Multilevel Empirical Bayes Modeling for Improved Estimation of Toxicant Formulations to Suppress Parasitic Sea Lamprey in the Upper Great Lakes
Estimation of extreme quantal‐response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the presence of multiple covariates and complex study designs. Accurate and precise estimates of the LC99.9 for mixtures of toxicants are critical to...
Saved in:
Published in | Biometrics Vol. 67; no. 3; pp. 1153 - 1162 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Blackwell Publishing Inc
01.09.2011
Wiley-Blackwell Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0006-341X 1541-0420 1541-0420 |
DOI | 10.1111/j.1541-0420.2011.01566.x |
Cover
Loading…
Abstract | Estimation of extreme quantal‐response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the presence of multiple covariates and complex study designs. Accurate and precise estimates of the LC99.9 for mixtures of toxicants are critical to ongoing control of a parasitic invasive species, the sea lamprey, in the Laurentian Great Lakes of North America. The toxicity of those chemicals is affected by local and temporal variations in water chemistry, which must be incorporated into the modeling. We develop multilevel empirical Bayes models for data from multiple laboratory studies. Our approach yields more accurate and precise estimation of the LC99.9 compared to alternative models considered. This study demonstrates that properly incorporating hierarchical structure in laboratory data yields better estimates of LC99.9 stream treatment values that are critical to larvae control in the field. In addition, out‐of‐sample prediction of the results of in situ tests reveals the presence of a latent seasonal effect not manifest in the laboratory studies, suggesting avenues for future study and illustrating the importance of dual consideration of both experimental and observational data. |
---|---|
AbstractList | Estimation of extreme quantal-response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the presence of multiple covariates and complex study designs. Accurate and precise estimates of the LC99.9 for mixtures of toxicants are critical to ongoing control of a parasitic invasive species, the sea lamprey, in the Laurentian Great Lakes of North America. The toxicity of those chemicals is affected by local and temporal variations in water chemistry, which must be incorporated into the modeling. We develop multilevel empirical Bayes models for data from multiple laboratory studies. Our approach yields more accurate and precise estimation of the LC99.9 compared to alternative models considered. This study demonstrates that properly incorporating hierarchical structure in laboratory data yields better estimates of LC99.9 stream treatment values that are critical to larvae control in the field. In addition, out-of-sample prediction of the results of in situ tests reveals the presence of a latent seasonal effect not manifest in the laboratory studies, suggesting avenues for future study and illustrating the importance of dual consideration of both experimental and observational data. Estimation of extreme quantal-response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the presence of multiple covariates and complex study designs. Accurate and precise estimates of the LC99.9 for mixtures of toxicants is critical to ongoing control of a parasitic invasive species, the sea lamprey, in the Laurentian Great Lakes of North America. The toxicity of those chemicals is affected by local and temporal variations in water chemistry, which must be incorporated into the modeling. We develop multilevel empirical Bayes models for data from multiple laboratory studies. Our approach yields more accurate and precise estimation of the LC99.9 compared to alternative models considered. This study demonstrates that properly incorporating hierarchical structure in laboratory data yields better estimates of LC99.9 stream treatment values that are critical to larvae control in the field. In addition, out-of-sample prediction of the results of in situ tests reveals the presence of a latent seasonal effect not manifest in the laboratory studies, suggesting avenues for future study and illustrating the importance of dual consideration of both experimental and observational data. Summary Estimation of extreme quantal-response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the presence of multiple covariates and complex study designs. Accurate and precise estimates of the LC99.9 for mixtures of toxicants are critical to ongoing control of a parasitic invasive species, the sea lamprey, in the Laurentian Great Lakes of North America. The toxicity of those chemicals is affected by local and temporal variations in water chemistry, which must be incorporated into the modeling. We develop multilevel empirical Bayes models for data from multiple laboratory studies. Our approach yields more accurate and precise estimation of the LC99.9 compared to alternative models considered. This study demonstrates that properly incorporating hierarchical structure in laboratory data yields better estimates of LC99.9 stream treatment values that are critical to larvae control in the field. In addition, out-of-sample prediction of the results of in situ tests reveals the presence of a latent seasonal effect not manifest in the laboratory studies, suggesting avenues for future study and illustrating the importance of dual consideration of both experimental and observational data. Estimation of extreme quantal-response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the presence of multiple covariates and complex study designs. Accurate and precise estimates of the LC99.9 for mixtures of toxicants are critical to ongoing control of a parasitic invasive species, the sea lamprey, in the Laurentian Great Lakes of North America. The toxicity of those chemicals is affected by local and temporal variations in water chemistry, which must be incorporated into the modeling. We develop multilevel empirical Bayes models for data from multiple laboratory studies. Our approach yields more accurate and precise estimation of the LC99.9 compared to alternative models considered. This study demonstrates that properly incorporating hierarchical structure in laboratory data yields better estimates of LC99.9 stream treatment values that are critical to larvae control in the field. In addition, out-of-sample prediction of the results of in situ tests reveals the presence of a latent seasonal effect not manifest in the laboratory studies, suggesting avenues for future study and illustrating the importance of dual consideration of both experimental and observational data.Estimation of extreme quantal-response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the presence of multiple covariates and complex study designs. Accurate and precise estimates of the LC99.9 for mixtures of toxicants are critical to ongoing control of a parasitic invasive species, the sea lamprey, in the Laurentian Great Lakes of North America. The toxicity of those chemicals is affected by local and temporal variations in water chemistry, which must be incorporated into the modeling. We develop multilevel empirical Bayes models for data from multiple laboratory studies. Our approach yields more accurate and precise estimation of the LC99.9 compared to alternative models considered. This study demonstrates that properly incorporating hierarchical structure in laboratory data yields better estimates of LC99.9 stream treatment values that are critical to larvae control in the field. In addition, out-of-sample prediction of the results of in situ tests reveals the presence of a latent seasonal effect not manifest in the laboratory studies, suggesting avenues for future study and illustrating the importance of dual consideration of both experimental and observational data. |
Author | Gutreuter, Steve Boogaard, Michael A. Carlin, Bradley P. Hatfield, Laura A. |
AuthorAffiliation | 2 U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603 1 Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 |
AuthorAffiliation_xml | – name: 2 U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603 – name: 1 Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 |
Author_xml | – sequence: 1 givenname: Laura A. surname: Hatfield fullname: Hatfield, Laura A. – sequence: 2 givenname: Steve surname: Gutreuter fullname: Gutreuter, Steve – sequence: 3 givenname: Michael A. surname: Boogaard fullname: Boogaard, Michael A. – sequence: 4 givenname: Bradley P. surname: Carlin fullname: Carlin, Bradley P. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21361894$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk99u0zAUxiM0xLrBIwAWN3CTYsexk9wgsakrlVo26Cq4s9zkpHOXxMF2SvsUvDLOOsqfC8A3sfP9zmedky8nwVGjGwgCRPCQ-PV6PSQsJiGOIzyMMCFDTBjnw-2DYHAQjoIBxpiHNCafj4MTa9f-mDEcPQqOI0I5SbN4EHybdZVTFWygQqO6VUblskJncgcWzXQBlWpWqNQGTerW6A0UaGSdqqVTukG6RNd66ysahy60qbvq7r1FTqN517YGrEVX0kirnMrRHCSaSu8DO6Qa5G4ALdoWDBobkM5Lt2AfBw9LWVl4cv88DRYXo-vzd-H0cjw5fzsNcxZzHhaSLPOYLVmxZJTHNKVlKSFiaY6jKE9YQjmNSEmXQOM0yXkChKUZ5iVOSmAF0NPgzd637ZY1FDk0zshKtMb3ZnZCSyV-Vxp1I1Z6I6iff8qxN3h5b2D0lw6sE7WyOVSVbEB3VvS3JTxjxJOv_koSzinHEU7wv1HKkzglcco9-uIPdK070_iZiTTNMkISSj307NcuD-39-P4eSPdAbrS1BsoDQrDooybWok-U6BMl-qiJu6iJ7c8JfvXx2f13nTibXM76rTd4ujdYW6fNwSAmURwxzrwe7nVlHWwPujS3gic0YeLT-7HIEnKFP34gYur553u-lFrIlVFWLOb-atb_BjxLGf0OZAL8Eg |
CODEN | BIOMA5 |
Cites_doi | 10.1139/f68-063 10.1897/06-630R.1 10.1897/02-501 10.1023/A:1008929526011 10.2307/1390675 10.18637/jss.v012.i03 10.1139/f07-082 10.1577/M06-178.1 10.1146/annurev.pa.14.040174.000403 10.1214/aos/1176325625 10.1111/1467-9868.00353 10.1214/ss/1177011136 10.1002/sim.3680 10.1139/f80-222 10.2307/2531147 10.1016/S0380-1330(03)70512-7 10.1016/j.ecolecon.2004.10.002 |
ContentType | Journal Article |
Copyright | 2011 International Biometric Society 2011, The International Biometric Society 2011, The International Biometric Society. |
Copyright_xml | – notice: 2011 International Biometric Society – notice: 2011, The International Biometric Society – notice: 2011, The International Biometric Society. |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7U7 C1K 7S9 L.6 7X8 5PM |
DOI | 10.1111/j.1541-0420.2011.01566.x |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection Toxicology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection Toxicology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Computer Science Collection AGRICOLA MEDLINE - Academic Toxicology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 1162 |
ExternalDocumentID | PMC3111860 2453726651 21361894 10_1111_j_1541_0420_2011_01566_x BIOM1566 41242565 ark_67375_WNG_971P0RQ1_L US201500066985 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | North America Great Lakes |
GeographicLocations_xml | – name: Great Lakes – name: North America |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA095955 |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANHP AANLZ AAONW AASGY AAUAY AAWIL AAXRX AAYCA AAZKR AAZSN ABAWQ ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABTAH ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACHJO ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEOTA AEQDE AEUPB AEUYR AFBPY AFDVO AFEBI AFGKR AFKRA AFVYC AFWVQ AFZJQ AGLNM AGTJU AHMBA AIAGR AIHAF AIURR AIWBW AJAOE AJBDE AJNCP AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FBQ FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PHGZT PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT 3V. AAPXW ADACV AELPN AEUQT AFFTP AFPWT AIBGX BSCLL ESTFP JSODD VQA WRC AAMMB AEFGJ AGORE AGQPQ AGXDD AIDQK AIDYY AAYXX AHGBF AJBYB CITATION PHGZM CGR CUY CVF ECM EIF H13 NPM PJZUB PPXIY PQGLB JQ2 7U7 C1K 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c5466-da1bc45b5db5364383ffae258c022c75736321f3be3487c67e158906f07fe5de3 |
IEDL.DBID | DR2 |
ISSN | 0006-341X 1541-0420 |
IngestDate | Thu Aug 21 18:26:13 EDT 2025 Fri Jul 11 16:04:10 EDT 2025 Fri Jul 11 18:25:58 EDT 2025 Tue Aug 05 09:57:37 EDT 2025 Wed Aug 13 08:51:53 EDT 2025 Mon Jul 21 05:56:38 EDT 2025 Tue Jul 01 00:58:01 EDT 2025 Wed Jan 22 16:26:56 EST 2025 Thu Jul 03 21:22:20 EDT 2025 Wed Oct 30 09:53:42 EDT 2024 Thu Apr 03 09:42:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 2011, The International Biometric Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5466-da1bc45b5db5364383ffae258c022c75736321f3be3487c67e158906f07fe5de3 |
Notes | http://dx.doi.org/10.1111/j.1541-0420.2011.01566.x istex:DAC46107E222D0A6A204D4170A87A690EDF15416 ark:/67375/WNG-971P0RQ1-L ArticleID:BIOM1566 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 21361894 |
PQID | 889911733 |
PQPubID | 35366 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3111860 proquest_miscellaneous_890676951 proquest_miscellaneous_1663602070 proquest_miscellaneous_1367481486 proquest_journals_889911733 pubmed_primary_21361894 crossref_primary_10_1111_j_1541_0420_2011_01566_x wiley_primary_10_1111_j_1541_0420_2011_01566_x_BIOM1566 jstor_primary_41242565 istex_primary_ark_67375_WNG_971P0RQ1_L fao_agris_US201500066985 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2011 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: September 2011 |
PublicationDecade | 2010 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: England – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Inc Wiley-Blackwell Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Inc – name: Wiley-Blackwell – name: Blackwell Publishing Ltd |
References | Brooks, S. and Gelman, A. (1997). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 7, 434-455. Smith, B. and Tibbles, J. (1980). Sea lamprey (Petromyzon marinus) in lakes Huron, Michigan and Superior: History of invasion and control, 1936-78. Canadian Journal of Fisheries and Aquatic Sciences 37, 1780-1801. Stiratelli, R., Laird, N., and Ware, J. (1984). Random-effects models for serial observations with binary response. Biometrics 40, 961-971. Smith, S. (1968). Species succession and fishery exploitation in the Great Lakes. Journal of the Fisheries Research Board of Canada 25, 667-693. Yang, R. and Berger, J. (1994). Estimation of a covariance matrix using the reference prior. Annals of Statistics 22, 1195-1211. Scholefield, R., Slaght, K., and Stephens, B. (2008). Seasonal variation in sensitivity of larval sea lampreys to the lampricide 3-trifluoromethyl-4-nitrophenol. North American Journal of Fisheries Management 28, 1609-1617. Bills, T., Boogaard, M., Johnson, D., Brege, D., Scholefield, R., Westman, R., and Stephens, B. (2003). Development of a pH/alkalinity treatment model for applications of the lampricide TFM to streams tributary to the Great Lakes. Journal of Great Lakes Research 29, 510-520. Spiegelhalter, D., Best, N., Carlin, B., and van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B 64, 583-639. Gelderen, E. V., Ryan, A., Tomasso, J., and Klaine, S. (2003). Influence of dissolved organic matter source on silver toxicity to Pimephales pomelas. Environmental Toxicology and Chemistry 22, 2746-2751. Gelman, A. and Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statistical Science 7, 457-472. Hunn, J. and Allen, J. (1974). Movement of drugs across the gills of fishes. Annual Review of Pharmacology 14, 45-57. Davidian, M. and Giltinan, D. (1995). Nonlinear Models of Repeated Measurement Data. Boca Raton , Florida : Chapman & Hall/CRC. Wilkie, M., Holmes, J., and Youson, J. (2007). The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) interferes with intermediary metabolism and glucose homeostasis, but not with ion balance, in larval sea lamprey (Petromyzon marinus). Canadian Journal of Fisheries and Aquatic Sciences 64, 1174-1182. Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009). The BUGS project: Evolution, critique and future directions. Statistics in Medicine 28, 3049-3067. Pimentel, D., Zuniga, R., and Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52, 273-288. Sturtz, S., Ligges, U., and Gelman, A. (2005). R2WinBUGS: A package for running WinBUGS from R. Journal of Statistical Software 12, 1-16. Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS---a Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing 10, 325-337. Gutreuter, S. and Boogaard, M. (2007). Prediction of lethal/effective concentration/dose in the presence of multiple auxiliary covariates and components of variance. Environmental Toxicology and Chemistry 26, 1978-1986. 1968; 25 1992; 7 1984; 40 1974; 14 1980; 37 2002; 64 2000; 10 2008; 28 2005; 52 1994; 22 1973 1995 2003; 29 2000; Volume 11.05 2007; 64 2005; 12 1997; 7 2003; 22 2007; 26 2009; 28 Gutreuter (10.1111/j.1541-0420.2011.01566.x-BIB8|cit8) 2007; 26 Davidian (10.1111/j.1541-0420.2011.01566.x-BIB5|cit5) 1995 Hunn (10.1111/j.1541-0420.2011.01566.x-BIB9|cit9) 1974; 14 Scholefield (10.1111/j.1541-0420.2011.01566.x-BIB13|cit13) 2008; 28 Gelderen (10.1111/j.1541-0420.2011.01566.x-BIB6|cit6) 2003; 22 Sturtz (10.1111/j.1541-0420.2011.01566.x-BIB18|cit18) 2005; 12 Spiegelhalter (10.1111/j.1541-0420.2011.01566.x-BIB16|cit16) 2002; 64 Stiratelli (10.1111/j.1541-0420.2011.01566.x-BIB17|cit17) 1984; 40 Yang (10.1111/j.1541-0420.2011.01566.x-BIB20|cit20) 1994; 22 Pimentel (10.1111/j.1541-0420.2011.01566.x-BIB12|cit12) 2005; 52 American Society for Testing and Materials (10.1111/j.1541-0420.2011.01566.x-BIB2|cit2) 2000; Volume 11.05 Gelman (10.1111/j.1541-0420.2011.01566.x-BIB7|cit7) 1992; 7 Smith (10.1111/j.1541-0420.2011.01566.x-BIB14|cit15) 1968; 25 Akaike (10.1111/j.1541-0420.2011.01566.x-BIB1|cit1) 1973 Lunn (10.1111/j.1541-0420.2011.01566.x-BIB11|cit11) 2009; 28 Wilkie (10.1111/j.1541-0420.2011.01566.x-BIB19|cit19) 2007; 64 Brooks (10.1111/j.1541-0420.2011.01566.x-BIB4|cit4) 1997; 7 Bills (10.1111/j.1541-0420.2011.01566.x-BIB3|cit3) 2003; 29 Lunn (10.1111/j.1541-0420.2011.01566.x-BIB10|cit10) 2000; 10 Smith (10.1111/j.1541-0420.2011.01566.x-BIB15|cit14) 1980; 37 |
References_xml | – reference: Davidian, M. and Giltinan, D. (1995). Nonlinear Models of Repeated Measurement Data. Boca Raton , Florida : Chapman & Hall/CRC. – reference: Spiegelhalter, D., Best, N., Carlin, B., and van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B 64, 583-639. – reference: Bills, T., Boogaard, M., Johnson, D., Brege, D., Scholefield, R., Westman, R., and Stephens, B. (2003). Development of a pH/alkalinity treatment model for applications of the lampricide TFM to streams tributary to the Great Lakes. Journal of Great Lakes Research 29, 510-520. – reference: Smith, S. (1968). Species succession and fishery exploitation in the Great Lakes. Journal of the Fisheries Research Board of Canada 25, 667-693. – reference: Brooks, S. and Gelman, A. (1997). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 7, 434-455. – reference: Smith, B. and Tibbles, J. (1980). Sea lamprey (Petromyzon marinus) in lakes Huron, Michigan and Superior: History of invasion and control, 1936-78. Canadian Journal of Fisheries and Aquatic Sciences 37, 1780-1801. – reference: Wilkie, M., Holmes, J., and Youson, J. (2007). The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) interferes with intermediary metabolism and glucose homeostasis, but not with ion balance, in larval sea lamprey (Petromyzon marinus). Canadian Journal of Fisheries and Aquatic Sciences 64, 1174-1182. – reference: Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS---a Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing 10, 325-337. – reference: Hunn, J. and Allen, J. (1974). Movement of drugs across the gills of fishes. Annual Review of Pharmacology 14, 45-57. – reference: Gelderen, E. V., Ryan, A., Tomasso, J., and Klaine, S. (2003). Influence of dissolved organic matter source on silver toxicity to Pimephales pomelas. Environmental Toxicology and Chemistry 22, 2746-2751. – reference: Pimentel, D., Zuniga, R., and Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52, 273-288. – reference: Scholefield, R., Slaght, K., and Stephens, B. (2008). Seasonal variation in sensitivity of larval sea lampreys to the lampricide 3-trifluoromethyl-4-nitrophenol. North American Journal of Fisheries Management 28, 1609-1617. – reference: Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009). The BUGS project: Evolution, critique and future directions. Statistics in Medicine 28, 3049-3067. – reference: Sturtz, S., Ligges, U., and Gelman, A. (2005). R2WinBUGS: A package for running WinBUGS from R. Journal of Statistical Software 12, 1-16. – reference: Stiratelli, R., Laird, N., and Ware, J. (1984). Random-effects models for serial observations with binary response. Biometrics 40, 961-971. – reference: Gutreuter, S. and Boogaard, M. (2007). Prediction of lethal/effective concentration/dose in the presence of multiple auxiliary covariates and components of variance. Environmental Toxicology and Chemistry 26, 1978-1986. – reference: Gelman, A. and Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statistical Science 7, 457-472. – reference: Yang, R. and Berger, J. (1994). Estimation of a covariance matrix using the reference prior. Annals of Statistics 22, 1195-1211. – volume: 10 start-page: 325 year: 2000 end-page: 337 article-title: ‐‐‐a Bayesian modelling framework: Concepts, structure, and extensibility publication-title: Statistics and Computing – volume: 64 start-page: 583 year: 2002 end-page: 639 article-title: Bayesian measures of model complexity and fit (with discussion) publication-title: Journal of the Royal Statistical Society, Series B – volume: 28 start-page: 1609 year: 2008 end-page: 1617 article-title: Seasonal variation in sensitivity of larval sea lampreys to the lampricide 3‐trifluoromethyl‐4‐nitrophenol publication-title: North American Journal of Fisheries Management – volume: 7 start-page: 434 year: 1997 end-page: 455 article-title: General methods for monitoring convergence of iterative simulations publication-title: Journal of Computational and Graphical Statistics – volume: 22 start-page: 2746 year: 2003 end-page: 2751 article-title: Influence of dissolved organic matter source on silver toxicity to publication-title: Environmental Toxicology and Chemistry – volume: 14 start-page: 45 year: 1974 end-page: 57 article-title: Movement of drugs across the gills of fishes publication-title: Annual Review of Pharmacology – volume: 7 start-page: 457 year: 1992 end-page: 472 article-title: Inference from iterative simulation using multiple sequences publication-title: Statistical Science – volume: Volume 11.05 start-page: 213 year: 2000 end-page: 233 – volume: 28 start-page: 3049 year: 2009 end-page: 3067 article-title: The project: Evolution, critique and future directions publication-title: Statistics in Medicine – volume: 12 start-page: 1 year: 2005 end-page: 16 article-title: : A package for running from publication-title: Journal of Statistical Software – volume: 25 start-page: 667 year: 1968 end-page: 693 article-title: Species succession and fishery exploitation in the Great Lakes publication-title: Journal of the Fisheries Research Board of Canada – year: 1995 – volume: 64 start-page: 1174 year: 2007 end-page: 1182 article-title: The lampricide 3‐trifluoromethyl‐4‐nitrophenol (TFM) interferes with intermediary metabolism and glucose homeostasis, but not with ion balance, in larval sea lamprey ( ) publication-title: Canadian Journal of Fisheries and Aquatic Sciences – start-page: 267 year: 1973 end-page: 281 – volume: 40 start-page: 961 year: 1984 end-page: 971 article-title: Random‐effects models for serial observations with binary response publication-title: Biometrics – volume: 29 start-page: 510 year: 2003 end-page: 520 article-title: Development of a pH/alkalinity treatment model for applications of the lampricide TFM to streams tributary to the Great Lakes publication-title: Journal of Great Lakes Research – volume: 26 start-page: 1978 year: 2007 end-page: 1986 article-title: Prediction of lethal/effective concentration/dose in the presence of multiple auxiliary covariates and components of variance publication-title: Environmental Toxicology and Chemistry – volume: 52 start-page: 273 year: 2005 end-page: 288 article-title: Update on the environmental and economic costs associated with alien‐invasive species in the United States publication-title: Ecological Economics – volume: 37 start-page: 1780 year: 1980 end-page: 1801 article-title: Sea lamprey ( ) in lakes Huron, Michigan and Superior: History of invasion and control, 1936‐78 publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 22 start-page: 1195 year: 1994 end-page: 1211 article-title: Estimation of a covariance matrix using the reference prior publication-title: Annals of Statistics – volume: 25 start-page: 667 year: 1968 ident: 10.1111/j.1541-0420.2011.01566.x-BIB14|cit15 article-title: Species succession and fishery exploitation in the Great Lakes publication-title: Journal of the Fisheries Research Board of Canada doi: 10.1139/f68-063 – volume: 26 start-page: 1978 year: 2007 ident: 10.1111/j.1541-0420.2011.01566.x-BIB8|cit8 article-title: Prediction of lethal/effective concentration/dose in the presence of multiple auxiliary covariates and components of variance publication-title: Environmental Toxicology and Chemistry doi: 10.1897/06-630R.1 – volume: 22 start-page: 2746 year: 2003 ident: 10.1111/j.1541-0420.2011.01566.x-BIB6|cit6 article-title: Influence of dissolved organic matter source on silver toxicity to Pimephales pomelas publication-title: Environmental Toxicology and Chemistry doi: 10.1897/02-501 – volume: 10 start-page: 325 year: 2000 ident: 10.1111/j.1541-0420.2011.01566.x-BIB10|cit10 article-title: WinBUGS---a Bayesian modelling framework: Concepts, structure, and extensibility publication-title: Statistics and Computing doi: 10.1023/A:1008929526011 – volume: 7 start-page: 434 year: 1997 ident: 10.1111/j.1541-0420.2011.01566.x-BIB4|cit4 article-title: General methods for monitoring convergence of iterative simulations publication-title: Journal of Computational and Graphical Statistics doi: 10.2307/1390675 – volume: 12 start-page: 1 year: 2005 ident: 10.1111/j.1541-0420.2011.01566.x-BIB18|cit18 article-title: R2WinBUGS: A package for running WinBUGS from R publication-title: Journal of Statistical Software doi: 10.18637/jss.v012.i03 – volume: 64 start-page: 1174 year: 2007 ident: 10.1111/j.1541-0420.2011.01566.x-BIB19|cit19 article-title: The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) interferes with intermediary metabolism and glucose homeostasis, but not with ion balance, in larval sea lamprey (Petromyzon marinus) publication-title: Canadian Journal of Fisheries and Aquatic Sciences doi: 10.1139/f07-082 – volume-title: Nonlinear Models of Repeated Measurement Data year: 1995 ident: 10.1111/j.1541-0420.2011.01566.x-BIB5|cit5 – volume: 28 start-page: 1609 year: 2008 ident: 10.1111/j.1541-0420.2011.01566.x-BIB13|cit13 article-title: Seasonal variation in sensitivity of larval sea lampreys to the lampricide 3-trifluoromethyl-4-nitrophenol publication-title: North American Journal of Fisheries Management doi: 10.1577/M06-178.1 – start-page: 267 volume-title: Second International Symposium on Information Theory year: 1973 ident: 10.1111/j.1541-0420.2011.01566.x-BIB1|cit1 – volume: 14 start-page: 45 year: 1974 ident: 10.1111/j.1541-0420.2011.01566.x-BIB9|cit9 article-title: Movement of drugs across the gills of fishes publication-title: Annual Review of Pharmacology doi: 10.1146/annurev.pa.14.040174.000403 – volume: 22 start-page: 1195 year: 1994 ident: 10.1111/j.1541-0420.2011.01566.x-BIB20|cit20 article-title: Estimation of a covariance matrix using the reference prior publication-title: Annals of Statistics doi: 10.1214/aos/1176325625 – volume: 64 start-page: 583 year: 2002 ident: 10.1111/j.1541-0420.2011.01566.x-BIB16|cit16 article-title: Bayesian measures of model complexity and fit (with discussion) publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/1467-9868.00353 – volume: 7 start-page: 457 year: 1992 ident: 10.1111/j.1541-0420.2011.01566.x-BIB7|cit7 article-title: Inference from iterative simulation using multiple sequences publication-title: Statistical Science doi: 10.1214/ss/1177011136 – volume: Volume 11.05 start-page: 213 volume-title: Annual Book of ASTM Standards year: 2000 ident: 10.1111/j.1541-0420.2011.01566.x-BIB2|cit2 – volume: 28 start-page: 3049 year: 2009 ident: 10.1111/j.1541-0420.2011.01566.x-BIB11|cit11 article-title: The BUGS project: Evolution, critique and future directions publication-title: Statistics in Medicine doi: 10.1002/sim.3680 – volume: 37 start-page: 1780 year: 1980 ident: 10.1111/j.1541-0420.2011.01566.x-BIB15|cit14 article-title: Sea lamprey (Petromyzon marinus) in lakes Huron, Michigan and Superior: History of invasion and control, 1936-78 publication-title: Canadian Journal of Fisheries and Aquatic Sciences doi: 10.1139/f80-222 – volume: 40 start-page: 961 year: 1984 ident: 10.1111/j.1541-0420.2011.01566.x-BIB17|cit17 article-title: Random-effects models for serial observations with binary response publication-title: Biometrics doi: 10.2307/2531147 – volume: 29 start-page: 510 year: 2003 ident: 10.1111/j.1541-0420.2011.01566.x-BIB3|cit3 article-title: Development of a pH/alkalinity treatment model for applications of the lampricide TFM to streams tributary to the Great Lakes publication-title: Journal of Great Lakes Research doi: 10.1016/S0380-1330(03)70512-7 – volume: 52 start-page: 273 year: 2005 ident: 10.1111/j.1541-0420.2011.01566.x-BIB12|cit12 article-title: Update on the environmental and economic costs associated with alien-invasive species in the United States publication-title: Ecological Economics doi: 10.1016/j.ecolecon.2004.10.002 |
SSID | ssj0009502 |
Score | 1.961643 |
Snippet | Estimation of extreme quantal‐response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the... Estimation of extreme quantal-response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the... Summary Estimation of extreme quantal‐response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in... Summary Estimation of extreme quantal-response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in... |
SourceID | pubmedcentral proquest pubmed crossref wiley jstor istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1153 |
SubjectTerms | Alkalinity analysis Animals Bayes Theorem Bayesian analysis Bayesian networks BIOMETRIC PRACTICE Biometrics Biometry Biometry - methods Covariance matrices Estimating techniques Great Lakes Hazardous Substances Hazardous Substances - analysis Hazardous Substances - pharmacology hydrochemistry Introduced Species Introduced Species - statistics & numerical data invasive species Lakes Larvae Lethal concentration/dose Markov chain Monte Carlo (MCMC) methods Modeling Models, Statistical Multilevel models Nonlinear model North America Parametric models Parasites pest control Pesticides Pesticides - analysis Pesticides - toxicity Petromyzon Petromyzon marinus Petromyzontidae pharmacology prediction Quantal-response bioassay seasonal variation Seasons Simulations statistics statistics & numerical data toxic substances toxicity Toxicity Tests |
Title | Multilevel Empirical Bayes Modeling for Improved Estimation of Toxicant Formulations to Suppress Parasitic Sea Lamprey in the Upper Great Lakes |
URI | https://api.istex.fr/ark:/67375/WNG-971P0RQ1-L/fulltext.pdf https://www.jstor.org/stable/41242565 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2011.01566.x https://www.ncbi.nlm.nih.gov/pubmed/21361894 https://www.proquest.com/docview/889911733 https://www.proquest.com/docview/1367481486 https://www.proquest.com/docview/1663602070 https://www.proquest.com/docview/890676951 https://pubmed.ncbi.nlm.nih.gov/PMC3111860 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLVgEtJ44KOwLQyQkRBvqZI4tpNHhloGomNsq9ib5TgOVIWkalqp40_wl7nXSaMWBkKIt0h2nMS-vj7XOT6XkOfcZgJW9cAHA9Y-eEnuJzwyvtQ6YBm4P8nxoPDoRByP47eX_LLlP-FZmEYfottww5nh_DVOcJ3V25OcxxAKx1HQKnFiKNJHPInULcRHZ9GG_m7QCIcj1SsOL7dJPdc2tLVS3Sx0BfgVu361pi5eB0p_5VZuYl63aA3vkun6cxuuyrS_XGR98-0nJcj_0x_3yJ0W29KXjTHeJzds2SO3mmyXVz1ye9RJxNY9soswt1GJfkC-u3PAX5DARAdfZxOnW0KP9JWtKWZrwzPzFOA1bfZAbE4HcGdz6pJWBb2oVujOF3QIELxNSFbTRUUxaSluKNBTPddITzP03GqKMpNgw3RSUnglOp7N7Jy63RIomtr6IRkPBxevjv02VYRveCyEn-swMzHPeJ5xJlB-tSi0jXhiAKMYySUTLAoLllkGEZoR0oY8SQNRBLKwPLdsj-yUVWkPCEVBPp2wOMtzGaewXBeskMaYNI_yhAnjkXBtFmrWKIKojUgKxkDhGCgcA-XGQK08cgD2o_QncNxqfB7hNhOCvTThHnnhjKprS8-nSLaTXH08ea1SGZ4GZx9C9c4je87quoqYNxwAK7RwuDZD1TqgWiUQR4ehZMwjz7pS8Bz4O0iXtlrWCsX64gTCYfGHOgL15CJYFzxCf1MH-1EKQOoe2W9sv3vFCJ4RJmnsEbk1K7oKKG6-XVJOPjuRcwb9mQh4rHRG_9ddrY7evB_h5aN_vvOQ7DZ_DpBJ-JjsLOZL-wSg5yJ76pzKD_MYciM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCDEe-CiMhfFhJMRbqiSO7eSRQUsHbRnbqvXNchIHqo6kalqp45_gX-YuSaMWBkKIt0h2nOR8Pv_ucv4dIS-5iQTs6o4NCqxtsJLcDrgX21Jrh0Vg_iTHg8KDoeiN_PdjPq7LAeFZmIofogm44coo7TUucAxIb69y7oMv7HtOTcWJvkgbAOUNLPCN5QzenngbDLxORR2OyV6-O95O67lypK296nqqc0CwKPzVOnnxKlj6a3blJuott63uXXKx_uAqW2XaXi6idvztJy7I_ySRe-RODW_p60of75NrJmuRm1XBy8sWuT1oWGKLFtlFpFsRRT8g38ujwBeYw0Q7X2eTkrqEHupLU1As2IbH5ikgbFqFQUxCO3BndfCS5ik9y1do0Re0Cyi8rklW0EVOsW4pxhTosZ5rzFCL6anRFJkmQY3pJKPwSnQ0m5k5LQMm0DQ1xUMy6nbO3vTsulqEHXNfCDvRbhT7POJJxJlABtY01cbjQQwwJZZcMsE8N2WRYeCkxUIalwehI1JHpoYnhu2RnSzPzD6hyMmnA-ZHSSL9EHbslKUyjuMw8ZKAidgi7lov1KwiBVEbzhTMgcI5UDgHqpwDtbLIPiiQ0p_BdqvRqYeRJsR7YcAt8qrUqmYsPZ9ivp3k6nz4ToXSPXZOPrmqb5G9Uu2ajlg6HDArjHCw1kNV26BCBeBKu65kzCIvmlYwHvhHSGcmXxYK-fr8ADxi8Yc-AinlPNgaLEJ_0wflKAWAdYs8qpS_eUUPnuEGoW8RubUsmg7Ib77dkk2-lDznDOQZCHisLLX-r0WtDo8-DvDy8T_f-Zzc6p0N-qp_NPxwQHarHwmYWPiE7CzmS_MUkOgielZamB_w0XY9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCDQe-CiMhfFhJMRbqiSO7fSRQcsGaynbKvpmOY4DVSGpmlbq-Cf4l7lL0qiFgRDiLZIdJ7Hvzr9z7n5HyHNuYwG7uueCAGsXrCR3Ix4YV2rtsRjMn-SYKNwfiKNR-HbMx3X8E-bCVPwQzYEbakZpr1HBZ0m6reQ8BFc4DLyaiRNdkTbgyWuhAN1BgHQabBDwehVzOMZ6hf54O6rn0pG2tqqrqc4BwOLcr9axi5eh0l-DKzdBb7lr9W6T6fp7q2CVaXu5iNvm209UkP9nQu6QWzW4pS8rabxLrtisRa5X5S4vWuRmv-GILVpkF3FuRRN9j3wvE4G_YAQT7X6dTUriEnqoL2xBsVwbJs1TwNe0OgSxCe3CnVXaJc1Tep6v0J4vaA8weF2RrKCLnGLVUjxRoEM91xifZuiZ1RR5JkGI6SSj8Ep0NJvZOS2PS6Bpaov7ZNTrnr86cutaEa7hoRBuov3YhDzmScyZQP7VNNU24JEBkGIkl0ywwE9ZbBm4aEZI6_Oo44nUk6nliWV7ZCfLM7tPKDLy6YiFcZLIsAP7dcpSaYzpJEESMWEc4q_FQs0qShC14UrBGihcA4VroMo1UCuH7IP8KP0JLLcanQV4zoRorxNxh7wohaoZS8-nGG0nufo4eKM60h96px98deKQvVLqmo5YOBwQK4xwsBZDVVugQkXgSPu-ZMwhz5pWMB34P0hnNl8WCtn6wgj8YfGHPgIJ5QLYGBxCf9MH51EKgOoOeVDJfvOKATzDjzqhQ-SWVjQdkN18uyWbfC5ZzhnMZyTgsbIU-r-eanV4_L6Plw__-c6n5MbwdU-dHA_eHZDd6i8CRhU-IjuL-dI-Bhi6iJ-U9uUHQBR09Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+Empirical+Bayes+Modeling+for+Improved+Estimation+of+Toxicant+Formulations+to+Suppress+Parasitic+Sea+Lamprey+in+the+Upper+Great+Lakes&rft.jtitle=Biometrics&rft.au=Hatfield%2C+Laura+A.&rft.au=Gutreuter%2C+Steve&rft.au=Boogaard%2C+Michael+A.&rft.au=Carlin%2C+Bradley+P.&rft.date=2011-09-01&rft.pub=Wiley-Blackwell&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=67&rft.issue=3&rft.spage=1153&rft.epage=1162&rft_id=info:doi/10.1111%2Fj.1541-0420.2011.01566.x&rft.externalDocID=41242565 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |