A discrete wavelet spectrum approach for identifying non-monotonic trends in hydroclimate data

The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we developed a discrete wavelet spectrum (DWS) approach for identifying non-monotonic trends in hydroclimate time series and evaluating their st...

Full description

Saved in:
Bibliographic Details
Published inHydrology and earth system sciences Vol. 22; no. 1; pp. 757 - 766
Main Authors Sang, Yan-Fang, Sun, Fubao, Singh, Vijay P., Xie, Ping, Sun, Jian
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 26.01.2018
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we developed a discrete wavelet spectrum (DWS) approach for identifying non-monotonic trends in hydroclimate time series and evaluating their statistical significance. After validating the DWS approach using two typical synthetic time series, we examined annual temperature and potential evaporation over China from 1961–2013 and found that the DWS approach detected both the “warming” and the “warming hiatus” in temperature, and the reversed changes in potential evaporation. Further, the identified non-monotonic trends showed stable significance when the time series was longer than 30 years or so (i.e. the widely defined “climate” timescale). The significance of trends in potential evaporation measured at 150 stations in China, with an obvious non-monotonic trend, was underestimated and was not detected by the Mann–Kendall test. Comparatively, the DWS approach overcame the problem and detected those significant non-monotonic trends at 380 stations, which helped understand and interpret the spatiotemporal variability in the hydroclimatic process. Our results suggest that non-monotonic trends of hydroclimate time series and their significance should be carefully identified, and the DWS approach proposed has the potential for wide use in the hydrological and climate sciences.
AbstractList The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we developed a discrete wavelet spectrum (DWS) approach for identifying non-monotonic trends in hydroclimate time series and evaluating their statistical significance. After validating the DWS approach using two typical synthetic time series, we examined annual temperature and potential evaporation over China from 1961–2013 and found that the DWS approach detected both the “warming” and the “warming hiatus” in temperature, and the reversed changes in potential evaporation. Further, the identified non-monotonic trends showed stable significance when the time series was longer than 30 years or so (i.e. the widely defined “climate” timescale). The significance of trends in potential evaporation measured at 150 stations in China, with an obvious non-monotonic trend, was underestimated and was not detected by the Mann–Kendall test. Comparatively, the DWS approach overcame the problem and detected those significant non-monotonic trends at 380 stations, which helped understand and interpret the spatiotemporal variability in the hydroclimatic process. Our results suggest that non-monotonic trends of hydroclimate time series and their significance should be carefully identified, and the DWS approach proposed has the potential for wide use in the hydrological and climate sciences.
The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we developed a discrete wavelet spectrum (DWS) approach for identifying non-monotonic trends in hydroclimate time series and evaluating their statistical significance. After validating the DWS approach using two typical synthetic time series, we examined annual temperature and potential evaporation over China from 1961-2013 and found that the DWS approach detected both the warming and the warming hiatus in temperature, and the reversed changes in potential evaporation. Further, the identified non-monotonic trends showed stable significance when the time series was longer than 30 years or so (i.e. the widely defined climate timescale). The significance of trends in potential evaporation measured at 150 stations in China, with an obvious non-monotonic trend, was underestimated and was not detected by the Mann-Kendall test. Comparatively, the DWS approach overcame the problem and detected those significant non-monotonic trends at 380 stations, which helped understand and interpret the spatiotemporal variability in the hydroclimatic process. Our results suggest that non-monotonic trends of hydroclimate time series and their significance should be carefully identified, and the DWS approach proposed has the potential for wide use in the hydrological and climate sciences.
The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we developed a discrete wavelet spectrum (DWS) approach for identifying non-monotonic trends in hydroclimate time series and evaluating their statistical significance. After validating the DWS approach using two typical synthetic time series, we examined annual temperature and potential evaporation over China from 1961–2013 and found that the DWS approach detected both the “warming” and the “warming hiatus” in temperature, and the reversed changes in potential evaporation. Further, the identified non-monotonic trends showed stable significance when the time series was longer than 30 years or so (i.e. the widely defined “climate” timescale). The significance of trends in potential evaporation measured at 150 stations in China, with an obvious non-monotonic trend, was underestimated and was not detected by the Mann–Kendall test. Comparatively, the DWS approach overcame the problem and detected those significant non-monotonic trends at 380 stations, which helped understand and interpret the spatiotemporal variability in the hydroclimatic process. Our results suggest that non-monotonic trends of hydroclimate time series and their significance should be carefully identified, and the DWS approach proposed has the potential for wide use in the hydrological and climate sciences.
The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we developed a discrete wavelet spectrum (DWS) approach for identifying non-monotonic trends in hydroclimate time series and evaluating their statistical significance. After validating the DWS approach using two typical synthetic time series, we examined annual temperature and potential evaporation over China from 1961–2013 and found that the DWS approach detected both the warming and the warming hiatus in temperature, and the reversed changes in potential evaporation. Further, the identified non-monotonic trends showed stable significance when the time series was longer than 30 years or so (i.e. the widely defined climate timescale). The significance of trends in potential evaporation measured at 150 stations in China, with an obvious non-monotonic trend, was underestimated and was not detected by the Mann–Kendall test. Comparatively, the DWS approach overcame the problem and detected those significant non-monotonic trends at 380 stations, which helped understand and interpret the spatiotemporal variability in the hydroclimatic process. Our results suggest that non-monotonic trends of hydroclimate time series and their significance should be carefully identified, and the DWS approach proposed has the potential for wide use in the hydrological and climate sciences.
Audience Academic
Author Singh, Vijay P.
Sun, Jian
Sun, Fubao
Sang, Yan-Fang
Xie, Ping
Author_xml – sequence: 1
  givenname: Yan-Fang
  surname: Sang
  fullname: Sang, Yan-Fang
– sequence: 2
  givenname: Fubao
  surname: Sun
  fullname: Sun, Fubao
– sequence: 3
  givenname: Vijay P.
  surname: Singh
  fullname: Singh, Vijay P.
– sequence: 4
  givenname: Ping
  orcidid: 0000-0003-2332-1547
  surname: Xie
  fullname: Xie, Ping
– sequence: 5
  givenname: Jian
  orcidid: 0000-0001-8765-5015
  surname: Sun
  fullname: Sun, Jian
BookMark eNp1Uk2vEyEUnZhn4nvVvUsSVy7mCczAwLJ58aPJS0z82Epu4U5LMwMVqNp_L7UardEQAtycczhczk1zFWLApnnK6K1gun-xxZxbzttBDC2nTD1orpmkQzvoTl39sX_U3OS8o5QrJfl182lJnM82YUHyFb7ghIXkPdqSDjOB_T5FsFsyxkS8w1D8ePRhQ-rd7RxDLDF4S0rC4DLxgWyPLkU7-RmqnIMCj5uHI0wZn_xcF83HVy8_3L1p79--Xt0t71srellaJh1w0XNEqlxPGesljI4B5xo5tZpxOmihBGinBxxAoaCyX9t6cHotabdoVmddF2Fn9qk6SEcTwZsfhZg2BlLxdkIDg9ZSs84CU_0oUDNQbC250thJoYeq9eysVR__-YC5mF08pFDtG85ptaE61v1GbaCK-jDGksDOtZdmKbhgvOvrXDS3_0DV4XD2tv7g6Gv9gvD8glAxBb-VDRxyNqv37y6x8oy1KeaccDTWFyi-UhL4yTBqTtEwp2hU66ZGw5yiUYn0L-Kvjv2X8h2l-bwF
CitedBy_id crossref_primary_10_1016_j_ejrh_2023_101456
crossref_primary_10_1016_j_ejrh_2024_101810
crossref_primary_10_1186_s13358_022_00246_2
crossref_primary_10_3390_hydrology11040043
crossref_primary_10_1016_j_jhydrol_2019_124365
crossref_primary_10_1029_2022WR032721
crossref_primary_10_1016_j_jhydrol_2024_131832
crossref_primary_10_1016_j_jhydrol_2021_126061
crossref_primary_10_1007_s00704_023_04707_7
crossref_primary_10_3390_w15040636
crossref_primary_10_5194_hess_25_2387_2021
crossref_primary_10_3390_en11040995
crossref_primary_10_1016_j_envsoft_2024_105958
crossref_primary_10_3390_su12051720
crossref_primary_10_1016_j_scs_2022_104304
crossref_primary_10_1080_02626667_2019_1662023
crossref_primary_10_1016_j_jhydrol_2019_124115
crossref_primary_10_1016_j_jhydrol_2022_128698
crossref_primary_10_1029_2021WR031347
crossref_primary_10_1007_s12040_023_02140_y
crossref_primary_10_1016_j_gloplacha_2022_103868
crossref_primary_10_3390_e21010048
crossref_primary_10_3389_feart_2021_736305
crossref_primary_10_3390_atmos13101583
crossref_primary_10_3390_w13050727
crossref_primary_10_1007_s11600_020_00466_5
crossref_primary_10_3390_w17050731
crossref_primary_10_1007_s12517_021_06907_9
crossref_primary_10_1016_j_jher_2021_01_005
Cites_doi 10.1029/2009JD012943
10.1038/nature01092
10.1017/CBO9780511841040
10.1002/2015WR018089
10.1175/2010BAMS2955.1
10.1002/hyp.9356
10.1016/j.jhydrol.2005.04.003
10.1126/science.1075390-a
10.1016/j.pce.2006.04.043
10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
10.1038/nclimate2531
10.1016/j.jhydrol.2011.12.044
10.1016/S0022-1694(00)00322-X
10.1016/S0022-1694(02)00212-3
10.1016/j.pce.2005.03.009
10.1007/s11269-012-0075-4
10.1016/j.jhydrol.2008.06.013
10.1029/2008JD011470
10.1016/j.jhydrol.2012.09.049
10.1016/S0022-1694(01)00594-7
10.1002/2015GL067473
10.1029/2006GL027325
10.1016/j.jhydrol.2014.03.057
10.5194/npg-12-201-2005
10.3354/cr028123
10.1080/02664760701835011
10.1029/2005GL024476
10.1175/2007JCLI1535.1
10.1029/2008GL035075
10.1038/23845
10.1038/nature22315
10.1016/j.jhydrol.2007.01.010
10.1038/nclimate2067
10.1038/nature12534
10.1016/S0022-1694(01)00514-5
10.1126/science.1151915
ContentType Journal Article
Copyright COPYRIGHT 2018 Copernicus GmbH
2018. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2018 Copernicus GmbH
– notice: 2018. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.5194/hess-22-757-2018
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ProQuest Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1607-7938
EndPage 766
ExternalDocumentID oai_doaj_org_article_a7996913ca184f5e91a81b6289e36597
A525123412
10_5194_hess_22_757_2018
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29I
2WC
5GY
5VS
7XC
8CJ
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABJCF
ABUWG
ACGFO
ACIWK
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1J
D1K
E3Z
EBS
ECGQY
EDH
EJD
GROUPED_DOAJ
GX1
H13
HCIFZ
IAO
IEA
IEP
IGS
IPNFZ
ISR
ITC
K6-
KQ8
L6V
L8X
LK5
M7R
M7S
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
~KM
BBORY
PMFND
7QH
7TG
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H96
KL.
KR7
L.G
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c546t-16da2542ee08d401146afd1a229e20c912079585a9d97e7a8e5064bc97ed9b603
IEDL.DBID BENPR
ISSN 1607-7938
1027-5606
IngestDate Wed Aug 27 00:30:46 EDT 2025
Fri Jul 25 10:52:37 EDT 2025
Tue Jun 17 21:39:17 EDT 2025
Tue Jun 10 20:27:03 EDT 2025
Fri Jun 27 04:25:42 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Tue Jul 01 02:45:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-16da2542ee08d401146afd1a229e20c912079585a9d97e7a8e5064bc97ed9b603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8765-5015
0000-0003-2332-1547
OpenAccessLink https://www.proquest.com/docview/2209588313?pq-origsite=%requestingapplication%
PQID 2209588313
PQPubID 105724
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_a7996913ca184f5e91a81b6289e36597
proquest_journals_2209588313
gale_infotracmisc_A525123412
gale_infotracacademiconefile_A525123412
gale_incontextgauss_ISR_A525123412
crossref_citationtrail_10_5194_hess_22_757_2018
crossref_primary_10_5194_hess_22_757_2018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-26
PublicationDateYYYYMMDD 2018-01-26
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-26
  day: 26
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Hydrology and earth system sciences
PublicationYear 2018
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref14
  doi: 10.1029/2009JD012943
– ident: ref2
  doi: 10.1038/nature01092
– ident: ref26
  doi: 10.1017/CBO9780511841040
– ident: ref27
  doi: 10.1002/2015WR018089
– ident: ref4
  doi: 10.1175/2010BAMS2955.1
– ident: ref32
  doi: 10.1002/hyp.9356
– ident: ref18
  doi: 10.1016/j.jhydrol.2005.04.003
– ident: ref29
  doi: 10.1126/science.1075390-a
– ident: ref25
  doi: 10.1016/j.pce.2006.04.043
– ident: ref34
  doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
– ident: ref28
  doi: 10.1038/nclimate2531
– ident: ref31
  doi: 10.1016/j.jhydrol.2011.12.044
– ident: ref19
  doi: 10.1016/S0022-1694(00)00322-X
– ident: ref13
  doi: 10.1016/S0022-1694(02)00212-3
– ident: ref9
  doi: 10.1016/j.pce.2005.03.009
– ident: ref30
  doi: 10.1007/s11269-012-0075-4
– ident: ref24
  doi: 10.1016/j.jhydrol.2008.06.013
– ident: ref36
  doi: 10.1029/2008JD011470
– ident: ref22
  doi: 10.1016/j.jhydrol.2012.09.049
– ident: ref37
  doi: 10.1016/S0022-1694(01)00594-7
– ident: ref38
  doi: 10.1002/2015GL067473
– ident: ref11
  doi: 10.1029/2006GL027325
– ident: ref23
  doi: 10.1016/j.jhydrol.2014.03.057
– ident: ref16
  doi: 10.5194/npg-12-201-2005
– ident: ref7
  doi: 10.3354/cr028123
– ident: ref3
  doi: 10.1080/02664760701835011
– ident: ref8
  doi: 10.1029/2005GL024476
– ident: ref1
  doi: 10.1175/2007JCLI1535.1
– ident: ref10
  doi: 10.1029/2008GL035075
– ident: ref5
  doi: 10.1038/23845
– ident: ref20
  doi: 10.1038/nature22315
– ident: ref15
  doi: 10.1016/j.jhydrol.2007.01.010
– ident: ref35
  doi: 10.1038/nclimate2067
– ident: ref17
  doi: 10.1038/nature12534
– ident: ref6
  doi: 10.1016/S0022-1694(01)00514-5
– ident: ref12
– ident: ref21
  doi: 10.1126/science.1151915
– ident: ref33
SSID ssj0028862
Score 2.3668854
Snippet The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we...
The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 757
SubjectTerms Annual temperatures
Climate science
Discrete Wavelet Transform
Evaporation
Evaporation rate
Hydroclimate
Hydrology
Identification
Methods
Potential evaporation
Stations
Temperature
Time series
Trends
Wavelet analysis
Wavelet transforms
Weather forecasting
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUqLvRSUShiKSALIVUcrE2cxI6P2woESPTQFokTlmM77EqwVCio4u95k3gRe6BcOK12d6I4k4nnvdjzhrEDpLxQ-8qL6BopyrrVwigdRJuF2ASlMT3Qiu75T3VyUZ5dVpcvWn3RnrBBHnhw3NhpIHKTF96Bi7RVNLkD0lLgCbFQQMM0-yLnLchUolp1rYZ1TqkFcnpaoARaKcdTzCACDExXGiFCzT5eJKRet_-12blPOcdr7FPCinwyjPEz-xDn62w1tS2fPm6wqwmnqtp7AF_-z1ELiY73pZP3D7d8oRbOAUv5rK_H7WuaOAi_QPDddaSKy7t-Uyyfzfn0MSCb3cyAYSOnnaNf2MXx0Z8fJyI1TBC-KlUnchUcCJ-MMatDSVRHuTbkTkoTZeZNLjNtwA-cCUZH7epIcnWNx5dgGpUVm2wFY4hbjGuZtapqSw_4gse6NSQf6puAjOfx4UZsvPCa9UlNnJpa3FiwCvKzJT9bKS38bMnPI3b4fMTfQUnjP7bf6UY825EGdv8DIsOmyLBvRcaI7dNttKRyMadtNNfuAac5_f3LTiqCdUjgcsS-JaP2DuP3LlUlwAskjLVkubNkicfQL_-9iBabpgG6JCDYui7yYvs9rugr-0jeoTdAUu2wFURT3AUm6pq9PvyfAEDhBXQ
  priority: 102
  providerName: Directory of Open Access Journals
Title A discrete wavelet spectrum approach for identifying non-monotonic trends in hydroclimate data
URI https://www.proquest.com/docview/2209588313
https://doaj.org/article/a7996913ca184f5e91a81b6289e36597
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxELVoeoAL4lOElshCSIiDlY2za3tPKEUNBakVFCp6wvLa3iZSSUq6Feq_583GG5EDPa2SnSj22J6ZZ3veMPYGLi8YX3gRXSVFbmotSqWDqLMQq6A0zAOd6B6fqKOz_PN5cZ423K7TtcrOJraGOiw97ZEPpUQwYMx4NH5_9VtQ1Sg6XU0lNHbYLkywMT22e3B48uV0A7mMUevzTqkFfHs6qETUkg9nsCQCSEwXGlOFin7845ha_v7_WenW9UwfsYcpZuST9SA_Zvfi4gm7n8qXz26fsp8TTtm1KwTA_I-jUhINb1MoVze_eMcazhGe8nmbl9vmNnEAf4FeLRtix-VNezmWzxd8dhvg1S7niGUjpxukz9jZ9PD7hyORCicIX-SqESMVHICfjDEzISfIo1wdRk7KMsrMlyOZaSizcGUoddTORKKtqzw-hLJS2fg566EN8QXjWma1KurcI4zB8q5LohH1VYDn83i4Pht2WrM-sYpTcYtLC3RBerakZyulhZ4t6bnP3m1-cbVm1LhD9oAGYiNHXNjtF8vVhU1LyzoNzIZmeQe0WhexHDnE4gpIMo4V8FKfvaZhtMR2saDrNBfuBn_z6dupnRQU3sGRyz57m4TqJdrvXcpOgBaIIGtLcn9LEsvRb7_uZotN5oC61E3el3e_3mMPqN-0xyPVPuthnsRXiHqaasB2zPTjIE1wek6Pv_4YtHsIfwHIMwL_
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW5bBcEE9RWMBCIMTBauIkdnJAqDxKyz4OsCvtCePYzrbSki6lq1X_FL-Rb9Kkogf2tqeqzbRxx-OZ74s9M4y9RMjzucucCLaUIs0rLQqlvagiH0qvNNwD7egeHKrRcfrlJDvZYn-6XBg6Vtn5xMZR-5mjZ-R9KQEG8jyJk3fnvwR1jaLd1a6Fxsos9sLyEpTt99vxR8zvKymHn44-jETbVUC4LFULEStvwYpkCFHuU-IDylY-tlIWQUauiGWkcafMFr7QQds8UE230uGNL0oVJfjdG-xmmiCSU2b68POa4OW5Wu2uSi2AJNptUWCktD-B3xLgfTrTMExqMfJPGGy6BfwvJjSBbniH3W4RKh-sTOou2wr1PbbTNkufLO-z7wNOubxzwG1-aalxxYI3CZvzi5-8q1HOAYb5tMkCbjKpeD2rBXQ4W1AtXr5ojuLyac0nS48YejYFcg6czqs-YMfXotCHbBtjCI8Y1zKqVFalDqAJzqQqqGipKz3irMOL7bF-pzXj2hrm1ErjzIDLkJ4N6dlIaaBnQ3rusTfrb5yv6ndcIfueJmItR5W3mw9m81PTLmRjNRgihuUsuHGVhSK2QP4KvDUkCuysx17QNBqqrVHT4Z1Te4HbjL99NYOMwCRgg-yx161QNcP4nW1zIaAFKse1Ibm7IYnF7zYvd9ZiWudDf6lbKo-vvvyc7YyODvbN_vhw7wm7RTqgp0tS7bJt2Ex4Cry1KJ81Rs7Zj-teVX8Bkk05tA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgJeJn6KsgEWAiEerCZuYicPCHVs1cqgmgaT9oTn2M5aaTSjZJr6r_HXcZc6FX1gb3uq2lwb93y--77YdwfwBkOey2xquTeF4ElWKp5L5XgZOV84qdA90I7u17E8OEk-n6anG_CnzYWhY5WtT2wctassPSPvCYFgIMv6cb9XhmMRR3vDj5e_OHWQop3Wtp3G0kQO_eIa6dvvD6M9nOu3Qgz3v3864KHDALdpImseS2eQIQnvo8wlxA2kKV1shMi9iGwei0jhXVOTu1x5ZTJP9d0Ki29cXsioj797BzYVsaIObO7uj4-OV3Qvy-Ryr1UojrgibJIiYkp6E_RiHFmgShWaKTUc-ScoNr0D_hchmrA3fABbAa-ywdLAHsKGnz2Ce6F1-mTxGH4MGGX2zhF8s2tDbSxq1qRvzq9-srZiOUNozKZNTnCTV8Vm1YyjFquaKvOyujmYy6YzNlk4jKgXU8TRntHp1SdwcisqfQodHIN_BkyJqJRpmViEUOhaypxKmNrCYdS1-GK60Gu1pm2oaE6NNS40MhvSsyY9ayE06lmTnrvwfvWNy2U1jxtkd2kiVnJUh7v5oJqf67CstVHIF3FY1iBTLlOfxwZ5gEQW6_sSuVoXXtM0aqq0MSObPTdXeJvRt2M9SAlaIogQXXgXhMoKx29NyIxALVBxrjXJnTVJdAV2_XJrLTq4IvpL7cJ5fvPlV3AXV5T-MhofbsN9UgE9ahJyBzpoMv4Fgq-6eBmsnMHZbS-sv5owP0Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+discrete+wavelet+spectrum+approach+for+identifying+non-monotonic+trends+in+hydroclimate+data&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Sang%2C+Yan-Fang&rft.au=Sun%2C+Fubao&rft.au=Singh%2C+Vijay+P&rft.au=Xie%2C+Ping&rft.date=2018-01-26&rft.pub=Copernicus+GmbH&rft.issn=1027-5606&rft.volume=22&rft.issue=1&rft.spage=757&rft_id=info:doi/10.5194%2Fhess-22-757-2018&rft.externalDBID=ISR&rft.externalDocID=A525123412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon