Quantification of Mechanical and Neural Components of Vagal Baroreflex in Humans
ABSTRACT—Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures (ms/mm Hg). However, it is arterial pressure-dependent stretch of barosensory vessels that determines afferent baroreceptor responses, which...
Saved in:
Published in | Hypertension (Dallas, Tex. 1979) Vol. 37; no. 6; pp. 1362 - 1368 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Heart Association, Inc
01.06.2001
Hagerstown, MD Lippincott |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT—Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures (ms/mm Hg). However, it is arterial pressure-dependent stretch of barosensory vessels that determines afferent baroreceptor responses, which, in turn, generate appropriate efferent cardiac vagal outflow. Thus, mechanical transduction of pressure into barosensory vessel stretch and neural transduction of stretch into vagal outflow are key steps in baroreflex regulation that determine the conventional integrated input-output relation. We developed a novel technique for direct estimation of gain in both mechanical and neural components of integrated cardiac vagal baroreflex control. Concurrent, beat-by-beat measures of arterial pressures (Finapres), carotid diameters (B-mode ultrasonography), and R-R intervals (ECG lead II) were made during bolus vasoactive drug infusions (modified Oxford technique) in 16 healthy humans. The systolic carotid diameter/pressure relationship (r=0.79±0.008, mean±SEM) provided a gain estimate of dynamic mechanical transduction of pressure into a baroreflex stimulus. The R-R interval/systolic diameter relationship (r=0.77±0.009) provided a gain estimate of afferent-efferent neural transduction of baroreflex stimulus into a vagal response. Variance between repeated measures for both estimates was no different than that for standard gain (P >0.40). Moreover, in these subjects, the simple product of the 2 estimates almost equaled standard baroreflex gain (ms/mm Hg=0.98x+2.27;r=0.93, P =0.001). This technique provides reliable information on key baroreflex components not distinguished by standard assessments and gives insight to dynamic mechanical and neural events during acute changes in arterial pressure. |
---|---|
AbstractList | Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures (ms/mm Hg). However, it is arterial pressure-dependent stretch of barosensory vessels that determines afferent baroreceptor responses, which, in turn, generate appropriate efferent cardiac vagal outflow. Thus, mechanical transduction of pressure into barosensory vessel stretch and neural transduction of stretch into vagal outflow are key steps in baroreflex regulation that determine the conventional integrated input-output relation. We developed a novel technique for direct estimation of gain in both mechanical and neural components of integrated cardiac vagal baroreflex control. Concurrent, beat-by-beat measures of arterial pressures (Finapres), carotid diameters (B-mode ultrasonography), and R-R intervals (ECG lead II) were made during bolus vasoactive drug infusions (modified Oxford technique) in 16 healthy humans. The systolic carotid diameter/pressure relationship (r(2)=0.79+/-0.008, mean+/-SEM) provided a gain estimate of dynamic mechanical transduction of pressure into a baroreflex stimulus. The R-R interval/systolic diameter relationship (r(2)=0.77+/-0.009) provided a gain estimate of afferent-efferent neural transduction of baroreflex stimulus into a vagal response. Variance between repeated measures for both estimates was no different than that for standard gain (P>0.40). Moreover, in these subjects, the simple product of the 2 estimates almost equaled standard baroreflex gain (ms/mm Hg=0.98x+2.27; r(2)=0.93, P=0.001). This technique provides reliable information on key baroreflex components not distinguished by standard assessments and gives insight to dynamic mechanical and neural events during acute changes in arterial pressure. ABSTRACT—Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures (ms/mm Hg). However, it is arterial pressure-dependent stretch of barosensory vessels that determines afferent baroreceptor responses, which, in turn, generate appropriate efferent cardiac vagal outflow. Thus, mechanical transduction of pressure into barosensory vessel stretch and neural transduction of stretch into vagal outflow are key steps in baroreflex regulation that determine the conventional integrated input-output relation. We developed a novel technique for direct estimation of gain in both mechanical and neural components of integrated cardiac vagal baroreflex control. Concurrent, beat-by-beat measures of arterial pressures (Finapres), carotid diameters (B-mode ultrasonography), and R-R intervals (ECG lead II) were made during bolus vasoactive drug infusions (modified Oxford technique) in 16 healthy humans. The systolic carotid diameter/pressure relationship (r=0.79±0.008, mean±SEM) provided a gain estimate of dynamic mechanical transduction of pressure into a baroreflex stimulus. The R-R interval/systolic diameter relationship (r=0.77±0.009) provided a gain estimate of afferent-efferent neural transduction of baroreflex stimulus into a vagal response. Variance between repeated measures for both estimates was no different than that for standard gain (P >0.40). Moreover, in these subjects, the simple product of the 2 estimates almost equaled standard baroreflex gain (ms/mm Hg=0.98x+2.27;r=0.93, P =0.001). This technique provides reliable information on key baroreflex components not distinguished by standard assessments and gives insight to dynamic mechanical and neural events during acute changes in arterial pressure. Abstract —Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures (ms/mm Hg). However, it is arterial pressure–dependent stretch of barosensory vessels that determines afferent baroreceptor responses, which, in turn, generate appropriate efferent cardiac vagal outflow. Thus, mechanical transduction of pressure into barosensory vessel stretch and neural transduction of stretch into vagal outflow are key steps in baroreflex regulation that determine the conventional integrated input-output relation. We developed a novel technique for direct estimation of gain in both mechanical and neural components of integrated cardiac vagal baroreflex control. Concurrent, beat-by-beat measures of arterial pressures (Finapres), carotid diameters (B-mode ultrasonography), and R-R intervals (ECG lead II) were made during bolus vasoactive drug infusions (modified Oxford technique) in 16 healthy humans. The systolic carotid diameter/pressure relationship ( r 2 =0.79±0.008, mean±SEM) provided a gain estimate of dynamic mechanical transduction of pressure into a baroreflex stimulus. The R-R interval/systolic diameter relationship ( r 2 =0.77±0.009) provided a gain estimate of afferent-efferent neural transduction of baroreflex stimulus into a vagal response. Variance between repeated measures for both estimates was no different than that for standard gain ( P >0.40). Moreover, in these subjects, the simple product of the 2 estimates almost equaled standard baroreflex gain (ms/mm Hg=0.98x+2.27; r 2 =0.93, P =0.001). This technique provides reliable information on key baroreflex components not distinguished by standard assessments and gives insight to dynamic mechanical and neural events during acute changes in arterial pressure. Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures (ms/mm Hg). However, it is arterial pressure-dependent stretch of barosensory vessels that determines afferent baroreceptor responses, which, in turn, generate appropriate efferent cardiac vagal outflow. Thus, mechanical transduction of pressure into barosensory vessel stretch and neural transduction of stretch into vagal outflow are key steps in baroreflex regulation that determine the conventional integrated input-output relation. We developed a novel technique for direct estimation of gain in both mechanical and neural components of integrated cardiac vagal baroreflex control. Concurrent, beat-by-beat measures of arterial pressures (Finapres), carotid diameters (B-mode ultrasonography), and R-R intervals (ECG lead II) were made during bolus vasoactive drug infusions (modified Oxford technique) in 16 healthy humans. The systolic carotid diameter/pressure relationship (r(2)=0.79+/-0.008, mean+/-SEM) provided a gain estimate of dynamic mechanical transduction of pressure into a baroreflex stimulus. The R-R interval/systolic diameter relationship (r(2)=0.77+/-0.009) provided a gain estimate of afferent-efferent neural transduction of baroreflex stimulus into a vagal response. Variance between repeated measures for both estimates was no different than that for standard gain (P>0.40). Moreover, in these subjects, the simple product of the 2 estimates almost equaled standard baroreflex gain (ms/mm Hg=0.98x+2.27; r(2)=0.93, P=0.001). This technique provides reliable information on key baroreflex components not distinguished by standard assessments and gives insight to dynamic mechanical and neural events during acute changes in arterial pressure.Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures (ms/mm Hg). However, it is arterial pressure-dependent stretch of barosensory vessels that determines afferent baroreceptor responses, which, in turn, generate appropriate efferent cardiac vagal outflow. Thus, mechanical transduction of pressure into barosensory vessel stretch and neural transduction of stretch into vagal outflow are key steps in baroreflex regulation that determine the conventional integrated input-output relation. We developed a novel technique for direct estimation of gain in both mechanical and neural components of integrated cardiac vagal baroreflex control. Concurrent, beat-by-beat measures of arterial pressures (Finapres), carotid diameters (B-mode ultrasonography), and R-R intervals (ECG lead II) were made during bolus vasoactive drug infusions (modified Oxford technique) in 16 healthy humans. The systolic carotid diameter/pressure relationship (r(2)=0.79+/-0.008, mean+/-SEM) provided a gain estimate of dynamic mechanical transduction of pressure into a baroreflex stimulus. The R-R interval/systolic diameter relationship (r(2)=0.77+/-0.009) provided a gain estimate of afferent-efferent neural transduction of baroreflex stimulus into a vagal response. Variance between repeated measures for both estimates was no different than that for standard gain (P>0.40). Moreover, in these subjects, the simple product of the 2 estimates almost equaled standard baroreflex gain (ms/mm Hg=0.98x+2.27; r(2)=0.93, P=0.001). This technique provides reliable information on key baroreflex components not distinguished by standard assessments and gives insight to dynamic mechanical and neural events during acute changes in arterial pressure. |
Author | Hunt, Brian E. Fahy, Lisamarie Taylor, J. Andrew Farquhar, William B. |
AuthorAffiliation | From the Laboratory for Cardiovascular Research, Hebrew Rehabilitation Center for Aged Research and Training Institute; and Division on Aging, Harvard Medical School, Boston, Mass |
AuthorAffiliation_xml | – name: From the Laboratory for Cardiovascular Research, Hebrew Rehabilitation Center for Aged Research and Training Institute; and Division on Aging, Harvard Medical School, Boston, Mass |
Author_xml | – sequence: 1 givenname: Brian surname: Hunt middlename: E. fullname: Hunt, Brian E. organization: From the Laboratory for Cardiovascular Research, Hebrew Rehabilitation Center for Aged Research and Training Institute; and Division on Aging, Harvard Medical School, Boston, Mass – sequence: 2 givenname: Lisamarie surname: Fahy fullname: Fahy, Lisamarie – sequence: 3 givenname: William surname: Farquhar middlename: B. fullname: Farquhar, William B. – sequence: 4 givenname: J. surname: Taylor middlename: Andrew fullname: Taylor, J. Andrew |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1039456$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/11408378$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1v1DAQxS1URLcLd04oQohbwkz8FR9hBV2kAkUCBCfL8TpsStZe7ERt_3scdhGoB3wZe_R749F7Z-TEB-8IeYxQIQp8AVhtb_cVlZWokIr6Hlkgr1nJuKAnZAGoWKkQv56Ss5SuAJAxJh-QU0QGDZXNglx-nIwf-663ZuyDL0JXvHN2a3xuDIXxm-K9m2K-rsJunz_3Y5qZL-Z77r0yMUTXDe6m6H2xnnbGp4fkfmeG5B4d65J8fvP602pdXnw4f7t6eVFazkRTSmgtN7I2bcc7w2unWiNc09ZCQtPlQpXitsnLM6taBVAr5LBxjHIrGbZ0SZ4f5u5j-Dm5NOpdn6wbBuNdmJKWoChHhAw-vQNehSn6vJuugVMQKGWGnhyhqd25jd7Hfmfirf5jVAaeHQGTsjNdNN726S8HVM2mLwkcMBtDStmbfwg9R6YB9frbpaZSCz1HliXijsT24-8wxmj64X9CdhBeh2F0Mf0YpmsX9daZYdxqyIfV2ek6xw4iv8q51dBf7w-oIg |
CODEN | HPRTDN |
CitedBy_id | crossref_primary_10_1152_ajpheart_00265_2020 crossref_primary_10_1093_gerona_58_7_M626 crossref_primary_10_1097_01_hjh_0000163151_50825_e2 crossref_primary_10_1113_jphysiol_2007_139204 crossref_primary_10_1088_0967_3334_31_6_009 crossref_primary_10_1113_jphysiol_2003_040147 crossref_primary_10_6061_clinics_2018_e226 crossref_primary_10_1016_j_neurobiolaging_2010_03_018 crossref_primary_10_1152_ajpregu_00112_2019 crossref_primary_10_1152_ajpregu_00038_2004 crossref_primary_10_1016_S0002_9149_03_00643_X crossref_primary_10_1590_1414_431x202010543 crossref_primary_10_1111_cpf_12511 crossref_primary_10_1152_japplphysiol_91053_2008 crossref_primary_10_1161_HYPERTENSIONAHA_110_164616 crossref_primary_10_1186_s13063_016_1514_y crossref_primary_10_1007_s10741_010_9174_6 crossref_primary_10_1089_neu_2012_2507 crossref_primary_10_1093_gerona_57_7_B279 crossref_primary_10_1152_ajpheart_00681_2018 crossref_primary_10_1016_S0735_1097_02_01787_4 crossref_primary_10_1113_jphysiol_2009_170134 crossref_primary_10_1590_S0100_879X2005000400018 crossref_primary_10_1161_HYPERTENSIONAHA_111_171512 crossref_primary_10_3389_fphys_2021_703692 crossref_primary_10_1038_s41371_024_00936_z crossref_primary_10_4097_kjae_2009_56_4_363 crossref_primary_10_1081_CEH_120028550 crossref_primary_10_1111_j_1540_8167_2008_01314_x crossref_primary_10_1093_ajh_hpac067 crossref_primary_10_1080_00365521_2017_1401118 crossref_primary_10_1002_pmrj_13295 crossref_primary_10_1007_s00421_019_04076_y crossref_primary_10_3389_fphys_2016_00438 crossref_primary_10_1111_apha_12302 crossref_primary_10_1152_ajpendo_00487_2004 crossref_primary_10_1253_circj_CJ_14_0064 crossref_primary_10_4097_kjae_2007_52_6_S1 crossref_primary_10_1016_j_ridd_2011_09_013 crossref_primary_10_1016_j_jacep_2016_05_001 crossref_primary_10_1007_s10286_006_0352_5 crossref_primary_10_1111_j_1469_8986_2007_00521_x crossref_primary_10_5527_wjn_v5_i1_53 crossref_primary_10_1113_jphysiol_2009_172056 crossref_primary_10_1093_ndt_gft341 crossref_primary_10_1111_apha_12087 crossref_primary_10_14814_phy2_12536 crossref_primary_10_1016_j_artres_2012_05_002 crossref_primary_10_1152_ajpregu_00205_2006 crossref_primary_10_1113_EP089686 crossref_primary_10_1152_japplphysiol_00355_2015 crossref_primary_10_1161_JAHA_115_002997 crossref_primary_10_1093_europace_eum302 crossref_primary_10_1042_CS20060363 crossref_primary_10_1113_jphysiol_2005_083386 crossref_primary_10_1152_ajpheart_131_2008 crossref_primary_10_1097_00041552_200303000_00008 crossref_primary_10_1097_00004872_200206000_00012 crossref_primary_10_1016_j_atherosclerosis_2016_05_040 crossref_primary_10_1038_s41390_019_0318_7 |
Cites_doi | 10.1042/cs0950575 10.1042/cs0970515 10.1073/pnas.85.19.7399 10.1002/bjs.1800611014 10.1016/0301-5629(95)02017-9 10.1097/00000542-199001000-00004 10.1111/j.1748-1716.1952.tb00890.x 10.1152/jappl.1990.69.3.962 10.1113/jphysiol.1972.sp009784 10.1016/S0016-5085(67)80039-8 10.1016/0165-1838(83)90003-6 10.1161/01.RES.31.5.637 10.1113/jphysiol.1935.sp003232 10.1016/S0301-5629(97)00074-4 10.1111/j.1748-1716.1990.tb08990.x 10.1111/j.1748-1716.1957.tb01510.x 10.1042/cs0830535 10.1007/BF00587044 10.1016/S0140-6736(86)90837-8 10.1161/res.30.2.177 10.1152/ajplegacy.1912.30.1.88 10.1016/0165-1838(88)90013-6 10.1042/cs0580193 10.1152/ajpheart.1999.276.5.H1691 10.1161/res.32.2.215 10.1056/NEJM197110142851602 10.1161/01.ATV.8.6.778 |
ContentType | Journal Article |
Copyright | 2001 American Heart Association, Inc. 2001 INIST-CNRS Copyright American Heart Association, Inc. Jun 2001 |
Copyright_xml | – notice: 2001 American Heart Association, Inc. – notice: 2001 INIST-CNRS – notice: Copyright American Heart Association, Inc. Jun 2001 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1161/01.hyp.37.6.1362 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4563 |
EndPage | 1368 |
ExternalDocumentID | 74657272 11408378 1039456 10_1161_01_HYP_37_6_1362 00004268-200106000-00008 |
Genre | Research Support, U.S. Gov't, P.H.S Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: F32AG00251 – fundername: NIA NIH HHS grantid: R29 AG14376 |
GroupedDBID | --- .-D .3C .55 .GJ .XZ .Z2 01R 0R~ 18M 1J1 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAFWJ AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO AAYEP ABASU ABBUW ABDIG ABJNI ABOCM ABPXF ABQRW ABVCZ ABXVJ ABXYN ABZAD ABZZY ACCJW ACDDN ACEWG ACGFO ACGFS ACILI ACLDA ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEBDS AEETU AENEX AFBFQ AFDTB AFEXH AFFNX AFNMH AFUWQ AGINI AHMBA AHOMT AHQNM AHQVU AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC BAWUL BCGUY BOYCO BQLVK BS7 C1A C45 CS3 DIK DIWNM DUNZO E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI KQ8 L-C L7B N4W N9A N~7 N~B N~M O9- OAG OAH OB3 OCUKA ODA ODMTH OGROG OHYEH OK1 OL1 OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ R58 RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW V2I VVN W3M W8F WH7 WOQ WOW X3V X3W X7M XXN XYM YFH YHZ YOC YYM YYP ZFV ZGI ZZMQN AAYXX ADGHP CITATION IQODW OZ- ACIJW AWKKM CGR CUY CVF ECM EIF NPM OLW RHF K9. 7X8 |
ID | FETCH-LOGICAL-c5468-70bc5a72abf5fa52e9ba6e8b26708fb263995c89114c9b90029150de435c741b3 |
ISSN | 0194-911X 1524-4563 |
IngestDate | Thu Jul 10 18:41:10 EDT 2025 Sun Jul 13 03:17:45 EDT 2025 Wed Feb 19 02:33:42 EST 2025 Mon Jul 21 09:15:47 EDT 2025 Thu Apr 24 22:57:56 EDT 2025 Tue Jul 01 01:44:10 EDT 2025 Fri May 16 03:51:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Sonography Human Pharmacologic test Cardiovascular control Exploration Corporal biometry Compliance(volume pressure) RR interval Electrodiagnosis Regulation(control) Vasomotricity Autonomic nervous system Baroreflex Carotid Electrocardiography Arterial pressure Circulatory system Hemodynamics Technique Quantitative analysis |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5468-70bc5a72abf5fa52e9ba6e8b26708fb263995c89114c9b90029150de435c741b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/01.HYP.37.6.1362 |
PMID | 11408378 |
PQID | 205306177 |
PQPubID | 47910 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_70935110 proquest_journals_205306177 pubmed_primary_11408378 pascalfrancis_primary_1039456 crossref_primary_10_1161_01_HYP_37_6_1362 crossref_citationtrail_10_1161_01_HYP_37_6_1362 wolterskluwer_health_00004268-200106000-00008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-June |
PublicationDateYYYYMMDD | 2001-06-01 |
PublicationDate_xml | – month: 06 year: 2001 text: 2001-June |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA Hagerstown, MD |
PublicationPlace_xml | – name: Philadelphia, PA – name: Hagerstown, MD – name: United States – name: Baltimore |
PublicationTitle | Hypertension (Dallas, Tex. 1979) |
PublicationTitleAlternate | Hypertension |
PublicationYear | 2001 |
Publisher | American Heart Association, Inc Lippincott |
Publisher_xml | – name: American Heart Association, Inc – name: Lippincott |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 (e_1_3_2_6_2) 1975; 244 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_25_2 (e_1_3_2_9_2) 1996; 271 (e_1_3_2_8_2) 1990; 16 (e_1_3_2_1_2) 1993; 265 e_1_3_2_15_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_18_2 (e_1_3_2_30_2) 1987; 253 e_1_3_2_19_2 (e_1_3_2_4_2) 1978; 235 e_1_3_2_32_2 (e_1_3_2_38_2) 1998; 12 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 (e_1_3_2_37_2) 2000; 43 (e_1_3_2_16_2) 1982; 242 (e_1_3_2_24_2) 1995; 483 |
References_xml | – volume: 244 start-page: 80P year: 1975 ident: e_1_3_2_6_2 publication-title: J Physiol (Lond) – ident: e_1_3_2_18_2 – ident: e_1_3_2_21_2 doi: 10.1042/cs0950575 – volume: 242 start-page: H638 year: 1982 ident: e_1_3_2_16_2 publication-title: Am J Physiol – ident: e_1_3_2_22_2 doi: 10.1042/cs0970515 – ident: e_1_3_2_25_2 doi: 10.1073/pnas.85.19.7399 – ident: e_1_3_2_26_2 doi: 10.1002/bjs.1800611014 – ident: e_1_3_2_14_2 doi: 10.1016/0301-5629(95)02017-9 – volume: 483 start-page: 1 year: 1995 ident: e_1_3_2_24_2 publication-title: J Physiol – ident: e_1_3_2_12_2 doi: 10.1097/00000542-199001000-00004 – volume: 16 start-page: 200 year: 1990 ident: e_1_3_2_8_2 publication-title: Diabete Metab – ident: e_1_3_2_28_2 doi: 10.1111/j.1748-1716.1952.tb00890.x – ident: e_1_3_2_35_2 doi: 10.1152/jappl.1990.69.3.962 – ident: e_1_3_2_29_2 doi: 10.1113/jphysiol.1972.sp009784 – ident: e_1_3_2_10_2 doi: 10.1016/S0016-5085(67)80039-8 – ident: e_1_3_2_7_2 doi: 10.1016/0165-1838(83)90003-6 – ident: e_1_3_2_36_2 doi: 10.1161/01.RES.31.5.637 – volume: 253 start-page: H787 year: 1987 ident: e_1_3_2_30_2 publication-title: Am J Physiol – ident: e_1_3_2_32_2 doi: 10.1113/jphysiol.1935.sp003232 – volume: 43 start-page: 281 year: 2000 ident: e_1_3_2_37_2 publication-title: Physiologist – ident: e_1_3_2_15_2 doi: 10.1016/S0301-5629(97)00074-4 – ident: e_1_3_2_27_2 doi: 10.1111/j.1748-1716.1990.tb08990.x – ident: e_1_3_2_11_2 doi: 10.1111/j.1748-1716.1957.tb01510.x – ident: e_1_3_2_23_2 doi: 10.1042/cs0830535 – volume: 271 start-page: H1139 year: 1996 ident: e_1_3_2_9_2 publication-title: Am J Physiol – ident: e_1_3_2_20_2 doi: 10.1007/BF00587044 – ident: e_1_3_2_17_2 doi: 10.1016/S0140-6736(86)90837-8 – volume: 265 start-page: H232 year: 1993 ident: e_1_3_2_1_2 publication-title: Am J Physiol – ident: e_1_3_2_34_2 doi: 10.1161/res.30.2.177 – ident: e_1_3_2_5_2 doi: 10.1152/ajplegacy.1912.30.1.88 – ident: e_1_3_2_33_2 doi: 10.1016/0165-1838(88)90013-6 – ident: e_1_3_2_3_2 doi: 10.1042/cs0580193 – volume: 12 start-page: A688 year: 1998 ident: e_1_3_2_38_2 publication-title: FASEB J – ident: e_1_3_2_13_2 doi: 10.1152/ajpheart.1999.276.5.H1691 – ident: e_1_3_2_31_2 doi: 10.1161/res.32.2.215 – volume: 235 start-page: H117 year: 1978 ident: e_1_3_2_4_2 publication-title: Am J Physiol – ident: e_1_3_2_2_2 doi: 10.1056/NEJM197110142851602 – ident: e_1_3_2_19_2 doi: 10.1161/01.ATV.8.6.778 |
SSID | ssj0014447 |
Score | 1.9446626 |
Snippet | ABSTRACT—Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures... Abstract —Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial... Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures (ms/mm... |
SourceID | proquest pubmed pascalfrancis crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1362 |
SubjectTerms | Adult Afferent Pathways - physiology Baroreflex Biological and medical sciences Biomechanical Phenomena Blood Pressure - drug effects Cardiovascular system Carotid Arteries - anatomy & histology Carotid Arteries - diagnostic imaging Carotid Arteries - innervation Coronary Disease - physiopathology Electrocardiography Female Heart - innervation Humans Investigative techniques of hemodynamics Investigative techniques, diagnostic techniques (general aspects) Male Medical sciences Neural Conduction Nitroprusside - pharmacology Phenylephrine - pharmacology Reproducibility of Results Ultrasonography Vagus Nerve - physiology |
Title | Quantification of Mechanical and Neural Components of Vagal Baroreflex in Humans |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00004268-200106000-00008 https://www.ncbi.nlm.nih.gov/pubmed/11408378 https://www.proquest.com/docview/205306177 https://www.proquest.com/docview/70935110 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FIiEkhLgxpeAHXlBl18d6bT9GQGWBWjUokdKn1e5mLRDNoThpC3-Av83MrmM7VcT14sS35fk8OzP7zQwhb1gaKaGC1MsxQ4ZmQnoyZ6EnRZixiYrLOMDk5JNTVozox3Ey7vV-dlhL65X01Y-deSX_I1XYBnLFLNl_kGxzUdgA_0G-sAQJw_KvZDxYC8v1aey-qcZM3qYCAFarNAVApov5TNeMl0sBo8KhFEvsMXKhrzHkYVr1VV1LtQAHdWno7QYf2XuMuFtOkb72D8M8zTtRhGJ0OrRQQYXRZDcc94tz6_lXYopeebvj82BU9A0Low75tP2fLZHQ4MvvMi43wYkOicoGJ5oiE90QZk5RxY67OtgWfqmx1lWoYVwra71ZzXYrfhaaZAb_y_eFH6c-89szuzW2b4x9DSMRZ8TBlrxFbkfgb6DC_DRop6MopXXevX30zXw3C49u3nLLvrm3EBVIvLQ9UnY5MXDM1Rx5EdU3kxbRMW6GD8j92itx-xZiD0lPzx6ROyc17-IxOdtGmjsv3RZpLiDNtUhzW6ThMQZpbos09-vMtUh7QkbHH4bvCq_uxeGpBJPz0kCqRKSRkGVSiiTSuRRMZzJiaZCV8IMp0iqDl0NVLnOc7AVXY6LBGldgtMr4Kdmbwf2fE1coHUklShbHGaUZk5QGqZzkUaLgapPYIUebN8hVXage-6VccOOwspAHIS_Oz3iccsbxnTvkbXPGwhZp-c2xB1tC6ZxgEOCQ_Y2QeP2pVzyCoQpt_dQhr5u9oIdxck3M9Hxd8RQZBWBLO-SZlWx74ZAG2LbBId6WqLnNdObGTY-YUW1hwOpSD0H24g9Puk_utp_cS7K3Wq71AVjIK_nKoPcX6kW2bw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+mechanical+and+neural+components+of+vagal+baroreflex+in+humans&rft.jtitle=Hypertension+%28Dallas%2C+Tex.+1979%29&rft.au=HUNT%2C+Brian+E&rft.au=FAHY%2C+Lisamarie&rft.au=FARQUHAR%2C+William+B&rft.au=TAYLOR%2C+J.+Andrew&rft.date=2001-06-01&rft.pub=Lippincott&rft.issn=0194-911X&rft.volume=37&rft.issue=6&rft.spage=1362&rft.epage=1368&rft_id=info:doi/10.1161%2F01.hyp.37.6.1362&rft.externalDBID=n%2Fa&rft.externalDocID=1039456 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0194-911X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0194-911X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0194-911X&client=summon |