Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw
Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N₂O). Here w...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 24; pp. 6238 - 6243 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
13.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N₂O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N₂O m−2 d−1). These emission rates match those from tropical forest soils, the world’s largest natural terrestrial N₂O source. The presence of vegetation, known to limit N₂O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N₂O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N₂O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N₂O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback. |
---|---|
AbstractList | Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N₂O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N₂O m−2 d−1). These emission rates match those from tropical forest soils, the world’s largest natural terrestrial N₂O source. The presence of vegetation, known to limit N₂O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N₂O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N₂O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N₂O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback. The Arctic is warming rapidly, causing permafrost soils to thaw. Vast stocks of nitrogen (>67 billion tons) in the permafrost, accumulated thousands of years ago, could now become available for decomposition, leading to the release of nitrous oxide (N 2 O) to the atmosphere. N 2 O is a strong greenhouse gas, almost 300 times more powerful than CO 2 for warming the climate. Although carbon dynamics in the Arctic are well studied, the fact that Arctic soils store enormous amounts of nitrogen has received little attention so far. We report that the Arctic may become a substantial source of N 2 O when the permafrost thaws, and that N 2 O emissions could occur from surfaces covering almost one-fourth of the entire Arctic. Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N 2 O). Here we show that N 2 O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N 2 O m −2 d −1 ). These emission rates match those from tropical forest soils, the world’s largest natural terrestrial N 2 O source. The presence of vegetation, known to limit N 2 O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N 2 O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N 2 O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N 2 O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback. Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N2O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 +/- 0.11 vs. 2.81 +/- 0.6 mg N2O m(-2) d(-1)). These emission rates match those from tropical forest soils, the world's largest natural terrestrial N2O source. The presence of vegetation, known to limit N2O emissions in tundra, did decrease (by similar to 90%) but did not prevent thaw-induced N2O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N2O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N2O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback. Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N O). Here we show that N O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N O m d ). These emission rates match those from tropical forest soils, the world's largest natural terrestrial N O source. The presence of vegetation, known to limit N O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback. Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N2O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N2O m-2 d-1). These emission rates match those from tropical forest soils, the world's largest natural terrestrial N2O source. The presence of vegetation, known to limit N2O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N2O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N2O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N2O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback.Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N2O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N2O m-2 d-1). These emission rates match those from tropical forest soils, the world's largest natural terrestrial N2O source. The presence of vegetation, known to limit N2O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N2O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N2O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N2O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback. Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N2O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N2O m-2 d-1). These emission rates match those from tropical forest soils, the world's largest natural terrestrial N2O source. The presence of vegetation, known to limit N2O emissions in tundra, did decrease (by ~90%) but did not prevent thaw-induced N2O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N2O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N2O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback. |
Author | Jackowicz-Korczyński, Marcin Lamprecht, Richard E. Biasi, Christina Voigt, Carolina Marushchak, Maija E. Lindgren, Amelie Christensen, Torben R. Mastepanov, Mikhail Granlund, Lars Tahvanainen, Teemu Martikainen, Pertti J. |
Author_xml | – sequence: 1 givenname: Carolina surname: Voigt fullname: Voigt, Carolina organization: Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland – sequence: 2 givenname: Maija E. surname: Marushchak fullname: Marushchak, Maija E. organization: Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland – sequence: 3 givenname: Richard E. surname: Lamprecht fullname: Lamprecht, Richard E. organization: Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland – sequence: 4 givenname: Marcin surname: Jackowicz-Korczyński fullname: Jackowicz-Korczyński, Marcin organization: Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden – sequence: 5 givenname: Amelie surname: Lindgren fullname: Lindgren, Amelie organization: Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden – sequence: 6 givenname: Mikhail surname: Mastepanov fullname: Mastepanov, Mikhail organization: Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden – sequence: 7 givenname: Lars surname: Granlund fullname: Granlund, Lars organization: Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland – sequence: 8 givenname: Torben R. surname: Christensen fullname: Christensen, Torben R. organization: Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden – sequence: 9 givenname: Teemu surname: Tahvanainen fullname: Tahvanainen, Teemu organization: Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland – sequence: 10 givenname: Pertti J. surname: Martikainen fullname: Martikainen, Pertti J. organization: Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland – sequence: 11 givenname: Christina surname: Biasi fullname: Biasi, Christina organization: Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28559346$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-144780$$DView record from Swedish Publication Index |
BookMark | eNp1ks1v1DAQxS1URLeFMydQJC4cSDt27CS-IK3KV6UiLsDVmnUmrVdZe7EdCv89Xm1LaSVOluXfe35-niN24IMnxp5zOOHQNadbj-mEdyA0CM7lI7bgoHndSg0HbAEgurqXQh6yo5TWAKBVD0_YoeiV0o1sF-zzubeRMNFQeZdjmFMVfrmBKtq4lFzwqRpj2FTLaLOz1ZYwT-iHVOGYKZZ93GABUq7yFV4_ZY9HnBI9u1mP2bcP77-efaovvnw8P1te1FbJNtdCy5Xoqe9bBC5JiqEZEXE1KgsS1diI0XJQmhMqS2S1VQ3vWqWs7QYs9DF7s_dN17SdV2Yb3QbjbxPQmXfu-9KEeGnSbLiUXQ8Ff7vHC7uhwZLPEad7qvsn3l2Zy_DTKNnJTvfF4PWNQQw_ZkrZlHYsTaUKKpUZrkGKRnG1u-vVA3Qd5uhLG4WSqmsbATvDl_8m-hvl9mMKoPaALeWmSKOxLmMuH1ICuslwMLsBMLsBMHcDUHSnD3S31v9XvNgr1imHeJeklb3k5e1_AGVTvkg |
CitedBy_id | crossref_primary_10_1103_RevModPhys_91_021002 crossref_primary_10_1016_j_aeaoa_2022_100175 crossref_primary_10_1080_15230430_2022_2097757 crossref_primary_10_1002_ppp_2176 crossref_primary_10_1016_j_geoderma_2019_114157 crossref_primary_10_3390_w14091458 crossref_primary_10_3389_fenvs_2018_00047 crossref_primary_10_1007_s11104_020_04775_y crossref_primary_10_5194_bg_15_5287_2018 crossref_primary_10_1007_s00284_021_02690_8 crossref_primary_10_5194_acp_19_4257_2019 crossref_primary_10_1016_j_agee_2018_01_017 crossref_primary_10_1139_as_2018_0018 crossref_primary_10_1016_j_ecolind_2020_106362 crossref_primary_10_1007_s11356_022_18545_z crossref_primary_10_1016_j_agrformet_2020_108278 crossref_primary_10_3390_molecules26082283 crossref_primary_10_1093_femsec_fiz192 crossref_primary_10_1111_gcb_15205 crossref_primary_10_3389_fpsyg_2019_02323 crossref_primary_10_1088_1748_9326_ad3167 crossref_primary_10_1177_0309133317745784 crossref_primary_10_1016_j_earscirev_2019_02_021 crossref_primary_10_1016_j_quascirev_2020_106337 crossref_primary_10_1029_2022GB007589 crossref_primary_10_1002_ldr_4013 crossref_primary_10_1016_j_atmosenv_2019_116822 crossref_primary_10_1002_2017GL074338 crossref_primary_10_3390_atmos12020222 crossref_primary_10_1007_s11104_021_05125_2 crossref_primary_10_1111_gcb_16654 crossref_primary_10_1029_2020GL087669 crossref_primary_10_3390_nitrogen3040040 crossref_primary_10_1021_acs_est_2c09457 crossref_primary_10_1039_c8pp90063a crossref_primary_10_1038_s41612_024_00873_1 crossref_primary_10_1016_j_soilbio_2022_108757 crossref_primary_10_1016_j_atmosenv_2018_10_045 crossref_primary_10_5194_bg_17_3367_2020 crossref_primary_10_1029_2023GB007953 crossref_primary_10_3390_microorganisms7120699 crossref_primary_10_1016_j_catena_2019_104343 crossref_primary_10_1038_s41396_023_01389_x crossref_primary_10_5194_essd_16_2543_2024 crossref_primary_10_1002_ldr_3390 crossref_primary_10_1029_2020GB006568 crossref_primary_10_3389_fpls_2022_974251 crossref_primary_10_5194_bg_20_365_2023 crossref_primary_10_3390_w13040518 crossref_primary_10_5194_essd_12_2365_2020 crossref_primary_10_1016_j_scitotenv_2022_154114 crossref_primary_10_1016_j_tim_2020_04_002 crossref_primary_10_1016_j_coesh_2018_03_007 crossref_primary_10_1111_gcb_15865 crossref_primary_10_1002_ppp_2045 crossref_primary_10_1016_j_scitotenv_2017_10_246 crossref_primary_10_1021_acs_est_4c06014 crossref_primary_10_1021_acs_est_8b02271 crossref_primary_10_1038_s41561_020_00662_4 crossref_primary_10_1016_j_soilbio_2019_107539 crossref_primary_10_1029_2021GB007068 crossref_primary_10_1029_2022JG007322 crossref_primary_10_1038_s43017_020_0063_9 crossref_primary_10_1029_2021GB007185 crossref_primary_10_1111_gcb_17368 crossref_primary_10_1016_j_catena_2020_104797 crossref_primary_10_1088_1755_1315_1093_1_012024 crossref_primary_10_1038_s41467_021_27386_2 crossref_primary_10_1016_j_scitotenv_2024_173780 crossref_primary_10_1038_s43247_024_01583_5 crossref_primary_10_1002_ppp_2131 crossref_primary_10_1016_j_apsoil_2020_103537 crossref_primary_10_1016_j_scitotenv_2021_145911 crossref_primary_10_3390_nitrogen3030031 crossref_primary_10_1029_2018JG004805 crossref_primary_10_1175_JHM_D_21_0023_1 crossref_primary_10_1007_s10533_021_00855_y crossref_primary_10_1007_s43630_020_00001_x crossref_primary_10_1093_femsec_fiad145 crossref_primary_10_1111_gcb_16345 crossref_primary_10_5194_bg_21_335_2024 crossref_primary_10_1073_pnas_1916387117 crossref_primary_10_1007_s10021_021_00726_5 crossref_primary_10_3389_fmicb_2020_560861 crossref_primary_10_1007_s10533_022_00895_y crossref_primary_10_1002_ppp_2264 crossref_primary_10_1016_j_agrformet_2022_109167 crossref_primary_10_1038_s41467_022_33794_9 crossref_primary_10_5194_acp_22_4413_2022 crossref_primary_10_1039_D4EA00017J crossref_primary_10_1016_j_envres_2020_109328 crossref_primary_10_1016_j_soilbio_2021_108346 crossref_primary_10_1016_j_polar_2020_100607 crossref_primary_10_1038_s41561_018_0227_0 crossref_primary_10_1038_s41467_022_29161_3 crossref_primary_10_1007_s10021_023_00865_x crossref_primary_10_1029_2020JG005889 crossref_primary_10_1007_s11104_018_3845_9 crossref_primary_10_5194_bg_19_2683_2022 crossref_primary_10_1016_j_scitotenv_2020_144559 crossref_primary_10_1021_acs_jpca_7b09586 crossref_primary_10_1093_femsec_fiad123 crossref_primary_10_3390_f15111985 crossref_primary_10_1111_sum_12643 crossref_primary_10_1186_s40793_022_00424_2 crossref_primary_10_3390_f10121112 crossref_primary_10_1088_1748_9326_ac4f8e crossref_primary_10_1016_j_envint_2025_109297 crossref_primary_10_1088_1748_9326_ac417e crossref_primary_10_1093_ismeco_ycaf009 crossref_primary_10_1186_s13717_021_00307_3 crossref_primary_10_1016_j_soilbio_2023_109254 crossref_primary_10_3389_fmicb_2021_628269 crossref_primary_10_1016_j_soilbio_2023_109013 crossref_primary_10_1111_gcb_14574 crossref_primary_10_1007_s00376_020_0027_5 crossref_primary_10_1111_gcb_16231 |
Cites_doi | 10.1016/j.atmosenv.2011.11.036 10.1029/2012GL051958 10.1038/ngeo2907 10.1073/pnas.1012878108 10.5194/tc-10-2673-2016 10.1002/ppp.687 10.1111/j.1365-2486.2009.01989.x 10.1038/nclimate3054 10.1038/nature14338 10.1139/e75-004 10.1111/j.1365-2486.2011.02442.x 10.1038/ncomms13043 10.1016/j.yqres.2010.09.007 10.1111/gcb.13204 10.1038/ngeo2674 10.1111/gcb.13261 10.5194/tc-11-1-2017 10.1098/rstb.2013.0122 10.1002/ppp.683 10.1038/ngeo1160 10.1111/j.1365-2486.2012.02663.x 10.1088/1748-9326/11/4/040201 10.1002/ppp.626 10.1111/gcb.13069 10.1029/2006GB002909 10.1038/ngeo434 10.1038/366051a0 10.5194/essd-5-3-2013 10.1111/1365-2745.12639 10.1038/ngeo803 10.5194/bg-11-6573-2014 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Jun 13, 2017 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Jun 13, 2017 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM ADTPV AOWAS DG7 |
DOI | 10.1073/pnas.1702902114 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Stockholms universitet |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Nitrous oxide emissions from thawing permafrost |
EISSN | 1091-6490 |
EndPage | 6243 |
ExternalDocumentID | oai_DiVA_org_su_144780 PMC5474798 28559346 10_1073_pnas_1702902114 26484198 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | Arctic region |
GeographicLocations_xml | – name: Arctic region |
GrantInformation_xml | – fundername: Suomen Akatemia (Academy of Finland) grantid: 132045 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM .GJ 3O- 692 6TJ 79B AAYJJ ACKIV ADTPV ADXHL AFHIN AFQQW AOWAS AS~ DG7 HGD HQ3 HTVGU MVM NEJ NHB P-O VOH WHG ZCG |
ID | FETCH-LOGICAL-c546t-294b28e886a014e42d3faaabf5c04a5f32fc10591ea5ceec9c5317655cc7da2d3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 06:49:55 EDT 2025 Thu Aug 21 14:34:25 EDT 2025 Fri Jul 11 14:42:20 EDT 2025 Mon Jun 30 20:22:54 EDT 2025 Thu Apr 03 07:02:16 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 Tue Jul 01 03:19:36 EDT 2025 Fri May 30 11:46:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | tundra greenhouse gases Arctic soils nitrogen climate change |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c546t-294b28e886a014e42d3faaabf5c04a5f32fc10591ea5ceec9c5317655cc7da2d3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Edited by Susan E. Trumbore, Max Planck Institute for Biogeochemistry, Jena, Germany, and approved May 1, 2017 (received for review February 20, 2017) Author contributions: C.V., M.E.M., M.J.-K., M.M., T.R.C., P.J.M., and C.B. designed research; C.V., M.E.M., R.E.L., M.J.-K., A.L., L.G., and T.T. performed research; L.G. contributed new reagents/analytic tools; C.V. analyzed data; and C.V., M.E.M., P.J.M., and C.B. wrote the paper. |
ORCID | 0000-0001-8589-1428 |
OpenAccessLink | https://www.pnas.org/content/pnas/114/24/6238.full.pdf |
PMID | 28559346 |
PQID | 1945763208 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | swepub_primary_oai_DiVA_org_su_144780 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5474798 proquest_miscellaneous_1904235150 proquest_journals_1945763208 pubmed_primary_28559346 crossref_citationtrail_10_1073_pnas_1702902114 crossref_primary_10_1073_pnas_1702902114 jstor_primary_26484198 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-13 |
PublicationDateYYYYMMDD | 2017-06-13 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | IPCC (e_1_3_3_12_2) 2013 Voigt C (e_1_3_3_18_2) 2016 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_13_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 Christensen JH (e_1_3_3_1_2) 2013 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 27725633 - Nat Commun. 2016 Oct 11;7:13043 26301544 - Glob Chang Biol. 2015 Dec;21(12):4570-87 27862698 - Glob Chang Biol. 2017 Aug;23 (8):3121-3138 21576477 - Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20882-7 25855454 - Nature. 2015 Apr 9;520(7546):171-9 27095022 - Glob Chang Biol. 2016 Sep;22(9):2960-2 23713120 - Philos Trans R Soc Lond B Biol Sci. 2013 May 27;368(1621):20130122 26718892 - Glob Chang Biol. 2016 May;22(5):1927-41 |
References_xml | – ident: e_1_3_3_21_2 doi: 10.1016/j.atmosenv.2011.11.036 – ident: e_1_3_3_10_2 doi: 10.1029/2012GL051958 – ident: e_1_3_3_29_2 doi: 10.1038/ngeo2907 – ident: e_1_3_3_11_2 doi: 10.1073/pnas.1012878108 – ident: e_1_3_3_3_2 doi: 10.5194/tc-10-2673-2016 – ident: e_1_3_3_4_2 doi: 10.1002/ppp.687 – ident: e_1_3_3_32_2 doi: 10.1111/j.1365-2486.2009.01989.x – ident: e_1_3_3_8_2 doi: 10.1038/nclimate3054 – ident: e_1_3_3_9_2 doi: 10.1038/nature14338 – ident: e_1_3_3_25_2 doi: 10.1139/e75-004 – ident: e_1_3_3_17_2 doi: 10.1111/j.1365-2486.2011.02442.x – ident: e_1_3_3_35_2 doi: 10.1038/ncomms13043 – ident: e_1_3_3_19_2 doi: 10.1016/j.yqres.2010.09.007 – ident: e_1_3_3_23_2 doi: 10.1111/gcb.13204 – ident: e_1_3_3_27_2 doi: 10.1038/ngeo2674 – ident: e_1_3_3_31_2 doi: 10.1111/gcb.13261 – start-page: 14SM-1 volume-title: Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_3_3_1_2 – ident: e_1_3_3_2_2 doi: 10.5194/tc-11-1-2017 – ident: e_1_3_3_13_2 doi: 10.1098/rstb.2013.0122 – ident: e_1_3_3_5_2 doi: 10.1002/ppp.683 – ident: e_1_3_3_28_2 doi: 10.1038/ngeo1160 – ident: e_1_3_3_22_2 doi: 10.1111/j.1365-2486.2012.02663.x – ident: e_1_3_3_6_2 doi: 10.1088/1748-9326/11/4/040201 – ident: e_1_3_3_30_2 doi: 10.1002/ppp.626 – ident: e_1_3_3_33_2 – ident: e_1_3_3_14_2 doi: 10.1111/gcb.13069 – ident: e_1_3_3_20_2 doi: 10.1029/2006GB002909 – volume-title: Climate change 2013—The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_3_3_12_2 – ident: e_1_3_3_16_2 doi: 10.1038/ngeo434 – ident: e_1_3_3_26_2 doi: 10.1038/366051a0 – ident: e_1_3_3_34_2 doi: 10.5194/essd-5-3-2013 – year: 2016 ident: e_1_3_3_18_2 article-title: Warming of subarctic tundra increases emissions of all three important greenhouse gases—carbon dioxide, methane, and nitrous oxide publication-title: Glob Change Biol – ident: e_1_3_3_24_2 doi: 10.1111/1365-2745.12639 – ident: e_1_3_3_15_2 doi: 10.1038/ngeo803 – ident: e_1_3_3_7_2 doi: 10.5194/bg-11-6573-2014 – reference: 26718892 - Glob Chang Biol. 2016 May;22(5):1927-41 – reference: 26301544 - Glob Chang Biol. 2015 Dec;21(12):4570-87 – reference: 27862698 - Glob Chang Biol. 2017 Aug;23 (8):3121-3138 – reference: 23713120 - Philos Trans R Soc Lond B Biol Sci. 2013 May 27;368(1621):20130122 – reference: 27095022 - Glob Chang Biol. 2016 Sep;22(9):2960-2 – reference: 25855454 - Nature. 2015 Apr 9;520(7546):171-9 – reference: 21576477 - Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20882-7 – reference: 27725633 - Nat Commun. 2016 Oct 11;7:13043 |
SSID | ssj0009580 |
Score | 2.5563579 |
Snippet | Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost... The Arctic is warming rapidly, causing permafrost soils to thaw. Vast stocks of nitrogen (>67 billion tons) in the permafrost, accumulated thousands of years... |
SourceID | swepub pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6238 |
SubjectTerms | Arctic soils Biological Sciences Carbon Climate change Emissions Feedback Forest soils greenhouse gases Melting nitrogen Nitrous oxide Peat Peatlands Permafrost Permafrost thaws Physical Sciences Probability Thawing Tropical forests Tundra |
Title | Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw |
URI | https://www.jstor.org/stable/26484198 https://www.ncbi.nlm.nih.gov/pubmed/28559346 https://www.proquest.com/docview/1945763208 https://www.proquest.com/docview/1904235150 https://pubmed.ncbi.nlm.nih.gov/PMC5474798 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-144780 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWBQGMhIVBqqUhLHdpLHaoAqUKs9bNPeItd11vCRVE0roP8G_zDnjyTt6CTgJarij1S5n893zt3vEHrNpxlTPAy9gAviURIpTwgJFwa7XSAJjQ2J63jCRxf04xW76nR-bUUtrVfTgdzszSv5H6nCPZCrzpL9B8k2k8IN-A3yhStIGK5_JWNY3DqmXH_Bz1dLHcxa_shnqq9ruFUmws1kjwyXOhGqvwC1azJ7XWHwhVbKmc76AOvTnWU7M_Ws2daqOohgUp8aDtscFKcYqr7XP5u0FY0vy_y6jSZx9bkdZ8G6msu5-GLThPLPos2E0NSPoH7tUYHL929bNRdA-T2XG-9TuZSbn71T1oupK7o91gWRiu0DjMBE29n804GyShdsFo9TWza00co2t9TBj9AtJQsWW7xX-4O60iWLC1ENgsgnCdgvdpYtLCy-GTCQGFypkN5g4Tb7et10B90l4HuYaNHRNpNz7NccUVH49sbTNLm0G79j6dhg131uzJ_RuDuctcbOOX-A7jsHBQ8t2g5RRxUP0WEtaXzieMrfPELjBn7YwQ8b-OEGfljDD1v44QZ-2MAPt_DDGn6P0cWH9-enI89V5_Ako3zlkYROSazimAtwsxUlszATQsDalz4VLAtJJrXxHijBALIykaDuI86YlNFMQO8jdFCUhXqKsFDKFyxRPJtFlMZKCMKjQLJsxmccJNBFg_pNptJR1-sKKl9TE0IRhamWQtpKoYtOmgELy9pye9cjI5qmnw75pEESd9FxLavUrXkYl1Bw0EPiQ_Orphneqv7MJgoFrxr66Fgz8BP8LnpiRdtO7rDRRdGO0JsOmu19t6XI54b1nVHw_PXf6ll47Ax5l18O03J5nVZrcOZpFPvPbn32c3SvXYbH6GC1XKsXYFmvpi8N0n8DtITRfg |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+nitrous+oxide+emissions+from+Arctic+peatlands+after+permafrost+thaw&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Voigt%2C+Carolina&rft.au=Marushchak%2C+Maija+E&rft.au=Lamprecht%2C+Richard+E&rft.au=Jackowicz-Korczy%C5%84ski%2C+Marcin&rft.date=2017-06-13&rft.eissn=1091-6490&rft.volume=114&rft.issue=24&rft.spage=6238&rft_id=info:doi/10.1073%2Fpnas.1702902114&rft_id=info%3Apmid%2F28559346&rft.externalDocID=28559346 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |