A systematic review of mechanistic models used to study avian influenza virus transmission and control
The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses...
Saved in:
Published in | Veterinary research (Paris) Vol. 54; no. 1; p. 96 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
18.10.2023
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models’ potential insights. Concerning control strategies, many models evaluated culling (
n
= 15), while vaccination received less attention (
n
= 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness. |
---|---|
AbstractList | The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models’ potential insights. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received less attention (n = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness. The global spread of avian influenza A viruses in domestic birds is causing dramatic economic and social losses. Various mechanistic models have been developed in an attempt to better understand avian influenza transmission and to evaluate the effectiveness of control measures. However, no comprehensive review of the mechanistic approaches used currently exists. To help fill this gap, we conducted a systematic review of mechanistic models applied to real-world epidemics to (1) describe the type of models and their epidemiological context, (2) synthetise estimated values of AIV transmission parameters and (3) review the control strategies most frequently evaluated and their outcome. Fourty-five articles qualified for inclusion, that fitted the model to data and estimated parameter values (n = 42) and/or evaluated the effectiveness of control strategies (n = 21). The majority were population-based models (n = 26), followed by individual-based models (n = 15) and a few metapopulation models (n = 4). Estimated values for the transmission rate varied substantially according to epidemiological settings, virus subtypes and epidemiological units. Other parameters such as the durations of the latent and infectious periods were more frequently assumed, limiting the insights brought by mechanistic models on these. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received less attention (n = 7). According to the reviewed articles, optimal control strategies varied between virus subtypes and local conditions, and also depended on the objective. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks, while pre-emptive culling was preferred for reducing the epidemic size and duration. Earlier implementation of interventions consistently improved the efficacy of control strategies, highlighting the need for effective surveillance and epidemic preparedness. Potential improvements of mechanistic models include explicitly accounting for various transmission routes, and distinguishing poultry populations according to species and farm type. To provide insights to policy makers in a timely manner, aspects about the evaluation of control strategies that could deserve further attention include: economic evaluation, combination of strategies including vaccination, the use of optimization algorithm instead of comparing a limited set of scenarios, and real-time evaluation. The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models' potential insights. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received less attention (n = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness. Keywords: Avian influenza, modeling, systematic review, control strategies, disease transmission, poultry, simulations, dynamics The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models’ potential insights. Concerning control strategies, many models evaluated culling ( n = 15), while vaccination received less attention ( n = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness. The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models' potential insights. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received less attention (n = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness.The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models' potential insights. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received less attention (n = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness. Abstract The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models’ potential insights. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received less attention (n = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness. |
ArticleNumber | 96 |
Audience | Academic |
Author | Lambert, Sébastien Paul, Mathilde C. Vergne, Timothée Mugnier, Amélie Bauzile, Billy Durand, Benoit |
Author_xml | – sequence: 1 givenname: Sébastien orcidid: 0000-0001-6901-373X surname: Lambert fullname: Lambert, Sébastien – sequence: 2 givenname: Billy surname: Bauzile fullname: Bauzile, Billy – sequence: 3 givenname: Amélie surname: Mugnier fullname: Mugnier, Amélie – sequence: 4 givenname: Benoit surname: Durand fullname: Durand, Benoit – sequence: 5 givenname: Timothée surname: Vergne fullname: Vergne, Timothée – sequence: 6 givenname: Mathilde C. surname: Paul fullname: Paul, Mathilde C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37853425$$D View this record in MEDLINE/PubMed https://hal.science/hal-03997785$$DView record in HAL |
BookMark | eNqFUk1v1DAUjFAR_YA_wAFZ4gKHFDuOv05oVQGttBIXOFuO7ex6ldglTrZafj0v3VK6KwTKwdF43iRvZs6Lk5iiL4rXBF8SIvmHTCjjosQVLTGpiCrxs-KMVEqUShB-8uT9tDjPeYMx4ZTVL4pTKiSjdcXOinaB8i6PvjdjsGjw2-DvUGpR7-3axJBntE_OdxlN2Ts0JpTHye2Q2QYTUYhtN_n406BtGKaMxsHE3IecQ4rIRIdsiuOQupfF89Z02b96OC-K758_fbu6Lpdfv9xcLZalZTXHpTRYSslJI7wUorLK4cq2mPIZU7jGzBlOnVeNtMJ71zjqOMywtmWCcUwvipu9rktmo2-H0Jthp5MJ-h5Iw0qbAXbqvGYgg3EtPcWqFsoYzBtmsMJNUytaedD6uNe6nZreO-thE9MdiB7exLDWq7TVBDPJJGWg8H6vsD6au14s9YxhqpSALLYVcN89fG1IPyafRw02Wt91Jvo0ZU0Jo4JAzP-nVlIosKpm8x-8PaJu0jREiABYChNCoAV_WCsDxkCmCfaxs6heCK5qWXOpgHX5FxY8zvcBcvZtAPxg4M1TAx8d-N0-IFR7gh1SzoNvHykE67niel9xDRXX9xXXc8TyaMiGEdo7F82E7l-jvwBwPP1r |
CitedBy_id | crossref_primary_10_1016_j_prevetmed_2024_106354 crossref_primary_10_1007_s00285_024_02181_x crossref_primary_10_1098_rsif_2024_0523 crossref_primary_10_1126_sciadv_ads1267 crossref_primary_10_3390_v16111668 crossref_primary_10_1016_j_prevetmed_2025_106472 crossref_primary_10_1371_journal_pcbi_1011980 crossref_primary_10_1051_npvelsa_2023020 crossref_primary_10_1146_annurev_animal_111523_102133 crossref_primary_10_1038_s41598_025_91384_3 crossref_primary_10_1155_tbed_1393722 |
Cites_doi | 10.1098/rstb.2018.0257 10.1637/8821-040209-Review.1 10.1371/journal.pcbi.1000683 10.1126/science.adc9450 10.1371/journal.pcbi.1006439 10.1016/j.epidem.2019.03.006 10.1038/srep02175 10.1186/1743-422X-7-331 10.1142/S0218339013400044 10.2807/1560-7917.ES.2017.22.7.30462 10.1186/s12917-016-0890-6 10.1016/j.vaccine.2009.02.085 10.1111/tbed.14675 10.1142/S1793524522500589 10.1098/rspb.2006.3609 10.3390/v13030489 10.1126/science.adg2271 10.1371/journal.pone.0230567 10.1080/03079450601161406 10.1016/j.prevetmed.2012.01.021 10.1128/mbio.00609-22 10.3201/eid2102.141268 10.1038/nature02746 10.1016/j.epidem.2010.01.002 10.1086/425583 10.1371/journal.pcbi.1006202 10.1371/journal.pone.0014582 10.1080/03079450600597956 10.1080/03079458608436328 10.1016/j.prevetmed.2014.06.008 10.3390/v11090812 10.1080/03079450410001724085 10.1371/journal.pcbi.0030071 10.1016/j.virol.2005.07.011 10.1371/journal.pone.0218202 10.1016/j.envres.2020.110465 10.1126/science.abg6302 10.1016/S0169-5347(01)02144-9 10.1016/S1473-3099(17)30323-7 10.1371/journal.pone.0177265 10.2903/sp.efsa.2017.EN-1285 10.1038/s41598-021-03284-x 10.1016/j.prevetmed.2018.05.012 10.2903/j.efsa.2023.8039 10.1637/11179-052015-ResNoteR 10.2903/j.efsa.2022.7415 10.1017/S0950268803001067 10.3382/ps/pew028 10.1126/science.1065973 10.1111/tbed.14202 10.2903/j.efsa.2022.7597 10.1637/7260-081104R 10.1016/j.prevetmed.2022.105768 10.2903/j.efsa.2022.7289 10.1080/02664763.2020.1716696 10.1007/s11250-012-0124-2 10.1016/j.biocon.2010.01.019 10.1371/journal.ppat.1000281 10.1637/9429-061710-Reg.1 10.1016/j.prevetmed.2018.09.014 10.2807/1560-7917.ES.2018.23.26.1700791 10.1111/1348-0421.12369 10.1128/JVI.79.6.3692-3702.2005 10.1016/j.idm.2018.03.004 10.3934/mbe.2019170 10.1292/jvms.15-0324 10.1016/j.prevetmed.2008.10.007 10.1093/infdis/jis757 10.1111/j.1461-0248.2009.01323.x 10.4161/viru.25710 10.2217/fmb.13.81 10.1111/rssc.12515 10.1038/d41586-022-01338-2 10.1080/03079457.2016.1142502 10.1111/tbed.12692 10.1637/10921-081914-Case 10.1126/science.1122438 10.1186/1471-2334-10-236 10.1016/j.prevetmed.2008.12.003 10.3389/fvets.2019.00248 10.1038/s41598-017-06244-6 10.1637/11126-050615-Reg.1 10.1111/tbed.12003 10.1637/0005-2086-47.s3.844 10.1016/j.vaccine.2016.02.011 10.7774/cevr.2018.7.1.1 10.1111/j.1467-8276.2007.01025.x 10.1515/jip-2012-0097 10.1016/j.epidem.2011.02.003 10.1016/j.virol.2016.04.019 10.1016/j.vaccine.2007.09.048 10.1098/rsif.2012.0022 10.1016/j.prevetmed.2015.06.006 10.1186/s12916-019-1403-9 10.1038/442757a 10.1016/j.virol.2012.08.001 10.1371/journal.pone.0045059 10.1007/s00705-010-0727-8 10.1128/JVI.01693-16 10.1136/bmj.n71 10.1016/j.epidem.2017.02.014 10.1017/S0950268808000885 10.1086/522007 10.1016/j.prevetmed.2012.06.010 10.1371/journal.pone.0026935 10.1007/s10393-017-1244-y 10.1016/j.epidem.2011.01.003 10.1371/journal.pone.0204262 10.1038/s41426-018-0130-1 10.1016/j.epidem.2017.02.007 10.1017/S0950268819000633 10.1073/pnas.0505098102 10.2903/j.efsa.2021.7108 10.3389/fvets.2021.597630 10.1371/journal.pone.0238815 10.1038/s41598-021-81254-z 10.1002/jwmg.22171 10.1038/s41598-020-68623-w 10.1016/j.tvjl.2008.02.013 10.1126/science.abo1232 10.1007/s10393-013-0861-3 10.4142/jvs.2009.10.1.53 10.3389/fvets.2020.546651 10.1515/9781400841035 10.4142/jvs.2019.20.e27 10.1016/j.sste.2012.01.002 10.1016/j.vetmic.2016.11.023 10.4142/jvs.2015.16.2.237 10.1016/j.virol.2006.01.044 |
ContentType | Journal Article |
Copyright | 2023. L’Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE). COPYRIGHT 2023 BioMed Central Ltd. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution - NonCommercial L’Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE) 2023 |
Copyright_xml | – notice: 2023. L’Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE). – notice: COPYRIGHT 2023 BioMed Central Ltd. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution - NonCommercial – notice: L’Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE) 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. M0S M1P M2P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 7S9 L.6 1XC VOOES 5PM DOA |
DOI | 10.1186/s13567-023-01219-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 1297-9716 |
EndPage | 96 |
ExternalDocumentID | oai_doaj_org_article_5de90048e309479aa06b5a090bb4932e PMC10585835 oai_HAL_hal_03997785v2 A769484689 37853425 10_1186_s13567_023_01219_0 |
Genre | Systematic Review Journal Article |
GeographicLocations | Netherlands China United States--US Asia Europe Africa |
GeographicLocations_xml | – name: Netherlands – name: China – name: Asia – name: Africa – name: United States--US – name: Europe |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 88I 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFS ACGOD ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS AZQEC BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBD EBLON EBS ECGQY EMOBN EYRJQ F5P FRP FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE IAG IAO INH INR ITC KQ8 M1P M2P M41 M48 O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RED RNS ROL RPM RSV SMD SOJ SV3 UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PMFND 3V. 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 7S9 L.6 1XC VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c5460-8a088861b7e8772c9d02cf036861b90405da63de9b8c7eedbd3d6a085ff575603 |
IEDL.DBID | M48 |
ISSN | 1297-9716 0928-4249 |
IngestDate | Wed Aug 27 01:11:11 EDT 2025 Thu Aug 21 18:36:02 EDT 2025 Fri May 09 12:11:34 EDT 2025 Wed Jul 30 11:01:11 EDT 2025 Fri Jul 11 16:25:45 EDT 2025 Sat Jul 26 00:29:40 EDT 2025 Tue Jun 17 22:22:28 EDT 2025 Tue Jun 10 21:21:03 EDT 2025 Mon Jul 21 06:04:31 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 Tue Jul 01 03:57:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Avian influenza dynamics poultry modeling systematic review disease transmission control strategies simulations Simulations Disease transmission Poultry Dynamics Systematic review Control strategies Modeling |
Language | English |
License | 2023. L’Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE). Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5460-8a088861b7e8772c9d02cf036861b90405da63de9b8c7eedbd3d6a085ff575603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 ObjectType-Review-4 content type line 23 Handling editor: Vincent Béringue. |
ORCID | 0000-0001-6901-373X 0000-0002-1146-9256 0000-0003-2940-8547 0000-0002-8855-3341 0000-0003-0669-1394 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13567-023-01219-0 |
PMID | 37853425 |
PQID | 2890111425 |
PQPubID | 2040250 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5de90048e309479aa06b5a090bb4932e pubmedcentral_primary_oai_pubmedcentral_nih_gov_10585835 hal_primary_oai_HAL_hal_03997785v2 proquest_miscellaneous_3153711212 proquest_miscellaneous_2879405455 proquest_journals_2890111425 gale_infotracmisc_A769484689 gale_infotracacademiconefile_A769484689 pubmed_primary_37853425 crossref_primary_10_1186_s13567_023_01219_0 crossref_citationtrail_10_1186_s13567_023_01219_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-18 |
PublicationDateYYYYMMDD | 2023-10-18 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Veterinary research (Paris) |
PublicationTitleAlternate | Vet Res |
PublicationYear | 2023 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | C Adlhoch (1219_CR9) 2022; 20 SJ Yoo (1219_CR15) 2018; 7 T Tiensin (1219_CR35) 2007; 196 RJF Ypma (1219_CR81) 2013; 207 A Comin (1219_CR133) 2011; 6 SM Kim (1219_CR121) 2017; 91 EM Hill (1219_CR46) 2017; 20 A Smirnova (1219_CR44) 2014; 22 DJ Alexander (1219_CR110) 1986; 15 C Rorres (1219_CR55) 2011; 3 G Zhu (1219_CR80) 2021; 198 N Tuncer (1219_CR45) 2013; 21 V Bavinck (1219_CR72) 2009; 88 E Spackman (1219_CR134) 2010; 7 RG Webster (1219_CR100) 2006; 351 R Retkute (1219_CR38) 2018; 159 C Guinat (1219_CR82) 2018; 23 MD Van Kerkhove (1219_CR29) 2011; 6 E Vynnycky (1219_CR99) 2010 G Tian (1219_CR101) 2005; 341 RD Slemons (1219_CR111) 1972; 47 MJ Pantin-Jackwood (1219_CR132) 2017; 12 STK Pelletier (1219_CR50) 2012; 44 C Rorres (1219_CR54) 2011; 55 JA van der Goot (1219_CR129) 2003; 131 ME El Zowalaty (1219_CR24) 2013; 8 I Capua (1219_CR105) 2004; 33 T Halasa (1219_CR20) 2016; 197 D-H Lee (1219_CR116) 2016; 45 BJ Miller (1219_CR10) 2022; 606 J van den Broek (1219_CR39) 2021; 48 PGT Walker (1219_CR40) 2010; 6 PJ Bonney (1219_CR56) 2018; 13 1219_CR34 EA Germeraad (1219_CR25) 2019; 11 C Kirkeby (1219_CR32) 2022; 69 A Ssematimba (1219_CR48) 2018; 65 RA Saenz (1219_CR135) 2012; 7 DE Swayne (1219_CR14) 2014; 11 S-C Park (1219_CR141) 2019; 20 JA van der Goot (1219_CR139) 2007; 25 H McCallum (1219_CR98) 2001; 16 M Gilbert (1219_CR27) 2012; 3 C Kirkeby (1219_CR97) 2021; 7 A Le Menach (1219_CR70) 2006; 273 K Gamoh (1219_CR119) 2016; 78 M Wille (1219_CR6) 2022; 376 Y Chen (1219_CR66) 2022; 15 B Olsen (1219_CR1) 2006; 312 SJ Lycett (1219_CR3) 2019; 374 E Stokstad (1219_CR16) 2022; 376 M Iqbal (1219_CR131) 2012; 433 H-M Kang (1219_CR112) 2015; 21 DE Swayne (1219_CR137) 2005; 49 WJM Probert (1219_CR96) 2018; 14 C Adlhoch (1219_CR87) 2022; 20 MP Ward (1219_CR53) 2009; 137 DR Kapczynski (1219_CR120) 2016; 34 M Andraud (1219_CR21) 2019; 6 T Vergne (1219_CR64) 2021; 68 JL Gonzales (1219_CR77) 2012; 107 C Adlhoch (1219_CR89) 2023; 21 1219_CR136 O-M Jeong (1219_CR140) 2009; 10 MEH Bos (1219_CR73) 2009; 88 CE Hauser (1219_CR95) 2009; 12 GJ Boender (1219_CR71) 2007; 3 1219_CR13 1219_CR17 JL Moore (1219_CR93) 2010; 143 1219_CR7 KA Harris (1219_CR26) 2017; 14 A Bouma (1219_CR127) 2009; 5 L Busani (1219_CR142) 2009; 181 W Shi (1219_CR5) 2021; 372 AM Ramey (1219_CR11) 2022; 86 EK Lee (1219_CR52) 2017; 2017 C Hautefeuille (1219_CR30) 2020; 15 RG Seymour (1219_CR75) 2021; 70 E-K Lee (1219_CR122) 2016; 95 D-S Yoo (1219_CR61) 2021; 11 S den Boon (1219_CR85) 2019; 17 PS Pandit (1219_CR49) 2013; 3 C-W Lee (1219_CR102) 2005; 79 G Smith (1219_CR68) 2011; 3 EP Fenichel (1219_CR94) 2007; 89 J Lee (1219_CR60) 2019; 14 A Stegeman (1219_CR23) 2010; 54 A Ssematimba (1219_CR57) 2019; 147 T Tanikawa (1219_CR115) 2016; 60 JA Backer (1219_CR74) 2015; 121 E Spackman (1219_CR106) 2016; 12 A Pohlmann (1219_CR8) 2022; 13 B Bett (1219_CR51) 2012; 61 JA van der Goot (1219_CR126) 2005; 102 I Dorigatti (1219_CR67) 2010; 2 R Salvador (1219_CR59) 2020; 15 F Mutinelli (1219_CR108) 2003; 47 PGT Walker (1219_CR36) 2012; 9 C Grund (1219_CR113) 2018; 7 MJ Keeling (1219_CR19) 2001; 294 P De Benedictis (1219_CR109) 2007; 36 ON Poetri (1219_CR128) 2009; 27 C Adlhoch (1219_CR88) 2022; 20 PJ Bonney (1219_CR76) 2021; 11 DE Swayne (1219_CR103) 2006; 35 X Wang (1219_CR4) 2017; 17 B-M Song (1219_CR114) 2015; 16 Y Wang (1219_CR28) 2014; 117 MJ Keeling (1219_CR90) 2008 NJ Savill (1219_CR138) 2006; 442 1219_CR107 A Delabouglise (1219_CR41) 2017; 7 PHF Hobbelen (1219_CR62) 2020; 10 X Zeng (1219_CR124) 2016; 60 N Marquetoux (1219_CR37) 2012; 106 A Stegeman (1219_CR69) 2004; 190 C Adlhoch (1219_CR18) 2021; 19 M Steensels (1219_CR123) 2015; 60 N Courtejoie (1219_CR22) 2018; 156 H Lee (1219_CR58) 2018; 3 1219_CR84 1219_CR83 Y-J Bae (1219_CR117) 2014; 59 R Li (1219_CR78) 2017; 22 K Bertran (1219_CR118) 2016; 494 W-H Kim (1219_CR43) 2021; 8 N Bai (1219_CR79) 2019; 16 EM Hill (1219_CR47) 2018; 14 SPS Pillai (1219_CR130) 2010; 155 T Kim (1219_CR42) 2010; 10 A de Koeijer (1219_CR31) 2017; 14 V Gamarra-Toledo (1219_CR12) 2023; 379 S Sakuma (1219_CR125) 2021; 13 MJ Page (1219_CR33) 2021; 372 KS Li (1219_CR104) 2004; 430 E-SM Abdelwhab (1219_CR2) 2013; 4 TD Hollingsworth (1219_CR86) 2017; 18 A Andronico (1219_CR63) 2019; 28 1219_CR92 Y Hayama (1219_CR65) 2022; 208 1219_CR91 |
References_xml | – ident: 1219_CR92 – volume: 374 start-page: 20180257 year: 2019 ident: 1219_CR3 publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2018.0257 – volume: 54 start-page: 707 year: 2010 ident: 1219_CR23 publication-title: Avian Dis doi: 10.1637/8821-040209-Review.1 – volume: 6 year: 2010 ident: 1219_CR40 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000683 – volume: 376 start-page: 682 year: 2022 ident: 1219_CR16 publication-title: Science doi: 10.1126/science.adc9450 – volume: 14 year: 2018 ident: 1219_CR47 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006439 – ident: 1219_CR34 – volume: 28 year: 2019 ident: 1219_CR63 publication-title: Epidemics doi: 10.1016/j.epidem.2019.03.006 – volume: 3 start-page: 2175 year: 2013 ident: 1219_CR49 publication-title: India Sci Rep doi: 10.1038/srep02175 – volume: 7 start-page: 331 year: 2010 ident: 1219_CR134 publication-title: Virol J doi: 10.1186/1743-422X-7-331 – volume: 21 start-page: 1340004 year: 2013 ident: 1219_CR45 publication-title: J Biol Syst doi: 10.1142/S0218339013400044 – volume: 22 start-page: 30462 year: 2017 ident: 1219_CR78 publication-title: Euro Surveill doi: 10.2807/1560-7917.ES.2017.22.7.30462 – volume: 12 start-page: 260 year: 2016 ident: 1219_CR106 publication-title: BMC Vet Res doi: 10.1186/s12917-016-0890-6 – volume: 27 start-page: 2864 year: 2009 ident: 1219_CR128 publication-title: Vaccine doi: 10.1016/j.vaccine.2009.02.085 – volume: 69 start-page: 3238 year: 2022 ident: 1219_CR32 publication-title: Transbound Emerg Dis doi: 10.1111/tbed.14675 – volume: 15 start-page: 2250058 year: 2022 ident: 1219_CR66 publication-title: Int J Biomath doi: 10.1142/S1793524522500589 – volume: 273 start-page: 2467 year: 2006 ident: 1219_CR70 publication-title: Proc Biol Sci doi: 10.1098/rspb.2006.3609 – volume: 13 start-page: 489 year: 2021 ident: 1219_CR125 publication-title: Viruses doi: 10.3390/v13030489 – volume: 379 start-page: 246 year: 2023 ident: 1219_CR12 publication-title: Science doi: 10.1126/science.adg2271 – volume: 15 year: 2020 ident: 1219_CR30 publication-title: PLoS ONE doi: 10.1371/journal.pone.0230567 – volume: 36 start-page: 115 year: 2007 ident: 1219_CR109 publication-title: Avian Pathol doi: 10.1080/03079450601161406 – volume: 106 start-page: 143 year: 2012 ident: 1219_CR37 publication-title: Prev Vet Med doi: 10.1016/j.prevetmed.2012.01.021 – volume: 13 start-page: e0060922 year: 2022 ident: 1219_CR8 publication-title: mMBio doi: 10.1128/mbio.00609-22 – volume: 21 start-page: 298 year: 2015 ident: 1219_CR112 publication-title: Emerg Infect Dis doi: 10.3201/eid2102.141268 – volume: 430 start-page: 209 year: 2004 ident: 1219_CR104 publication-title: Nature doi: 10.1038/nature02746 – volume: 2 start-page: 29 year: 2010 ident: 1219_CR67 publication-title: Epidemics doi: 10.1016/j.epidem.2010.01.002 – ident: 1219_CR83 – volume: 190 start-page: 2088 year: 2004 ident: 1219_CR69 publication-title: J Infect Dis doi: 10.1086/425583 – volume: 14 year: 2018 ident: 1219_CR96 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006202 – volume: 6 year: 2011 ident: 1219_CR29 publication-title: PLoS ONE doi: 10.1371/journal.pone.0014582 – volume: 35 start-page: 141 year: 2006 ident: 1219_CR103 publication-title: Avian Pathol doi: 10.1080/03079450600597956 – volume: 15 start-page: 647 year: 1986 ident: 1219_CR110 publication-title: Avian Pathol doi: 10.1080/03079458608436328 – volume: 117 start-page: 1 year: 2014 ident: 1219_CR28 publication-title: Prev Vet Med doi: 10.1016/j.prevetmed.2014.06.008 – volume: 11 start-page: 812 year: 2019 ident: 1219_CR25 publication-title: Viruses doi: 10.3390/v11090812 – ident: 1219_CR17 – volume: 33 start-page: 393 year: 2004 ident: 1219_CR105 publication-title: Avian Pathol doi: 10.1080/03079450410001724085 – volume: 3 year: 2007 ident: 1219_CR71 publication-title: PLoS Comp Biol doi: 10.1371/journal.pcbi.0030071 – volume: 341 start-page: 153 year: 2005 ident: 1219_CR101 publication-title: Virology doi: 10.1016/j.virol.2005.07.011 – volume: 14 year: 2019 ident: 1219_CR60 publication-title: PLoS ONE doi: 10.1371/journal.pone.0218202 – volume: 198 year: 2021 ident: 1219_CR80 publication-title: Environ Res doi: 10.1016/j.envres.2020.110465 – volume: 372 start-page: 784 year: 2021 ident: 1219_CR5 publication-title: Science doi: 10.1126/science.abg6302 – volume: 16 start-page: 295 year: 2001 ident: 1219_CR98 publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(01)02144-9 – volume: 17 start-page: 822 year: 2017 ident: 1219_CR4 publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(17)30323-7 – volume: 12 year: 2017 ident: 1219_CR132 publication-title: PLoS ONE doi: 10.1371/journal.pone.0177265 – volume: 2017 start-page: 1090 year: 2017 ident: 1219_CR52 publication-title: AMIA Annu Symp Proc – volume: 14 start-page: 1285E year: 2017 ident: 1219_CR31 publication-title: EFSA Supp Publ doi: 10.2903/sp.efsa.2017.EN-1285 – volume: 11 start-page: 24163 year: 2021 ident: 1219_CR61 publication-title: Sci Rep doi: 10.1038/s41598-021-03284-x – volume: 156 start-page: 113 year: 2018 ident: 1219_CR22 publication-title: Prev Vet Med doi: 10.1016/j.prevetmed.2018.05.012 – ident: 1219_CR136 – volume: 21 start-page: e08039 year: 2023 ident: 1219_CR89 publication-title: EFSA J doi: 10.2903/j.efsa.2023.8039 – volume: 60 start-page: 253 year: 2016 ident: 1219_CR124 publication-title: Avian Dis doi: 10.1637/11179-052015-ResNoteR – volume: 20 start-page: 67 year: 2022 ident: 1219_CR88 publication-title: EFSA J doi: 10.2903/j.efsa.2022.7415 – volume: 131 start-page: 1003 year: 2003 ident: 1219_CR129 publication-title: Epidemiol Infect doi: 10.1017/S0950268803001067 – volume: 95 start-page: 1015 year: 2016 ident: 1219_CR122 publication-title: Poult Sci doi: 10.3382/ps/pew028 – volume: 294 start-page: 813 year: 2001 ident: 1219_CR19 publication-title: Science doi: 10.1126/science.1065973 – volume: 68 start-page: 3151 year: 2021 ident: 1219_CR64 publication-title: Transbound Emerg Dis doi: 10.1111/tbed.14202 – ident: 1219_CR91 – volume: 20 start-page: e07597 year: 2022 ident: 1219_CR9 publication-title: EFSA J doi: 10.2903/j.efsa.2022.7597 – volume-title: An introduction to infectious disease modelling year: 2010 ident: 1219_CR99 – volume: 49 start-page: 81 year: 2005 ident: 1219_CR137 publication-title: Avian Dis doi: 10.1637/7260-081104R – volume: 208 year: 2022 ident: 1219_CR65 publication-title: Prev Vet Med doi: 10.1016/j.prevetmed.2022.105768 – volume: 20 start-page: 64 year: 2022 ident: 1219_CR87 publication-title: EFSA J doi: 10.2903/j.efsa.2022.7289 – volume: 48 start-page: 176 year: 2021 ident: 1219_CR39 publication-title: J Appl Stat doi: 10.1080/02664763.2020.1716696 – volume: 44 start-page: 1681 year: 2012 ident: 1219_CR50 publication-title: Trop Anim Health Prod doi: 10.1007/s11250-012-0124-2 – volume: 143 start-page: 1068 year: 2010 ident: 1219_CR93 publication-title: Biol Conserv doi: 10.1016/j.biocon.2010.01.019 – volume: 5 year: 2009 ident: 1219_CR127 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000281 – volume: 55 start-page: 35 year: 2011 ident: 1219_CR54 publication-title: Avian Dis doi: 10.1637/9429-061710-Reg.1 – volume: 159 start-page: 171 year: 2018 ident: 1219_CR38 publication-title: Prev Vet Med doi: 10.1016/j.prevetmed.2018.09.014 – volume: 23 start-page: 1700791 year: 2018 ident: 1219_CR82 publication-title: Euro Surveill doi: 10.2807/1560-7917.ES.2018.23.26.1700791 – volume: 60 start-page: 243 year: 2016 ident: 1219_CR115 publication-title: Microbiol Immunol doi: 10.1111/1348-0421.12369 – volume: 79 start-page: 3692 year: 2005 ident: 1219_CR102 publication-title: J Virol doi: 10.1128/JVI.79.6.3692-3702.2005 – volume: 3 start-page: 35 year: 2018 ident: 1219_CR58 publication-title: Infect Dis Model doi: 10.1016/j.idm.2018.03.004 – volume: 16 start-page: 3393 year: 2019 ident: 1219_CR79 publication-title: Math Biosci Eng doi: 10.3934/mbe.2019170 – volume: 78 start-page: 139 year: 2016 ident: 1219_CR119 publication-title: J Vet Med Sci doi: 10.1292/jvms.15-0324 – volume: 47 start-page: 521 year: 1972 ident: 1219_CR111 publication-title: Bull World Health Organ – volume: 88 start-page: 247 year: 2009 ident: 1219_CR72 publication-title: Prev Vet Med doi: 10.1016/j.prevetmed.2008.10.007 – volume: 207 start-page: 730 year: 2013 ident: 1219_CR81 publication-title: J Infect Dis doi: 10.1093/infdis/jis757 – volume: 12 start-page: 683 year: 2009 ident: 1219_CR95 publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2009.01323.x – volume: 4 start-page: 441 year: 2013 ident: 1219_CR2 publication-title: Virulence doi: 10.4161/viru.25710 – volume: 8 start-page: 1209 year: 2013 ident: 1219_CR24 publication-title: Future Microbiol doi: 10.2217/fmb.13.81 – volume: 70 start-page: 1323 year: 2021 ident: 1219_CR75 publication-title: J R Stat Soc Ser C Appl Stat doi: 10.1111/rssc.12515 – volume: 606 start-page: 18 year: 2022 ident: 1219_CR10 publication-title: Nature doi: 10.1038/d41586-022-01338-2 – volume: 45 start-page: 208 year: 2016 ident: 1219_CR116 publication-title: Avian Pathol doi: 10.1080/03079457.2016.1142502 – volume: 65 start-page: e127 year: 2018 ident: 1219_CR48 publication-title: Transbound Emerg Dis doi: 10.1111/tbed.12692 – volume: 59 start-page: 175 year: 2014 ident: 1219_CR117 publication-title: Avian Dis doi: 10.1637/10921-081914-Case – volume: 312 start-page: 384 year: 2006 ident: 1219_CR1 publication-title: Science doi: 10.1126/science.1122438 – volume: 10 start-page: 236 year: 2010 ident: 1219_CR42 publication-title: BMC Infect Dis doi: 10.1186/1471-2334-10-236 – volume: 88 start-page: 278 year: 2009 ident: 1219_CR73 publication-title: Prev Vet Med doi: 10.1016/j.prevetmed.2008.12.003 – volume: 6 start-page: 248 year: 2019 ident: 1219_CR21 publication-title: Front Vet Sci doi: 10.3389/fvets.2019.00248 – volume: 7 start-page: 5905 year: 2017 ident: 1219_CR41 publication-title: Sci Rep doi: 10.1038/s41598-017-06244-6 – ident: 1219_CR107 – volume: 60 start-page: 202 year: 2015 ident: 1219_CR123 publication-title: Avian Dis doi: 10.1637/11126-050615-Reg.1 – volume: 61 start-page: 60 year: 2012 ident: 1219_CR51 publication-title: Transbound Emerg Dis doi: 10.1111/tbed.12003 – volume: 47 start-page: 844 year: 2003 ident: 1219_CR108 publication-title: Avian Dis doi: 10.1637/0005-2086-47.s3.844 – volume: 34 start-page: 1575 year: 2016 ident: 1219_CR120 publication-title: Vaccine doi: 10.1016/j.vaccine.2016.02.011 – volume: 7 start-page: 1 year: 2018 ident: 1219_CR15 publication-title: Clin Exp Vaccine Res doi: 10.7774/cevr.2018.7.1.1 – volume: 89 start-page: 904 year: 2007 ident: 1219_CR94 publication-title: Am J Agric Econ doi: 10.1111/j.1467-8276.2007.01025.x – volume: 22 start-page: 31 year: 2014 ident: 1219_CR44 publication-title: J Inverse Ill-Posed Probl doi: 10.1515/jip-2012-0097 – volume: 3 start-page: 61 year: 2011 ident: 1219_CR55 publication-title: Epidemics doi: 10.1016/j.epidem.2011.02.003 – volume: 494 start-page: 190 year: 2016 ident: 1219_CR118 publication-title: Virology doi: 10.1016/j.virol.2016.04.019 – volume: 25 start-page: 8318 year: 2007 ident: 1219_CR139 publication-title: Vaccine doi: 10.1016/j.vaccine.2007.09.048 – volume: 9 start-page: 1836 year: 2012 ident: 1219_CR36 publication-title: J R Soc Interface doi: 10.1098/rsif.2012.0022 – volume: 121 start-page: 142 year: 2015 ident: 1219_CR74 publication-title: Prev Vet Med doi: 10.1016/j.prevetmed.2015.06.006 – volume: 17 start-page: 163 year: 2019 ident: 1219_CR85 publication-title: BMC Med doi: 10.1186/s12916-019-1403-9 – volume: 442 start-page: 757 year: 2006 ident: 1219_CR138 publication-title: Nature doi: 10.1038/442757a – volume: 433 start-page: 282 year: 2012 ident: 1219_CR131 publication-title: Virology doi: 10.1016/j.virol.2012.08.001 – volume: 7 year: 2012 ident: 1219_CR135 publication-title: PLoS ONE doi: 10.1371/journal.pone.0045059 – volume: 155 start-page: 1439 year: 2010 ident: 1219_CR130 publication-title: Arch Virol doi: 10.1007/s00705-010-0727-8 – volume: 91 start-page: e01693 year: 2017 ident: 1219_CR121 publication-title: J Virol doi: 10.1128/JVI.01693-16 – volume: 372 year: 2021 ident: 1219_CR33 publication-title: BMJ doi: 10.1136/bmj.n71 – volume: 18 start-page: 1 year: 2017 ident: 1219_CR86 publication-title: Epidemics doi: 10.1016/j.epidem.2017.02.014 – ident: 1219_CR13 – volume: 137 start-page: 219 year: 2009 ident: 1219_CR53 publication-title: Epidemiol Infect doi: 10.1017/S0950268808000885 – volume: 196 start-page: 1679 year: 2007 ident: 1219_CR35 publication-title: J Infect Dis doi: 10.1086/522007 – volume: 107 start-page: 253 year: 2012 ident: 1219_CR77 publication-title: Prev Vet Med doi: 10.1016/j.prevetmed.2012.06.010 – volume: 6 year: 2011 ident: 1219_CR133 publication-title: PLoS ONE doi: 10.1371/journal.pone.0026935 – volume: 14 start-page: 342 year: 2017 ident: 1219_CR26 publication-title: EcoHealth doi: 10.1007/s10393-017-1244-y – ident: 1219_CR84 – volume: 3 start-page: 71 year: 2011 ident: 1219_CR68 publication-title: Epidemics doi: 10.1016/j.epidem.2011.01.003 – volume: 13 year: 2018 ident: 1219_CR56 publication-title: PLoS ONE doi: 10.1371/journal.pone.0204262 – volume: 7 start-page: 132 year: 2018 ident: 1219_CR113 publication-title: Emerg Microbes Infect doi: 10.1038/s41426-018-0130-1 – volume: 20 start-page: 37 year: 2017 ident: 1219_CR46 publication-title: Epidemics doi: 10.1016/j.epidem.2017.02.007 – volume: 147 year: 2019 ident: 1219_CR57 publication-title: Epidemiol Infect doi: 10.1017/S0950268819000633 – volume: 102 start-page: 18141 year: 2005 ident: 1219_CR126 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0505098102 – volume: 19 start-page: 94 year: 2021 ident: 1219_CR18 publication-title: EFSA J doi: 10.2903/j.efsa.2021.7108 – volume: 8 year: 2021 ident: 1219_CR43 publication-title: Front Vet Sci doi: 10.3389/fvets.2021.597630 – volume: 15 year: 2020 ident: 1219_CR59 publication-title: PLoS ONE doi: 10.1371/journal.pone.0238815 – volume: 11 start-page: 1602 year: 2021 ident: 1219_CR76 publication-title: Sci Rep doi: 10.1038/s41598-021-81254-z – volume: 86 year: 2022 ident: 1219_CR11 publication-title: J Wildl Manag doi: 10.1002/jwmg.22171 – volume: 10 start-page: 12388 year: 2020 ident: 1219_CR62 publication-title: Sci Rep doi: 10.1038/s41598-020-68623-w – volume: 181 start-page: 171 year: 2009 ident: 1219_CR142 publication-title: Vet J doi: 10.1016/j.tvjl.2008.02.013 – volume: 376 start-page: 459 year: 2022 ident: 1219_CR6 publication-title: Science doi: 10.1126/science.abo1232 – volume: 11 start-page: 94 year: 2014 ident: 1219_CR14 publication-title: EcoHealth doi: 10.1007/s10393-013-0861-3 – volume: 10 start-page: 53 year: 2009 ident: 1219_CR140 publication-title: J Vet Sci doi: 10.4142/jvs.2009.10.1.53 – volume: 7 year: 2021 ident: 1219_CR97 publication-title: Front Vet Sci doi: 10.3389/fvets.2020.546651 – volume-title: Modeling infectious diseases in humans and animals year: 2008 ident: 1219_CR90 doi: 10.1515/9781400841035 – volume: 20 start-page: e27 year: 2019 ident: 1219_CR141 publication-title: J Vet Sci doi: 10.4142/jvs.2019.20.e27 – volume: 3 start-page: 173 year: 2012 ident: 1219_CR27 publication-title: Spat Spatio-temporal Epidemiol doi: 10.1016/j.sste.2012.01.002 – volume: 197 start-page: 142 year: 2016 ident: 1219_CR20 publication-title: Vet Microbiol doi: 10.1016/j.vetmic.2016.11.023 – volume: 16 start-page: 237 year: 2015 ident: 1219_CR114 publication-title: J Vet Sci doi: 10.4142/jvs.2015.16.2.237 – ident: 1219_CR7 – volume: 351 start-page: 303 year: 2006 ident: 1219_CR100 publication-title: Virology doi: 10.1016/j.virol.2006.01.044 |
SSID | ssj0016354 |
Score | 2.4068215 |
SecondaryResourceType | review_article |
Snippet | The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been... The global spread of avian influenza A viruses in domestic birds is causing dramatic economic and social losses. Various mechanistic models have been developed... Abstract The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been... |
SourceID | doaj pubmedcentral hal proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 96 |
SubjectTerms | Animal biology Animals Animals, Domestic Avian flu Avian influenza Avian influenza viruses Bird migration Boolean China control strategies Disease Outbreaks - veterinary Disease transmission Epidemics Epidemiology hosts Immunization Influenza A virus Influenza in Birds - epidemiology issues and policy Life Sciences Microbiology and Parasitology modeling monitoring Mortality Netherlands Parameter estimation pathogenicity Poultry Quantitative Methods reproduction Review Simulation methods Surveillance Systematic review Vaccination Veterinary medicine and animal Health Virology virus transmission Viruses Zoonoses |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgJy4IytdCqQxC4oCiOuvYsY9LRbVClBNFvVm246grQRZ1Pw78et442aUBqVy42uPEscczz_HMM2NvfKPLZKuqALZvC-w3QmHr0BQxNrK2QmJXRPnO55_1_KL6eKkub1z1RTFhPT1wP3AnqkmW1CxJbERq673QQXlhRQgVsEci6wuft9tMDecHcKPVLkXG6JNVKRUMAvxTQRxmthAjN5TZ-vc2-e4VhUT-jTf_DJu84YfOHrD7A4Dks77jD9md1B2yw68U1ZJTa_n5cFr-iLUz_puomfdJKnzZ8u-J0n0zQzPPN-Gs-GaVGr5e8sw2y_0WSsMX_f0lPz3fLq43K74mtwa1oP9r3HcNH8LcH7OLsw9fTufFcK9CEVWlRWE8TIvRZaiTAbiOthHT2MKVUZnFqlaN1xLjHkys4UNDIxuNNqptAe60kE_YQbfs0jPGZWzjFEJhKlOl6mjRQvgUjKp8APiZsHI3zC4OpON098U3lzcfRrt-ahymxuWpcWLC3u3b_OgpN26Vfk-zt5ckuuxcACVygxK5fynRhL2luXe0qNG96IfcBHwk0WO5Wa1tBaRm8EFHI0mMehxVv4b2jDozn31yVCYABevaqO0Uz9gplxssxsrRgW9Jic1qwl7tq-nxFAXXpeWGZGA9gbHVLTISLqwGiC7xmqe9vu67I_F6md9gRpo86u-4pltcZc5xwHCjgNaf_4_hfsHuTWktUmCQOWIH6-tNeglstw7HeRn_Ak-eSWY priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELbY5cIFwfIqLMggJA4oWieOE_uECmJVIZYTi3qz_ApbCZKlaXvg1zPjuFkCUq9-xHY8nvnGngchr42v8qDKMgNs32Sgb9hM1dZnznleK8ZBK0J_54sv1eKy_LQUy3Th1iezyj1PjIzadw7vyM_wQSxHx0_x7vpXhlmj8HU1pdA4IrcxdBmadNXLUeECqBGzoDGFN0igZ-ydZmR11udcAIsAiZVhVDOVsYlgivH7Ry59dIVGkv8j0H8NKf-STOf3yN0EKel8oIH75FZoT8jJN7Rzic629CK9nz8gzZzehG6mg9sK7Rr6M6ADcIzZTGNunJ5u--DppqMx_iw1OyAjuhoymvw2dLdab3u6QUEHhII3btS0nibD94fk8vzj1w-LLGVayJwoK5ZJA8xGVrmtgwS47ZRnhWtAuGGZgnMuvKm4D8pKV4NUtZ77CvqIpgG4VzH-iBy3XRueEMpd4wpoZAseSlE7BT2YCVaK0liAQzOS73-zdikMOWbD-KGjOiIrPWyNhq3RcWs0m5G3Y5_rIQjHwdbvcffGlhhAOxZ06-86nUctYDHIvQIH_bZWxrDKCsMUs7YESBtm5A3uvcZjDtNzJnkrwCIxYJae15UqAbtJWNDppCX8dTepfgXUM5nMYv5ZYxkDcFjXUuwK-MaeuHTiIb2-ofgZeTlW4-fRLq4N3RbbAD8F1C0OtOEg1GqA1TkM83ig13E6HIbncQQ5oeTJfKc17eoqRiEHYC4F4Penh-f-jNwp8JShEZA8Jceb9TY8Bxy3sS_iYf0DEsJDbQ priority: 102 providerName: ProQuest |
Title | A systematic review of mechanistic models used to study avian influenza virus transmission and control |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37853425 https://www.proquest.com/docview/2890111425 https://www.proquest.com/docview/2879405455 https://www.proquest.com/docview/3153711212 https://hal.science/hal-03997785 https://pubmed.ncbi.nlm.nih.gov/PMC10585835 https://doaj.org/article/5de90048e309479aa06b5a090bb4932e |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZ6SKgvCMq1UFYGIfGAAsk6vh4Q2qJWFWIrhFi0b5btOO1KJQt7Cfj1zDjJtoGq4jU-4mPG8409ByEvbCGyoPM8AWxfJqBvuERLVyTeF0zqlIFWhP7Oo1NxMs4_TPhki7TpjpoFXFyr2mE-qfH84vXPH7_eAcO_jQyvxJtFxjiwO0ifBCOU6QRU-F2QTBIZdZRfviqAcI3hpDTeKIHe0TrRXNvHHrnFJAizHLNoX5FZMbT_5gDfPkf7yX_B6d82lleE1vEdcrtBm3RYk8ddshWqfbL_FU1goh8uHTVP6_dIOaSXUZ1p7dFCZyX9FtA3OIZzpjFtzoKuFqGgyxmNoWmpXQOF0Wmd7OS3pevpfLWgS5SBQEN4GUdtVdDGJv4-GR8ffXl_kjRJGBLPc5EmysI5pETmZFCAxL0u0oEvQe7hNw1HAC-sYEXQTnkJAtcVrBDQhpclIEGRsgdkp5pV4RGhzJd-AJXcgIWcS6-hRWqDUzy3DpBSj2TtMhvfRCjHRBkXJmoqSph6lwzskom7ZNIeebVp872Oz3Fj7UPcvU1NjK0dP8zmZ6ZhVcNhMniwBQaqr9TWpsJxm-rUuRzQbuiRl7j3BmkShudt48gAk8RYWmYohc4B1imY0EGnJqy67xQ_B-rpDOZk-NHgtxRwowTqWw-gj5a4TMsdBl-HM_SC5j3ybFOM3aPJXBVmK6wDRy0Acn5DHQbyTgLizuA3D2t63QynJf4eUR1K7oy3W1JNz2OAcsDsigO0f_w_E3xC9gbIdmglpA7IznK-Ck8B6C1dn2zLieyT3cOj00-f-_G6pB85-g90j03K |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0Gq3B7ggKK-FAgaBOKCoSRwn8QGhLbTa0t0VQi3qzdiOQ1eCpGx2F8FH8Y3MOI8SkHrr1R47dmY8D3sehDxXWRxYEUUe6Pa5B_aG9kSiM8-YjCXCZ2AVYbzzdBaPT6L3p_x0g_xuY2HQrbLliY5RZ6XBO_JdfBALMPCTvzn_7mHVKHxdbUto1GRxZH_-AJOten34DvD7IgwP9o_fjr2mqoBneBT7XqrgYKVxoBObgmppROaHJgdGjm0CaJpnKmaZFTo1CUgQnbEshjE8z0G1iX0G826SrYiBKTMgW3v7sw8fu3cLEN8uYZXAOyuwbNownTTerQLGgSmBjPQwj5rw_J4odBUDOrmweYZumf_rvP-6bv4lCw9ukhuNEktHNdXdIhu22Cbbn9CzxoX30mnzYn-b5CN6kSya1oEytMzpN4shxy5LNHXVeCq6qmxGlyV1GW-pWgPh0nldQ-WXouv5YlXRJYpWIE2846OqyGjjan-HnFwJFu6SQVEW9j6hzOQmBCAdMhvxxAgY4SurUx4pDQrYkATtb5amSXyO9Te-SmcApbGsUSMBNdKhRvpD8qobc16n_bgUeg-x10Fiym7XUC6-yIYDSA6bQX5pGVjUiVDKjzVXvvC1jkCJtkPyEnEvkbHA8oxq4iNgk5iiS46SWESgLaawoZ0eJPx10-t-BtTTW8x4NJHY5oM6miQpX4cwR0tcsuFalbw4Y0PytOvG6dETr7DlCmGAg4Oezy-BYSBGE1DkA_jMvZpeu-Uw-DxzX0h7lNxbb7-nmJ-5vOdgCqQcLIYHl6_9Cbk2Pp5O5ORwdvSQXA_xxKELUrpDBsvFyj4CLXKpHzdHl5LPV80t_gDp5YC8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+review+of+mechanistic+models+used+to+study+avian+influenza+virus+transmission+and+control&rft.jtitle=Veterinary+research+%28Paris%29&rft.au=Lambert%2C+S%C3%A9bastien&rft.au=Bauzile%2C+Billy&rft.au=Mugnier%2C+Am%C3%A9lie&rft.au=Durand%2C+Benoit&rft.date=2023-10-18&rft.pub=BioMed+Central&rft.issn=0928-4249&rft.eissn=1297-9716&rft.volume=54&rft_id=info:doi/10.1186%2Fs13567-023-01219-0&rft_id=info%3Apmid%2F37853425&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03997785v2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1297-9716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1297-9716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1297-9716&client=summon |