Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw

Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N₂O). Here w...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 24; pp. 6238 - 6243
Main Authors Voigt, Carolina, Marushchak, Maija E., Lamprecht, Richard E., Jackowicz-Korczyński, Marcin, Lindgren, Amelie, Mastepanov, Mikhail, Granlund, Lars, Christensen, Torben R., Tahvanainen, Teemu, Martikainen, Pertti J., Biasi, Christina
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 13.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N₂O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N₂O m−2 d−1). These emission rates match those from tropical forest soils, the world’s largest natural terrestrial N₂O source. The presence of vegetation, known to limit N₂O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N₂O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N₂O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N₂O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback.
AbstractList Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N₂O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N₂O m−2 d−1). These emission rates match those from tropical forest soils, the world’s largest natural terrestrial N₂O source. The presence of vegetation, known to limit N₂O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N₂O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N₂O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N₂O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback.
The Arctic is warming rapidly, causing permafrost soils to thaw. Vast stocks of nitrogen (>67 billion tons) in the permafrost, accumulated thousands of years ago, could now become available for decomposition, leading to the release of nitrous oxide (N 2 O) to the atmosphere. N 2 O is a strong greenhouse gas, almost 300 times more powerful than CO 2 for warming the climate. Although carbon dynamics in the Arctic are well studied, the fact that Arctic soils store enormous amounts of nitrogen has received little attention so far. We report that the Arctic may become a substantial source of N 2 O when the permafrost thaws, and that N 2 O emissions could occur from surfaces covering almost one-fourth of the entire Arctic. Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N 2 O). Here we show that N 2 O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N 2 O m −2 d −1 ). These emission rates match those from tropical forest soils, the world’s largest natural terrestrial N 2 O source. The presence of vegetation, known to limit N 2 O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N 2 O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N 2 O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N 2 O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback.
Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N2O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 +/- 0.11 vs. 2.81 +/- 0.6 mg N2O m(-2) d(-1)). These emission rates match those from tropical forest soils, the world's largest natural terrestrial N2O source. The presence of vegetation, known to limit N2O emissions in tundra, did decrease (by similar to 90%) but did not prevent thaw-induced N2O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N2O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N2O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback.
Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N O). Here we show that N O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N O m d ). These emission rates match those from tropical forest soils, the world's largest natural terrestrial N O source. The presence of vegetation, known to limit N O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback.
Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N2O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N2O m-2 d-1). These emission rates match those from tropical forest soils, the world's largest natural terrestrial N2O source. The presence of vegetation, known to limit N2O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N2O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N2O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N2O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback.Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N2O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N2O m-2 d-1). These emission rates match those from tropical forest soils, the world's largest natural terrestrial N2O source. The presence of vegetation, known to limit N2O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N2O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N2O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N2O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback.
Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N2O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N2O m-2 d-1). These emission rates match those from tropical forest soils, the world's largest natural terrestrial N2O source. The presence of vegetation, known to limit N2O emissions in tundra, did decrease (by ~90%) but did not prevent thaw-induced N2O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N2O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N2O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback.
Author Jackowicz-Korczyński, Marcin
Lamprecht, Richard E.
Biasi, Christina
Voigt, Carolina
Marushchak, Maija E.
Lindgren, Amelie
Christensen, Torben R.
Mastepanov, Mikhail
Granlund, Lars
Tahvanainen, Teemu
Martikainen, Pertti J.
Author_xml – sequence: 1
  givenname: Carolina
  surname: Voigt
  fullname: Voigt, Carolina
  organization: Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
– sequence: 2
  givenname: Maija E.
  surname: Marushchak
  fullname: Marushchak, Maija E.
  organization: Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
– sequence: 3
  givenname: Richard E.
  surname: Lamprecht
  fullname: Lamprecht, Richard E.
  organization: Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
– sequence: 4
  givenname: Marcin
  surname: Jackowicz-Korczyński
  fullname: Jackowicz-Korczyński, Marcin
  organization: Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden
– sequence: 5
  givenname: Amelie
  surname: Lindgren
  fullname: Lindgren, Amelie
  organization: Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden
– sequence: 6
  givenname: Mikhail
  surname: Mastepanov
  fullname: Mastepanov, Mikhail
  organization: Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden
– sequence: 7
  givenname: Lars
  surname: Granlund
  fullname: Granlund, Lars
  organization: Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
– sequence: 8
  givenname: Torben R.
  surname: Christensen
  fullname: Christensen, Torben R.
  organization: Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden
– sequence: 9
  givenname: Teemu
  surname: Tahvanainen
  fullname: Tahvanainen, Teemu
  organization: Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
– sequence: 10
  givenname: Pertti J.
  surname: Martikainen
  fullname: Martikainen, Pertti J.
  organization: Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
– sequence: 11
  givenname: Christina
  surname: Biasi
  fullname: Biasi, Christina
  organization: Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28559346$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-144780$$DView record from Swedish Publication Index
BookMark eNp1ks1v1DAQxS1URLeFMydQJC4cSDt27CS-IK3KV6UiLsDVmnUmrVdZe7EdCv89Xm1LaSVOluXfe35-niN24IMnxp5zOOHQNadbj-mEdyA0CM7lI7bgoHndSg0HbAEgurqXQh6yo5TWAKBVD0_YoeiV0o1sF-zzubeRMNFQeZdjmFMVfrmBKtq4lFzwqRpj2FTLaLOz1ZYwT-iHVOGYKZZ93GABUq7yFV4_ZY9HnBI9u1mP2bcP77-efaovvnw8P1te1FbJNtdCy5Xoqe9bBC5JiqEZEXE1KgsS1diI0XJQmhMqS2S1VQ3vWqWs7QYs9DF7s_dN17SdV2Yb3QbjbxPQmXfu-9KEeGnSbLiUXQ8Ff7vHC7uhwZLPEad7qvsn3l2Zy_DTKNnJTvfF4PWNQQw_ZkrZlHYsTaUKKpUZrkGKRnG1u-vVA3Qd5uhLG4WSqmsbATvDl_8m-hvl9mMKoPaALeWmSKOxLmMuH1ICuslwMLsBMLsBMHcDUHSnD3S31v9XvNgr1imHeJeklb3k5e1_AGVTvkg
CitedBy_id crossref_primary_10_1103_RevModPhys_91_021002
crossref_primary_10_1016_j_aeaoa_2022_100175
crossref_primary_10_1080_15230430_2022_2097757
crossref_primary_10_1002_ppp_2176
crossref_primary_10_1016_j_geoderma_2019_114157
crossref_primary_10_3390_w14091458
crossref_primary_10_3389_fenvs_2018_00047
crossref_primary_10_1007_s11104_020_04775_y
crossref_primary_10_5194_bg_15_5287_2018
crossref_primary_10_1007_s00284_021_02690_8
crossref_primary_10_5194_acp_19_4257_2019
crossref_primary_10_1016_j_agee_2018_01_017
crossref_primary_10_1139_as_2018_0018
crossref_primary_10_1016_j_ecolind_2020_106362
crossref_primary_10_1007_s11356_022_18545_z
crossref_primary_10_1016_j_agrformet_2020_108278
crossref_primary_10_3390_molecules26082283
crossref_primary_10_1093_femsec_fiz192
crossref_primary_10_1111_gcb_15205
crossref_primary_10_3389_fpsyg_2019_02323
crossref_primary_10_1088_1748_9326_ad3167
crossref_primary_10_1177_0309133317745784
crossref_primary_10_1016_j_earscirev_2019_02_021
crossref_primary_10_1016_j_quascirev_2020_106337
crossref_primary_10_1029_2022GB007589
crossref_primary_10_1002_ldr_4013
crossref_primary_10_1016_j_atmosenv_2019_116822
crossref_primary_10_1002_2017GL074338
crossref_primary_10_3390_atmos12020222
crossref_primary_10_1007_s11104_021_05125_2
crossref_primary_10_1111_gcb_16654
crossref_primary_10_1029_2020GL087669
crossref_primary_10_3390_nitrogen3040040
crossref_primary_10_1021_acs_est_2c09457
crossref_primary_10_1039_c8pp90063a
crossref_primary_10_1038_s41612_024_00873_1
crossref_primary_10_1016_j_soilbio_2022_108757
crossref_primary_10_1016_j_atmosenv_2018_10_045
crossref_primary_10_5194_bg_17_3367_2020
crossref_primary_10_1029_2023GB007953
crossref_primary_10_3390_microorganisms7120699
crossref_primary_10_1016_j_catena_2019_104343
crossref_primary_10_1038_s41396_023_01389_x
crossref_primary_10_5194_essd_16_2543_2024
crossref_primary_10_1002_ldr_3390
crossref_primary_10_1029_2020GB006568
crossref_primary_10_3389_fpls_2022_974251
crossref_primary_10_5194_bg_20_365_2023
crossref_primary_10_3390_w13040518
crossref_primary_10_5194_essd_12_2365_2020
crossref_primary_10_1016_j_scitotenv_2022_154114
crossref_primary_10_1016_j_tim_2020_04_002
crossref_primary_10_1016_j_coesh_2018_03_007
crossref_primary_10_1111_gcb_15865
crossref_primary_10_1002_ppp_2045
crossref_primary_10_1016_j_scitotenv_2017_10_246
crossref_primary_10_1021_acs_est_4c06014
crossref_primary_10_1021_acs_est_8b02271
crossref_primary_10_1038_s41561_020_00662_4
crossref_primary_10_1016_j_soilbio_2019_107539
crossref_primary_10_1029_2021GB007068
crossref_primary_10_1029_2022JG007322
crossref_primary_10_1038_s43017_020_0063_9
crossref_primary_10_1029_2021GB007185
crossref_primary_10_1111_gcb_17368
crossref_primary_10_1016_j_catena_2020_104797
crossref_primary_10_1088_1755_1315_1093_1_012024
crossref_primary_10_1038_s41467_021_27386_2
crossref_primary_10_1016_j_scitotenv_2024_173780
crossref_primary_10_1038_s43247_024_01583_5
crossref_primary_10_1002_ppp_2131
crossref_primary_10_1016_j_apsoil_2020_103537
crossref_primary_10_1016_j_scitotenv_2021_145911
crossref_primary_10_3390_nitrogen3030031
crossref_primary_10_1029_2018JG004805
crossref_primary_10_1175_JHM_D_21_0023_1
crossref_primary_10_1007_s10533_021_00855_y
crossref_primary_10_1007_s43630_020_00001_x
crossref_primary_10_1093_femsec_fiad145
crossref_primary_10_1111_gcb_16345
crossref_primary_10_5194_bg_21_335_2024
crossref_primary_10_1073_pnas_1916387117
crossref_primary_10_1007_s10021_021_00726_5
crossref_primary_10_3389_fmicb_2020_560861
crossref_primary_10_1007_s10533_022_00895_y
crossref_primary_10_1002_ppp_2264
crossref_primary_10_1016_j_agrformet_2022_109167
crossref_primary_10_1038_s41467_022_33794_9
crossref_primary_10_5194_acp_22_4413_2022
crossref_primary_10_1039_D4EA00017J
crossref_primary_10_1016_j_envres_2020_109328
crossref_primary_10_1016_j_soilbio_2021_108346
crossref_primary_10_1016_j_polar_2020_100607
crossref_primary_10_1038_s41561_018_0227_0
crossref_primary_10_1038_s41467_022_29161_3
crossref_primary_10_1007_s10021_023_00865_x
crossref_primary_10_1029_2020JG005889
crossref_primary_10_1007_s11104_018_3845_9
crossref_primary_10_5194_bg_19_2683_2022
crossref_primary_10_1016_j_scitotenv_2020_144559
crossref_primary_10_1021_acs_jpca_7b09586
crossref_primary_10_1093_femsec_fiad123
crossref_primary_10_3390_f15111985
crossref_primary_10_1111_sum_12643
crossref_primary_10_1186_s40793_022_00424_2
crossref_primary_10_3390_f10121112
crossref_primary_10_1088_1748_9326_ac4f8e
crossref_primary_10_1016_j_envint_2025_109297
crossref_primary_10_1088_1748_9326_ac417e
crossref_primary_10_1093_ismeco_ycaf009
crossref_primary_10_1186_s13717_021_00307_3
crossref_primary_10_1016_j_soilbio_2023_109254
crossref_primary_10_3389_fmicb_2021_628269
crossref_primary_10_1016_j_soilbio_2023_109013
crossref_primary_10_1111_gcb_14574
crossref_primary_10_1007_s00376_020_0027_5
crossref_primary_10_1111_gcb_16231
Cites_doi 10.1016/j.atmosenv.2011.11.036
10.1029/2012GL051958
10.1038/ngeo2907
10.1073/pnas.1012878108
10.5194/tc-10-2673-2016
10.1002/ppp.687
10.1111/j.1365-2486.2009.01989.x
10.1038/nclimate3054
10.1038/nature14338
10.1139/e75-004
10.1111/j.1365-2486.2011.02442.x
10.1038/ncomms13043
10.1016/j.yqres.2010.09.007
10.1111/gcb.13204
10.1038/ngeo2674
10.1111/gcb.13261
10.5194/tc-11-1-2017
10.1098/rstb.2013.0122
10.1002/ppp.683
10.1038/ngeo1160
10.1111/j.1365-2486.2012.02663.x
10.1088/1748-9326/11/4/040201
10.1002/ppp.626
10.1111/gcb.13069
10.1029/2006GB002909
10.1038/ngeo434
10.1038/366051a0
10.5194/essd-5-3-2013
10.1111/1365-2745.12639
10.1038/ngeo803
10.5194/bg-11-6573-2014
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jun 13, 2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jun 13, 2017
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ADTPV
AOWAS
DG7
DOI 10.1073/pnas.1702902114
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Stockholms universitet
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList


CrossRef
PubMed
MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Nitrous oxide emissions from thawing permafrost
EISSN 1091-6490
EndPage 6243
ExternalDocumentID oai_DiVA_org_su_144780
PMC5474798
28559346
10_1073_pnas_1702902114
26484198
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations Arctic region
GeographicLocations_xml – name: Arctic region
GrantInformation_xml – fundername: Suomen Akatemia (Academy of Finland)
  grantid: 132045
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
.GJ
3O-
692
6TJ
79B
AAYJJ
ACKIV
ADTPV
ADXHL
AFHIN
AFQQW
AOWAS
AS~
DG7
HGD
HQ3
HTVGU
MVM
NEJ
NHB
P-O
VOH
WHG
ZCG
ID FETCH-LOGICAL-c546t-294b28e886a014e42d3faaabf5c04a5f32fc10591ea5ceec9c5317655cc7da2d3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 06:49:55 EDT 2025
Thu Aug 21 14:34:25 EDT 2025
Fri Jul 11 14:42:20 EDT 2025
Mon Jun 30 20:22:54 EDT 2025
Thu Apr 03 07:02:16 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Tue Jul 01 03:19:36 EDT 2025
Fri May 30 11:46:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords tundra
greenhouse gases
Arctic soils
nitrogen
climate change
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c546t-294b28e886a014e42d3faaabf5c04a5f32fc10591ea5ceec9c5317655cc7da2d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by Susan E. Trumbore, Max Planck Institute for Biogeochemistry, Jena, Germany, and approved May 1, 2017 (received for review February 20, 2017)
Author contributions: C.V., M.E.M., M.J.-K., M.M., T.R.C., P.J.M., and C.B. designed research; C.V., M.E.M., R.E.L., M.J.-K., A.L., L.G., and T.T. performed research; L.G. contributed new reagents/analytic tools; C.V. analyzed data; and C.V., M.E.M., P.J.M., and C.B. wrote the paper.
ORCID 0000-0001-8589-1428
OpenAccessLink https://www.pnas.org/content/pnas/114/24/6238.full.pdf
PMID 28559346
PQID 1945763208
PQPubID 42026
PageCount 6
ParticipantIDs swepub_primary_oai_DiVA_org_su_144780
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5474798
proquest_miscellaneous_1904235150
proquest_journals_1945763208
pubmed_primary_28559346
crossref_citationtrail_10_1073_pnas_1702902114
crossref_primary_10_1073_pnas_1702902114
jstor_primary_26484198
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-13
PublicationDateYYYYMMDD 2017-06-13
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References IPCC (e_1_3_3_12_2) 2013
Voigt C (e_1_3_3_18_2) 2016
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_13_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Christensen JH (e_1_3_3_1_2) 2013
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
27725633 - Nat Commun. 2016 Oct 11;7:13043
26301544 - Glob Chang Biol. 2015 Dec;21(12):4570-87
27862698 - Glob Chang Biol. 2017 Aug;23 (8):3121-3138
21576477 - Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20882-7
25855454 - Nature. 2015 Apr 9;520(7546):171-9
27095022 - Glob Chang Biol. 2016 Sep;22(9):2960-2
23713120 - Philos Trans R Soc Lond B Biol Sci. 2013 May 27;368(1621):20130122
26718892 - Glob Chang Biol. 2016 May;22(5):1927-41
References_xml – ident: e_1_3_3_21_2
  doi: 10.1016/j.atmosenv.2011.11.036
– ident: e_1_3_3_10_2
  doi: 10.1029/2012GL051958
– ident: e_1_3_3_29_2
  doi: 10.1038/ngeo2907
– ident: e_1_3_3_11_2
  doi: 10.1073/pnas.1012878108
– ident: e_1_3_3_3_2
  doi: 10.5194/tc-10-2673-2016
– ident: e_1_3_3_4_2
  doi: 10.1002/ppp.687
– ident: e_1_3_3_32_2
  doi: 10.1111/j.1365-2486.2009.01989.x
– ident: e_1_3_3_8_2
  doi: 10.1038/nclimate3054
– ident: e_1_3_3_9_2
  doi: 10.1038/nature14338
– ident: e_1_3_3_25_2
  doi: 10.1139/e75-004
– ident: e_1_3_3_17_2
  doi: 10.1111/j.1365-2486.2011.02442.x
– ident: e_1_3_3_35_2
  doi: 10.1038/ncomms13043
– ident: e_1_3_3_19_2
  doi: 10.1016/j.yqres.2010.09.007
– ident: e_1_3_3_23_2
  doi: 10.1111/gcb.13204
– ident: e_1_3_3_27_2
  doi: 10.1038/ngeo2674
– ident: e_1_3_3_31_2
  doi: 10.1111/gcb.13261
– start-page: 14SM-1
  volume-title: Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_3_3_1_2
– ident: e_1_3_3_2_2
  doi: 10.5194/tc-11-1-2017
– ident: e_1_3_3_13_2
  doi: 10.1098/rstb.2013.0122
– ident: e_1_3_3_5_2
  doi: 10.1002/ppp.683
– ident: e_1_3_3_28_2
  doi: 10.1038/ngeo1160
– ident: e_1_3_3_22_2
  doi: 10.1111/j.1365-2486.2012.02663.x
– ident: e_1_3_3_6_2
  doi: 10.1088/1748-9326/11/4/040201
– ident: e_1_3_3_30_2
  doi: 10.1002/ppp.626
– ident: e_1_3_3_33_2
– ident: e_1_3_3_14_2
  doi: 10.1111/gcb.13069
– ident: e_1_3_3_20_2
  doi: 10.1029/2006GB002909
– volume-title: Climate change 2013—The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_3_3_12_2
– ident: e_1_3_3_16_2
  doi: 10.1038/ngeo434
– ident: e_1_3_3_26_2
  doi: 10.1038/366051a0
– ident: e_1_3_3_34_2
  doi: 10.5194/essd-5-3-2013
– year: 2016
  ident: e_1_3_3_18_2
  article-title: Warming of subarctic tundra increases emissions of all three important greenhouse gases—carbon dioxide, methane, and nitrous oxide
  publication-title: Glob Change Biol
– ident: e_1_3_3_24_2
  doi: 10.1111/1365-2745.12639
– ident: e_1_3_3_15_2
  doi: 10.1038/ngeo803
– ident: e_1_3_3_7_2
  doi: 10.5194/bg-11-6573-2014
– reference: 26718892 - Glob Chang Biol. 2016 May;22(5):1927-41
– reference: 26301544 - Glob Chang Biol. 2015 Dec;21(12):4570-87
– reference: 27862698 - Glob Chang Biol. 2017 Aug;23 (8):3121-3138
– reference: 23713120 - Philos Trans R Soc Lond B Biol Sci. 2013 May 27;368(1621):20130122
– reference: 27095022 - Glob Chang Biol. 2016 Sep;22(9):2960-2
– reference: 25855454 - Nature. 2015 Apr 9;520(7546):171-9
– reference: 21576477 - Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20882-7
– reference: 27725633 - Nat Commun. 2016 Oct 11;7:13043
SSID ssj0009580
Score 2.5563579
Snippet Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost...
The Arctic is warming rapidly, causing permafrost soils to thaw. Vast stocks of nitrogen (>67 billion tons) in the permafrost, accumulated thousands of years...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6238
SubjectTerms Arctic soils
Biological Sciences
Carbon
Climate change
Emissions
Feedback
Forest soils
greenhouse gases
Melting
nitrogen
Nitrous oxide
Peat
Peatlands
Permafrost
Permafrost thaws
Physical Sciences
Probability
Thawing
Tropical forests
Tundra
Title Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw
URI https://www.jstor.org/stable/26484198
https://www.ncbi.nlm.nih.gov/pubmed/28559346
https://www.proquest.com/docview/1945763208
https://www.proquest.com/docview/1904235150
https://pubmed.ncbi.nlm.nih.gov/PMC5474798
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-144780
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWBQGMhIVBqqUhLHdpLHaoAqUKs9bNPeItd11vCRVE0roP8G_zDnjyTt6CTgJarij1S5n893zt3vEHrNpxlTPAy9gAviURIpTwgJFwa7XSAJjQ2J63jCRxf04xW76nR-bUUtrVfTgdzszSv5H6nCPZCrzpL9B8k2k8IN-A3yhStIGK5_JWNY3DqmXH_Bz1dLHcxa_shnqq9ruFUmws1kjwyXOhGqvwC1azJ7XWHwhVbKmc76AOvTnWU7M_Ws2daqOohgUp8aDtscFKcYqr7XP5u0FY0vy_y6jSZx9bkdZ8G6msu5-GLThPLPos2E0NSPoH7tUYHL929bNRdA-T2XG-9TuZSbn71T1oupK7o91gWRiu0DjMBE29n804GyShdsFo9TWza00co2t9TBj9AtJQsWW7xX-4O60iWLC1ENgsgnCdgvdpYtLCy-GTCQGFypkN5g4Tb7et10B90l4HuYaNHRNpNz7NccUVH49sbTNLm0G79j6dhg131uzJ_RuDuctcbOOX-A7jsHBQ8t2g5RRxUP0WEtaXzieMrfPELjBn7YwQ8b-OEGfljDD1v44QZ-2MAPt_DDGn6P0cWH9-enI89V5_Ako3zlkYROSazimAtwsxUlszATQsDalz4VLAtJJrXxHijBALIykaDuI86YlNFMQO8jdFCUhXqKsFDKFyxRPJtFlMZKCMKjQLJsxmccJNBFg_pNptJR1-sKKl9TE0IRhamWQtpKoYtOmgELy9pye9cjI5qmnw75pEESd9FxLavUrXkYl1Bw0EPiQ_Orphneqv7MJgoFrxr66Fgz8BP8LnpiRdtO7rDRRdGO0JsOmu19t6XI54b1nVHw_PXf6ll47Ax5l18O03J5nVZrcOZpFPvPbn32c3SvXYbH6GC1XKsXYFmvpi8N0n8DtITRfg
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+nitrous+oxide+emissions+from+Arctic+peatlands+after+permafrost+thaw&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Voigt%2C+Carolina&rft.au=Marushchak%2C+Maija+E&rft.au=Lamprecht%2C+Richard+E&rft.au=Jackowicz-Korczy%C5%84ski%2C+Marcin&rft.date=2017-06-13&rft.eissn=1091-6490&rft.volume=114&rft.issue=24&rft.spage=6238&rft_id=info:doi/10.1073%2Fpnas.1702902114&rft_id=info%3Apmid%2F28559346&rft.externalDocID=28559346
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon