Quantification of Mechanical and Neural Components of Vagal Baroreflex in Humans

ABSTRACT—Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures (ms/mm Hg). However, it is arterial pressure-dependent stretch of barosensory vessels that determines afferent baroreceptor responses, which...

Full description

Saved in:
Bibliographic Details
Published inHypertension (Dallas, Tex. 1979) Vol. 37; no. 6; pp. 1362 - 1368
Main Authors Hunt, Brian E., Fahy, Lisamarie, Farquhar, William B., Taylor, J. Andrew
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Heart Association, Inc 01.06.2001
Hagerstown, MD Lippincott
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT—Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures (ms/mm Hg). However, it is arterial pressure-dependent stretch of barosensory vessels that determines afferent baroreceptor responses, which, in turn, generate appropriate efferent cardiac vagal outflow. Thus, mechanical transduction of pressure into barosensory vessel stretch and neural transduction of stretch into vagal outflow are key steps in baroreflex regulation that determine the conventional integrated input-output relation. We developed a novel technique for direct estimation of gain in both mechanical and neural components of integrated cardiac vagal baroreflex control. Concurrent, beat-by-beat measures of arterial pressures (Finapres), carotid diameters (B-mode ultrasonography), and R-R intervals (ECG lead II) were made during bolus vasoactive drug infusions (modified Oxford technique) in 16 healthy humans. The systolic carotid diameter/pressure relationship (r=0.79±0.008, mean±SEM) provided a gain estimate of dynamic mechanical transduction of pressure into a baroreflex stimulus. The R-R interval/systolic diameter relationship (r=0.77±0.009) provided a gain estimate of afferent-efferent neural transduction of baroreflex stimulus into a vagal response. Variance between repeated measures for both estimates was no different than that for standard gain (P >0.40). Moreover, in these subjects, the simple product of the 2 estimates almost equaled standard baroreflex gain (ms/mm Hg=0.98x+2.27;r=0.93, P =0.001). This technique provides reliable information on key baroreflex components not distinguished by standard assessments and gives insight to dynamic mechanical and neural events during acute changes in arterial pressure.
AbstractList Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures (ms/mm Hg). However, it is arterial pressure-dependent stretch of barosensory vessels that determines afferent baroreceptor responses, which, in turn, generate appropriate efferent cardiac vagal outflow. Thus, mechanical transduction of pressure into barosensory vessel stretch and neural transduction of stretch into vagal outflow are key steps in baroreflex regulation that determine the conventional integrated input-output relation. We developed a novel technique for direct estimation of gain in both mechanical and neural components of integrated cardiac vagal baroreflex control. Concurrent, beat-by-beat measures of arterial pressures (Finapres), carotid diameters (B-mode ultrasonography), and R-R intervals (ECG lead II) were made during bolus vasoactive drug infusions (modified Oxford technique) in 16 healthy humans. The systolic carotid diameter/pressure relationship (r(2)=0.79+/-0.008, mean+/-SEM) provided a gain estimate of dynamic mechanical transduction of pressure into a baroreflex stimulus. The R-R interval/systolic diameter relationship (r(2)=0.77+/-0.009) provided a gain estimate of afferent-efferent neural transduction of baroreflex stimulus into a vagal response. Variance between repeated measures for both estimates was no different than that for standard gain (P>0.40). Moreover, in these subjects, the simple product of the 2 estimates almost equaled standard baroreflex gain (ms/mm Hg=0.98x+2.27; r(2)=0.93, P=0.001). This technique provides reliable information on key baroreflex components not distinguished by standard assessments and gives insight to dynamic mechanical and neural events during acute changes in arterial pressure.
ABSTRACT—Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures (ms/mm Hg). However, it is arterial pressure-dependent stretch of barosensory vessels that determines afferent baroreceptor responses, which, in turn, generate appropriate efferent cardiac vagal outflow. Thus, mechanical transduction of pressure into barosensory vessel stretch and neural transduction of stretch into vagal outflow are key steps in baroreflex regulation that determine the conventional integrated input-output relation. We developed a novel technique for direct estimation of gain in both mechanical and neural components of integrated cardiac vagal baroreflex control. Concurrent, beat-by-beat measures of arterial pressures (Finapres), carotid diameters (B-mode ultrasonography), and R-R intervals (ECG lead II) were made during bolus vasoactive drug infusions (modified Oxford technique) in 16 healthy humans. The systolic carotid diameter/pressure relationship (r=0.79±0.008, mean±SEM) provided a gain estimate of dynamic mechanical transduction of pressure into a baroreflex stimulus. The R-R interval/systolic diameter relationship (r=0.77±0.009) provided a gain estimate of afferent-efferent neural transduction of baroreflex stimulus into a vagal response. Variance between repeated measures for both estimates was no different than that for standard gain (P >0.40). Moreover, in these subjects, the simple product of the 2 estimates almost equaled standard baroreflex gain (ms/mm Hg=0.98x+2.27;r=0.93, P =0.001). This technique provides reliable information on key baroreflex components not distinguished by standard assessments and gives insight to dynamic mechanical and neural events during acute changes in arterial pressure.
Abstract —Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures (ms/mm Hg). However, it is arterial pressure–dependent stretch of barosensory vessels that determines afferent baroreceptor responses, which, in turn, generate appropriate efferent cardiac vagal outflow. Thus, mechanical transduction of pressure into barosensory vessel stretch and neural transduction of stretch into vagal outflow are key steps in baroreflex regulation that determine the conventional integrated input-output relation. We developed a novel technique for direct estimation of gain in both mechanical and neural components of integrated cardiac vagal baroreflex control. Concurrent, beat-by-beat measures of arterial pressures (Finapres), carotid diameters (B-mode ultrasonography), and R-R intervals (ECG lead II) were made during bolus vasoactive drug infusions (modified Oxford technique) in 16 healthy humans. The systolic carotid diameter/pressure relationship ( r 2 =0.79±0.008, mean±SEM) provided a gain estimate of dynamic mechanical transduction of pressure into a baroreflex stimulus. The R-R interval/systolic diameter relationship ( r 2 =0.77±0.009) provided a gain estimate of afferent-efferent neural transduction of baroreflex stimulus into a vagal response. Variance between repeated measures for both estimates was no different than that for standard gain ( P >0.40). Moreover, in these subjects, the simple product of the 2 estimates almost equaled standard baroreflex gain (ms/mm Hg=0.98x+2.27; r 2 =0.93, P =0.001). This technique provides reliable information on key baroreflex components not distinguished by standard assessments and gives insight to dynamic mechanical and neural events during acute changes in arterial pressure.
Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures (ms/mm Hg). However, it is arterial pressure-dependent stretch of barosensory vessels that determines afferent baroreceptor responses, which, in turn, generate appropriate efferent cardiac vagal outflow. Thus, mechanical transduction of pressure into barosensory vessel stretch and neural transduction of stretch into vagal outflow are key steps in baroreflex regulation that determine the conventional integrated input-output relation. We developed a novel technique for direct estimation of gain in both mechanical and neural components of integrated cardiac vagal baroreflex control. Concurrent, beat-by-beat measures of arterial pressures (Finapres), carotid diameters (B-mode ultrasonography), and R-R intervals (ECG lead II) were made during bolus vasoactive drug infusions (modified Oxford technique) in 16 healthy humans. The systolic carotid diameter/pressure relationship (r(2)=0.79+/-0.008, mean+/-SEM) provided a gain estimate of dynamic mechanical transduction of pressure into a baroreflex stimulus. The R-R interval/systolic diameter relationship (r(2)=0.77+/-0.009) provided a gain estimate of afferent-efferent neural transduction of baroreflex stimulus into a vagal response. Variance between repeated measures for both estimates was no different than that for standard gain (P>0.40). Moreover, in these subjects, the simple product of the 2 estimates almost equaled standard baroreflex gain (ms/mm Hg=0.98x+2.27; r(2)=0.93, P=0.001). This technique provides reliable information on key baroreflex components not distinguished by standard assessments and gives insight to dynamic mechanical and neural events during acute changes in arterial pressure.Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures (ms/mm Hg). However, it is arterial pressure-dependent stretch of barosensory vessels that determines afferent baroreceptor responses, which, in turn, generate appropriate efferent cardiac vagal outflow. Thus, mechanical transduction of pressure into barosensory vessel stretch and neural transduction of stretch into vagal outflow are key steps in baroreflex regulation that determine the conventional integrated input-output relation. We developed a novel technique for direct estimation of gain in both mechanical and neural components of integrated cardiac vagal baroreflex control. Concurrent, beat-by-beat measures of arterial pressures (Finapres), carotid diameters (B-mode ultrasonography), and R-R intervals (ECG lead II) were made during bolus vasoactive drug infusions (modified Oxford technique) in 16 healthy humans. The systolic carotid diameter/pressure relationship (r(2)=0.79+/-0.008, mean+/-SEM) provided a gain estimate of dynamic mechanical transduction of pressure into a baroreflex stimulus. The R-R interval/systolic diameter relationship (r(2)=0.77+/-0.009) provided a gain estimate of afferent-efferent neural transduction of baroreflex stimulus into a vagal response. Variance between repeated measures for both estimates was no different than that for standard gain (P>0.40). Moreover, in these subjects, the simple product of the 2 estimates almost equaled standard baroreflex gain (ms/mm Hg=0.98x+2.27; r(2)=0.93, P=0.001). This technique provides reliable information on key baroreflex components not distinguished by standard assessments and gives insight to dynamic mechanical and neural events during acute changes in arterial pressure.
Author Hunt, Brian E.
Fahy, Lisamarie
Taylor, J. Andrew
Farquhar, William B.
AuthorAffiliation From the Laboratory for Cardiovascular Research, Hebrew Rehabilitation Center for Aged Research and Training Institute; and Division on Aging, Harvard Medical School, Boston, Mass
AuthorAffiliation_xml – name: From the Laboratory for Cardiovascular Research, Hebrew Rehabilitation Center for Aged Research and Training Institute; and Division on Aging, Harvard Medical School, Boston, Mass
Author_xml – sequence: 1
  givenname: Brian
  surname: Hunt
  middlename: E.
  fullname: Hunt, Brian E.
  organization: From the Laboratory for Cardiovascular Research, Hebrew Rehabilitation Center for Aged Research and Training Institute; and Division on Aging, Harvard Medical School, Boston, Mass
– sequence: 2
  givenname: Lisamarie
  surname: Fahy
  fullname: Fahy, Lisamarie
– sequence: 3
  givenname: William
  surname: Farquhar
  middlename: B.
  fullname: Farquhar, William B.
– sequence: 4
  givenname: J.
  surname: Taylor
  middlename: Andrew
  fullname: Taylor, J. Andrew
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1039456$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/11408378$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v1DAQxS1URLcLd04oQohbwkz8FR9hBV2kAkUCBCfL8TpsStZe7ERt_3scdhGoB3wZe_R749F7Z-TEB-8IeYxQIQp8AVhtb_cVlZWokIr6Hlkgr1nJuKAnZAGoWKkQv56Ss5SuAJAxJh-QU0QGDZXNglx-nIwf-663ZuyDL0JXvHN2a3xuDIXxm-K9m2K-rsJunz_3Y5qZL-Z77r0yMUTXDe6m6H2xnnbGp4fkfmeG5B4d65J8fvP602pdXnw4f7t6eVFazkRTSmgtN7I2bcc7w2unWiNc09ZCQtPlQpXitsnLM6taBVAr5LBxjHIrGbZ0SZ4f5u5j-Dm5NOpdn6wbBuNdmJKWoChHhAw-vQNehSn6vJuugVMQKGWGnhyhqd25jd7Hfmfirf5jVAaeHQGTsjNdNN726S8HVM2mLwkcMBtDStmbfwg9R6YB9frbpaZSCz1HliXijsT24-8wxmj64X9CdhBeh2F0Mf0YpmsX9daZYdxqyIfV2ek6xw4iv8q51dBf7w-oIg
CODEN HPRTDN
CitedBy_id crossref_primary_10_1152_ajpheart_00265_2020
crossref_primary_10_1093_gerona_58_7_M626
crossref_primary_10_1097_01_hjh_0000163151_50825_e2
crossref_primary_10_1113_jphysiol_2007_139204
crossref_primary_10_1088_0967_3334_31_6_009
crossref_primary_10_1113_jphysiol_2003_040147
crossref_primary_10_6061_clinics_2018_e226
crossref_primary_10_1016_j_neurobiolaging_2010_03_018
crossref_primary_10_1152_ajpregu_00112_2019
crossref_primary_10_1152_ajpregu_00038_2004
crossref_primary_10_1016_S0002_9149_03_00643_X
crossref_primary_10_1590_1414_431x202010543
crossref_primary_10_1111_cpf_12511
crossref_primary_10_1152_japplphysiol_91053_2008
crossref_primary_10_1161_HYPERTENSIONAHA_110_164616
crossref_primary_10_1186_s13063_016_1514_y
crossref_primary_10_1007_s10741_010_9174_6
crossref_primary_10_1089_neu_2012_2507
crossref_primary_10_1093_gerona_57_7_B279
crossref_primary_10_1152_ajpheart_00681_2018
crossref_primary_10_1016_S0735_1097_02_01787_4
crossref_primary_10_1113_jphysiol_2009_170134
crossref_primary_10_1590_S0100_879X2005000400018
crossref_primary_10_1161_HYPERTENSIONAHA_111_171512
crossref_primary_10_3389_fphys_2021_703692
crossref_primary_10_1038_s41371_024_00936_z
crossref_primary_10_4097_kjae_2009_56_4_363
crossref_primary_10_1081_CEH_120028550
crossref_primary_10_1111_j_1540_8167_2008_01314_x
crossref_primary_10_1093_ajh_hpac067
crossref_primary_10_1080_00365521_2017_1401118
crossref_primary_10_1002_pmrj_13295
crossref_primary_10_1007_s00421_019_04076_y
crossref_primary_10_3389_fphys_2016_00438
crossref_primary_10_1111_apha_12302
crossref_primary_10_1152_ajpendo_00487_2004
crossref_primary_10_1253_circj_CJ_14_0064
crossref_primary_10_4097_kjae_2007_52_6_S1
crossref_primary_10_1016_j_ridd_2011_09_013
crossref_primary_10_1016_j_jacep_2016_05_001
crossref_primary_10_1007_s10286_006_0352_5
crossref_primary_10_1111_j_1469_8986_2007_00521_x
crossref_primary_10_5527_wjn_v5_i1_53
crossref_primary_10_1113_jphysiol_2009_172056
crossref_primary_10_1093_ndt_gft341
crossref_primary_10_1111_apha_12087
crossref_primary_10_14814_phy2_12536
crossref_primary_10_1016_j_artres_2012_05_002
crossref_primary_10_1152_ajpregu_00205_2006
crossref_primary_10_1113_EP089686
crossref_primary_10_1152_japplphysiol_00355_2015
crossref_primary_10_1161_JAHA_115_002997
crossref_primary_10_1093_europace_eum302
crossref_primary_10_1042_CS20060363
crossref_primary_10_1113_jphysiol_2005_083386
crossref_primary_10_1152_ajpheart_131_2008
crossref_primary_10_1097_00041552_200303000_00008
crossref_primary_10_1097_00004872_200206000_00012
crossref_primary_10_1016_j_atherosclerosis_2016_05_040
crossref_primary_10_1038_s41390_019_0318_7
Cites_doi 10.1042/cs0950575
10.1042/cs0970515
10.1073/pnas.85.19.7399
10.1002/bjs.1800611014
10.1016/0301-5629(95)02017-9
10.1097/00000542-199001000-00004
10.1111/j.1748-1716.1952.tb00890.x
10.1152/jappl.1990.69.3.962
10.1113/jphysiol.1972.sp009784
10.1016/S0016-5085(67)80039-8
10.1016/0165-1838(83)90003-6
10.1161/01.RES.31.5.637
10.1113/jphysiol.1935.sp003232
10.1016/S0301-5629(97)00074-4
10.1111/j.1748-1716.1990.tb08990.x
10.1111/j.1748-1716.1957.tb01510.x
10.1042/cs0830535
10.1007/BF00587044
10.1016/S0140-6736(86)90837-8
10.1161/res.30.2.177
10.1152/ajplegacy.1912.30.1.88
10.1016/0165-1838(88)90013-6
10.1042/cs0580193
10.1152/ajpheart.1999.276.5.H1691
10.1161/res.32.2.215
10.1056/NEJM197110142851602
10.1161/01.ATV.8.6.778
ContentType Journal Article
Copyright 2001 American Heart Association, Inc.
2001 INIST-CNRS
Copyright American Heart Association, Inc. Jun 2001
Copyright_xml – notice: 2001 American Heart Association, Inc.
– notice: 2001 INIST-CNRS
– notice: Copyright American Heart Association, Inc. Jun 2001
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1161/01.hyp.37.6.1362
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4563
EndPage 1368
ExternalDocumentID 74657272
11408378
1039456
10_1161_01_HYP_37_6_1362
00004268-200106000-00008
Genre Research Support, U.S. Gov't, P.H.S
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: F32AG00251
– fundername: NIA NIH HHS
  grantid: R29 AG14376
GroupedDBID ---
.-D
.3C
.55
.GJ
.XZ
.Z2
01R
0R~
18M
1J1
2WC
3O-
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAFWJ
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAXQO
AAYEP
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPXF
ABQRW
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEBDS
AEETU
AENEX
AFBFQ
AFDTB
AFEXH
AFFNX
AFNMH
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHQVU
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BAWUL
BCGUY
BOYCO
BQLVK
BS7
C1A
C45
CS3
DIK
DIWNM
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FW0
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JF9
JG8
JK3
JK8
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
N4W
N9A
N~7
N~B
N~M
O9-
OAG
OAH
OB3
OCUKA
ODA
ODMTH
OGROG
OHYEH
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
R58
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
YHZ
YOC
YYM
YYP
ZFV
ZGI
ZZMQN
AAYXX
ADGHP
CITATION
IQODW
OZ-
ACIJW
AWKKM
CGR
CUY
CVF
ECM
EIF
NPM
OLW
RHF
K9.
7X8
ID FETCH-LOGICAL-c5468-70bc5a72abf5fa52e9ba6e8b26708fb263995c89114c9b90029150de435c741b3
ISSN 0194-911X
1524-4563
IngestDate Thu Jul 10 18:41:10 EDT 2025
Sun Jul 13 03:17:45 EDT 2025
Wed Feb 19 02:33:42 EST 2025
Mon Jul 21 09:15:47 EDT 2025
Thu Apr 24 22:57:56 EDT 2025
Tue Jul 01 01:44:10 EDT 2025
Fri May 16 03:51:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Sonography
Human
Pharmacologic test
Cardiovascular control
Exploration
Corporal biometry
Compliance(volume pressure)
RR interval
Electrodiagnosis
Regulation(control)
Vasomotricity
Autonomic nervous system
Baroreflex
Carotid
Electrocardiography
Arterial pressure
Circulatory system
Hemodynamics
Technique
Quantitative analysis
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5468-70bc5a72abf5fa52e9ba6e8b26708fb263995c89114c9b90029150de435c741b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/01.HYP.37.6.1362
PMID 11408378
PQID 205306177
PQPubID 47910
PageCount 7
ParticipantIDs proquest_miscellaneous_70935110
proquest_journals_205306177
pubmed_primary_11408378
pascalfrancis_primary_1039456
crossref_primary_10_1161_01_HYP_37_6_1362
crossref_citationtrail_10_1161_01_HYP_37_6_1362
wolterskluwer_health_00004268-200106000-00008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-June
PublicationDateYYYYMMDD 2001-06-01
PublicationDate_xml – month: 06
  year: 2001
  text: 2001-June
PublicationDecade 2000
PublicationPlace Philadelphia, PA
Hagerstown, MD
PublicationPlace_xml – name: Philadelphia, PA
– name: Hagerstown, MD
– name: United States
– name: Baltimore
PublicationTitle Hypertension (Dallas, Tex. 1979)
PublicationTitleAlternate Hypertension
PublicationYear 2001
Publisher American Heart Association, Inc
Lippincott
Publisher_xml – name: American Heart Association, Inc
– name: Lippincott
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
(e_1_3_2_6_2) 1975; 244
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_25_2
(e_1_3_2_9_2) 1996; 271
(e_1_3_2_8_2) 1990; 16
(e_1_3_2_1_2) 1993; 265
e_1_3_2_15_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_18_2
(e_1_3_2_30_2) 1987; 253
e_1_3_2_19_2
(e_1_3_2_4_2) 1978; 235
e_1_3_2_32_2
(e_1_3_2_38_2) 1998; 12
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
(e_1_3_2_37_2) 2000; 43
(e_1_3_2_16_2) 1982; 242
(e_1_3_2_24_2) 1995; 483
References_xml – volume: 244
  start-page: 80P
  year: 1975
  ident: e_1_3_2_6_2
  publication-title: J Physiol (Lond)
– ident: e_1_3_2_18_2
– ident: e_1_3_2_21_2
  doi: 10.1042/cs0950575
– volume: 242
  start-page: H638
  year: 1982
  ident: e_1_3_2_16_2
  publication-title: Am J Physiol
– ident: e_1_3_2_22_2
  doi: 10.1042/cs0970515
– ident: e_1_3_2_25_2
  doi: 10.1073/pnas.85.19.7399
– ident: e_1_3_2_26_2
  doi: 10.1002/bjs.1800611014
– ident: e_1_3_2_14_2
  doi: 10.1016/0301-5629(95)02017-9
– volume: 483
  start-page: 1
  year: 1995
  ident: e_1_3_2_24_2
  publication-title: J Physiol
– ident: e_1_3_2_12_2
  doi: 10.1097/00000542-199001000-00004
– volume: 16
  start-page: 200
  year: 1990
  ident: e_1_3_2_8_2
  publication-title: Diabete Metab
– ident: e_1_3_2_28_2
  doi: 10.1111/j.1748-1716.1952.tb00890.x
– ident: e_1_3_2_35_2
  doi: 10.1152/jappl.1990.69.3.962
– ident: e_1_3_2_29_2
  doi: 10.1113/jphysiol.1972.sp009784
– ident: e_1_3_2_10_2
  doi: 10.1016/S0016-5085(67)80039-8
– ident: e_1_3_2_7_2
  doi: 10.1016/0165-1838(83)90003-6
– ident: e_1_3_2_36_2
  doi: 10.1161/01.RES.31.5.637
– volume: 253
  start-page: H787
  year: 1987
  ident: e_1_3_2_30_2
  publication-title: Am J Physiol
– ident: e_1_3_2_32_2
  doi: 10.1113/jphysiol.1935.sp003232
– volume: 43
  start-page: 281
  year: 2000
  ident: e_1_3_2_37_2
  publication-title: Physiologist
– ident: e_1_3_2_15_2
  doi: 10.1016/S0301-5629(97)00074-4
– ident: e_1_3_2_27_2
  doi: 10.1111/j.1748-1716.1990.tb08990.x
– ident: e_1_3_2_11_2
  doi: 10.1111/j.1748-1716.1957.tb01510.x
– ident: e_1_3_2_23_2
  doi: 10.1042/cs0830535
– volume: 271
  start-page: H1139
  year: 1996
  ident: e_1_3_2_9_2
  publication-title: Am J Physiol
– ident: e_1_3_2_20_2
  doi: 10.1007/BF00587044
– ident: e_1_3_2_17_2
  doi: 10.1016/S0140-6736(86)90837-8
– volume: 265
  start-page: H232
  year: 1993
  ident: e_1_3_2_1_2
  publication-title: Am J Physiol
– ident: e_1_3_2_34_2
  doi: 10.1161/res.30.2.177
– ident: e_1_3_2_5_2
  doi: 10.1152/ajplegacy.1912.30.1.88
– ident: e_1_3_2_33_2
  doi: 10.1016/0165-1838(88)90013-6
– ident: e_1_3_2_3_2
  doi: 10.1042/cs0580193
– volume: 12
  start-page: A688
  year: 1998
  ident: e_1_3_2_38_2
  publication-title: FASEB J
– ident: e_1_3_2_13_2
  doi: 10.1152/ajpheart.1999.276.5.H1691
– ident: e_1_3_2_31_2
  doi: 10.1161/res.32.2.215
– volume: 235
  start-page: H117
  year: 1978
  ident: e_1_3_2_4_2
  publication-title: Am J Physiol
– ident: e_1_3_2_2_2
  doi: 10.1056/NEJM197110142851602
– ident: e_1_3_2_19_2
  doi: 10.1161/01.ATV.8.6.778
SSID ssj0014447
Score 1.9446626
Snippet ABSTRACT—Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures...
Abstract —Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial...
Traditionally, arterial baroreflex control of vagal neural outflow is quantified by heart period responses to falling and/or rising arterial pressures (ms/mm...
SourceID proquest
pubmed
pascalfrancis
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1362
SubjectTerms Adult
Afferent Pathways - physiology
Baroreflex
Biological and medical sciences
Biomechanical Phenomena
Blood Pressure - drug effects
Cardiovascular system
Carotid Arteries - anatomy & histology
Carotid Arteries - diagnostic imaging
Carotid Arteries - innervation
Coronary Disease - physiopathology
Electrocardiography
Female
Heart - innervation
Humans
Investigative techniques of hemodynamics
Investigative techniques, diagnostic techniques (general aspects)
Male
Medical sciences
Neural Conduction
Nitroprusside - pharmacology
Phenylephrine - pharmacology
Reproducibility of Results
Ultrasonography
Vagus Nerve - physiology
Title Quantification of Mechanical and Neural Components of Vagal Baroreflex in Humans
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00004268-200106000-00008
https://www.ncbi.nlm.nih.gov/pubmed/11408378
https://www.proquest.com/docview/205306177
https://www.proquest.com/docview/70935110
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FIiEkhLgxpeAHXlBl18d6bT9GQGWBWjUokdKn1e5mLRDNoThpC3-Av83MrmM7VcT14sS35fk8OzP7zQwhb1gaKaGC1MsxQ4ZmQnoyZ6EnRZixiYrLOMDk5JNTVozox3Ey7vV-dlhL65X01Y-deSX_I1XYBnLFLNl_kGxzUdgA_0G-sAQJw_KvZDxYC8v1aey-qcZM3qYCAFarNAVApov5TNeMl0sBo8KhFEvsMXKhrzHkYVr1VV1LtQAHdWno7QYf2XuMuFtOkb72D8M8zTtRhGJ0OrRQQYXRZDcc94tz6_lXYopeebvj82BU9A0Low75tP2fLZHQ4MvvMi43wYkOicoGJ5oiE90QZk5RxY67OtgWfqmx1lWoYVwra71ZzXYrfhaaZAb_y_eFH6c-89szuzW2b4x9DSMRZ8TBlrxFbkfgb6DC_DRop6MopXXevX30zXw3C49u3nLLvrm3EBVIvLQ9UnY5MXDM1Rx5EdU3kxbRMW6GD8j92itx-xZiD0lPzx6ROyc17-IxOdtGmjsv3RZpLiDNtUhzW6ThMQZpbos09-vMtUh7QkbHH4bvCq_uxeGpBJPz0kCqRKSRkGVSiiTSuRRMZzJiaZCV8IMp0iqDl0NVLnOc7AVXY6LBGldgtMr4Kdmbwf2fE1coHUklShbHGaUZk5QGqZzkUaLgapPYIUebN8hVXage-6VccOOwspAHIS_Oz3iccsbxnTvkbXPGwhZp-c2xB1tC6ZxgEOCQ_Y2QeP2pVzyCoQpt_dQhr5u9oIdxck3M9Hxd8RQZBWBLO-SZlWx74ZAG2LbBId6WqLnNdObGTY-YUW1hwOpSD0H24g9Puk_utp_cS7K3Wq71AVjIK_nKoPcX6kW2bw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+mechanical+and+neural+components+of+vagal+baroreflex+in+humans&rft.jtitle=Hypertension+%28Dallas%2C+Tex.+1979%29&rft.au=HUNT%2C+Brian+E&rft.au=FAHY%2C+Lisamarie&rft.au=FARQUHAR%2C+William+B&rft.au=TAYLOR%2C+J.+Andrew&rft.date=2001-06-01&rft.pub=Lippincott&rft.issn=0194-911X&rft.volume=37&rft.issue=6&rft.spage=1362&rft.epage=1368&rft_id=info:doi/10.1161%2F01.hyp.37.6.1362&rft.externalDBID=n%2Fa&rft.externalDocID=1039456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0194-911X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0194-911X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0194-911X&client=summon