.1109/TBME.2008.2009768
10.1023/A:1023437823106
10.1088/1741-2560/8/2/025020
10.1109/TNSRE.2006.875549
10.1523/JNEUROSCI.5506-08.2009
10.1016/j.neuroimage.2009.10.028
10.1109/86.847821
10.1016/S1388-2457(02)00057-3
10.1371/journal.pone.0085192
10.1109/TBME.2011.2172210
10.1152/jn.00721.2004
10.1109/TNSRE.2007.916289
10.1088/1741-2560/1/3/002
10.1523/JNEUROSCI.6107-09.2010
10.1016/S1053-8119(03)00145-9
10.1016/j.neuron.2010.04.020
10.1109/7333.918276
10.1038/416141a
10.3389/fnpro.2010.00003
10.1088/1741-2560/7/2/026001
10.1109/TBME.2004.826697
10.1109/86.895947
10.1523/JNEUROSCI.2041-09.2009
10.1007/0-306-48610-5_3
10.1016/S1053-8119(03)00344-6
10.1523/JNEUROSCI.5171-07.2008
10.1152/jn.01092.2012
10.1088/1741-2560/4/3/012
10.1016/j.neuroimage.2005.12.003
10.1109/TBME.2004.827072
10.1371/journal.pone.0000637
10.1016/S0013-4694(97)00080-1
10.1073/pnas.0913697107
10.1073/pnas.0403504101
10.1016/j.neuroimage.2009.06.023
10.1002/hbm.20585
10.1016/j.clinph.2010.02.153
10.1109/TNSRE.2006.875567
10.1088/1741-2560/1/1/001
10.1016/S0140-6736(12)61816-9
10.1038/35042582
10.1088/1741-2560/5/4/010
10.1109/TNSRE.2005.847386
10.1161/STROKEAHA.107.505313
10.1109/86.712230
10.1097/00001756-200212200-00022
10.1016/S1474-4422(08)70223-0
10.1038/nature07418
10.1088/1741-2560/7/3/036007
10.1109/TBME.2012.2209882
10.1016/S1388-2457(99)00141-8
10.1109/TNSRE.2005.848627
10.1073/pnas.0609632104
10.1088/1741-2560/8/3/036004
10.1007/978-1-4614-5227-0
10.1088/1741-2560/10/4/046003
10.1523/JNEUROSCI.02-11-01527.1982
10.1109/TBME.2011.2167718
10.1109/TBME.2011.2131142
10.1109/TNSRE.2010.2077654
10.1016/S0167-8760(01)00178-7
10.1088/1741-2560/6/6/066001
10.3389/fnins.2010.00161
10.1109/TNSRE.2008.2003384
10.1016/j.jneumeth.2012.06.022
10.2174/1874440001105010074
10.1080/16501970410035387
10.1109/RBME.2008.2008233
10.1088/1741-2560/4/2/R01
10.1088/1741-2560/1/2/001
10.1109/TNSRE.2003.814435
10.1093/brain/121.12.2301
10.1038/nature11076
10.1109/7333.948456
10.1523/JNEUROSCI.5312-10.2011
10.1523/JNEUROSCI.3886-06.2007
10.1109/TNSRE.2011.2174652
10.1109/86.808944
10.1371/journal.pone.0026322
10.1109/TNSRE.2003.814454
10.1109/TNSRE.2006.875577
10.1088/1741-2560/8/2/025027
10.1016/S1388-2457(03)00067-1
10.1109/86.895946
10.1093/brain/121.12.2271
10.1016/j.jneumeth.2007.06.031
10.1016/j.neuron.2006.09.019
10.1016/S0304-3940(03)00947-9
10.1682/JRRD.2005.02.0048
10.1109/TBME.2011.2139210
10.1006/jmca.1993.1030
10.1016/j.neuroimage.2008.02.032
10.1109/TBME.2007.913986
10.1088/1741-2560/5/1/008
10.1126/science.1128115
10.1093/acprof:oso/9780195050387.001.0001
10.1109/TNSRE.2003.814442
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014
Copyright (©) 2013 IEEE. 2013
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014
– notice: Copyright (©) 2013 IEEE. 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2014.2312397
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Engineering Research Database
MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1435
ExternalDocumentID PMC4082720
3377113481
24759276
10_1109_TBME_2014_2312397
6775293
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Review
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation CBET-0933067, CBET-1264782, DGE-1069104, ONR N000141110690, and NIH R01 EB006433
– fundername: NIBIB NIH HHS
  grantid: R01 EB006433
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c546t-4e21f0a54868b7fb7c8e7b94589931d0c8290b56071912a06586c9a41aff21b03
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 17:33:55 EDT 2025
Fri Jul 11 06:08:36 EDT 2025
Fri Jul 11 08:16:57 EDT 2025
Mon Jun 30 08:27:40 EDT 2025
Thu Apr 03 07:07:42 EDT 2025
Tue Jul 01 02:15:50 EDT 2025
Thu Apr 24 22:56:30 EDT 2025
Wed Aug 27 02:52:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-4e21f0a54868b7fb7c8e7b94589931d0c8290b56071912a06586c9a41aff21b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4082720
PMID 24759276
PQID 1545888617
PQPubID 85474
PageCount 11
ParticipantIDs crossref_primary_10_1109_TBME_2014_2312397
proquest_miscellaneous_1519260772
crossref_citationtrail_10_1109_TBME_2014_2312397
proquest_miscellaneous_1566831658
proquest_journals_1545888617
pubmed_primary_24759276
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4082720
ieee_primary_6775293
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref55
ref54
wessberg (ref6) 2000; 408
canolty (ref50) 2006; 313
(ref1) 2012
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
moran (ref103) 1999; 82
ref49
ref7
ref9
ref3
ref5
ref100
ref101
ref40
ref35
ref34
ref37
georgopoulos (ref4) 1982; 2
ref36
ref31
ref30
pfurtscheller (ref21) 2003; 114
ref32
ref39
ref38
ref24
wolpaw (ref75) 2002; 113
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
niedermeyer (ref52) 2005
ref13
ref12
ref15
ref97
ref96
ref99
ref11
ref98
ref10
ref17
ref16
ref19
taylor (ref8) 2002; 296
ref18
ref93
ref92
ref95
ref94
simeral (ref14) 2011; 8
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref104
ref74
ref105
ref77
ref102
ref76
ref2
wang (ref33) 2004; 115
ref71
ref111
ref70
ref112
ref72
ref110
doud (ref116) 2013
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref66
ref113
ref65
ref114
(ref124) 0
he (ref73) 2011; 58
ref60
ref122
ref123
ref62
ref120
ref61
ref121
15876616 - J Neural Eng. 2004 Mar;1(1):1-7
24416360 - PLoS One. 2014;9(1):e85192
12899267 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):177-80
11742684 - Int J Psychophysiol. 2001 Dec;43(1):41-58
16680610 - J Rehabil Res Dev. 2005 Nov-Dec;42(6):723-36
17409476 - J Neural Eng. 2007 Jun;4(2):17-25
22596161 - Nature. 2012 May 17;485(7398):372-5
22010143 - IEEE Trans Biomed Eng. 2012 Apr;59(4):920-8
21984520 - IEEE Trans Neural Syst Rehabil Eng. 2011 Dec;19(6):617-27
18310813 - J Neural Eng. 2008 Mar;5(1):75-84
20582271 - Front Neurosci. 2010 Apr 21;4:30
17653264 - PLoS One. 2007;2(7):e637
10609628 - IEEE Trans Rehabil Eng. 1999 Dec;7(4):413-9
16317229 - J Neural Eng. 2005 Dec;2(4):65-72
17015237 - Neuron. 2006 Oct 5;52(1):205-20
9749909 - IEEE Trans Rehabil Eng. 1998 Sep;6(3):316-25
10561437 - J Neurophysiol. 1999 Nov;82(5):2676-92
15188875 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43
7143039 - J Neurosci. 1982 Nov;2(11):1527-37
21436514 - J Neural Eng. 2011 Apr;8(2):025020
16792301 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):229-33
16792295 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):205-10
21471638 - J Neural Eng. 2011 Jun;8(3):036004
19794237 - J Neural Eng. 2009 Dec;6(6):066001
10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57
22771715 - J Neurosci Methods. 2012 Aug 15;209(2):299-307
18835541 - Lancet Neurol. 2008 Nov;7(11):1032-43
18424182 - Neuroimage. 2008 Jun;41(2):302-10
18216207 - J Neurosci. 2008 Jan 23;28(4):1000-8
9874480 - Brain. 1998 Dec;121 ( Pt 12):2271-99
15911809 - Neurology. 2005 May 24;64(10):1775-7
23735712 - J Neural Eng. 2013 Aug;10(4):046003
22147288 - IEEE Trans Biomed Eng. 2012 Mar;59(3):653-62
16792306 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):250-4
22851229 - IEEE Trans Biomed Eng. 2012 Oct;59(10):2755-65
12052948 - Science. 2002 Jun 7;296(5574):1829-32
18258825 - Stroke. 2008 Mar;39(3):910-7
20378397 - Clin Neurophysiol. 2010 Aug;121(8):1240-50
18990646 - IEEE Trans Neural Syst Rehabil Eng. 2008 Oct;16(5):425-31
18923392 - Nature. 2008 Dec 4;456(7222):639-42
16443377 - Neuroimage. 2006 May 15;31(1):153-9
17329441 - J Neurosci. 2007 Feb 28;27(9):2424-32
21493978 - J Neural Eng. 2011 Jun;8(3):036010
15188883 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1081-6
20203202 - J Neurosci. 2010 Mar 3;30(9):3432-7
18303800 - IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):3-14
21427014 - IEEE Trans Biomed Eng. 2011 Jun;58(6):1865-73
16792288 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):180-3
16200760 - IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):372-9
19423426 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1209-19
20460690 - J Neural Eng. 2010 Jun;7(3):036007
17442753 - Proc Natl Acad Sci U S A. 2007 May 1;104(18):7676-81
15876624 - J Neural Eng. 2004 Jun;1(2):63-71
21715623 - J Neurosci. 2011 Jun 29;31(26):9585-93
20876032 - IEEE Trans Neural Syst Rehabil Eng. 2010 Dec;18(6):581-9
22216080 - Open Neuroimag J. 2011;5:74-89
17409472 - J Neural Eng. 2007 Jun;4(2):R1-R13
20168002 - J Neural Eng. 2010 Apr;7(2):26001
10896194 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):222-6
21508492 - J Neural Eng. 2011 Jun;8(3):036012
11099043 - Nature. 2000 Nov 16;408(6810):361-5
18465747 - Hum Brain Mapp. 2009 Apr;30(4):1168-87
12880789 - Neuroimage. 2003 Jul;19(3):577-86
22180514 - IEEE Trans Neural Syst Rehabil Eng. 2012 Mar;20(2):228-35
16838014 - Nature. 2006 Jul 13;442(7099):164-71
3749885 - Science. 1986 Sep 26;233(4771):1416-9
22046274 - PLoS One. 2011;6(10):e26322
11204035 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):447-56
11894084 - Nature. 2002 Mar 14;416(6877):141-2
11449264 - Nature. 2001 Jul 12;412(6843):150-7
15788330 - J Rehabil Med. 2005 Jan;37(1):32-6
12899262 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):159-61
10896192 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):216-9
20471349 - Neuron. 2010 May 13;66(3):353-69
20160084 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4430-5
21436513 - J Neural Eng. 2011 Apr;8(2):025027
10791681 - Brain Topogr. 2000 Spring;12(3):177-86
19605314 - IEEE Trans Biomed Eng. 2009 Nov;56(11 Pt 2):2730-3
23710250 - Comput Math Methods Med. 2013;2013:243257
14550907 - Neurosci Lett. 2003 Nov 6;351(1):33-6
12048038 - Clin Neurophysiol. 2002 Jun;113(6):767-91
11561664 - IEEE Trans Neural Syst Rehabil Eng. 2001 Sep;9(3):283-8
16003895 - IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):166-71
9546492 - Electroencephalogr Clin Neurophysiol. 1997 Dec;103(6):642-51
19015583 - J Neural Eng. 2008 Dec;5(4):455-76
16973878 - Science. 2006 Sep 15;313(5793):1626-8
11482363 - IEEE Trans Neural Syst Rehabil Eng. 2001 Mar;9(1):49-58
15546783 - Clin Neurophysiol. 2004 Dec;115(12):2744-53
20877434 - Front Neurosci. 2010 Sep 07;4:null
15876632 - J Neural Eng. 2004 Sep;1(3):135-41
19279250 - J Neurosci. 2009 Mar 11;29(10):3132-7
19864573 - J Neurosci. 2009 Oct 28;29(43):13613-20
19850134 - Neuroimage. 2010 Feb 1;49(3):2596-606
12842719 - Clin Neurophysiol. 2003 Jul;114(7):1226-36
15862231 - Neuroimage. 2005 May 15;26(1):302-8
17274021 - Hum Brain Mapp. 2007 Dec;28(12):1368-75
15585584 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54
21478071 - IEEE Trans Biomed Eng. 2011 Jul;58(7):1918-31
1707798 - Electroencephalogr Clin Neurophysiol. 1991 Mar;78(3):252-9
20634915 - IEEE Rev Biomed Eng. 2008;1:23-40
9874481 - Brain. 1998 Dec;121 ( Pt 12):2301-15
21926016 - IEEE Trans Biomed Eng. 2012 Jan;59(1):132-40
23761697 - J Neurophysiol. 2013 Sep;110(5):1158-66
12499854 - Neuroreport. 2002 Dec 20;13(18):2487-92
17706292 - J Neurosci Methods. 2008 Jan 15;167(1):31-42
11204034 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):441-6
12899275 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):204-7
23253623 - Lancet. 2013 Feb 16;381(9866):557-64
12899270 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):186-8
14527577 - Neuroimage. 2003 Sep;20(1):145-58
15601739 - J Neurophysiol. 2005 May;93(5):2864-72
7515787 - Electroencephalogr Clin Neurophysiol. 1994 Jun;90(6):444-9
19539036 - Neuroimage. 2009 Oct 1;47(4):1691-700
18430974 - J Neural Eng. 2008 Jun;5(2):155-62
18440905 - IEEE Trans Biomed Eng. 2008 May;55(5):1592-601
17873429 - J Neural Eng. 2007 Sep;4(3):264-75
References_xml – year: 2005
  ident: ref52
  publication-title: Electroencephalography Basic Principles Clinical Applications and Related Fields
– ident: ref13
  doi: 10.1109/TNSRE.2003.814800
– ident: ref48
  doi: 10.1088/1741-2560/8/3/036010
– ident: ref122
  doi: 10.1109/TBME.2011.2177523
– ident: ref60
  doi: 10.1002/hbm.20352
– ident: ref28
  doi: 10.1212/01.WNL.0000158616.43002.6D
– ident: ref37
  doi: 10.1109/TBME.2009.2026181
– ident: ref84
  doi: 10.1109/TNSRE.2006.875528
– ident: ref65
  doi: 10.1088/1741-2560/2/4/001
– volume: 115
  start-page: 2744
  year: 2004
  ident: ref33
  article-title: Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2004.06.022
– ident: ref59
  doi: 10.1038/35084005
– volume: 296
  start-page: 1829
  year: 2002
  ident: ref8
  article-title: Direct cortical control of 3D neuroprosthetic devices
  publication-title: Science
  doi: 10.1126/science.1070291
– ident: ref90
  doi: 10.1088/1741-2560/5/2/006
– ident: ref25
  doi: 10.1016/0013-4694(91)90040-B
– ident: ref5
  doi: 10.1126/science.3749885
– ident: ref91
  doi: 10.1109/86.847823
– volume: 82
  start-page: 2676
  year: 1999
  ident: ref103
  article-title: Motor cortical representation of speed and direction during reaching
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1999.82.5.2676
– ident: ref9
  doi: 10.1038/nature04970
– ident: ref99
  doi: 10.1088/1741-2560/8/3/036012
– ident: ref96
  doi: 10.1109/TNSRE.2011.2168542
– ident: ref106
  doi: 10.1155/2013/243257
– ident: ref67
  doi: 10.1088/1741-2560/4/2/002
– ident: ref61
  doi: 10.1016/j.neuroimage.2005.01.050
– ident: ref26
  doi: 10.1016/0013-4694(94)90135-X
– ident: ref71
  doi: 10.1109/TBME.2008.2009768
– ident: ref32
  doi: 10.1023/A:1023437823106
– ident: ref113
  doi: 10.1088/1741-2560/8/2/025020
– ident: ref101
  doi: 10.1109/TNSRE.2006.875549
– ident: ref108
  doi: 10.1523/JNEUROSCI.5506-08.2009
– ident: ref39
  doi: 10.1016/j.neuroimage.2009.10.028
– ident: ref82
  doi: 10.1109/86.847821
– volume: 113
  start-page: 767
  year: 2002
  ident: ref75
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref107
  doi: 10.1371/journal.pone.0085192
– ident: ref121
  doi: 10.1109/TBME.2011.2172210
– ident: ref55
  doi: 10.1152/jn.00721.2004
– ident: ref104
  doi: 10.1109/TNSRE.2007.916289
– ident: ref68
  doi: 10.1088/1741-2560/1/3/002
– ident: ref102
  doi: 10.1523/JNEUROSCI.6107-09.2010
– ident: ref74
  doi: 10.1016/S1053-8119(03)00145-9
– ident: ref51
  doi: 10.1016/j.neuron.2010.04.020
– ident: ref83
  doi: 10.1109/7333.918276
– ident: ref7
  doi: 10.1038/416141a
– ident: ref110
  doi: 10.3389/fnpro.2010.00003
– ident: ref57
  doi: 10.1088/1741-2560/7/2/026001
– ident: ref120
  doi: 10.1109/TBME.2004.826697
– ident: ref87
  doi: 10.1109/86.895947
– ident: ref117
  doi: 10.1523/JNEUROSCI.2041-09.2009
– ident: ref2
  doi: 10.1007/0-306-48610-5_3
– ident: ref54
  doi: 10.1016/S1053-8119(03)00344-6
– ident: ref46
  doi: 10.1523/JNEUROSCI.5171-07.2008
– ident: ref114
  doi: 10.1152/jn.01092.2012
– ident: ref49
  doi: 10.1088/1741-2560/4/3/012
– ident: ref41
  doi: 10.1016/j.neuroimage.2005.12.003
– ident: ref119
  doi: 10.1109/TBME.2004.827072
– ident: ref63
  doi: 10.1371/journal.pone.0000637
– ident: ref31
  doi: 10.1016/S0013-4694(97)00080-1
– ident: ref34
  doi: 10.1073/pnas.0913697107
– ident: ref15
  doi: 10.1073/pnas.0403504101
– ident: ref47
  doi: 10.1016/j.neuroimage.2009.06.023
– ident: ref58
  doi: 10.1002/hbm.20585
– year: 2012
  ident: ref1
  publication-title: Brain-Computer Interfaces Principles and Practice
– ident: ref56
  doi: 10.1016/j.clinph.2010.02.153
– ident: ref36
  doi: 10.1109/TNSRE.2006.875567
– ident: ref35
  doi: 10.1088/1741-2560/1/1/001
– ident: ref12
  doi: 10.1016/S0140-6736(12)61816-9
– volume: 408
  start-page: 361
  year: 2000
  ident: ref6
  article-title: Real-time prediction of hand trajectory by ensembles of cortical neurons in primates
  publication-title: Nature
  doi: 10.1038/35042582
– ident: ref10
  doi: 10.1088/1741-2560/5/4/010
– ident: ref66
  doi: 10.1109/TNSRE.2005.847386
– ident: ref29
  doi: 10.1161/STROKEAHA.107.505313
– ident: ref85
  doi: 10.1109/86.712230
– ident: ref53
  doi: 10.1097/00001756-200212200-00022
– ident: ref115
  doi: 10.1016/S1474-4422(08)70223-0
– ident: ref95
  doi: 10.1038/nature07418
– ident: ref16
  doi: 10.1088/1741-2560/7/3/036007
– ident: ref123
  doi: 10.1109/TBME.2012.2209882
– ident: ref30
  doi: 10.1016/S1388-2457(99)00141-8
– ident: ref94
  doi: 10.1109/TNSRE.2005.848627
– ident: ref45
  doi: 10.1073/pnas.0609632104
– ident: ref24
  doi: 10.1088/1741-2560/8/3/036004
– ident: ref3
  doi: 10.1007/978-1-4614-5227-0
– ident: ref19
  doi: 10.1088/1741-2560/10/4/046003
– volume: 2
  start-page: 1527
  year: 1982
  ident: ref4
  article-title: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.02-11-01527.1982
– ident: ref112
  doi: 10.1109/TBME.2011.2167718
– ident: ref38
  doi: 10.1109/TBME.2011.2131142
– ident: ref17
  doi: 10.1109/TNSRE.2010.2077654
– ident: ref76
  doi: 10.1016/S0167-8760(01)00178-7
– ident: ref109
  doi: 10.1088/1741-2560/6/6/066001
– ident: ref118
  doi: 10.3389/fnins.2010.00161
– year: 2013
  ident: ref116
  article-title: A portable immersive virtual reality platform for motor-imagery guided rehabilitation of hemiparetic stroke
  publication-title: Proc 5th Int Brain-Comput Interface Meeting
– ident: ref27
  doi: 10.1109/TNSRE.2008.2003384
– ident: ref111
  doi: 10.1016/j.jneumeth.2012.06.022
– ident: ref105
  doi: 10.2174/1874440001105010074
– ident: ref97
  doi: 10.1080/16501970410035387
– ident: ref72
  doi: 10.1109/RBME.2008.2008233
– ident: ref88
  doi: 10.1088/1741-2560/4/2/R01
– ident: ref22
  doi: 10.1088/1741-2560/1/2/001
– ident: ref78
  doi: 10.1109/TNSRE.2003.814435
– ident: ref43
  doi: 10.1093/brain/121.12.2301
– ident: ref11
  doi: 10.1038/nature11076
– ident: ref89
  doi: 10.1109/7333.948456
– ident: ref40
  doi: 10.1523/JNEUROSCI.5312-10.2011
– ident: ref44
  doi: 10.1523/JNEUROSCI.3886-06.2007
– ident: ref64
  doi: 10.1109/TNSRE.2011.2174652
– ident: ref86
  doi: 10.1109/86.808944
– ident: ref18
  doi: 10.1371/journal.pone.0026322
– ident: ref77
  doi: 10.1109/TNSRE.2003.814454
– ident: ref93
  doi: 10.1109/TNSRE.2006.875577
– volume: 8
  year: 2011
  ident: ref14
  article-title: Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/8/2/025027
– volume: 114
  start-page: 1226
  year: 2003
  ident: ref21
  article-title: Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(03)00067-1
– ident: ref81
  doi: 10.1109/86.895946
– ident: ref42
  doi: 10.1093/brain/121.12.2271
– ident: ref69
  doi: 10.1016/j.jneumeth.2007.06.031
– ident: ref100
  doi: 10.1016/j.neuron.2006.09.019
– ident: ref79
  doi: 10.1016/S0304-3940(03)00947-9
– ident: ref98
  doi: 10.1682/JRRD.2005.02.0048
– volume: 58
  start-page: 1918
  year: 2011
  ident: ref73
  article-title: Electrophysiological imaging of brain activity and connectivity-challenges and opportunities
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2139210
– ident: ref80
  doi: 10.1006/jmca.1993.1030
– ident: ref62
  doi: 10.1016/j.neuroimage.2008.02.032
– ident: ref70
  doi: 10.1109/TBME.2007.913986
– ident: ref23
  doi: 10.1088/1741-2560/5/1/008
– volume: 313
  start-page: 1626
  year: 2006
  ident: ref50
  article-title: High gamma power is phase-locked to theta oscillations in human neocortex
  publication-title: Science
  doi: 10.1126/science.1128115
– ident: ref20
  doi: 10.1093/acprof:oso/9780195050387.001.0001
– year: 0
  ident: ref124
– ident: ref92
  doi: 10.1109/TNSRE.2003.814442
– reference: 16792306 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):250-4
– reference: 21478071 - IEEE Trans Biomed Eng. 2011 Jul;58(7):1918-31
– reference: 19279250 - J Neurosci. 2009 Mar 11;29(10):3132-7
– reference: 15862231 - Neuroimage. 2005 May 15;26(1):302-8
– reference: 22046274 - PLoS One. 2011;6(10):e26322
– reference: 10609628 - IEEE Trans Rehabil Eng. 1999 Dec;7(4):413-9
– reference: 24416360 - PLoS One. 2014;9(1):e85192
– reference: 12880789 - Neuroimage. 2003 Jul;19(3):577-86
– reference: 16973878 - Science. 2006 Sep 15;313(5793):1626-8
– reference: 16792301 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):229-33
– reference: 20876032 - IEEE Trans Neural Syst Rehabil Eng. 2010 Dec;18(6):581-9
– reference: 20168002 - J Neural Eng. 2010 Apr;7(2):26001
– reference: 17706292 - J Neurosci Methods. 2008 Jan 15;167(1):31-42
– reference: 15546783 - Clin Neurophysiol. 2004 Dec;115(12):2744-53
– reference: 21493978 - J Neural Eng. 2011 Jun;8(3):036010
– reference: 11894084 - Nature. 2002 Mar 14;416(6877):141-2
– reference: 9874481 - Brain. 1998 Dec;121 ( Pt 12):2301-15
– reference: 10561437 - J Neurophysiol. 1999 Nov;82(5):2676-92
– reference: 12842719 - Clin Neurophysiol. 2003 Jul;114(7):1226-36
– reference: 12499854 - Neuroreport. 2002 Dec 20;13(18):2487-92
– reference: 16317229 - J Neural Eng. 2005 Dec;2(4):65-72
– reference: 18424182 - Neuroimage. 2008 Jun;41(2):302-10
– reference: 11204034 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):441-6
– reference: 23253623 - Lancet. 2013 Feb 16;381(9866):557-64
– reference: 16003895 - IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):166-71
– reference: 21436514 - J Neural Eng. 2011 Apr;8(2):025020
– reference: 20378397 - Clin Neurophysiol. 2010 Aug;121(8):1240-50
– reference: 12048038 - Clin Neurophysiol. 2002 Jun;113(6):767-91
– reference: 23710250 - Comput Math Methods Med. 2013;2013:243257
– reference: 17329441 - J Neurosci. 2007 Feb 28;27(9):2424-32
– reference: 12899275 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):204-7
– reference: 23735712 - J Neural Eng. 2013 Aug;10(4):046003
– reference: 17442753 - Proc Natl Acad Sci U S A. 2007 May 1;104(18):7676-81
– reference: 9874480 - Brain. 1998 Dec;121 ( Pt 12):2271-99
– reference: 11561664 - IEEE Trans Neural Syst Rehabil Eng. 2001 Sep;9(3):283-8
– reference: 11742684 - Int J Psychophysiol. 2001 Dec;43(1):41-58
– reference: 19423426 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1209-19
– reference: 17015237 - Neuron. 2006 Oct 5;52(1):205-20
– reference: 1707798 - Electroencephalogr Clin Neurophysiol. 1991 Mar;78(3):252-9
– reference: 15788330 - J Rehabil Med. 2005 Jan;37(1):32-6
– reference: 22147288 - IEEE Trans Biomed Eng. 2012 Mar;59(3):653-62
– reference: 18216207 - J Neurosci. 2008 Jan 23;28(4):1000-8
– reference: 11449264 - Nature. 2001 Jul 12;412(6843):150-7
– reference: 11204035 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):447-56
– reference: 16200760 - IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):372-9
– reference: 18303800 - IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):3-14
– reference: 19850134 - Neuroimage. 2010 Feb 1;49(3):2596-606
– reference: 15911809 - Neurology. 2005 May 24;64(10):1775-7
– reference: 7143039 - J Neurosci. 1982 Nov;2(11):1527-37
– reference: 9546492 - Electroencephalogr Clin Neurophysiol. 1997 Dec;103(6):642-51
– reference: 20471349 - Neuron. 2010 May 13;66(3):353-69
– reference: 18258825 - Stroke. 2008 Mar;39(3):910-7
– reference: 15188875 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43
– reference: 16838014 - Nature. 2006 Jul 13;442(7099):164-71
– reference: 12899270 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):186-8
– reference: 17653264 - PLoS One. 2007;2(7):e637
– reference: 18465747 - Hum Brain Mapp. 2009 Apr;30(4):1168-87
– reference: 14550907 - Neurosci Lett. 2003 Nov 6;351(1):33-6
– reference: 18430974 - J Neural Eng. 2008 Jun;5(2):155-62
– reference: 18440905 - IEEE Trans Biomed Eng. 2008 May;55(5):1592-601
– reference: 22771715 - J Neurosci Methods. 2012 Aug 15;209(2):299-307
– reference: 18835541 - Lancet Neurol. 2008 Nov;7(11):1032-43
– reference: 22010143 - IEEE Trans Biomed Eng. 2012 Apr;59(4):920-8
– reference: 22216080 - Open Neuroimag J. 2011;5:74-89
– reference: 20634915 - IEEE Rev Biomed Eng. 2008;1:23-40
– reference: 14527577 - Neuroimage. 2003 Sep;20(1):145-58
– reference: 22596161 - Nature. 2012 May 17;485(7398):372-5
– reference: 17873429 - J Neural Eng. 2007 Sep;4(3):264-75
– reference: 19864573 - J Neurosci. 2009 Oct 28;29(43):13613-20
– reference: 19605314 - IEEE Trans Biomed Eng. 2009 Nov;56(11 Pt 2):2730-3
– reference: 10896194 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):222-6
– reference: 21508492 - J Neural Eng. 2011 Jun;8(3):036012
– reference: 10791681 - Brain Topogr. 2000 Spring;12(3):177-86
– reference: 21984520 - IEEE Trans Neural Syst Rehabil Eng. 2011 Dec;19(6):617-27
– reference: 20582271 - Front Neurosci. 2010 Apr 21;4:30
– reference: 21436513 - J Neural Eng. 2011 Apr;8(2):025027
– reference: 20203202 - J Neurosci. 2010 Mar 3;30(9):3432-7
– reference: 21926016 - IEEE Trans Biomed Eng. 2012 Jan;59(1):132-40
– reference: 16792288 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):180-3
– reference: 20460690 - J Neural Eng. 2010 Jun;7(3):036007
– reference: 10896192 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):216-9
– reference: 16792295 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):205-10
– reference: 16443377 - Neuroimage. 2006 May 15;31(1):153-9
– reference: 19794237 - J Neural Eng. 2009 Dec;6(6):066001
– reference: 20877434 - Front Neurosci. 2010 Sep 07;4:null
– reference: 18990646 - IEEE Trans Neural Syst Rehabil Eng. 2008 Oct;16(5):425-31
– reference: 21471638 - J Neural Eng. 2011 Jun;8(3):036004
– reference: 20160084 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4430-5
– reference: 11099043 - Nature. 2000 Nov 16;408(6810):361-5
– reference: 18923392 - Nature. 2008 Dec 4;456(7222):639-42
– reference: 15188883 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1081-6
– reference: 21715623 - J Neurosci. 2011 Jun 29;31(26):9585-93
– reference: 12899267 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):177-80
– reference: 7515787 - Electroencephalogr Clin Neurophysiol. 1994 Jun;90(6):444-9
– reference: 16680610 - J Rehabil Res Dev. 2005 Nov-Dec;42(6):723-36
– reference: 15876624 - J Neural Eng. 2004 Jun;1(2):63-71
– reference: 10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57
– reference: 23761697 - J Neurophysiol. 2013 Sep;110(5):1158-66
– reference: 19015583 - J Neural Eng. 2008 Dec;5(4):455-76
– reference: 9749909 - IEEE Trans Rehabil Eng. 1998 Sep;6(3):316-25
– reference: 17409472 - J Neural Eng. 2007 Jun;4(2):R1-R13
– reference: 17274021 - Hum Brain Mapp. 2007 Dec;28(12):1368-75
– reference: 21427014 - IEEE Trans Biomed Eng. 2011 Jun;58(6):1865-73
– reference: 3749885 - Science. 1986 Sep 26;233(4771):1416-9
– reference: 11482363 - IEEE Trans Neural Syst Rehabil Eng. 2001 Mar;9(1):49-58
– reference: 12052948 - Science. 2002 Jun 7;296(5574):1829-32
– reference: 19539036 - Neuroimage. 2009 Oct 1;47(4):1691-700
– reference: 17409476 - J Neural Eng. 2007 Jun;4(2):17-25
– reference: 15876632 - J Neural Eng. 2004 Sep;1(3):135-41
– reference: 15876616 - J Neural Eng. 2004 Mar;1(1):1-7
– reference: 22851229 - IEEE Trans Biomed Eng. 2012 Oct;59(10):2755-65
– reference: 15601739 - J Neurophysiol. 2005 May;93(5):2864-72
– reference: 22180514 - IEEE Trans Neural Syst Rehabil Eng. 2012 Mar;20(2):228-35
– reference: 15585584 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54
– reference: 18310813 - J Neural Eng. 2008 Mar;5(1):75-84
– reference: 12899262 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):159-61
SSID ssj0014846
Score 2.5897105
SecondaryResourceType review_article
Snippet Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1425
SubjectTerms Brain
Brain Waves - physiology
Brain-computer interface (BCI)
Brain-Computer Interfaces
brain-machine interface (BMI)
Electrodes
Electrodes, Implanted
Electroencephalography
electroencephalography (EEG)
Feature extraction
Feedback, Physiological
Frequency modulation
Humans
neural interface
sensorimotor rhythm (SMR)
Signal Processing, Computer-Assisted
Spatial resolution
Spinal Cord Diseases - rehabilitation
Three-dimensional displays
Title Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives
URI https://ieeexplore.ieee.org/document/6775293
https://www.ncbi.nlm.nih.gov/pubmed/24759276
https://www.proquest.com/docview/1545888617
https://www.proquest.com/docview/1519260772
https://www.proquest.com/docview/1566831658
https://pubmed.ncbi.nlm.nih.gov/PMC4082720
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_aPog--NH6Ea2ygk9irpvNJpv1zUqPIpyItlDwIWSTXU7URO5yD_rXO7PZxGspxbdAJiSbmcn-JjPzG4BXCLkzLZyLrZB5LGtbxUZxFbtE1UWKCCT1Hd6Lj_npufxwkV3swJupF8Za64vP7IwOfS6_6eoN_So7ypXKcHvahV0M3IZerSljIIuhKYcn6MBCy5DBTLg-OjtenFARl5whmBG4ARMDMPHcCWIa2dqO_HyV66Dm1YrJrS1ofg8W48MPlSffZ5vezOo_V3gd_3d19-FuwKLs3WA8D2DHtvtwZ4uhcB9uLULu_QC-HtM0iXgcA8H8v0RHFV3M1x2wLxgRdyvSfbdin5e_--XP9VsWCKCYR7Wsahs29zQm7NO_Ns_1Qzifn5y9P43DaIa4zmTex9KKxPEKw528MMoZVKxVRssMw7c0aXhN-VmTEXmdTkRFOCevdSWTyjmRGJ4-gr22a-0TYEanshJOFZWWGGyKwogslbrBV4FfF9lEwEcNlXXgLafxGT9KH79wXZJ-S9JvGfQbwevpkl8DacdNwgeki0kwqCGCw9EMyuDW69KnGYsCUV8EL6fT6JCUZala221IBkEzLlyJm2TyHD0B30oEjwfLmu4_WmYE6pLNTQJECH75TPtt6YnBaXi4Evzp9St6Brdp3UO15iHs9auNfY6IqjcvvCv9BdhUGZg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48Gh5BAoYiRMiW8dx4pgbRV0t0FQItlKlHqI4cbQISNBu9gC_nhnnwbaqKm4rZaKsPTOZz5mZbwBeIeSOtKgq3woZ-7KwuW8UV34VqCIJEYGErsM7PY5nJ_LjaXS6BW_GXhhrrSs-sxP66XL5ZVOs6VPZfqxUhOHpGlzHuB8FXbfWmDOQSdeWwwN0YaFln8MMuN6fH6SHVMYlJwhnBIZg4gAmpjtBXCMbAclNWLkMbF6smdwIQtO7kA5_v6s9-T5Zt2ZS_LnA7Pi_67sHd3o0yt515nMftmy9A7c3OAp34EbaZ9934eyA5kn4wyAI5r4mVlTTxVzlAfuKZ-JmSdpvluzL4ne7-Ll6y3oKKOZwLcvrkk0dkQn7_K_Rc_UATqaH8_czvx_O4BeRjFtfWhFUPMcDT5wYVRlUrVVGywgPcGFQ8oIytCYi-jodiJyQTlzoXAZ5VYnA8PAhbNdNbR8DMzqUuahUkmuJx02RGBGFUpe4Ffh-kaUHfNBQVvTM5TRA40fmTjBcZ6TfjPSb9fr14PV4y6-OtuMq4V3SxSjYq8GDvcEMst6xV5lLNCYJ4j4PXo6X0SUpz5LXtlmTDMJmXLgSV8nEMfoC7ooHjzrLGp8_WKYH6pzNjQJECX7-Sv1t4ajBaXy4EvzJ5St6ATdn8_QoO_pw_Okp3KI96Go392C7Xa7tM8RXrXnu3OovpOIc4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain-Computer+Interfaces+Using+Sensorimotor+Rhythms%3A+Current+State+and+Future+Perspectives&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Yuan%2C+Han&rft.au=He%2C+Bin&rft.date=2014-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=61&rft.issue=5&rft.spage=1425&rft_id=info:doi/10.1109%2FTBME.2014.2312397&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3377113481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon