A systematic review of mechanistic models used to study avian influenza virus transmission and control

The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses...

Full description

Saved in:
Bibliographic Details
Published inVeterinary research (Paris) Vol. 54; no. 1; p. 96
Main Authors Lambert, Sébastien, Bauzile, Billy, Mugnier, Amélie, Durand, Benoit, Vergne, Timothée, Paul, Mathilde C.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 18.10.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models’ potential insights. Concerning control strategies, many models evaluated culling ( n  = 15), while vaccination received less attention ( n  = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness.
AbstractList The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models’ potential insights. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received less attention (n = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness.
The global spread of avian influenza A viruses in domestic birds is causing dramatic economic and social losses. Various mechanistic models have been developed in an attempt to better understand avian influenza transmission and to evaluate the effectiveness of control measures. However, no comprehensive review of the mechanistic approaches used currently exists. To help fill this gap, we conducted a systematic review of mechanistic models applied to real-world epidemics to (1) describe the type of models and their epidemiological context, (2) synthetise estimated values of AIV transmission parameters and (3) review the control strategies most frequently evaluated and their outcome. Fourty-five articles qualified for inclusion, that fitted the model to data and estimated parameter values (n = 42) and/or evaluated the effectiveness of control strategies (n = 21). The majority were population-based models (n = 26), followed by individual-based models (n = 15) and a few metapopulation models (n = 4). Estimated values for the transmission rate varied substantially according to epidemiological settings, virus subtypes and epidemiological units. Other parameters such as the durations of the latent and infectious periods were more frequently assumed, limiting the insights brought by mechanistic models on these. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received less attention (n = 7). According to the reviewed articles, optimal control strategies varied between virus subtypes and local conditions, and also depended on the objective. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks, while pre-emptive culling was preferred for reducing the epidemic size and duration. Earlier implementation of interventions consistently improved the efficacy of control strategies, highlighting the need for effective surveillance and epidemic preparedness. Potential improvements of mechanistic models include explicitly accounting for various transmission routes, and distinguishing poultry populations according to species and farm type. To provide insights to policy makers in a timely manner, aspects about the evaluation of control strategies that could deserve further attention include: economic evaluation, combination of strategies including vaccination, the use of optimization algorithm instead of comparing a limited set of scenarios, and real-time evaluation.
The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models' potential insights. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received less attention (n = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness. Keywords: Avian influenza, modeling, systematic review, control strategies, disease transmission, poultry, simulations, dynamics
The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models’ potential insights. Concerning control strategies, many models evaluated culling ( n  = 15), while vaccination received less attention ( n  = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness.
The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models' potential insights. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received less attention (n = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness.The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models' potential insights. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received less attention (n = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness.
Abstract The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models’ potential insights. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received less attention (n = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness.
ArticleNumber 96
Audience Academic
Author Lambert, Sébastien
Paul, Mathilde C.
Vergne, Timothée
Mugnier, Amélie
Bauzile, Billy
Durand, Benoit
Author_xml – sequence: 1
  givenname: Sébastien
  orcidid: 0000-0001-6901-373X
  surname: Lambert
  fullname: Lambert, Sébastien
– sequence: 2
  givenname: Billy
  surname: Bauzile
  fullname: Bauzile, Billy
– sequence: 3
  givenname: Amélie
  surname: Mugnier
  fullname: Mugnier, Amélie
– sequence: 4
  givenname: Benoit
  surname: Durand
  fullname: Durand, Benoit
– sequence: 5
  givenname: Timothée
  surname: Vergne
  fullname: Vergne, Timothée
– sequence: 6
  givenname: Mathilde C.
  surname: Paul
  fullname: Paul, Mathilde C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37853425$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03997785$$DView record in HAL
BookMark eNqFUk1v1DAUjFAR_YA_wAFZ4gKHFDuOv05oVQGttBIXOFuO7ex6ldglTrZafj0v3VK6KwTKwdF43iRvZs6Lk5iiL4rXBF8SIvmHTCjjosQVLTGpiCrxs-KMVEqUShB-8uT9tDjPeYMx4ZTVL4pTKiSjdcXOinaB8i6PvjdjsGjw2-DvUGpR7-3axJBntE_OdxlN2Ts0JpTHye2Q2QYTUYhtN_n406BtGKaMxsHE3IecQ4rIRIdsiuOQupfF89Z02b96OC-K758_fbu6Lpdfv9xcLZalZTXHpTRYSslJI7wUorLK4cq2mPIZU7jGzBlOnVeNtMJ71zjqOMywtmWCcUwvipu9rktmo2-H0Jthp5MJ-h5Iw0qbAXbqvGYgg3EtPcWqFsoYzBtmsMJNUytaedD6uNe6nZreO-thE9MdiB7exLDWq7TVBDPJJGWg8H6vsD6au14s9YxhqpSALLYVcN89fG1IPyafRw02Wt91Jvo0ZU0Jo4JAzP-nVlIosKpm8x-8PaJu0jREiABYChNCoAV_WCsDxkCmCfaxs6heCK5qWXOpgHX5FxY8zvcBcvZtAPxg4M1TAx8d-N0-IFR7gh1SzoNvHykE67niel9xDRXX9xXXc8TyaMiGEdo7F82E7l-jvwBwPP1r
CitedBy_id crossref_primary_10_1016_j_prevetmed_2024_106354
crossref_primary_10_1007_s00285_024_02181_x
crossref_primary_10_1098_rsif_2024_0523
crossref_primary_10_1126_sciadv_ads1267
crossref_primary_10_3390_v16111668
crossref_primary_10_1016_j_prevetmed_2025_106472
crossref_primary_10_1371_journal_pcbi_1011980
crossref_primary_10_1051_npvelsa_2023020
crossref_primary_10_1146_annurev_animal_111523_102133
crossref_primary_10_1038_s41598_025_91384_3
crossref_primary_10_1155_tbed_1393722
Cites_doi 10.1098/rstb.2018.0257
10.1637/8821-040209-Review.1
10.1371/journal.pcbi.1000683
10.1126/science.adc9450
10.1371/journal.pcbi.1006439
10.1016/j.epidem.2019.03.006
10.1038/srep02175
10.1186/1743-422X-7-331
10.1142/S0218339013400044
10.2807/1560-7917.ES.2017.22.7.30462
10.1186/s12917-016-0890-6
10.1016/j.vaccine.2009.02.085
10.1111/tbed.14675
10.1142/S1793524522500589
10.1098/rspb.2006.3609
10.3390/v13030489
10.1126/science.adg2271
10.1371/journal.pone.0230567
10.1080/03079450601161406
10.1016/j.prevetmed.2012.01.021
10.1128/mbio.00609-22
10.3201/eid2102.141268
10.1038/nature02746
10.1016/j.epidem.2010.01.002
10.1086/425583
10.1371/journal.pcbi.1006202
10.1371/journal.pone.0014582
10.1080/03079450600597956
10.1080/03079458608436328
10.1016/j.prevetmed.2014.06.008
10.3390/v11090812
10.1080/03079450410001724085
10.1371/journal.pcbi.0030071
10.1016/j.virol.2005.07.011
10.1371/journal.pone.0218202
10.1016/j.envres.2020.110465
10.1126/science.abg6302
10.1016/S0169-5347(01)02144-9
10.1016/S1473-3099(17)30323-7
10.1371/journal.pone.0177265
10.2903/sp.efsa.2017.EN-1285
10.1038/s41598-021-03284-x
10.1016/j.prevetmed.2018.05.012
10.2903/j.efsa.2023.8039
10.1637/11179-052015-ResNoteR
10.2903/j.efsa.2022.7415
10.1017/S0950268803001067
10.3382/ps/pew028
10.1126/science.1065973
10.1111/tbed.14202
10.2903/j.efsa.2022.7597
10.1637/7260-081104R
10.1016/j.prevetmed.2022.105768
10.2903/j.efsa.2022.7289
10.1080/02664763.2020.1716696
10.1007/s11250-012-0124-2
10.1016/j.biocon.2010.01.019
10.1371/journal.ppat.1000281
10.1637/9429-061710-Reg.1
10.1016/j.prevetmed.2018.09.014
10.2807/1560-7917.ES.2018.23.26.1700791
10.1111/1348-0421.12369
10.1128/JVI.79.6.3692-3702.2005
10.1016/j.idm.2018.03.004
10.3934/mbe.2019170
10.1292/jvms.15-0324
10.1016/j.prevetmed.2008.10.007
10.1093/infdis/jis757
10.1111/j.1461-0248.2009.01323.x
10.4161/viru.25710
10.2217/fmb.13.81
10.1111/rssc.12515
10.1038/d41586-022-01338-2
10.1080/03079457.2016.1142502
10.1111/tbed.12692
10.1637/10921-081914-Case
10.1126/science.1122438
10.1186/1471-2334-10-236
10.1016/j.prevetmed.2008.12.003
10.3389/fvets.2019.00248
10.1038/s41598-017-06244-6
10.1637/11126-050615-Reg.1
10.1111/tbed.12003
10.1637/0005-2086-47.s3.844
10.1016/j.vaccine.2016.02.011
10.7774/cevr.2018.7.1.1
10.1111/j.1467-8276.2007.01025.x
10.1515/jip-2012-0097
10.1016/j.epidem.2011.02.003
10.1016/j.virol.2016.04.019
10.1016/j.vaccine.2007.09.048
10.1098/rsif.2012.0022
10.1016/j.prevetmed.2015.06.006
10.1186/s12916-019-1403-9
10.1038/442757a
10.1016/j.virol.2012.08.001
10.1371/journal.pone.0045059
10.1007/s00705-010-0727-8
10.1128/JVI.01693-16
10.1136/bmj.n71
10.1016/j.epidem.2017.02.014
10.1017/S0950268808000885
10.1086/522007
10.1016/j.prevetmed.2012.06.010
10.1371/journal.pone.0026935
10.1007/s10393-017-1244-y
10.1016/j.epidem.2011.01.003
10.1371/journal.pone.0204262
10.1038/s41426-018-0130-1
10.1016/j.epidem.2017.02.007
10.1017/S0950268819000633
10.1073/pnas.0505098102
10.2903/j.efsa.2021.7108
10.3389/fvets.2021.597630
10.1371/journal.pone.0238815
10.1038/s41598-021-81254-z
10.1002/jwmg.22171
10.1038/s41598-020-68623-w
10.1016/j.tvjl.2008.02.013
10.1126/science.abo1232
10.1007/s10393-013-0861-3
10.4142/jvs.2009.10.1.53
10.3389/fvets.2020.546651
10.1515/9781400841035
10.4142/jvs.2019.20.e27
10.1016/j.sste.2012.01.002
10.1016/j.vetmic.2016.11.023
10.4142/jvs.2015.16.2.237
10.1016/j.virol.2006.01.044
ContentType Journal Article
Copyright 2023. L’Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution - NonCommercial
L’Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE) 2023
Copyright_xml – notice: 2023. L’Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution - NonCommercial
– notice: L’Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE) 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
M0S
M1P
M2P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
7S9
L.6
1XC
VOOES
5PM
DOA
DOI 10.1186/s13567-023-01219-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database



AGRICOLA

MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1297-9716
EndPage 96
ExternalDocumentID oai_doaj_org_article_5de90048e309479aa06b5a090bb4932e
PMC10585835
oai_HAL_hal_03997785v2
A769484689
37853425
10_1186_s13567_023_01219_0
Genre Systematic Review
Journal Article
GeographicLocations Netherlands
China
United States--US
Asia
Europe
Africa
GeographicLocations_xml – name: Netherlands
– name: China
– name: Asia
– name: Africa
– name: United States--US
– name: Europe
GrantInformation_xml – fundername: ;
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
88I
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFS
ACGOD
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBD
EBLON
EBS
ECGQY
EMOBN
EYRJQ
F5P
FRP
FYUFA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAG
IAO
INH
INR
ITC
KQ8
M1P
M2P
M41
M48
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RED
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
7S9
L.6
1XC
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c5460-8a088861b7e8772c9d02cf036861b90405da63de9b8c7eedbd3d6a085ff575603
IEDL.DBID M48
ISSN 1297-9716
0928-4249
IngestDate Wed Aug 27 01:11:11 EDT 2025
Thu Aug 21 18:36:02 EDT 2025
Fri May 09 12:11:34 EDT 2025
Wed Jul 30 11:01:11 EDT 2025
Fri Jul 11 16:25:45 EDT 2025
Sat Jul 26 00:29:40 EDT 2025
Tue Jun 17 22:22:28 EDT 2025
Tue Jun 10 21:21:03 EDT 2025
Mon Jul 21 06:04:31 EDT 2025
Thu Apr 24 23:09:53 EDT 2025
Tue Jul 01 03:57:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Avian influenza
dynamics
poultry
modeling
systematic review
disease transmission
control strategies
simulations
Simulations
Disease transmission
Poultry
Dynamics
Systematic review
Control strategies
Modeling
Language English
License 2023. L’Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE).
Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5460-8a088861b7e8772c9d02cf036861b90405da63de9b8c7eedbd3d6a085ff575603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
ObjectType-Review-4
content type line 23
Handling editor: Vincent Béringue.
ORCID 0000-0001-6901-373X
0000-0002-1146-9256
0000-0003-2940-8547
0000-0002-8855-3341
0000-0003-0669-1394
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13567-023-01219-0
PMID 37853425
PQID 2890111425
PQPubID 2040250
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_5de90048e309479aa06b5a090bb4932e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10585835
hal_primary_oai_HAL_hal_03997785v2
proquest_miscellaneous_3153711212
proquest_miscellaneous_2879405455
proquest_journals_2890111425
gale_infotracmisc_A769484689
gale_infotracacademiconefile_A769484689
pubmed_primary_37853425
crossref_primary_10_1186_s13567_023_01219_0
crossref_citationtrail_10_1186_s13567_023_01219_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-18
PublicationDateYYYYMMDD 2023-10-18
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-18
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Veterinary research (Paris)
PublicationTitleAlternate Vet Res
PublicationYear 2023
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References C Adlhoch (1219_CR9) 2022; 20
SJ Yoo (1219_CR15) 2018; 7
T Tiensin (1219_CR35) 2007; 196
RJF Ypma (1219_CR81) 2013; 207
A Comin (1219_CR133) 2011; 6
SM Kim (1219_CR121) 2017; 91
EM Hill (1219_CR46) 2017; 20
A Smirnova (1219_CR44) 2014; 22
DJ Alexander (1219_CR110) 1986; 15
C Rorres (1219_CR55) 2011; 3
G Zhu (1219_CR80) 2021; 198
N Tuncer (1219_CR45) 2013; 21
V Bavinck (1219_CR72) 2009; 88
E Spackman (1219_CR134) 2010; 7
RG Webster (1219_CR100) 2006; 351
R Retkute (1219_CR38) 2018; 159
C Guinat (1219_CR82) 2018; 23
MD Van Kerkhove (1219_CR29) 2011; 6
E Vynnycky (1219_CR99) 2010
G Tian (1219_CR101) 2005; 341
RD Slemons (1219_CR111) 1972; 47
MJ Pantin-Jackwood (1219_CR132) 2017; 12
STK Pelletier (1219_CR50) 2012; 44
C Rorres (1219_CR54) 2011; 55
JA van der Goot (1219_CR129) 2003; 131
ME El Zowalaty (1219_CR24) 2013; 8
I Capua (1219_CR105) 2004; 33
T Halasa (1219_CR20) 2016; 197
D-H Lee (1219_CR116) 2016; 45
BJ Miller (1219_CR10) 2022; 606
J van den Broek (1219_CR39) 2021; 48
PGT Walker (1219_CR40) 2010; 6
PJ Bonney (1219_CR56) 2018; 13
1219_CR34
EA Germeraad (1219_CR25) 2019; 11
C Kirkeby (1219_CR32) 2022; 69
A Ssematimba (1219_CR48) 2018; 65
RA Saenz (1219_CR135) 2012; 7
DE Swayne (1219_CR14) 2014; 11
S-C Park (1219_CR141) 2019; 20
JA van der Goot (1219_CR139) 2007; 25
H McCallum (1219_CR98) 2001; 16
M Gilbert (1219_CR27) 2012; 3
C Kirkeby (1219_CR97) 2021; 7
A Le Menach (1219_CR70) 2006; 273
K Gamoh (1219_CR119) 2016; 78
M Wille (1219_CR6) 2022; 376
Y Chen (1219_CR66) 2022; 15
B Olsen (1219_CR1) 2006; 312
SJ Lycett (1219_CR3) 2019; 374
E Stokstad (1219_CR16) 2022; 376
M Iqbal (1219_CR131) 2012; 433
H-M Kang (1219_CR112) 2015; 21
DE Swayne (1219_CR137) 2005; 49
WJM Probert (1219_CR96) 2018; 14
C Adlhoch (1219_CR87) 2022; 20
MP Ward (1219_CR53) 2009; 137
DR Kapczynski (1219_CR120) 2016; 34
M Andraud (1219_CR21) 2019; 6
T Vergne (1219_CR64) 2021; 68
JL Gonzales (1219_CR77) 2012; 107
C Adlhoch (1219_CR89) 2023; 21
1219_CR136
O-M Jeong (1219_CR140) 2009; 10
MEH Bos (1219_CR73) 2009; 88
CE Hauser (1219_CR95) 2009; 12
GJ Boender (1219_CR71) 2007; 3
1219_CR13
1219_CR17
JL Moore (1219_CR93) 2010; 143
1219_CR7
KA Harris (1219_CR26) 2017; 14
A Bouma (1219_CR127) 2009; 5
L Busani (1219_CR142) 2009; 181
W Shi (1219_CR5) 2021; 372
AM Ramey (1219_CR11) 2022; 86
EK Lee (1219_CR52) 2017; 2017
C Hautefeuille (1219_CR30) 2020; 15
RG Seymour (1219_CR75) 2021; 70
E-K Lee (1219_CR122) 2016; 95
D-S Yoo (1219_CR61) 2021; 11
S den Boon (1219_CR85) 2019; 17
PS Pandit (1219_CR49) 2013; 3
C-W Lee (1219_CR102) 2005; 79
G Smith (1219_CR68) 2011; 3
EP Fenichel (1219_CR94) 2007; 89
J Lee (1219_CR60) 2019; 14
A Stegeman (1219_CR23) 2010; 54
A Ssematimba (1219_CR57) 2019; 147
T Tanikawa (1219_CR115) 2016; 60
JA Backer (1219_CR74) 2015; 121
E Spackman (1219_CR106) 2016; 12
A Pohlmann (1219_CR8) 2022; 13
B Bett (1219_CR51) 2012; 61
JA van der Goot (1219_CR126) 2005; 102
I Dorigatti (1219_CR67) 2010; 2
R Salvador (1219_CR59) 2020; 15
F Mutinelli (1219_CR108) 2003; 47
PGT Walker (1219_CR36) 2012; 9
C Grund (1219_CR113) 2018; 7
MJ Keeling (1219_CR19) 2001; 294
P De Benedictis (1219_CR109) 2007; 36
ON Poetri (1219_CR128) 2009; 27
C Adlhoch (1219_CR88) 2022; 20
PJ Bonney (1219_CR76) 2021; 11
DE Swayne (1219_CR103) 2006; 35
X Wang (1219_CR4) 2017; 17
B-M Song (1219_CR114) 2015; 16
Y Wang (1219_CR28) 2014; 117
MJ Keeling (1219_CR90) 2008
NJ Savill (1219_CR138) 2006; 442
1219_CR107
A Delabouglise (1219_CR41) 2017; 7
PHF Hobbelen (1219_CR62) 2020; 10
X Zeng (1219_CR124) 2016; 60
N Marquetoux (1219_CR37) 2012; 106
A Stegeman (1219_CR69) 2004; 190
C Adlhoch (1219_CR18) 2021; 19
M Steensels (1219_CR123) 2015; 60
N Courtejoie (1219_CR22) 2018; 156
H Lee (1219_CR58) 2018; 3
1219_CR84
1219_CR83
Y-J Bae (1219_CR117) 2014; 59
R Li (1219_CR78) 2017; 22
K Bertran (1219_CR118) 2016; 494
W-H Kim (1219_CR43) 2021; 8
N Bai (1219_CR79) 2019; 16
EM Hill (1219_CR47) 2018; 14
SPS Pillai (1219_CR130) 2010; 155
T Kim (1219_CR42) 2010; 10
A de Koeijer (1219_CR31) 2017; 14
V Gamarra-Toledo (1219_CR12) 2023; 379
S Sakuma (1219_CR125) 2021; 13
MJ Page (1219_CR33) 2021; 372
KS Li (1219_CR104) 2004; 430
E-SM Abdelwhab (1219_CR2) 2013; 4
TD Hollingsworth (1219_CR86) 2017; 18
A Andronico (1219_CR63) 2019; 28
1219_CR92
Y Hayama (1219_CR65) 2022; 208
1219_CR91
References_xml – ident: 1219_CR92
– volume: 374
  start-page: 20180257
  year: 2019
  ident: 1219_CR3
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2018.0257
– volume: 54
  start-page: 707
  year: 2010
  ident: 1219_CR23
  publication-title: Avian Dis
  doi: 10.1637/8821-040209-Review.1
– volume: 6
  year: 2010
  ident: 1219_CR40
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000683
– volume: 376
  start-page: 682
  year: 2022
  ident: 1219_CR16
  publication-title: Science
  doi: 10.1126/science.adc9450
– volume: 14
  year: 2018
  ident: 1219_CR47
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006439
– ident: 1219_CR34
– volume: 28
  year: 2019
  ident: 1219_CR63
  publication-title: Epidemics
  doi: 10.1016/j.epidem.2019.03.006
– volume: 3
  start-page: 2175
  year: 2013
  ident: 1219_CR49
  publication-title: India Sci Rep
  doi: 10.1038/srep02175
– volume: 7
  start-page: 331
  year: 2010
  ident: 1219_CR134
  publication-title: Virol J
  doi: 10.1186/1743-422X-7-331
– volume: 21
  start-page: 1340004
  year: 2013
  ident: 1219_CR45
  publication-title: J Biol Syst
  doi: 10.1142/S0218339013400044
– volume: 22
  start-page: 30462
  year: 2017
  ident: 1219_CR78
  publication-title: Euro Surveill
  doi: 10.2807/1560-7917.ES.2017.22.7.30462
– volume: 12
  start-page: 260
  year: 2016
  ident: 1219_CR106
  publication-title: BMC Vet Res
  doi: 10.1186/s12917-016-0890-6
– volume: 27
  start-page: 2864
  year: 2009
  ident: 1219_CR128
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2009.02.085
– volume: 69
  start-page: 3238
  year: 2022
  ident: 1219_CR32
  publication-title: Transbound Emerg Dis
  doi: 10.1111/tbed.14675
– volume: 15
  start-page: 2250058
  year: 2022
  ident: 1219_CR66
  publication-title: Int J Biomath
  doi: 10.1142/S1793524522500589
– volume: 273
  start-page: 2467
  year: 2006
  ident: 1219_CR70
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.2006.3609
– volume: 13
  start-page: 489
  year: 2021
  ident: 1219_CR125
  publication-title: Viruses
  doi: 10.3390/v13030489
– volume: 379
  start-page: 246
  year: 2023
  ident: 1219_CR12
  publication-title: Science
  doi: 10.1126/science.adg2271
– volume: 15
  year: 2020
  ident: 1219_CR30
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0230567
– volume: 36
  start-page: 115
  year: 2007
  ident: 1219_CR109
  publication-title: Avian Pathol
  doi: 10.1080/03079450601161406
– volume: 106
  start-page: 143
  year: 2012
  ident: 1219_CR37
  publication-title: Prev Vet Med
  doi: 10.1016/j.prevetmed.2012.01.021
– volume: 13
  start-page: e0060922
  year: 2022
  ident: 1219_CR8
  publication-title: mMBio
  doi: 10.1128/mbio.00609-22
– volume: 21
  start-page: 298
  year: 2015
  ident: 1219_CR112
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid2102.141268
– volume: 430
  start-page: 209
  year: 2004
  ident: 1219_CR104
  publication-title: Nature
  doi: 10.1038/nature02746
– volume: 2
  start-page: 29
  year: 2010
  ident: 1219_CR67
  publication-title: Epidemics
  doi: 10.1016/j.epidem.2010.01.002
– ident: 1219_CR83
– volume: 190
  start-page: 2088
  year: 2004
  ident: 1219_CR69
  publication-title: J Infect Dis
  doi: 10.1086/425583
– volume: 14
  year: 2018
  ident: 1219_CR96
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006202
– volume: 6
  year: 2011
  ident: 1219_CR29
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0014582
– volume: 35
  start-page: 141
  year: 2006
  ident: 1219_CR103
  publication-title: Avian Pathol
  doi: 10.1080/03079450600597956
– volume: 15
  start-page: 647
  year: 1986
  ident: 1219_CR110
  publication-title: Avian Pathol
  doi: 10.1080/03079458608436328
– volume: 117
  start-page: 1
  year: 2014
  ident: 1219_CR28
  publication-title: Prev Vet Med
  doi: 10.1016/j.prevetmed.2014.06.008
– volume: 11
  start-page: 812
  year: 2019
  ident: 1219_CR25
  publication-title: Viruses
  doi: 10.3390/v11090812
– ident: 1219_CR17
– volume: 33
  start-page: 393
  year: 2004
  ident: 1219_CR105
  publication-title: Avian Pathol
  doi: 10.1080/03079450410001724085
– volume: 3
  year: 2007
  ident: 1219_CR71
  publication-title: PLoS Comp Biol
  doi: 10.1371/journal.pcbi.0030071
– volume: 341
  start-page: 153
  year: 2005
  ident: 1219_CR101
  publication-title: Virology
  doi: 10.1016/j.virol.2005.07.011
– volume: 14
  year: 2019
  ident: 1219_CR60
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0218202
– volume: 198
  year: 2021
  ident: 1219_CR80
  publication-title: Environ Res
  doi: 10.1016/j.envres.2020.110465
– volume: 372
  start-page: 784
  year: 2021
  ident: 1219_CR5
  publication-title: Science
  doi: 10.1126/science.abg6302
– volume: 16
  start-page: 295
  year: 2001
  ident: 1219_CR98
  publication-title: Trends Ecol Evol
  doi: 10.1016/S0169-5347(01)02144-9
– volume: 17
  start-page: 822
  year: 2017
  ident: 1219_CR4
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(17)30323-7
– volume: 12
  year: 2017
  ident: 1219_CR132
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0177265
– volume: 2017
  start-page: 1090
  year: 2017
  ident: 1219_CR52
  publication-title: AMIA Annu Symp Proc
– volume: 14
  start-page: 1285E
  year: 2017
  ident: 1219_CR31
  publication-title: EFSA Supp Publ
  doi: 10.2903/sp.efsa.2017.EN-1285
– volume: 11
  start-page: 24163
  year: 2021
  ident: 1219_CR61
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-03284-x
– volume: 156
  start-page: 113
  year: 2018
  ident: 1219_CR22
  publication-title: Prev Vet Med
  doi: 10.1016/j.prevetmed.2018.05.012
– ident: 1219_CR136
– volume: 21
  start-page: e08039
  year: 2023
  ident: 1219_CR89
  publication-title: EFSA J
  doi: 10.2903/j.efsa.2023.8039
– volume: 60
  start-page: 253
  year: 2016
  ident: 1219_CR124
  publication-title: Avian Dis
  doi: 10.1637/11179-052015-ResNoteR
– volume: 20
  start-page: 67
  year: 2022
  ident: 1219_CR88
  publication-title: EFSA J
  doi: 10.2903/j.efsa.2022.7415
– volume: 131
  start-page: 1003
  year: 2003
  ident: 1219_CR129
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268803001067
– volume: 95
  start-page: 1015
  year: 2016
  ident: 1219_CR122
  publication-title: Poult Sci
  doi: 10.3382/ps/pew028
– volume: 294
  start-page: 813
  year: 2001
  ident: 1219_CR19
  publication-title: Science
  doi: 10.1126/science.1065973
– volume: 68
  start-page: 3151
  year: 2021
  ident: 1219_CR64
  publication-title: Transbound Emerg Dis
  doi: 10.1111/tbed.14202
– ident: 1219_CR91
– volume: 20
  start-page: e07597
  year: 2022
  ident: 1219_CR9
  publication-title: EFSA J
  doi: 10.2903/j.efsa.2022.7597
– volume-title: An introduction to infectious disease modelling
  year: 2010
  ident: 1219_CR99
– volume: 49
  start-page: 81
  year: 2005
  ident: 1219_CR137
  publication-title: Avian Dis
  doi: 10.1637/7260-081104R
– volume: 208
  year: 2022
  ident: 1219_CR65
  publication-title: Prev Vet Med
  doi: 10.1016/j.prevetmed.2022.105768
– volume: 20
  start-page: 64
  year: 2022
  ident: 1219_CR87
  publication-title: EFSA J
  doi: 10.2903/j.efsa.2022.7289
– volume: 48
  start-page: 176
  year: 2021
  ident: 1219_CR39
  publication-title: J Appl Stat
  doi: 10.1080/02664763.2020.1716696
– volume: 44
  start-page: 1681
  year: 2012
  ident: 1219_CR50
  publication-title: Trop Anim Health Prod
  doi: 10.1007/s11250-012-0124-2
– volume: 143
  start-page: 1068
  year: 2010
  ident: 1219_CR93
  publication-title: Biol Conserv
  doi: 10.1016/j.biocon.2010.01.019
– volume: 5
  year: 2009
  ident: 1219_CR127
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000281
– volume: 55
  start-page: 35
  year: 2011
  ident: 1219_CR54
  publication-title: Avian Dis
  doi: 10.1637/9429-061710-Reg.1
– volume: 159
  start-page: 171
  year: 2018
  ident: 1219_CR38
  publication-title: Prev Vet Med
  doi: 10.1016/j.prevetmed.2018.09.014
– volume: 23
  start-page: 1700791
  year: 2018
  ident: 1219_CR82
  publication-title: Euro Surveill
  doi: 10.2807/1560-7917.ES.2018.23.26.1700791
– volume: 60
  start-page: 243
  year: 2016
  ident: 1219_CR115
  publication-title: Microbiol Immunol
  doi: 10.1111/1348-0421.12369
– volume: 79
  start-page: 3692
  year: 2005
  ident: 1219_CR102
  publication-title: J Virol
  doi: 10.1128/JVI.79.6.3692-3702.2005
– volume: 3
  start-page: 35
  year: 2018
  ident: 1219_CR58
  publication-title: Infect Dis Model
  doi: 10.1016/j.idm.2018.03.004
– volume: 16
  start-page: 3393
  year: 2019
  ident: 1219_CR79
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2019170
– volume: 78
  start-page: 139
  year: 2016
  ident: 1219_CR119
  publication-title: J Vet Med Sci
  doi: 10.1292/jvms.15-0324
– volume: 47
  start-page: 521
  year: 1972
  ident: 1219_CR111
  publication-title: Bull World Health Organ
– volume: 88
  start-page: 247
  year: 2009
  ident: 1219_CR72
  publication-title: Prev Vet Med
  doi: 10.1016/j.prevetmed.2008.10.007
– volume: 207
  start-page: 730
  year: 2013
  ident: 1219_CR81
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jis757
– volume: 12
  start-page: 683
  year: 2009
  ident: 1219_CR95
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2009.01323.x
– volume: 4
  start-page: 441
  year: 2013
  ident: 1219_CR2
  publication-title: Virulence
  doi: 10.4161/viru.25710
– volume: 8
  start-page: 1209
  year: 2013
  ident: 1219_CR24
  publication-title: Future Microbiol
  doi: 10.2217/fmb.13.81
– volume: 70
  start-page: 1323
  year: 2021
  ident: 1219_CR75
  publication-title: J R Stat Soc Ser C Appl Stat
  doi: 10.1111/rssc.12515
– volume: 606
  start-page: 18
  year: 2022
  ident: 1219_CR10
  publication-title: Nature
  doi: 10.1038/d41586-022-01338-2
– volume: 45
  start-page: 208
  year: 2016
  ident: 1219_CR116
  publication-title: Avian Pathol
  doi: 10.1080/03079457.2016.1142502
– volume: 65
  start-page: e127
  year: 2018
  ident: 1219_CR48
  publication-title: Transbound Emerg Dis
  doi: 10.1111/tbed.12692
– volume: 59
  start-page: 175
  year: 2014
  ident: 1219_CR117
  publication-title: Avian Dis
  doi: 10.1637/10921-081914-Case
– volume: 312
  start-page: 384
  year: 2006
  ident: 1219_CR1
  publication-title: Science
  doi: 10.1126/science.1122438
– volume: 10
  start-page: 236
  year: 2010
  ident: 1219_CR42
  publication-title: BMC Infect Dis
  doi: 10.1186/1471-2334-10-236
– volume: 88
  start-page: 278
  year: 2009
  ident: 1219_CR73
  publication-title: Prev Vet Med
  doi: 10.1016/j.prevetmed.2008.12.003
– volume: 6
  start-page: 248
  year: 2019
  ident: 1219_CR21
  publication-title: Front Vet Sci
  doi: 10.3389/fvets.2019.00248
– volume: 7
  start-page: 5905
  year: 2017
  ident: 1219_CR41
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-06244-6
– ident: 1219_CR107
– volume: 60
  start-page: 202
  year: 2015
  ident: 1219_CR123
  publication-title: Avian Dis
  doi: 10.1637/11126-050615-Reg.1
– volume: 61
  start-page: 60
  year: 2012
  ident: 1219_CR51
  publication-title: Transbound Emerg Dis
  doi: 10.1111/tbed.12003
– volume: 47
  start-page: 844
  year: 2003
  ident: 1219_CR108
  publication-title: Avian Dis
  doi: 10.1637/0005-2086-47.s3.844
– volume: 34
  start-page: 1575
  year: 2016
  ident: 1219_CR120
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2016.02.011
– volume: 7
  start-page: 1
  year: 2018
  ident: 1219_CR15
  publication-title: Clin Exp Vaccine Res
  doi: 10.7774/cevr.2018.7.1.1
– volume: 89
  start-page: 904
  year: 2007
  ident: 1219_CR94
  publication-title: Am J Agric Econ
  doi: 10.1111/j.1467-8276.2007.01025.x
– volume: 22
  start-page: 31
  year: 2014
  ident: 1219_CR44
  publication-title: J Inverse Ill-Posed Probl
  doi: 10.1515/jip-2012-0097
– volume: 3
  start-page: 61
  year: 2011
  ident: 1219_CR55
  publication-title: Epidemics
  doi: 10.1016/j.epidem.2011.02.003
– volume: 494
  start-page: 190
  year: 2016
  ident: 1219_CR118
  publication-title: Virology
  doi: 10.1016/j.virol.2016.04.019
– volume: 25
  start-page: 8318
  year: 2007
  ident: 1219_CR139
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2007.09.048
– volume: 9
  start-page: 1836
  year: 2012
  ident: 1219_CR36
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2012.0022
– volume: 121
  start-page: 142
  year: 2015
  ident: 1219_CR74
  publication-title: Prev Vet Med
  doi: 10.1016/j.prevetmed.2015.06.006
– volume: 17
  start-page: 163
  year: 2019
  ident: 1219_CR85
  publication-title: BMC Med
  doi: 10.1186/s12916-019-1403-9
– volume: 442
  start-page: 757
  year: 2006
  ident: 1219_CR138
  publication-title: Nature
  doi: 10.1038/442757a
– volume: 433
  start-page: 282
  year: 2012
  ident: 1219_CR131
  publication-title: Virology
  doi: 10.1016/j.virol.2012.08.001
– volume: 7
  year: 2012
  ident: 1219_CR135
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0045059
– volume: 155
  start-page: 1439
  year: 2010
  ident: 1219_CR130
  publication-title: Arch Virol
  doi: 10.1007/s00705-010-0727-8
– volume: 91
  start-page: e01693
  year: 2017
  ident: 1219_CR121
  publication-title: J Virol
  doi: 10.1128/JVI.01693-16
– volume: 372
  year: 2021
  ident: 1219_CR33
  publication-title: BMJ
  doi: 10.1136/bmj.n71
– volume: 18
  start-page: 1
  year: 2017
  ident: 1219_CR86
  publication-title: Epidemics
  doi: 10.1016/j.epidem.2017.02.014
– ident: 1219_CR13
– volume: 137
  start-page: 219
  year: 2009
  ident: 1219_CR53
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268808000885
– volume: 196
  start-page: 1679
  year: 2007
  ident: 1219_CR35
  publication-title: J Infect Dis
  doi: 10.1086/522007
– volume: 107
  start-page: 253
  year: 2012
  ident: 1219_CR77
  publication-title: Prev Vet Med
  doi: 10.1016/j.prevetmed.2012.06.010
– volume: 6
  year: 2011
  ident: 1219_CR133
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0026935
– volume: 14
  start-page: 342
  year: 2017
  ident: 1219_CR26
  publication-title: EcoHealth
  doi: 10.1007/s10393-017-1244-y
– ident: 1219_CR84
– volume: 3
  start-page: 71
  year: 2011
  ident: 1219_CR68
  publication-title: Epidemics
  doi: 10.1016/j.epidem.2011.01.003
– volume: 13
  year: 2018
  ident: 1219_CR56
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0204262
– volume: 7
  start-page: 132
  year: 2018
  ident: 1219_CR113
  publication-title: Emerg Microbes Infect
  doi: 10.1038/s41426-018-0130-1
– volume: 20
  start-page: 37
  year: 2017
  ident: 1219_CR46
  publication-title: Epidemics
  doi: 10.1016/j.epidem.2017.02.007
– volume: 147
  year: 2019
  ident: 1219_CR57
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268819000633
– volume: 102
  start-page: 18141
  year: 2005
  ident: 1219_CR126
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0505098102
– volume: 19
  start-page: 94
  year: 2021
  ident: 1219_CR18
  publication-title: EFSA J
  doi: 10.2903/j.efsa.2021.7108
– volume: 8
  year: 2021
  ident: 1219_CR43
  publication-title: Front Vet Sci
  doi: 10.3389/fvets.2021.597630
– volume: 15
  year: 2020
  ident: 1219_CR59
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0238815
– volume: 11
  start-page: 1602
  year: 2021
  ident: 1219_CR76
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-81254-z
– volume: 86
  year: 2022
  ident: 1219_CR11
  publication-title: J Wildl Manag
  doi: 10.1002/jwmg.22171
– volume: 10
  start-page: 12388
  year: 2020
  ident: 1219_CR62
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-68623-w
– volume: 181
  start-page: 171
  year: 2009
  ident: 1219_CR142
  publication-title: Vet J
  doi: 10.1016/j.tvjl.2008.02.013
– volume: 376
  start-page: 459
  year: 2022
  ident: 1219_CR6
  publication-title: Science
  doi: 10.1126/science.abo1232
– volume: 11
  start-page: 94
  year: 2014
  ident: 1219_CR14
  publication-title: EcoHealth
  doi: 10.1007/s10393-013-0861-3
– volume: 10
  start-page: 53
  year: 2009
  ident: 1219_CR140
  publication-title: J Vet Sci
  doi: 10.4142/jvs.2009.10.1.53
– volume: 7
  year: 2021
  ident: 1219_CR97
  publication-title: Front Vet Sci
  doi: 10.3389/fvets.2020.546651
– volume-title: Modeling infectious diseases in humans and animals
  year: 2008
  ident: 1219_CR90
  doi: 10.1515/9781400841035
– volume: 20
  start-page: e27
  year: 2019
  ident: 1219_CR141
  publication-title: J Vet Sci
  doi: 10.4142/jvs.2019.20.e27
– volume: 3
  start-page: 173
  year: 2012
  ident: 1219_CR27
  publication-title: Spat Spatio-temporal Epidemiol
  doi: 10.1016/j.sste.2012.01.002
– volume: 197
  start-page: 142
  year: 2016
  ident: 1219_CR20
  publication-title: Vet Microbiol
  doi: 10.1016/j.vetmic.2016.11.023
– volume: 16
  start-page: 237
  year: 2015
  ident: 1219_CR114
  publication-title: J Vet Sci
  doi: 10.4142/jvs.2015.16.2.237
– ident: 1219_CR7
– volume: 351
  start-page: 303
  year: 2006
  ident: 1219_CR100
  publication-title: Virology
  doi: 10.1016/j.virol.2006.01.044
SSID ssj0016354
Score 2.4068215
SecondaryResourceType review_article
Snippet The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been...
The global spread of avian influenza A viruses in domestic birds is causing dramatic economic and social losses. Various mechanistic models have been developed...
Abstract The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been...
SourceID doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 96
SubjectTerms Animal biology
Animals
Animals, Domestic
Avian flu
Avian influenza
Avian influenza viruses
Bird migration
Boolean
China
control strategies
Disease Outbreaks - veterinary
Disease transmission
Epidemics
Epidemiology
hosts
Immunization
Influenza A virus
Influenza in Birds - epidemiology
issues and policy
Life Sciences
Microbiology and Parasitology
modeling
monitoring
Mortality
Netherlands
Parameter estimation
pathogenicity
Poultry
Quantitative Methods
reproduction
Review
Simulation methods
Surveillance
Systematic review
Vaccination
Veterinary medicine and animal Health
Virology
virus transmission
Viruses
Zoonoses
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgJy4IytdCqQxC4oCiOuvYsY9LRbVClBNFvVm246grQRZ1Pw78et442aUBqVy42uPEscczz_HMM2NvfKPLZKuqALZvC-w3QmHr0BQxNrK2QmJXRPnO55_1_KL6eKkub1z1RTFhPT1wP3AnqkmW1CxJbERq673QQXlhRQgVsEci6wuft9tMDecHcKPVLkXG6JNVKRUMAvxTQRxmthAjN5TZ-vc2-e4VhUT-jTf_DJu84YfOHrD7A4Dks77jD9md1B2yw68U1ZJTa_n5cFr-iLUz_puomfdJKnzZ8u-J0n0zQzPPN-Gs-GaVGr5e8sw2y_0WSsMX_f0lPz3fLq43K74mtwa1oP9r3HcNH8LcH7OLsw9fTufFcK9CEVWlRWE8TIvRZaiTAbiOthHT2MKVUZnFqlaN1xLjHkys4UNDIxuNNqptAe60kE_YQbfs0jPGZWzjFEJhKlOl6mjRQvgUjKp8APiZsHI3zC4OpON098U3lzcfRrt-ahymxuWpcWLC3u3b_OgpN26Vfk-zt5ckuuxcACVygxK5fynRhL2luXe0qNG96IfcBHwk0WO5Wa1tBaRm8EFHI0mMehxVv4b2jDozn31yVCYABevaqO0Uz9gplxssxsrRgW9Jic1qwl7tq-nxFAXXpeWGZGA9gbHVLTISLqwGiC7xmqe9vu67I_F6md9gRpo86u-4pltcZc5xwHCjgNaf_4_hfsHuTWktUmCQOWIH6-tNeglstw7HeRn_Ak-eSWY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELbY5cIFwfIqLMggJA4oWieOE_uECmJVIZYTi3qz_ApbCZKlaXvg1zPjuFkCUq9-xHY8nvnGngchr42v8qDKMgNs32Sgb9hM1dZnznleK8ZBK0J_54sv1eKy_LQUy3Th1iezyj1PjIzadw7vyM_wQSxHx0_x7vpXhlmj8HU1pdA4IrcxdBmadNXLUeECqBGzoDGFN0igZ-ydZmR11udcAIsAiZVhVDOVsYlgivH7Ry59dIVGkv8j0H8NKf-STOf3yN0EKel8oIH75FZoT8jJN7Rzic629CK9nz8gzZzehG6mg9sK7Rr6M6ADcIzZTGNunJ5u--DppqMx_iw1OyAjuhoymvw2dLdab3u6QUEHhII3btS0nibD94fk8vzj1w-LLGVayJwoK5ZJA8xGVrmtgwS47ZRnhWtAuGGZgnMuvKm4D8pKV4NUtZ77CvqIpgG4VzH-iBy3XRueEMpd4wpoZAseSlE7BT2YCVaK0liAQzOS73-zdikMOWbD-KGjOiIrPWyNhq3RcWs0m5G3Y5_rIQjHwdbvcffGlhhAOxZ06-86nUctYDHIvQIH_bZWxrDKCsMUs7YESBtm5A3uvcZjDtNzJnkrwCIxYJae15UqAbtJWNDppCX8dTepfgXUM5nMYv5ZYxkDcFjXUuwK-MaeuHTiIb2-ofgZeTlW4-fRLq4N3RbbAD8F1C0OtOEg1GqA1TkM83ig13E6HIbncQQ5oeTJfKc17eoqRiEHYC4F4Penh-f-jNwp8JShEZA8Jceb9TY8Bxy3sS_iYf0DEsJDbQ
  priority: 102
  providerName: ProQuest
Title A systematic review of mechanistic models used to study avian influenza virus transmission and control
URI https://www.ncbi.nlm.nih.gov/pubmed/37853425
https://www.proquest.com/docview/2890111425
https://www.proquest.com/docview/2879405455
https://www.proquest.com/docview/3153711212
https://hal.science/hal-03997785
https://pubmed.ncbi.nlm.nih.gov/PMC10585835
https://doaj.org/article/5de90048e309479aa06b5a090bb4932e
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZ6SKgvCMq1UFYGIfGAAsk6vh4Q2qJWFWIrhFi0b5btOO1KJQt7Cfj1zDjJtoGq4jU-4mPG8409ByEvbCGyoPM8AWxfJqBvuERLVyTeF0zqlIFWhP7Oo1NxMs4_TPhki7TpjpoFXFyr2mE-qfH84vXPH7_eAcO_jQyvxJtFxjiwO0ifBCOU6QRU-F2QTBIZdZRfviqAcI3hpDTeKIHe0TrRXNvHHrnFJAizHLNoX5FZMbT_5gDfPkf7yX_B6d82lleE1vEdcrtBm3RYk8ddshWqfbL_FU1goh8uHTVP6_dIOaSXUZ1p7dFCZyX9FtA3OIZzpjFtzoKuFqGgyxmNoWmpXQOF0Wmd7OS3pevpfLWgS5SBQEN4GUdtVdDGJv4-GR8ffXl_kjRJGBLPc5EmysI5pETmZFCAxL0u0oEvQe7hNw1HAC-sYEXQTnkJAtcVrBDQhpclIEGRsgdkp5pV4RGhzJd-AJXcgIWcS6-hRWqDUzy3DpBSj2TtMhvfRCjHRBkXJmoqSph6lwzskom7ZNIeebVp872Oz3Fj7UPcvU1NjK0dP8zmZ6ZhVcNhMniwBQaqr9TWpsJxm-rUuRzQbuiRl7j3BmkShudt48gAk8RYWmYohc4B1imY0EGnJqy67xQ_B-rpDOZk-NHgtxRwowTqWw-gj5a4TMsdBl-HM_SC5j3ybFOM3aPJXBVmK6wDRy0Acn5DHQbyTgLizuA3D2t63QynJf4eUR1K7oy3W1JNz2OAcsDsigO0f_w_E3xC9gbIdmglpA7IznK-Ck8B6C1dn2zLieyT3cOj00-f-_G6pB85-g90j03K
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0Gq3B7ggKK-FAgaBOKCoSRwn8QGhLbTa0t0VQi3qzdiOQ1eCpGx2F8FH8Y3MOI8SkHrr1R47dmY8D3sehDxXWRxYEUUe6Pa5B_aG9kSiM8-YjCXCZ2AVYbzzdBaPT6L3p_x0g_xuY2HQrbLliY5RZ6XBO_JdfBALMPCTvzn_7mHVKHxdbUto1GRxZH_-AJOten34DvD7IgwP9o_fjr2mqoBneBT7XqrgYKVxoBObgmppROaHJgdGjm0CaJpnKmaZFTo1CUgQnbEshjE8z0G1iX0G826SrYiBKTMgW3v7sw8fu3cLEN8uYZXAOyuwbNownTTerQLGgSmBjPQwj5rw_J4odBUDOrmweYZumf_rvP-6bv4lCw9ukhuNEktHNdXdIhu22Cbbn9CzxoX30mnzYn-b5CN6kSya1oEytMzpN4shxy5LNHXVeCq6qmxGlyV1GW-pWgPh0nldQ-WXouv5YlXRJYpWIE2846OqyGjjan-HnFwJFu6SQVEW9j6hzOQmBCAdMhvxxAgY4SurUx4pDQrYkATtb5amSXyO9Te-SmcApbGsUSMBNdKhRvpD8qobc16n_bgUeg-x10Fiym7XUC6-yIYDSA6bQX5pGVjUiVDKjzVXvvC1jkCJtkPyEnEvkbHA8oxq4iNgk5iiS46SWESgLaawoZ0eJPx10-t-BtTTW8x4NJHY5oM6miQpX4cwR0tcsuFalbw4Y0PytOvG6dETr7DlCmGAg4Oezy-BYSBGE1DkA_jMvZpeu-Uw-DxzX0h7lNxbb7-nmJ-5vOdgCqQcLIYHl6_9Cbk2Pp5O5ORwdvSQXA_xxKELUrpDBsvFyj4CLXKpHzdHl5LPV80t_gDp5YC8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+review+of+mechanistic+models+used+to+study+avian+influenza+virus+transmission+and+control&rft.jtitle=Veterinary+research+%28Paris%29&rft.au=Lambert%2C+S%C3%A9bastien&rft.au=Bauzile%2C+Billy&rft.au=Mugnier%2C+Am%C3%A9lie&rft.au=Durand%2C+Benoit&rft.date=2023-10-18&rft.pub=BioMed+Central&rft.issn=0928-4249&rft.eissn=1297-9716&rft.volume=54&rft_id=info:doi/10.1186%2Fs13567-023-01219-0&rft_id=info%3Apmid%2F37853425&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03997785v2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1297-9716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1297-9716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1297-9716&client=summon