A discrete wavelet spectrum approach for identifying non-monotonic trends in hydroclimate data
The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we developed a discrete wavelet spectrum (DWS) approach for identifying non-monotonic trends in hydroclimate time series and evaluating their st...
Saved in:
Published in | Hydrology and earth system sciences Vol. 22; no. 1; pp. 757 - 766 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
26.01.2018
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The hydroclimatic process is changing non-monotonically and
identifying its trends is a great challenge. Building on the discrete
wavelet transform theory, we developed a discrete wavelet spectrum (DWS)
approach for identifying non-monotonic trends in hydroclimate time
series and evaluating their statistical significance. After validating the
DWS approach using two typical synthetic time series, we examined annual
temperature and potential evaporation over China from 1961–2013 and found
that the DWS approach detected both the “warming” and the “warming
hiatus” in temperature, and the reversed changes in potential evaporation.
Further, the identified non-monotonic trends showed stable
significance when the time series was longer than 30 years or so (i.e. the
widely defined “climate” timescale). The significance of trends in
potential evaporation measured at 150 stations in China, with an obvious
non-monotonic trend, was underestimated and was not detected by the
Mann–Kendall test. Comparatively, the DWS approach overcame the problem and
detected those significant non-monotonic trends at 380 stations, which helped
understand and interpret the spatiotemporal variability in the hydroclimatic
process. Our results suggest that non-monotonic trends of
hydroclimate time series and their significance should be carefully
identified, and the DWS approach proposed has the potential for wide use in
the hydrological and climate sciences. |
---|---|
AbstractList | The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we developed a discrete wavelet spectrum (DWS) approach for identifying non-monotonic trends in hydroclimate time series and evaluating their statistical significance. After validating the DWS approach using two typical synthetic time series, we examined annual temperature and potential evaporation over China from 1961–2013 and found that the DWS approach detected both the “warming” and the “warming hiatus” in temperature, and the reversed changes in potential evaporation. Further, the identified non-monotonic trends showed stable significance when the time series was longer than 30 years or so (i.e. the widely defined “climate” timescale). The significance of trends in potential evaporation measured at 150 stations in China, with an obvious non-monotonic trend, was underestimated and was not detected by the Mann–Kendall test. Comparatively, the DWS approach overcame the problem and detected those significant non-monotonic trends at 380 stations, which helped understand and interpret the spatiotemporal variability in the hydroclimatic process. Our results suggest that non-monotonic trends of hydroclimate time series and their significance should be carefully identified, and the DWS approach proposed has the potential for wide use in the hydrological and climate sciences. The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we developed a discrete wavelet spectrum (DWS) approach for identifying non-monotonic trends in hydroclimate time series and evaluating their statistical significance. After validating the DWS approach using two typical synthetic time series, we examined annual temperature and potential evaporation over China from 1961-2013 and found that the DWS approach detected both the warming and the warming hiatus in temperature, and the reversed changes in potential evaporation. Further, the identified non-monotonic trends showed stable significance when the time series was longer than 30Â years or so (i.e. the widely defined climate timescale). The significance of trends in potential evaporation measured at 150Â stations in China, with an obvious non-monotonic trend, was underestimated and was not detected by the Mann-Kendall test. Comparatively, the DWS approach overcame the problem and detected those significant non-monotonic trends at 380Â stations, which helped understand and interpret the spatiotemporal variability in the hydroclimatic process. Our results suggest that non-monotonic trends of hydroclimate time series and their significance should be carefully identified, and the DWS approach proposed has the potential for wide use in the hydrological and climate sciences. The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we developed a discrete wavelet spectrum (DWS) approach for identifying non-monotonic trends in hydroclimate time series and evaluating their statistical significance. After validating the DWS approach using two typical synthetic time series, we examined annual temperature and potential evaporation over China from 1961–2013 and found that the DWS approach detected both the “warming” and the “warming hiatus” in temperature, and the reversed changes in potential evaporation. Further, the identified non-monotonic trends showed stable significance when the time series was longer than 30 years or so (i.e. the widely defined “climate” timescale). The significance of trends in potential evaporation measured at 150 stations in China, with an obvious non-monotonic trend, was underestimated and was not detected by the Mann–Kendall test. Comparatively, the DWS approach overcame the problem and detected those significant non-monotonic trends at 380 stations, which helped understand and interpret the spatiotemporal variability in the hydroclimatic process. Our results suggest that non-monotonic trends of hydroclimate time series and their significance should be carefully identified, and the DWS approach proposed has the potential for wide use in the hydrological and climate sciences. The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we developed a discrete wavelet spectrum (DWS) approach for identifying non-monotonic trends in hydroclimate time series and evaluating their statistical significance. After validating the DWS approach using two typical synthetic time series, we examined annual temperature and potential evaporation over China from 1961–2013 and found that the DWS approach detected both the warming and the warming hiatus in temperature, and the reversed changes in potential evaporation. Further, the identified non-monotonic trends showed stable significance when the time series was longer than 30 years or so (i.e. the widely defined climate timescale). The significance of trends in potential evaporation measured at 150 stations in China, with an obvious non-monotonic trend, was underestimated and was not detected by the Mann–Kendall test. Comparatively, the DWS approach overcame the problem and detected those significant non-monotonic trends at 380 stations, which helped understand and interpret the spatiotemporal variability in the hydroclimatic process. Our results suggest that non-monotonic trends of hydroclimate time series and their significance should be carefully identified, and the DWS approach proposed has the potential for wide use in the hydrological and climate sciences. |
Audience | Academic |
Author | Singh, Vijay P. Sun, Jian Sun, Fubao Sang, Yan-Fang Xie, Ping |
Author_xml | – sequence: 1 givenname: Yan-Fang surname: Sang fullname: Sang, Yan-Fang – sequence: 2 givenname: Fubao surname: Sun fullname: Sun, Fubao – sequence: 3 givenname: Vijay P. surname: Singh fullname: Singh, Vijay P. – sequence: 4 givenname: Ping orcidid: 0000-0003-2332-1547 surname: Xie fullname: Xie, Ping – sequence: 5 givenname: Jian orcidid: 0000-0001-8765-5015 surname: Sun fullname: Sun, Jian |
BookMark | eNp1Uk2vEyEUnZhn4nvVvUsSVy7mCczAwLJ58aPJS0z82Epu4U5LMwMVqNp_L7UardEQAtycczhczk1zFWLApnnK6K1gun-xxZxbzttBDC2nTD1orpmkQzvoTl39sX_U3OS8o5QrJfl182lJnM82YUHyFb7ghIXkPdqSDjOB_T5FsFsyxkS8w1D8ePRhQ-rd7RxDLDF4S0rC4DLxgWyPLkU7-RmqnIMCj5uHI0wZn_xcF83HVy8_3L1p79--Xt0t71srellaJh1w0XNEqlxPGesljI4B5xo5tZpxOmihBGinBxxAoaCyX9t6cHotabdoVmddF2Fn9qk6SEcTwZsfhZg2BlLxdkIDg9ZSs84CU_0oUDNQbC250thJoYeq9eysVR__-YC5mF08pFDtG85ptaE61v1GbaCK-jDGksDOtZdmKbhgvOvrXDS3_0DV4XD2tv7g6Gv9gvD8glAxBb-VDRxyNqv37y6x8oy1KeaccDTWFyi-UhL4yTBqTtEwp2hU66ZGw5yiUYn0L-Kvjv2X8h2l-bwF |
CitedBy_id | crossref_primary_10_1016_j_ejrh_2023_101456 crossref_primary_10_1016_j_ejrh_2024_101810 crossref_primary_10_1186_s13358_022_00246_2 crossref_primary_10_3390_hydrology11040043 crossref_primary_10_1016_j_jhydrol_2019_124365 crossref_primary_10_1029_2022WR032721 crossref_primary_10_1016_j_jhydrol_2024_131832 crossref_primary_10_1016_j_jhydrol_2021_126061 crossref_primary_10_1007_s00704_023_04707_7 crossref_primary_10_3390_w15040636 crossref_primary_10_5194_hess_25_2387_2021 crossref_primary_10_3390_en11040995 crossref_primary_10_1016_j_envsoft_2024_105958 crossref_primary_10_3390_su12051720 crossref_primary_10_1016_j_scs_2022_104304 crossref_primary_10_1080_02626667_2019_1662023 crossref_primary_10_1016_j_jhydrol_2019_124115 crossref_primary_10_1016_j_jhydrol_2022_128698 crossref_primary_10_1029_2021WR031347 crossref_primary_10_1007_s12040_023_02140_y crossref_primary_10_1016_j_gloplacha_2022_103868 crossref_primary_10_3390_e21010048 crossref_primary_10_3389_feart_2021_736305 crossref_primary_10_3390_atmos13101583 crossref_primary_10_3390_w13050727 crossref_primary_10_1007_s11600_020_00466_5 crossref_primary_10_3390_w17050731 crossref_primary_10_1007_s12517_021_06907_9 crossref_primary_10_1016_j_jher_2021_01_005 |
Cites_doi | 10.1029/2009JD012943 10.1038/nature01092 10.1017/CBO9780511841040 10.1002/2015WR018089 10.1175/2010BAMS2955.1 10.1002/hyp.9356 10.1016/j.jhydrol.2005.04.003 10.1126/science.1075390-a 10.1016/j.pce.2006.04.043 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 10.1038/nclimate2531 10.1016/j.jhydrol.2011.12.044 10.1016/S0022-1694(00)00322-X 10.1016/S0022-1694(02)00212-3 10.1016/j.pce.2005.03.009 10.1007/s11269-012-0075-4 10.1016/j.jhydrol.2008.06.013 10.1029/2008JD011470 10.1016/j.jhydrol.2012.09.049 10.1016/S0022-1694(01)00594-7 10.1002/2015GL067473 10.1029/2006GL027325 10.1016/j.jhydrol.2014.03.057 10.5194/npg-12-201-2005 10.3354/cr028123 10.1080/02664760701835011 10.1029/2005GL024476 10.1175/2007JCLI1535.1 10.1029/2008GL035075 10.1038/23845 10.1038/nature22315 10.1016/j.jhydrol.2007.01.010 10.1038/nclimate2067 10.1038/nature12534 10.1016/S0022-1694(01)00514-5 10.1126/science.1151915 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 Copernicus GmbH 2018. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2018 Copernicus GmbH – notice: 2018. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7QH 7TG 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.5194/hess-22-757-2018 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ProQuest Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1607-7938 |
EndPage | 766 |
ExternalDocumentID | oai_doaj_org_article_a7996913ca184f5e91a81b6289e36597 A525123412 10_5194_hess_22_757_2018 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29I 2WC 5GY 5VS 7XC 8CJ 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ACGFO ACIWK ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1J D1K E3Z EBS ECGQY EDH EJD GROUPED_DOAJ GX1 H13 HCIFZ IAO IEA IEP IGS IPNFZ ISR ITC K6- KQ8 L6V L8X LK5 M7R M7S OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS PYCSY Q2X RIG RKB RNS TR2 XSB ~02 ~KM BBORY PMFND 7QH 7TG 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H96 KL. KR7 L.G PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c546t-16da2542ee08d401146afd1a229e20c912079585a9d97e7a8e5064bc97ed9b603 |
IEDL.DBID | BENPR |
ISSN | 1607-7938 1027-5606 |
IngestDate | Wed Aug 27 00:30:46 EDT 2025 Fri Jul 25 10:52:37 EDT 2025 Tue Jun 17 21:39:17 EDT 2025 Tue Jun 10 20:27:03 EDT 2025 Fri Jun 27 04:25:42 EDT 2025 Thu Apr 24 22:59:39 EDT 2025 Tue Jul 01 02:45:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c546t-16da2542ee08d401146afd1a229e20c912079585a9d97e7a8e5064bc97ed9b603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8765-5015 0000-0003-2332-1547 |
OpenAccessLink | https://www.proquest.com/docview/2209588313?pq-origsite=%requestingapplication% |
PQID | 2209588313 |
PQPubID | 105724 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a7996913ca184f5e91a81b6289e36597 proquest_journals_2209588313 gale_infotracmisc_A525123412 gale_infotracacademiconefile_A525123412 gale_incontextgauss_ISR_A525123412 crossref_citationtrail_10_5194_hess_22_757_2018 crossref_primary_10_5194_hess_22_757_2018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-26 |
PublicationDateYYYYMMDD | 2018-01-26 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Hydrology and earth system sciences |
PublicationYear | 2018 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref14 doi: 10.1029/2009JD012943 – ident: ref2 doi: 10.1038/nature01092 – ident: ref26 doi: 10.1017/CBO9780511841040 – ident: ref27 doi: 10.1002/2015WR018089 – ident: ref4 doi: 10.1175/2010BAMS2955.1 – ident: ref32 doi: 10.1002/hyp.9356 – ident: ref18 doi: 10.1016/j.jhydrol.2005.04.003 – ident: ref29 doi: 10.1126/science.1075390-a – ident: ref25 doi: 10.1016/j.pce.2006.04.043 – ident: ref34 doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 – ident: ref28 doi: 10.1038/nclimate2531 – ident: ref31 doi: 10.1016/j.jhydrol.2011.12.044 – ident: ref19 doi: 10.1016/S0022-1694(00)00322-X – ident: ref13 doi: 10.1016/S0022-1694(02)00212-3 – ident: ref9 doi: 10.1016/j.pce.2005.03.009 – ident: ref30 doi: 10.1007/s11269-012-0075-4 – ident: ref24 doi: 10.1016/j.jhydrol.2008.06.013 – ident: ref36 doi: 10.1029/2008JD011470 – ident: ref22 doi: 10.1016/j.jhydrol.2012.09.049 – ident: ref37 doi: 10.1016/S0022-1694(01)00594-7 – ident: ref38 doi: 10.1002/2015GL067473 – ident: ref11 doi: 10.1029/2006GL027325 – ident: ref23 doi: 10.1016/j.jhydrol.2014.03.057 – ident: ref16 doi: 10.5194/npg-12-201-2005 – ident: ref7 doi: 10.3354/cr028123 – ident: ref3 doi: 10.1080/02664760701835011 – ident: ref8 doi: 10.1029/2005GL024476 – ident: ref1 doi: 10.1175/2007JCLI1535.1 – ident: ref10 doi: 10.1029/2008GL035075 – ident: ref5 doi: 10.1038/23845 – ident: ref20 doi: 10.1038/nature22315 – ident: ref15 doi: 10.1016/j.jhydrol.2007.01.010 – ident: ref35 doi: 10.1038/nclimate2067 – ident: ref17 doi: 10.1038/nature12534 – ident: ref6 doi: 10.1016/S0022-1694(01)00514-5 – ident: ref12 – ident: ref21 doi: 10.1126/science.1151915 – ident: ref33 |
SSID | ssj0028862 |
Score | 2.3668854 |
Snippet | The hydroclimatic process is changing non-monotonically and
identifying its trends is a great challenge. Building on the discrete
wavelet transform theory, we... The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 757 |
SubjectTerms | Annual temperatures Climate science Discrete Wavelet Transform Evaporation Evaporation rate Hydroclimate Hydrology Identification Methods Potential evaporation Stations Temperature Time series Trends Wavelet analysis Wavelet transforms Weather forecasting |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUqLvRSUShiKSALIVUcrE2cxI6P2woESPTQFokTlmM77EqwVCio4u95k3gRe6BcOK12d6I4k4nnvdjzhrEDpLxQ-8qL6BopyrrVwigdRJuF2ASlMT3Qiu75T3VyUZ5dVpcvWn3RnrBBHnhw3NhpIHKTF96Bi7RVNLkD0lLgCbFQQMM0-yLnLchUolp1rYZ1TqkFcnpaoARaKcdTzCACDExXGiFCzT5eJKRet_-12blPOcdr7FPCinwyjPEz-xDn62w1tS2fPm6wqwmnqtp7AF_-z1ELiY73pZP3D7d8oRbOAUv5rK_H7WuaOAi_QPDddaSKy7t-Uyyfzfn0MSCb3cyAYSOnnaNf2MXx0Z8fJyI1TBC-KlUnchUcCJ-MMatDSVRHuTbkTkoTZeZNLjNtwA-cCUZH7epIcnWNx5dgGpUVm2wFY4hbjGuZtapqSw_4gse6NSQf6puAjOfx4UZsvPCa9UlNnJpa3FiwCvKzJT9bKS38bMnPI3b4fMTfQUnjP7bf6UY825EGdv8DIsOmyLBvRcaI7dNttKRyMadtNNfuAac5_f3LTiqCdUjgcsS-JaP2DuP3LlUlwAskjLVkubNkicfQL_-9iBabpgG6JCDYui7yYvs9rugr-0jeoTdAUu2wFURT3AUm6pq9PvyfAEDhBXQ priority: 102 providerName: Directory of Open Access Journals |
Title | A discrete wavelet spectrum approach for identifying non-monotonic trends in hydroclimate data |
URI | https://www.proquest.com/docview/2209588313 https://doaj.org/article/a7996913ca184f5e91a81b6289e36597 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxELVoeoAL4lOElshCSIiDlY2za3tPKEUNBakVFCp6wvLa3iZSSUq6Feq_583GG5EDPa2SnSj22J6ZZ3veMPYGLi8YX3gRXSVFbmotSqWDqLMQq6A0zAOd6B6fqKOz_PN5cZ423K7TtcrOJraGOiw97ZEPpUQwYMx4NH5_9VtQ1Sg6XU0lNHbYLkywMT22e3B48uV0A7mMUevzTqkFfHs6qETUkg9nsCQCSEwXGlOFin7845ha_v7_WenW9UwfsYcpZuST9SA_Zvfi4gm7n8qXz26fsp8TTtm1KwTA_I-jUhINb1MoVze_eMcazhGe8nmbl9vmNnEAf4FeLRtix-VNezmWzxd8dhvg1S7niGUjpxukz9jZ9PD7hyORCicIX-SqESMVHICfjDEzISfIo1wdRk7KMsrMlyOZaSizcGUoddTORKKtqzw-hLJS2fg566EN8QXjWma1KurcI4zB8q5LohH1VYDn83i4Pht2WrM-sYpTcYtLC3RBerakZyulhZ4t6bnP3m1-cbVm1LhD9oAGYiNHXNjtF8vVhU1LyzoNzIZmeQe0WhexHDnE4gpIMo4V8FKfvaZhtMR2saDrNBfuBn_z6dupnRQU3sGRyz57m4TqJdrvXcpOgBaIIGtLcn9LEsvRb7_uZotN5oC61E3el3e_3mMPqN-0xyPVPuthnsRXiHqaasB2zPTjIE1wek6Pv_4YtHsIfwHIMwL_ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW5bBcEE9RWMBCIMTBauIkdnJAqDxKyz4OsCvtCePYzrbSki6lq1X_FL-Rb9Kkogf2tqeqzbRxx-OZ74s9M4y9RMjzucucCLaUIs0rLQqlvagiH0qvNNwD7egeHKrRcfrlJDvZYn-6XBg6Vtn5xMZR-5mjZ-R9KQEG8jyJk3fnvwR1jaLd1a6Fxsos9sLyEpTt99vxR8zvKymHn44-jETbVUC4LFULEStvwYpkCFHuU-IDylY-tlIWQUauiGWkcafMFr7QQds8UE230uGNL0oVJfjdG-xmmiCSU2b68POa4OW5Wu2uSi2AJNptUWCktD-B3xLgfTrTMExqMfJPGGy6BfwvJjSBbniH3W4RKh-sTOou2wr1PbbTNkufLO-z7wNOubxzwG1-aalxxYI3CZvzi5-8q1HOAYb5tMkCbjKpeD2rBXQ4W1AtXr5ojuLyac0nS48YejYFcg6czqs-YMfXotCHbBtjCI8Y1zKqVFalDqAJzqQqqGipKz3irMOL7bF-pzXj2hrm1ErjzIDLkJ4N6dlIaaBnQ3rusTfrb5yv6ndcIfueJmItR5W3mw9m81PTLmRjNRgihuUsuHGVhSK2QP4KvDUkCuysx17QNBqqrVHT4Z1Te4HbjL99NYOMwCRgg-yx161QNcP4nW1zIaAFKse1Ibm7IYnF7zYvd9ZiWudDf6lbKo-vvvyc7YyODvbN_vhw7wm7RTqgp0tS7bJt2Ex4Cry1KJ81Rs7Zj-teVX8Bkk05tA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgJeJn6KsgEWAiEerCZuYicPCHVs1cqgmgaT9oTn2M5aaTSjZJr6r_HXcZc6FX1gb3uq2lwb93y--77YdwfwBkOey2xquTeF4ElWKp5L5XgZOV84qdA90I7u17E8OEk-n6anG_CnzYWhY5WtT2wctassPSPvCYFgIMv6cb9XhmMRR3vDj5e_OHWQop3Wtp3G0kQO_eIa6dvvD6M9nOu3Qgz3v3864KHDALdpImseS2eQIQnvo8wlxA2kKV1shMi9iGwei0jhXVOTu1x5ZTJP9d0Ki29cXsioj797BzYVsaIObO7uj4-OV3Qvy-Ryr1UojrgibJIiYkp6E_RiHFmgShWaKTUc-ScoNr0D_hchmrA3fABbAa-ywdLAHsKGnz2Ce6F1-mTxGH4MGGX2zhF8s2tDbSxq1qRvzq9-srZiOUNozKZNTnCTV8Vm1YyjFquaKvOyujmYy6YzNlk4jKgXU8TRntHp1SdwcisqfQodHIN_BkyJqJRpmViEUOhaypxKmNrCYdS1-GK60Gu1pm2oaE6NNS40MhvSsyY9ayE06lmTnrvwfvWNy2U1jxtkd2kiVnJUh7v5oJqf67CstVHIF3FY1iBTLlOfxwZ5gEQW6_sSuVoXXtM0aqq0MSObPTdXeJvRt2M9SAlaIogQXXgXhMoKx29NyIxALVBxrjXJnTVJdAV2_XJrLTq4IvpL7cJ5fvPlV3AXV5T-MhofbsN9UgE9ahJyBzpoMv4Fgq-6eBmsnMHZbS-sv5owP0Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+discrete+wavelet+spectrum+approach+for+identifying+non-monotonic+trends+in+hydroclimate+data&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Sang%2C+Yan-Fang&rft.au=Sun%2C+Fubao&rft.au=Singh%2C+Vijay+P&rft.au=Xie%2C+Ping&rft.date=2018-01-26&rft.pub=Copernicus+GmbH&rft.issn=1027-5606&rft.volume=22&rft.issue=1&rft.spage=757&rft_id=info:doi/10.5194%2Fhess-22-757-2018&rft.externalDBID=ISR&rft.externalDocID=A525123412 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon |