Multilevel Empirical Bayes Modeling for Improved Estimation of Toxicant Formulations to Suppress Parasitic Sea Lamprey in the Upper Great Lakes

Estimation of extreme quantal‐response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the presence of multiple covariates and complex study designs. Accurate and precise estimates of the LC99.9 for mixtures of toxicants are critical to...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 67; no. 3; pp. 1153 - 1162
Main Authors Hatfield, Laura A., Gutreuter, Steve, Boogaard, Michael A., Carlin, Bradley P.
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.09.2011
Wiley-Blackwell
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/j.1541-0420.2011.01566.x

Cover

Loading…
Abstract Estimation of extreme quantal‐response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the presence of multiple covariates and complex study designs. Accurate and precise estimates of the LC99.9 for mixtures of toxicants are critical to ongoing control of a parasitic invasive species, the sea lamprey, in the Laurentian Great Lakes of North America. The toxicity of those chemicals is affected by local and temporal variations in water chemistry, which must be incorporated into the modeling. We develop multilevel empirical Bayes models for data from multiple laboratory studies. Our approach yields more accurate and precise estimation of the LC99.9 compared to alternative models considered. This study demonstrates that properly incorporating hierarchical structure in laboratory data yields better estimates of LC99.9 stream treatment values that are critical to larvae control in the field. In addition, out‐of‐sample prediction of the results of in situ tests reveals the presence of a latent seasonal effect not manifest in the laboratory studies, suggesting avenues for future study and illustrating the importance of dual consideration of both experimental and observational data.
AbstractList Estimation of extreme quantal-response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the presence of multiple covariates and complex study designs. Accurate and precise estimates of the LC99.9 for mixtures of toxicants are critical to ongoing control of a parasitic invasive species, the sea lamprey, in the Laurentian Great Lakes of North America. The toxicity of those chemicals is affected by local and temporal variations in water chemistry, which must be incorporated into the modeling. We develop multilevel empirical Bayes models for data from multiple laboratory studies. Our approach yields more accurate and precise estimation of the LC99.9 compared to alternative models considered. This study demonstrates that properly incorporating hierarchical structure in laboratory data yields better estimates of LC99.9 stream treatment values that are critical to larvae control in the field. In addition, out-of-sample prediction of the results of in situ tests reveals the presence of a latent seasonal effect not manifest in the laboratory studies, suggesting avenues for future study and illustrating the importance of dual consideration of both experimental and observational data.
Estimation of extreme quantal-response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the presence of multiple covariates and complex study designs. Accurate and precise estimates of the LC99.9 for mixtures of toxicants is critical to ongoing control of a parasitic invasive species, the sea lamprey, in the Laurentian Great Lakes of North America. The toxicity of those chemicals is affected by local and temporal variations in water chemistry, which must be incorporated into the modeling. We develop multilevel empirical Bayes models for data from multiple laboratory studies. Our approach yields more accurate and precise estimation of the LC99.9 compared to alternative models considered. This study demonstrates that properly incorporating hierarchical structure in laboratory data yields better estimates of LC99.9 stream treatment values that are critical to larvae control in the field. In addition, out-of-sample prediction of the results of in situ tests reveals the presence of a latent seasonal effect not manifest in the laboratory studies, suggesting avenues for future study and illustrating the importance of dual consideration of both experimental and observational data.
Summary Estimation of extreme quantal-response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the presence of multiple covariates and complex study designs. Accurate and precise estimates of the LC99.9 for mixtures of toxicants are critical to ongoing control of a parasitic invasive species, the sea lamprey, in the Laurentian Great Lakes of North America. The toxicity of those chemicals is affected by local and temporal variations in water chemistry, which must be incorporated into the modeling. We develop multilevel empirical Bayes models for data from multiple laboratory studies. Our approach yields more accurate and precise estimation of the LC99.9 compared to alternative models considered. This study demonstrates that properly incorporating hierarchical structure in laboratory data yields better estimates of LC99.9 stream treatment values that are critical to larvae control in the field. In addition, out-of-sample prediction of the results of in situ tests reveals the presence of a latent seasonal effect not manifest in the laboratory studies, suggesting avenues for future study and illustrating the importance of dual consideration of both experimental and observational data.
Estimation of extreme quantal-response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the presence of multiple covariates and complex study designs. Accurate and precise estimates of the LC99.9 for mixtures of toxicants are critical to ongoing control of a parasitic invasive species, the sea lamprey, in the Laurentian Great Lakes of North America. The toxicity of those chemicals is affected by local and temporal variations in water chemistry, which must be incorporated into the modeling. We develop multilevel empirical Bayes models for data from multiple laboratory studies. Our approach yields more accurate and precise estimation of the LC99.9 compared to alternative models considered. This study demonstrates that properly incorporating hierarchical structure in laboratory data yields better estimates of LC99.9 stream treatment values that are critical to larvae control in the field. In addition, out-of-sample prediction of the results of in situ tests reveals the presence of a latent seasonal effect not manifest in the laboratory studies, suggesting avenues for future study and illustrating the importance of dual consideration of both experimental and observational data.Estimation of extreme quantal-response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the presence of multiple covariates and complex study designs. Accurate and precise estimates of the LC99.9 for mixtures of toxicants are critical to ongoing control of a parasitic invasive species, the sea lamprey, in the Laurentian Great Lakes of North America. The toxicity of those chemicals is affected by local and temporal variations in water chemistry, which must be incorporated into the modeling. We develop multilevel empirical Bayes models for data from multiple laboratory studies. Our approach yields more accurate and precise estimation of the LC99.9 compared to alternative models considered. This study demonstrates that properly incorporating hierarchical structure in laboratory data yields better estimates of LC99.9 stream treatment values that are critical to larvae control in the field. In addition, out-of-sample prediction of the results of in situ tests reveals the presence of a latent seasonal effect not manifest in the laboratory studies, suggesting avenues for future study and illustrating the importance of dual consideration of both experimental and observational data.
Author Gutreuter, Steve
Boogaard, Michael A.
Carlin, Bradley P.
Hatfield, Laura A.
AuthorAffiliation 2 U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603
1 Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455
AuthorAffiliation_xml – name: 2 U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603
– name: 1 Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455
Author_xml – sequence: 1
  givenname: Laura A.
  surname: Hatfield
  fullname: Hatfield, Laura A.
– sequence: 2
  givenname: Steve
  surname: Gutreuter
  fullname: Gutreuter, Steve
– sequence: 3
  givenname: Michael A.
  surname: Boogaard
  fullname: Boogaard, Michael A.
– sequence: 4
  givenname: Bradley P.
  surname: Carlin
  fullname: Carlin, Bradley P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21361894$$D View this record in MEDLINE/PubMed
BookMark eNqNk99u0zAUxiM0xLrBIwAWN3CTYsexk9wgsakrlVo26Cq4s9zkpHOXxMF2SvsUvDLOOsqfC8A3sfP9zmedky8nwVGjGwgCRPCQ-PV6PSQsJiGOIzyMMCFDTBjnw-2DYHAQjoIBxpiHNCafj4MTa9f-mDEcPQqOI0I5SbN4EHybdZVTFWygQqO6VUblskJncgcWzXQBlWpWqNQGTerW6A0UaGSdqqVTukG6RNd66ysahy60qbvq7r1FTqN517YGrEVX0kirnMrRHCSaSu8DO6Qa5G4ALdoWDBobkM5Lt2AfBw9LWVl4cv88DRYXo-vzd-H0cjw5fzsNcxZzHhaSLPOYLVmxZJTHNKVlKSFiaY6jKE9YQjmNSEmXQOM0yXkChKUZ5iVOSmAF0NPgzd637ZY1FDk0zshKtMb3ZnZCSyV-Vxp1I1Z6I6iff8qxN3h5b2D0lw6sE7WyOVSVbEB3VvS3JTxjxJOv_koSzinHEU7wv1HKkzglcco9-uIPdK070_iZiTTNMkISSj307NcuD-39-P4eSPdAbrS1BsoDQrDooybWok-U6BMl-qiJu6iJ7c8JfvXx2f13nTibXM76rTd4ujdYW6fNwSAmURwxzrwe7nVlHWwPujS3gic0YeLT-7HIEnKFP34gYur553u-lFrIlVFWLOb-atb_BjxLGf0OZAL8Eg
CODEN BIOMA5
Cites_doi 10.1139/f68-063
10.1897/06-630R.1
10.1897/02-501
10.1023/A:1008929526011
10.2307/1390675
10.18637/jss.v012.i03
10.1139/f07-082
10.1577/M06-178.1
10.1146/annurev.pa.14.040174.000403
10.1214/aos/1176325625
10.1111/1467-9868.00353
10.1214/ss/1177011136
10.1002/sim.3680
10.1139/f80-222
10.2307/2531147
10.1016/S0380-1330(03)70512-7
10.1016/j.ecolecon.2004.10.002
ContentType Journal Article
Copyright 2011 International Biometric Society
2011, The International Biometric Society
2011, The International Biometric Society.
Copyright_xml – notice: 2011 International Biometric Society
– notice: 2011, The International Biometric Society
– notice: 2011, The International Biometric Society.
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7U7
C1K
7S9
L.6
7X8
5PM
DOI 10.1111/j.1541-0420.2011.01566.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
Toxicology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
Toxicology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE


ProQuest Computer Science Collection
AGRICOLA

MEDLINE - Academic
Toxicology Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 1162
ExternalDocumentID PMC3111860
2453726651
21361894
10_1111_j_1541_0420_2011_01566_x
BIOM1566
41242565
ark_67375_WNG_971P0RQ1_L
US201500066985
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations North America
Great Lakes
GeographicLocations_xml – name: Great Lakes
– name: North America
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA095955
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEQDE
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFKRA
AFVYC
AFWVQ
AFZJQ
AGLNM
AGTJU
AHMBA
AIAGR
AIHAF
AIURR
AIWBW
AJAOE
AJBDE
AJNCP
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
3V.
AAPXW
ADACV
AELPN
AEUQT
AFFTP
AFPWT
AIBGX
BSCLL
ESTFP
JSODD
VQA
WRC
AAMMB
AEFGJ
AGORE
AGQPQ
AGXDD
AIDQK
AIDYY
AAYXX
AHGBF
AJBYB
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
H13
NPM
PJZUB
PPXIY
PQGLB
JQ2
7U7
C1K
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c5466-da1bc45b5db5364383ffae258c022c75736321f3be3487c67e158906f07fe5de3
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Thu Aug 21 18:26:13 EDT 2025
Fri Jul 11 16:04:10 EDT 2025
Fri Jul 11 18:25:58 EDT 2025
Tue Aug 05 09:57:37 EDT 2025
Wed Aug 13 08:51:53 EDT 2025
Mon Jul 21 05:56:38 EDT 2025
Tue Jul 01 00:58:01 EDT 2025
Wed Jan 22 16:26:56 EST 2025
Thu Jul 03 21:22:20 EDT 2025
Wed Oct 30 09:53:42 EDT 2024
Thu Apr 03 09:42:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
2011, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5466-da1bc45b5db5364383ffae258c022c75736321f3be3487c67e158906f07fe5de3
Notes http://dx.doi.org/10.1111/j.1541-0420.2011.01566.x
istex:DAC46107E222D0A6A204D4170A87A690EDF15416
ark:/67375/WNG-971P0RQ1-L
ArticleID:BIOM1566
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 21361894
PQID 889911733
PQPubID 35366
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3111860
proquest_miscellaneous_890676951
proquest_miscellaneous_1663602070
proquest_miscellaneous_1367481486
proquest_journals_889911733
pubmed_primary_21361894
crossref_primary_10_1111_j_1541_0420_2011_01566_x
wiley_primary_10_1111_j_1541_0420_2011_01566_x_BIOM1566
jstor_primary_41242565
istex_primary_ark_67375_WNG_971P0RQ1_L
fao_agris_US201500066985
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2011
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: September 2011
PublicationDecade 2010
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: England
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2011
Publisher Blackwell Publishing Inc
Wiley-Blackwell
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Inc
– name: Wiley-Blackwell
– name: Blackwell Publishing Ltd
References Brooks, S. and Gelman, A. (1997). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 7, 434-455.
Smith, B. and Tibbles, J. (1980). Sea lamprey (Petromyzon marinus) in lakes Huron, Michigan and Superior: History of invasion and control, 1936-78. Canadian Journal of Fisheries and Aquatic Sciences 37, 1780-1801.
Stiratelli, R., Laird, N., and Ware, J. (1984). Random-effects models for serial observations with binary response. Biometrics 40, 961-971.
Smith, S. (1968). Species succession and fishery exploitation in the Great Lakes. Journal of the Fisheries Research Board of Canada 25, 667-693.
Yang, R. and Berger, J. (1994). Estimation of a covariance matrix using the reference prior. Annals of Statistics 22, 1195-1211.
Scholefield, R., Slaght, K., and Stephens, B. (2008). Seasonal variation in sensitivity of larval sea lampreys to the lampricide 3-trifluoromethyl-4-nitrophenol. North American Journal of Fisheries Management 28, 1609-1617.
Bills, T., Boogaard, M., Johnson, D., Brege, D., Scholefield, R., Westman, R., and Stephens, B. (2003). Development of a pH/alkalinity treatment model for applications of the lampricide TFM to streams tributary to the Great Lakes. Journal of Great Lakes Research 29, 510-520.
Spiegelhalter, D., Best, N., Carlin, B., and van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B 64, 583-639.
Gelderen, E. V., Ryan, A., Tomasso, J., and Klaine, S. (2003). Influence of dissolved organic matter source on silver toxicity to Pimephales pomelas. Environmental Toxicology and Chemistry 22, 2746-2751.
Gelman, A. and Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statistical Science 7, 457-472.
Hunn, J. and Allen, J. (1974). Movement of drugs across the gills of fishes. Annual Review of Pharmacology 14, 45-57.
Davidian, M. and Giltinan, D. (1995). Nonlinear Models of Repeated Measurement Data. Boca Raton , Florida : Chapman & Hall/CRC.
Wilkie, M., Holmes, J., and Youson, J. (2007). The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) interferes with intermediary metabolism and glucose homeostasis, but not with ion balance, in larval sea lamprey (Petromyzon marinus). Canadian Journal of Fisheries and Aquatic Sciences 64, 1174-1182.
Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009). The BUGS project: Evolution, critique and future directions. Statistics in Medicine 28, 3049-3067.
Pimentel, D., Zuniga, R., and Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52, 273-288.
Sturtz, S., Ligges, U., and Gelman, A. (2005). R2WinBUGS: A package for running WinBUGS from R. Journal of Statistical Software 12, 1-16.
Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS---a Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing 10, 325-337.
Gutreuter, S. and Boogaard, M. (2007). Prediction of lethal/effective concentration/dose in the presence of multiple auxiliary covariates and components of variance. Environmental Toxicology and Chemistry 26, 1978-1986.
1968; 25
1992; 7
1984; 40
1974; 14
1980; 37
2002; 64
2000; 10
2008; 28
2005; 52
1994; 22
1973
1995
2003; 29
2000; Volume 11.05
2007; 64
2005; 12
1997; 7
2003; 22
2007; 26
2009; 28
Gutreuter (10.1111/j.1541-0420.2011.01566.x-BIB8|cit8) 2007; 26
Davidian (10.1111/j.1541-0420.2011.01566.x-BIB5|cit5) 1995
Hunn (10.1111/j.1541-0420.2011.01566.x-BIB9|cit9) 1974; 14
Scholefield (10.1111/j.1541-0420.2011.01566.x-BIB13|cit13) 2008; 28
Gelderen (10.1111/j.1541-0420.2011.01566.x-BIB6|cit6) 2003; 22
Sturtz (10.1111/j.1541-0420.2011.01566.x-BIB18|cit18) 2005; 12
Spiegelhalter (10.1111/j.1541-0420.2011.01566.x-BIB16|cit16) 2002; 64
Stiratelli (10.1111/j.1541-0420.2011.01566.x-BIB17|cit17) 1984; 40
Yang (10.1111/j.1541-0420.2011.01566.x-BIB20|cit20) 1994; 22
Pimentel (10.1111/j.1541-0420.2011.01566.x-BIB12|cit12) 2005; 52
American Society for Testing and Materials (10.1111/j.1541-0420.2011.01566.x-BIB2|cit2) 2000; Volume 11.05
Gelman (10.1111/j.1541-0420.2011.01566.x-BIB7|cit7) 1992; 7
Smith (10.1111/j.1541-0420.2011.01566.x-BIB14|cit15) 1968; 25
Akaike (10.1111/j.1541-0420.2011.01566.x-BIB1|cit1) 1973
Lunn (10.1111/j.1541-0420.2011.01566.x-BIB11|cit11) 2009; 28
Wilkie (10.1111/j.1541-0420.2011.01566.x-BIB19|cit19) 2007; 64
Brooks (10.1111/j.1541-0420.2011.01566.x-BIB4|cit4) 1997; 7
Bills (10.1111/j.1541-0420.2011.01566.x-BIB3|cit3) 2003; 29
Lunn (10.1111/j.1541-0420.2011.01566.x-BIB10|cit10) 2000; 10
Smith (10.1111/j.1541-0420.2011.01566.x-BIB15|cit14) 1980; 37
References_xml – reference: Davidian, M. and Giltinan, D. (1995). Nonlinear Models of Repeated Measurement Data. Boca Raton , Florida : Chapman & Hall/CRC.
– reference: Spiegelhalter, D., Best, N., Carlin, B., and van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B 64, 583-639.
– reference: Bills, T., Boogaard, M., Johnson, D., Brege, D., Scholefield, R., Westman, R., and Stephens, B. (2003). Development of a pH/alkalinity treatment model for applications of the lampricide TFM to streams tributary to the Great Lakes. Journal of Great Lakes Research 29, 510-520.
– reference: Smith, S. (1968). Species succession and fishery exploitation in the Great Lakes. Journal of the Fisheries Research Board of Canada 25, 667-693.
– reference: Brooks, S. and Gelman, A. (1997). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 7, 434-455.
– reference: Smith, B. and Tibbles, J. (1980). Sea lamprey (Petromyzon marinus) in lakes Huron, Michigan and Superior: History of invasion and control, 1936-78. Canadian Journal of Fisheries and Aquatic Sciences 37, 1780-1801.
– reference: Wilkie, M., Holmes, J., and Youson, J. (2007). The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) interferes with intermediary metabolism and glucose homeostasis, but not with ion balance, in larval sea lamprey (Petromyzon marinus). Canadian Journal of Fisheries and Aquatic Sciences 64, 1174-1182.
– reference: Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS---a Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing 10, 325-337.
– reference: Hunn, J. and Allen, J. (1974). Movement of drugs across the gills of fishes. Annual Review of Pharmacology 14, 45-57.
– reference: Gelderen, E. V., Ryan, A., Tomasso, J., and Klaine, S. (2003). Influence of dissolved organic matter source on silver toxicity to Pimephales pomelas. Environmental Toxicology and Chemistry 22, 2746-2751.
– reference: Pimentel, D., Zuniga, R., and Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52, 273-288.
– reference: Scholefield, R., Slaght, K., and Stephens, B. (2008). Seasonal variation in sensitivity of larval sea lampreys to the lampricide 3-trifluoromethyl-4-nitrophenol. North American Journal of Fisheries Management 28, 1609-1617.
– reference: Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009). The BUGS project: Evolution, critique and future directions. Statistics in Medicine 28, 3049-3067.
– reference: Sturtz, S., Ligges, U., and Gelman, A. (2005). R2WinBUGS: A package for running WinBUGS from R. Journal of Statistical Software 12, 1-16.
– reference: Stiratelli, R., Laird, N., and Ware, J. (1984). Random-effects models for serial observations with binary response. Biometrics 40, 961-971.
– reference: Gutreuter, S. and Boogaard, M. (2007). Prediction of lethal/effective concentration/dose in the presence of multiple auxiliary covariates and components of variance. Environmental Toxicology and Chemistry 26, 1978-1986.
– reference: Gelman, A. and Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statistical Science 7, 457-472.
– reference: Yang, R. and Berger, J. (1994). Estimation of a covariance matrix using the reference prior. Annals of Statistics 22, 1195-1211.
– volume: 10
  start-page: 325
  year: 2000
  end-page: 337
  article-title: ‐‐‐a Bayesian modelling framework: Concepts, structure, and extensibility
  publication-title: Statistics and Computing
– volume: 64
  start-page: 583
  year: 2002
  end-page: 639
  article-title: Bayesian measures of model complexity and fit (with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 28
  start-page: 1609
  year: 2008
  end-page: 1617
  article-title: Seasonal variation in sensitivity of larval sea lampreys to the lampricide 3‐trifluoromethyl‐4‐nitrophenol
  publication-title: North American Journal of Fisheries Management
– volume: 7
  start-page: 434
  year: 1997
  end-page: 455
  article-title: General methods for monitoring convergence of iterative simulations
  publication-title: Journal of Computational and Graphical Statistics
– volume: 22
  start-page: 2746
  year: 2003
  end-page: 2751
  article-title: Influence of dissolved organic matter source on silver toxicity to
  publication-title: Environmental Toxicology and Chemistry
– volume: 14
  start-page: 45
  year: 1974
  end-page: 57
  article-title: Movement of drugs across the gills of fishes
  publication-title: Annual Review of Pharmacology
– volume: 7
  start-page: 457
  year: 1992
  end-page: 472
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Statistical Science
– volume: Volume 11.05
  start-page: 213
  year: 2000
  end-page: 233
– volume: 28
  start-page: 3049
  year: 2009
  end-page: 3067
  article-title: The project: Evolution, critique and future directions
  publication-title: Statistics in Medicine
– volume: 12
  start-page: 1
  year: 2005
  end-page: 16
  article-title: : A package for running from
  publication-title: Journal of Statistical Software
– volume: 25
  start-page: 667
  year: 1968
  end-page: 693
  article-title: Species succession and fishery exploitation in the Great Lakes
  publication-title: Journal of the Fisheries Research Board of Canada
– year: 1995
– volume: 64
  start-page: 1174
  year: 2007
  end-page: 1182
  article-title: The lampricide 3‐trifluoromethyl‐4‐nitrophenol (TFM) interferes with intermediary metabolism and glucose homeostasis, but not with ion balance, in larval sea lamprey ( )
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– start-page: 267
  year: 1973
  end-page: 281
– volume: 40
  start-page: 961
  year: 1984
  end-page: 971
  article-title: Random‐effects models for serial observations with binary response
  publication-title: Biometrics
– volume: 29
  start-page: 510
  year: 2003
  end-page: 520
  article-title: Development of a pH/alkalinity treatment model for applications of the lampricide TFM to streams tributary to the Great Lakes
  publication-title: Journal of Great Lakes Research
– volume: 26
  start-page: 1978
  year: 2007
  end-page: 1986
  article-title: Prediction of lethal/effective concentration/dose in the presence of multiple auxiliary covariates and components of variance
  publication-title: Environmental Toxicology and Chemistry
– volume: 52
  start-page: 273
  year: 2005
  end-page: 288
  article-title: Update on the environmental and economic costs associated with alien‐invasive species in the United States
  publication-title: Ecological Economics
– volume: 37
  start-page: 1780
  year: 1980
  end-page: 1801
  article-title: Sea lamprey ( ) in lakes Huron, Michigan and Superior: History of invasion and control, 1936‐78
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 22
  start-page: 1195
  year: 1994
  end-page: 1211
  article-title: Estimation of a covariance matrix using the reference prior
  publication-title: Annals of Statistics
– volume: 25
  start-page: 667
  year: 1968
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB14|cit15
  article-title: Species succession and fishery exploitation in the Great Lakes
  publication-title: Journal of the Fisheries Research Board of Canada
  doi: 10.1139/f68-063
– volume: 26
  start-page: 1978
  year: 2007
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB8|cit8
  article-title: Prediction of lethal/effective concentration/dose in the presence of multiple auxiliary covariates and components of variance
  publication-title: Environmental Toxicology and Chemistry
  doi: 10.1897/06-630R.1
– volume: 22
  start-page: 2746
  year: 2003
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB6|cit6
  article-title: Influence of dissolved organic matter source on silver toxicity to Pimephales pomelas
  publication-title: Environmental Toxicology and Chemistry
  doi: 10.1897/02-501
– volume: 10
  start-page: 325
  year: 2000
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB10|cit10
  article-title: WinBUGS---a Bayesian modelling framework: Concepts, structure, and extensibility
  publication-title: Statistics and Computing
  doi: 10.1023/A:1008929526011
– volume: 7
  start-page: 434
  year: 1997
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB4|cit4
  article-title: General methods for monitoring convergence of iterative simulations
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.2307/1390675
– volume: 12
  start-page: 1
  year: 2005
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB18|cit18
  article-title: R2WinBUGS: A package for running WinBUGS from R
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v012.i03
– volume: 64
  start-page: 1174
  year: 2007
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB19|cit19
  article-title: The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) interferes with intermediary metabolism and glucose homeostasis, but not with ion balance, in larval sea lamprey (Petromyzon marinus)
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
  doi: 10.1139/f07-082
– volume-title: Nonlinear Models of Repeated Measurement Data
  year: 1995
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB5|cit5
– volume: 28
  start-page: 1609
  year: 2008
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB13|cit13
  article-title: Seasonal variation in sensitivity of larval sea lampreys to the lampricide 3-trifluoromethyl-4-nitrophenol
  publication-title: North American Journal of Fisheries Management
  doi: 10.1577/M06-178.1
– start-page: 267
  volume-title: Second International Symposium on Information Theory
  year: 1973
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB1|cit1
– volume: 14
  start-page: 45
  year: 1974
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB9|cit9
  article-title: Movement of drugs across the gills of fishes
  publication-title: Annual Review of Pharmacology
  doi: 10.1146/annurev.pa.14.040174.000403
– volume: 22
  start-page: 1195
  year: 1994
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB20|cit20
  article-title: Estimation of a covariance matrix using the reference prior
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1176325625
– volume: 64
  start-page: 583
  year: 2002
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB16|cit16
  article-title: Bayesian measures of model complexity and fit (with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/1467-9868.00353
– volume: 7
  start-page: 457
  year: 1992
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB7|cit7
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Statistical Science
  doi: 10.1214/ss/1177011136
– volume: Volume 11.05
  start-page: 213
  volume-title: Annual Book of ASTM Standards
  year: 2000
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB2|cit2
– volume: 28
  start-page: 3049
  year: 2009
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB11|cit11
  article-title: The BUGS project: Evolution, critique and future directions
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3680
– volume: 37
  start-page: 1780
  year: 1980
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB15|cit14
  article-title: Sea lamprey (Petromyzon marinus) in lakes Huron, Michigan and Superior: History of invasion and control, 1936-78
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
  doi: 10.1139/f80-222
– volume: 40
  start-page: 961
  year: 1984
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB17|cit17
  article-title: Random-effects models for serial observations with binary response
  publication-title: Biometrics
  doi: 10.2307/2531147
– volume: 29
  start-page: 510
  year: 2003
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB3|cit3
  article-title: Development of a pH/alkalinity treatment model for applications of the lampricide TFM to streams tributary to the Great Lakes
  publication-title: Journal of Great Lakes Research
  doi: 10.1016/S0380-1330(03)70512-7
– volume: 52
  start-page: 273
  year: 2005
  ident: 10.1111/j.1541-0420.2011.01566.x-BIB12|cit12
  article-title: Update on the environmental and economic costs associated with alien-invasive species in the United States
  publication-title: Ecological Economics
  doi: 10.1016/j.ecolecon.2004.10.002
SSID ssj0009502
Score 1.961643
Snippet Estimation of extreme quantal‐response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the...
Estimation of extreme quantal-response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in the...
Summary Estimation of extreme quantal‐response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in...
Summary Estimation of extreme quantal-response statistics, such as the concentration required to kill 99.9% of test subjects (LC99.9), remains a challenge in...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1153
SubjectTerms Alkalinity
analysis
Animals
Bayes Theorem
Bayesian analysis
Bayesian networks
BIOMETRIC PRACTICE
Biometrics
Biometry
Biometry - methods
Covariance matrices
Estimating techniques
Great Lakes
Hazardous Substances
Hazardous Substances - analysis
Hazardous Substances - pharmacology
hydrochemistry
Introduced Species
Introduced Species - statistics & numerical data
invasive species
Lakes
Larvae
Lethal concentration/dose
Markov chain Monte Carlo (MCMC)
methods
Modeling
Models, Statistical
Multilevel models
Nonlinear model
North America
Parametric models
Parasites
pest control
Pesticides
Pesticides - analysis
Pesticides - toxicity
Petromyzon
Petromyzon marinus
Petromyzontidae
pharmacology
prediction
Quantal-response bioassay
seasonal variation
Seasons
Simulations
statistics
statistics & numerical data
toxic substances
toxicity
Toxicity Tests
Title Multilevel Empirical Bayes Modeling for Improved Estimation of Toxicant Formulations to Suppress Parasitic Sea Lamprey in the Upper Great Lakes
URI https://api.istex.fr/ark:/67375/WNG-971P0RQ1-L/fulltext.pdf
https://www.jstor.org/stable/41242565
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2011.01566.x
https://www.ncbi.nlm.nih.gov/pubmed/21361894
https://www.proquest.com/docview/889911733
https://www.proquest.com/docview/1367481486
https://www.proquest.com/docview/1663602070
https://www.proquest.com/docview/890676951
https://pubmed.ncbi.nlm.nih.gov/PMC3111860
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLVgEtJ44KOwLQyQkRBvqZI4tpNHhloGomNsq9ib5TgOVIWkalqp40_wl7nXSaMWBkKIt0h2nMS-vj7XOT6XkOfcZgJW9cAHA9Y-eEnuJzwyvtQ6YBm4P8nxoPDoRByP47eX_LLlP-FZmEYfottww5nh_DVOcJ3V25OcxxAKx1HQKnFiKNJHPInULcRHZ9GG_m7QCIcj1SsOL7dJPdc2tLVS3Sx0BfgVu361pi5eB0p_5VZuYl63aA3vkun6cxuuyrS_XGR98-0nJcj_0x_3yJ0W29KXjTHeJzds2SO3mmyXVz1ye9RJxNY9soswt1GJfkC-u3PAX5DARAdfZxOnW0KP9JWtKWZrwzPzFOA1bfZAbE4HcGdz6pJWBb2oVujOF3QIELxNSFbTRUUxaSluKNBTPddITzP03GqKMpNgw3RSUnglOp7N7Jy63RIomtr6IRkPBxevjv02VYRveCyEn-swMzHPeJ5xJlB-tSi0jXhiAKMYySUTLAoLllkGEZoR0oY8SQNRBLKwPLdsj-yUVWkPCEVBPp2wOMtzGaewXBeskMaYNI_yhAnjkXBtFmrWKIKojUgKxkDhGCgcA-XGQK08cgD2o_QncNxqfB7hNhOCvTThHnnhjKprS8-nSLaTXH08ea1SGZ4GZx9C9c4je87quoqYNxwAK7RwuDZD1TqgWiUQR4ehZMwjz7pS8Bz4O0iXtlrWCsX64gTCYfGHOgL15CJYFzxCf1MH-1EKQOoe2W9sv3vFCJ4RJmnsEbk1K7oKKG6-XVJOPjuRcwb9mQh4rHRG_9ddrY7evB_h5aN_vvOQ7DZ_DpBJ-JjsLOZL-wSg5yJ76pzKD_MYciM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCDEe-CiMhfFhJMRbqiSO7eSRQUsHbRnbqvXNchIHqo6kalqp45_gX-YuSaMWBkKIt0h2nOR8Pv_ucv4dIS-5iQTs6o4NCqxtsJLcDrgX21Jrh0Vg_iTHg8KDoeiN_PdjPq7LAeFZmIofogm44coo7TUucAxIb69y7oMv7HtOTcWJvkgbAOUNLPCN5QzenngbDLxORR2OyV6-O95O67lypK296nqqc0CwKPzVOnnxKlj6a3blJuott63uXXKx_uAqW2XaXi6idvztJy7I_ySRe-RODW_p60of75NrJmuRm1XBy8sWuT1oWGKLFtlFpFsRRT8g38ujwBeYw0Q7X2eTkrqEHupLU1As2IbH5ikgbFqFQUxCO3BndfCS5ik9y1do0Re0Cyi8rklW0EVOsW4pxhTosZ5rzFCL6anRFJkmQY3pJKPwSnQ0m5k5LQMm0DQ1xUMy6nbO3vTsulqEHXNfCDvRbhT7POJJxJlABtY01cbjQQwwJZZcMsE8N2WRYeCkxUIalwehI1JHpoYnhu2RnSzPzD6hyMmnA-ZHSSL9EHbslKUyjuMw8ZKAidgi7lov1KwiBVEbzhTMgcI5UDgHqpwDtbLIPiiQ0p_BdqvRqYeRJsR7YcAt8qrUqmYsPZ9ivp3k6nz4ToXSPXZOPrmqb5G9Uu2ajlg6HDArjHCw1kNV26BCBeBKu65kzCIvmlYwHvhHSGcmXxYK-fr8ADxi8Yc-AinlPNgaLEJ_0wflKAWAdYs8qpS_eUUPnuEGoW8RubUsmg7Ib77dkk2-lDznDOQZCHisLLX-r0WtDo8-DvDy8T_f-Zzc6p0N-qp_NPxwQHarHwmYWPiE7CzmS_MUkOgielZamB_w0XY9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCDQe-CiMhfFhJMRbqiSO7fSRQcsGaynbKvpmOY4DVSGpmlbq-Cf4l7lL0qiFgRDiLZIdJ7Hvzr9z7n5HyHNuYwG7uueCAGsXrCR3Ix4YV2rtsRjMn-SYKNwfiKNR-HbMx3X8E-bCVPwQzYEbakZpr1HBZ0m6reQ8BFc4DLyaiRNdkTbgyWuhAN1BgHQabBDwehVzOMZ6hf54O6rn0pG2tqqrqc4BwOLcr9axi5eh0l-DKzdBb7lr9W6T6fp7q2CVaXu5iNvm209UkP9nQu6QWzW4pS8rabxLrtisRa5X5S4vWuRmv-GILVpkF3FuRRN9j3wvE4G_YAQT7X6dTUriEnqoL2xBsVwbJs1TwNe0OgSxCe3CnVXaJc1Tep6v0J4vaA8weF2RrKCLnGLVUjxRoEM91xifZuiZ1RR5JkGI6SSj8Ep0NJvZOS2PS6Bpaov7ZNTrnr86cutaEa7hoRBuov3YhDzmScyZQP7VNNU24JEBkGIkl0ywwE9ZbBm4aEZI6_Oo44nUk6nliWV7ZCfLM7tPKDLy6YiFcZLIsAP7dcpSaYzpJEESMWEc4q_FQs0qShC14UrBGihcA4VroMo1UCuH7IP8KP0JLLcanQV4zoRorxNxh7wohaoZS8-nGG0nufo4eKM60h96px98deKQvVLqmo5YOBwQK4xwsBZDVVugQkXgSPu-ZMwhz5pWMB34P0hnNl8WCtn6wgj8YfGHPgIJ5QLYGBxCf9MH51EKgOoOeVDJfvOKATzDjzqhQ-SWVjQdkN18uyWbfC5ZzhnMZyTgsbIU-r-eanV4_L6Plw__-c6n5MbwdU-dHA_eHZDd6i8CRhU-IjuL-dI-Bhi6iJ-U9uUHQBR09Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+Empirical+Bayes+Modeling+for+Improved+Estimation+of+Toxicant+Formulations+to+Suppress+Parasitic+Sea+Lamprey+in+the+Upper+Great+Lakes&rft.jtitle=Biometrics&rft.au=Hatfield%2C+Laura+A.&rft.au=Gutreuter%2C+Steve&rft.au=Boogaard%2C+Michael+A.&rft.au=Carlin%2C+Bradley+P.&rft.date=2011-09-01&rft.pub=Wiley-Blackwell&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=67&rft.issue=3&rft.spage=1153&rft.epage=1162&rft_id=info:doi/10.1111%2Fj.1541-0420.2011.01566.x&rft.externalDocID=41242565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon