Abrogation of USP7 is an alternative strategy to downregulate PD-L1 and sensitize gastric cancer cells to T cells killing
Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it...
Saved in:
Published in | Acta pharmaceutica Sinica. B Vol. 11; no. 3; pp. 694 - 707 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing in vitro and in vivo. Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 in vitro and in vivo. Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor.
This study supports that small molecule USP7 inhibitors may be used as novel promoter of the tumor immune response. [Display omitted] |
---|---|
AbstractList | Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing in vitro and in vivo. Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 in vitro and in vivo. Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor. Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing in vitro and in vivo. Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 in vitro and in vivo. Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor. This study supports that small molecule USP7 inhibitors may be used as novel promoter of the tumor immune response. [Display omitted] Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing in vitro and in vivo. Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 in vitro and in vivo. Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor.Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing in vitro and in vivo. Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 in vitro and in vivo. Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor. Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing in vitro and in vivo . Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 in vitro and in vivo . Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor. This study supports that small molecule USP7 inhibitors may be used as novel promoter of the tumor immune response. Image 1 Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing and . Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 and . Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor. Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing in vitro and in vivo. Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 in vitro and in vivo. Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor. |
Author | Li, Ouwen Kang, Wenting You, Yinghua He, Pengxing Liu, Hong-Min Wang, Zhiru Zheng, Yichao Wang, Junwei Suo, Zhenhe Qi, Fengyu |
Author_xml | – sequence: 1 givenname: Zhiru surname: Wang fullname: Wang, Zhiru organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China – sequence: 2 givenname: Wenting surname: Kang fullname: Kang, Wenting organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China – sequence: 3 givenname: Ouwen surname: Li fullname: Li, Ouwen organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China – sequence: 4 givenname: Fengyu surname: Qi fullname: Qi, Fengyu organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China – sequence: 5 givenname: Junwei surname: Wang fullname: Wang, Junwei organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China – sequence: 6 givenname: Yinghua surname: You fullname: You, Yinghua organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China – sequence: 7 givenname: Pengxing surname: He fullname: He, Pengxing organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China – sequence: 8 givenname: Zhenhe surname: Suo fullname: Suo, Zhenhe organization: Department of Pathology, the Norwegian Radium Hospital, Oslo University Hospital; Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0379, Norway – sequence: 9 givenname: Yichao surname: Zheng fullname: Zheng, Yichao email: yichaozheng@zzu.edu.cn organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China – sequence: 10 givenname: Hong-Min surname: Liu fullname: Liu, Hong-Min email: liuhm@zzu.edu.cn organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33777676$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UktvEzEQXqEiWkL_AAfwsZcEP9aPSAipKq9KkahEe7a83tnFYWMH2ykKvx5vkkaUQ-2DRzPzffPw97I68cFDVb0meEYwEe-WM7NOzYxiWhxkhjF_Vp1RSsiUqZqdHG3GT6vzlJa4HIEplfxFdcqYlFJIcVZtL5sYepNd8Ch06O77jUQuIeORGTJEXyL3gFKOJkO_RTmgNvz2EfrNUDzo5uN0QUp2ixL45LL7A6g3Jd1ZZI23EJGFYUgj8PZg_nTD4Hz_qnremSHB-eGdVHefP91efZ0uvn25vrpcTC2veZ6Ckp2az01Xd4YzoQRnQE1rLZsrITllQtDGWuDAMJYMy8YYShVuGkZFxwmbVNd73jaYpV5HtzJxq4NxeucIsdcmZmcH0FR2tG2YorZTdblzM7dQ27praG2YMIXrw55rvWlW0FrwZTHDI9LHEe9-6D7cazlXlGNeCN7uCWx0KTuvfYhGE6w41YqP40yqi0OJGH5tIGW9cmlcnPEQNkkXGlGYqBwne_NvN8c2Hn63JNCHaiGlCN0xhWA9qkgv9agiPapIE6LxrkX1H8i6vBNImcgNT0Pf76FQ_vPeQdTJOigqaF0Em8vC3VPwvzl84Ys |
CitedBy_id | crossref_primary_10_1002_cac2_12460 crossref_primary_10_1136_jitc_2022_006345 crossref_primary_10_1158_1541_7786_MCR_23_0113 crossref_primary_10_1186_s12967_024_05962_6 crossref_primary_10_3390_biom14091191 crossref_primary_10_1016_j_biopha_2024_116323 crossref_primary_10_1016_j_biopha_2023_114700 crossref_primary_10_1152_ajpcell_00712_2024 crossref_primary_10_1186_s12935_022_02524_y crossref_primary_10_1002_advs_202303473 crossref_primary_10_1016_j_jot_2023_05_007 crossref_primary_10_1038_s41401_024_01263_2 crossref_primary_10_3390_cancers14235831 crossref_primary_10_1016_j_gendis_2023_101158 crossref_primary_10_1016_j_molmed_2025_01_001 crossref_primary_10_1186_s13045_024_01578_x crossref_primary_10_3389_fgene_2024_1453191 crossref_primary_10_1016_j_ejmech_2024_116752 crossref_primary_10_1111_imm_13573 crossref_primary_10_1002_advs_202304521 crossref_primary_10_1080_14728222_2023_2266571 crossref_primary_10_3389_fphar_2024_1382256 crossref_primary_10_3389_fimmu_2023_1123244 crossref_primary_10_1038_s12276_022_00887_w crossref_primary_10_3389_fimmu_2023_1228200 crossref_primary_10_1007_s00018_022_04431_x crossref_primary_10_3390_ijms23031119 crossref_primary_10_3390_ijms25052939 crossref_primary_10_1038_s41467_023_44466_7 crossref_primary_10_1016_j_intimp_2024_113244 crossref_primary_10_1016_j_cmet_2024_11_012 crossref_primary_10_1016_j_apsb_2021_04_019 crossref_primary_10_1016_j_biopha_2024_117348 crossref_primary_10_1186_s11658_022_00343_7 crossref_primary_10_3389_fimmu_2022_1016817 crossref_primary_10_52547_ibj_3784 crossref_primary_10_1080_08820139_2022_2083972 crossref_primary_10_1186_s12943_024_02005_y crossref_primary_10_1016_j_semcancer_2025_02_004 crossref_primary_10_1016_j_bbcan_2024_189119 crossref_primary_10_3389_fchem_2022_1005727 crossref_primary_10_1016_j_ejmech_2024_116267 crossref_primary_10_3389_fimmu_2023_1226057 crossref_primary_10_1016_j_jbc_2022_102443 crossref_primary_10_1111_imm_13683 crossref_primary_10_3390_ijms221910800 crossref_primary_10_4240_wjgs_v16_i8_2521 crossref_primary_10_1002_ca_24057 crossref_primary_10_3389_fimmu_2024_1392546 crossref_primary_10_1016_j_bbcan_2023_188903 crossref_primary_10_1186_s12920_025_02108_5 crossref_primary_10_1021_acs_jmedchem_2c01444 crossref_primary_10_3390_cancers14225539 crossref_primary_10_3389_fimmu_2024_1436174 crossref_primary_10_1002_mco2_70036 crossref_primary_10_1038_s41418_023_01219_9 crossref_primary_10_3389_fimmu_2022_1060497 crossref_primary_10_1002_ctd2_242 crossref_primary_10_1038_s41420_023_01629_1 crossref_primary_10_1002_advs_202307899 crossref_primary_10_1186_s12935_025_03693_2 crossref_primary_10_3389_fonc_2022_920287 crossref_primary_10_1016_j_gendis_2022_01_002 crossref_primary_10_1016_j_compbiomed_2023_107068 crossref_primary_10_3389_fimmu_2023_1202633 crossref_primary_10_3389_fonc_2024_1456710 crossref_primary_10_1016_j_phrs_2025_107668 crossref_primary_10_7717_peerj_14799 crossref_primary_10_1186_s13046_023_02805_y crossref_primary_10_1186_s40164_023_00394_2 crossref_primary_10_1080_13543776_2022_2058873 crossref_primary_10_1016_j_yexcr_2023_113714 crossref_primary_10_1007_s10555_024_10174_x crossref_primary_10_3389_fimmu_2022_874589 crossref_primary_10_1186_s12943_024_02023_w crossref_primary_10_1186_s40164_024_00552_0 crossref_primary_10_1016_j_apsb_2023_07_019 |
Cites_doi | 10.1172/jci.insight.126908 10.1038/s41591-018-0014-x 10.1158/0008-5472.CAN-09-4152 10.1016/j.molcel.2018.07.030 10.1016/j.ccell.2018.01.009 10.4251/wjgo.v4.i7.156 10.1073/pnas.92.18.8493 10.1038/s41467-018-04313-6 10.1038/nrc.2016.36 10.1001/jamaoncol.2018.0013 10.1038/sj.embor.7401099 10.1007/s10120-018-00909-5 10.18632/oncotarget.10337 10.18632/oncotarget.19309 10.1038/nature14011 10.1182/blood-2008-07-168203 10.1016/j.ccell.2016.10.010 10.1158/1078-0432.CCR-12-2063 10.1136/bmj.k3529 10.1080/13543776.2018.1512706 10.1016/j.apsb.2019.07.004 10.1097/PPO.0000000000000056 10.1038/ncomms12632 10.1038/nature23643 10.1016/j.apsb.2018.08.009 10.1177/1756284819869767 10.1038/nature24006 10.1126/scitranslmed.aad7118 10.1172/JCI126022 10.1016/j.molcel.2019.09.030 10.1016/S1097-2765(04)00157-1 10.1016/j.apsb.2019.01.018 10.1016/j.celrep.2016.02.049 10.3322/caac.21492 10.1056/NEJMoa1503093 10.1016/j.molcel.2005.02.029 10.1038/s41422-018-0124-5 10.3390/molecules24112071 10.1158/1078-0432.CCR-16-3215 10.1016/j.canlet.2018.11.001 10.1158/1541-7786.MCR-17-0166 10.1038/s41551-019-0375-6 10.1016/S1470-2045(16)00175-3 10.1038/nchembio.2528 10.1053/j.gastro.2019.01.252 10.1016/S0140-6736(18)31257-1 10.1016/0955-0674(95)80031-X 10.1016/j.canlet.2017.11.014 10.1016/j.ceb.2013.07.004 10.1084/jem.20161462 10.1074/jbc.M303977200 10.1016/S0140-6736(17)31827-5 10.1158/2326-6066.CIR-18-0910 10.1093/nar/gkx247 10.1038/ncb1469 10.1038/nature02501 10.1038/nsmb1067 10.1002/cam4.1675 10.2174/1574892813666181029142812 10.1038/nature25015 10.1016/j.immuni.2016.05.002 10.1038/nature23669 10.1016/j.apsb.2020.06.014 10.1016/j.abb.2010.08.020 10.1038/onc.2009.427 10.3892/mmr.2014.2914 10.1016/j.coi.2011.12.009 10.3389/fphar.2019.00427 |
ContentType | Journal Article |
Copyright | 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. info:eu-repo/semantics/openAccess 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences |
Copyright_xml | – notice: 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences – notice: 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. – notice: info:eu-repo/semantics/openAccess – notice: 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 3HK 5PM DOA |
DOI | 10.1016/j.apsb.2020.11.005 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic NORA - Norwegian Open Research Archives PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2211-3843 |
EndPage | 707 |
ExternalDocumentID | oai_doaj_org_article_27f2db382cf848489a9ce4c4fb24a36a PMC7982505 10852_85752 33777676 10_1016_j_apsb_2020_11_005 S2211383520307930 |
Genre | Journal Article |
GroupedDBID | --- --K -05 -0E -SE -S~ 0R~ 0SF 1~5 4.4 457 4G. 53G 5VR 5VS 6I. 7-5 92M 9D9 9DE AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABKZE ABMAC ACGFS ADBBV ADEZE ADRAZ AEXQZ AFUIB AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV CAJEE CAJUS CCEZO CIEJG DIK EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB JUIAU KQ8 M41 M48 NCXOZ O-L O9- OK1 Q-- Q-4 R-E RIG ROL RPM RT5 SES SSZ T8U U1F U1G U5E U5O XH2 ~NG AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION AAXDM NPM 7X8 3HK CDYEO 5PM |
ID | FETCH-LOGICAL-c545t-e87f899af4fa5368653e2adcc39867523662bcce5e3007307baa2280bb326f513 |
IEDL.DBID | M48 |
ISSN | 2211-3835 |
IngestDate | Wed Aug 27 01:27:36 EDT 2025 Thu Aug 21 18:04:58 EDT 2025 Sat Apr 29 05:40:37 EDT 2023 Fri Jul 11 16:34:08 EDT 2025 Thu Jan 02 22:57:58 EST 2025 Thu Apr 24 22:51:52 EDT 2025 Tue Jul 01 01:53:05 EDT 2025 Thu Jul 20 20:15:38 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | FDA TCR GEPIA USP38 CSN5 EBNA1 FOXO4 WB H2O2 HAUSP USP18 RIPA DUB Ubiquitination CHX Cancer biology HDN Immunotherapy PD-L1 ICP0 HDT PDN GC Gastric cancer PBS BCA PDT USP7 USP9X USP22 qRT-PCR IL-2 PBMC TCGA PTMs Immunosuppression Epigenetics MDM2 irAEs TILs PD-1 PD-L1, programmed death ligand-1 IL-2, interleukin 2 USP38, ubiquitin specific peptidase 38 FOXO4, forkhead box O4 PBMC, peripheral blood mononuclear cells CHX, cycloheximide DUB, deubiquitinating enzymes TILs, tumor-infiltrating T cells GC, gastric cancer GEPIA, Gene-Expression Profiling Interactive Analysis WB, Western blotting qRT-PCR, quantitative real time polymerase chain reaction PTMs, post-translational modifications EBNA1, Epstein–Barr nuclear antigen 1 CSN5, COP9 signalosome 5 RIPA, radioimmunoprecipitation TCGA, the Cancer Genome Atlas PBS, phosphate buffer saline PDN, poor differentiated matched adjacent normal tissues USP7, ubiquitin-specific processing protease 7 USP9X, ubiquitin specific peptidase 9 X-linked HDN, well differentiated matched adjacent normal tissues HAUSP, herpes virus-associated ubiquitin-specific protease FDA, U.S. Food and Drug Administration PDT, poor differentiated tumor tissues BCA, bicinchoninic acid USP18, ubiquitin specific peptidase 18 H2O2, hydrogen peroxidase MDM2, murine double minute-2 HDT, well differentiated tumor tissues ICP0, infected cell protein 0 USP22, ubiquitin specific peptidase 22 irAEs, immune-related adverse effects PD-1, programmed cell death protein 1 TCR, T cell receptor |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c545t-e87f899af4fa5368653e2adcc39867523662bcce5e3007307baa2280bb326f513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.apsb.2020.11.005 |
PMID | 33777676 |
PQID | 2506505271 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_27f2db382cf848489a9ce4c4fb24a36a pubmedcentral_primary_oai_pubmedcentral_nih_gov_7982505 cristin_nora_10852_85752 proquest_miscellaneous_2506505271 pubmed_primary_33777676 crossref_primary_10_1016_j_apsb_2020_11_005 crossref_citationtrail_10_1016_j_apsb_2020_11_005 elsevier_sciencedirect_doi_10_1016_j_apsb_2020_11_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Acta pharmaceutica Sinica. B |
PublicationTitleAlternate | Acta Pharm Sin B |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Topalian, Taube, Anders, Pardoll (bib53) 2016; 16 Huang, Zhang, Lou, Wang, Zhao, Wang (bib35) 2019; 7 Chan, Li, Xia, Hsu, Lee, Cha (bib62) 2019; 129 Li, Lim, Xia, Lee, Chan, Kuo (bib30) 2016; 7 Ribas, Hu-Lieskovan (bib18) 2016; 213 Kang, Boku, Satoh, Ryu, Chao, Kato (bib54) 2017; 390 Yao, Lan, Li, Shi, Brosseau, Wang (bib70) 2019; 3 Hsu, Xia, Hsu, Chan, Yu, Cha (bib66) 2018; 9 Kopalli, Kang, Lee, Koppula (bib12) 2019; 14 Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (bib1) 2018; 68 Jiao, Xia, Yamaguchi, Wei, Chen, Hsu (bib59) 2017; 23 Li, Brooks, Kon, Gu (bib27) 2004; 13 Ma, Martin, Xue, Lor, Kennedy-Wilson, Sinnamon (bib42) 2010; 503 Tang, Li, Kang, Gao, Li, Zhang (bib36) 2017; 45 Muro, Chung, Shankaran, Geva, Catenacci, Gupta (bib7) 2016; 17 Teng, Meng, Kong, Yu (bib31) 2018; 414 Brar, Shah (bib52) 2019; 12 Li, Lim, Chung, Kim, Park, Yao (bib65) 2018; 33 D'Arrigo, Russo, Rea, Tufano, Guadagno, Del Basso De Caro (bib67) 2017; 8 Lim, Li, Xia, Cha, Chan, Wu (bib33) 2016; 30 Li, Li, Li, Ding, Guo, Liu (bib61) 2019; 156 Fuchs, Doi, Jang, Muro, Satoh, Machado (bib8) 2018; 4 Saridakis, Sheng, Sarkari, Holowaty, Shire, Nguyen (bib49) 2005; 18 Topalian, Drake, Pardoll (bib38) 2012; 24 Guzik, Tomala, Muszak, Konieczny, Hec, Blaszkiewicz (bib11) 2019; 24 Shaabani, Huizinga, Butera, Kouchi, Guzik, Magiera-Mularz (bib14) 2018; 28 Smith, Purvis, Bomstad, Labak, Velpula, Tsung (bib13) 2019; 11 Deng, Tan, Gao, Zou, Xu, Tu (bib20) 2020; 10 Zou, Wolchok, Chen (bib6) 2016; 8 Cha, Chan, Li, Hsu, Hung (bib58) 2019; 76 Burr, Sparbier, Chan, Williamson, Woods, Beavis (bib64) 2017; 549 Shen, Zhao (bib56) 2018; 362 Sznol (bib57) 2014; 20 Liu, Liu, Zhang, Yin, Dong, Zeng (bib21) 2020; 10 Craney, Rape (bib22) 2013; 25 Holowaty, Zeghouf, Wu, Tellam, Athanasopoulos, Greenblatt (bib47) 2003; 278 Wei, Long, Guo, Liu, Tang, Rao (bib15) 2019; 9 Maher, Thomas, Haas, Longen, Oyer, Tong (bib68) 2018; 16 Shitara, Ozguroglu, Bang, Di Bartolomeo, Mandala, Ryu (bib10) 2018; 392 Herbst, Soria, Kowanetz, Fine, Hamid, Gordon (bib17) 2014; 515 Cummins, Rago, Kohli, Kinzler, Lengauer, Vogelstein (bib48) 2004; 428 Koemans, Chalabi, van Sandick, van Dieren, Kodach (bib32) 2019; 442 Szasz, Lanczky, Nagy, Forster, Hark, Green (bib37) 2016; 7 Kon, Kobayashi, Li, Brooks, Ludwig, Gu (bib41) 2010; 29 Nagini (bib2) 2012; 4 Wang, Kang, You, Pang, Ren, Suo (bib25) 2019; 10 Hochstrasser (bib23) 1995; 7 Mungamuri, Qiao, Yao, Manfredi, Gu, Aaronson (bib26) 2016; 14 McFarlane, Kelvin, de la Vega, Govender, Scott, Burrows (bib24) 2010; 70 Li, Jiang, Chen, Zheng (bib45) 2015; 11 Yarchoan, Albacker, Hopkins, Montesion, Murugesan, Vithayathil (bib55) 2019; 4 Kategaya, Di Lello, Rouge, Pastor, Clark, Drummond (bib28) 2017; 550 Agarwal, Agarwal, Taylor, Stark (bib43) 1995; 92 Sznol, Chen (bib19) 2013; 19 Bachmann, Oxenius (bib40) 2007; 8 van der Horst, de Vries-Smits, Brenkman, van Triest, van den Broek, Colland (bib51) 2006; 8 Gavory, O'Dowd, Helm, Flasz, Arkoudis, Dossang (bib29) 2018; 14 Mezzadra, Sun, Jae, Gomez-Eerland, de Vries, Wu (bib63) 2017; 549 Robert, Schachter, Long, Arance, Grob, Mortier (bib4) 2015; 372 Schildberg, Klein, Freeman, Sharpe (bib5) 2016; 44 Binnewies, Roberts, Kersten, Chan (bib44) 2018; 24 Bang, Kang, Catenacci, Muro, Fuchs, Geva (bib9) 2019; 22 Cha, Yang, Xia, Wei, Chan, Lim (bib60) 2018; 71 Howlader, Krapcho, Miller, Brest, Yu (bib3) 1975–2016 Daubeuf, Singh, Tan, Liu, Federoff, Bowers (bib46) 2009; 113 Zhao, Guo, Wu, Yang, Zhong, Deng (bib16) 2019; 9 Zhang, Bu, Wang, Zhu, Geng, Nihira (bib39) 2018; 553 Sheng, Saridakis, Sarkari, Duan, Wu, Arrowsmith (bib50) 2006; 13 Jingjing, Wenzheng, Donghua, Guangyu, Aiping, Wenjuan (bib34) 2018; 7 Yang, Hsu, Sun, Chan, Li, Hsu (bib69) 2019; 29 Szasz (10.1016/j.apsb.2020.11.005_bib37) 2016; 7 Herbst (10.1016/j.apsb.2020.11.005_bib17) 2014; 515 Brar (10.1016/j.apsb.2020.11.005_bib52) 2019; 12 D'Arrigo (10.1016/j.apsb.2020.11.005_bib67) 2017; 8 Kang (10.1016/j.apsb.2020.11.005_bib54) 2017; 390 Zhao (10.1016/j.apsb.2020.11.005_bib16) 2019; 9 Lim (10.1016/j.apsb.2020.11.005_bib33) 2016; 30 Smith (10.1016/j.apsb.2020.11.005_bib13) 2019; 11 Agarwal (10.1016/j.apsb.2020.11.005_bib43) 1995; 92 Li (10.1016/j.apsb.2020.11.005_bib61) 2019; 156 Daubeuf (10.1016/j.apsb.2020.11.005_bib46) 2009; 113 Robert (10.1016/j.apsb.2020.11.005_bib4) 2015; 372 Guzik (10.1016/j.apsb.2020.11.005_bib11) 2019; 24 Ma (10.1016/j.apsb.2020.11.005_bib42) 2010; 503 Wei (10.1016/j.apsb.2020.11.005_bib15) 2019; 9 van der Horst (10.1016/j.apsb.2020.11.005_bib51) 2006; 8 Topalian (10.1016/j.apsb.2020.11.005_bib53) 2016; 16 Deng (10.1016/j.apsb.2020.11.005_bib20) 2020; 10 Liu (10.1016/j.apsb.2020.11.005_bib21) 2020; 10 Hochstrasser (10.1016/j.apsb.2020.11.005_bib23) 1995; 7 Sheng (10.1016/j.apsb.2020.11.005_bib50) 2006; 13 Yao (10.1016/j.apsb.2020.11.005_bib70) 2019; 3 Howlader (10.1016/j.apsb.2020.11.005_bib3) 1975 Sznol (10.1016/j.apsb.2020.11.005_bib19) 2013; 19 Fuchs (10.1016/j.apsb.2020.11.005_bib8) 2018; 4 Burr (10.1016/j.apsb.2020.11.005_bib64) 2017; 549 Wang (10.1016/j.apsb.2020.11.005_bib25) 2019; 10 Koemans (10.1016/j.apsb.2020.11.005_bib32) 2019; 442 Shaabani (10.1016/j.apsb.2020.11.005_bib14) 2018; 28 Cummins (10.1016/j.apsb.2020.11.005_bib48) 2004; 428 Li (10.1016/j.apsb.2020.11.005_bib30) 2016; 7 Kategaya (10.1016/j.apsb.2020.11.005_bib28) 2017; 550 Kon (10.1016/j.apsb.2020.11.005_bib41) 2010; 29 Shen (10.1016/j.apsb.2020.11.005_bib56) 2018; 362 Cha (10.1016/j.apsb.2020.11.005_bib58) 2019; 76 Chan (10.1016/j.apsb.2020.11.005_bib62) 2019; 129 Bang (10.1016/j.apsb.2020.11.005_bib9) 2019; 22 Tang (10.1016/j.apsb.2020.11.005_bib36) 2017; 45 Mungamuri (10.1016/j.apsb.2020.11.005_bib26) 2016; 14 Teng (10.1016/j.apsb.2020.11.005_bib31) 2018; 414 Jiao (10.1016/j.apsb.2020.11.005_bib59) 2017; 23 Schildberg (10.1016/j.apsb.2020.11.005_bib5) 2016; 44 Mezzadra (10.1016/j.apsb.2020.11.005_bib63) 2017; 549 Saridakis (10.1016/j.apsb.2020.11.005_bib49) 2005; 18 Jingjing (10.1016/j.apsb.2020.11.005_bib34) 2018; 7 Li (10.1016/j.apsb.2020.11.005_bib45) 2015; 11 Li (10.1016/j.apsb.2020.11.005_bib27) 2004; 13 Topalian (10.1016/j.apsb.2020.11.005_bib38) 2012; 24 Holowaty (10.1016/j.apsb.2020.11.005_bib47) 2003; 278 Huang (10.1016/j.apsb.2020.11.005_bib35) 2019; 7 Nagini (10.1016/j.apsb.2020.11.005_bib2) 2012; 4 Yang (10.1016/j.apsb.2020.11.005_bib69) 2019; 29 Muro (10.1016/j.apsb.2020.11.005_bib7) 2016; 17 Bachmann (10.1016/j.apsb.2020.11.005_bib40) 2007; 8 Yarchoan (10.1016/j.apsb.2020.11.005_bib55) 2019; 4 Bray (10.1016/j.apsb.2020.11.005_bib1) 2018; 68 Binnewies (10.1016/j.apsb.2020.11.005_bib44) 2018; 24 Sznol (10.1016/j.apsb.2020.11.005_bib57) 2014; 20 Maher (10.1016/j.apsb.2020.11.005_bib68) 2018; 16 Zou (10.1016/j.apsb.2020.11.005_bib6) 2016; 8 Craney (10.1016/j.apsb.2020.11.005_bib22) 2013; 25 Shitara (10.1016/j.apsb.2020.11.005_bib10) 2018; 392 Cha (10.1016/j.apsb.2020.11.005_bib60) 2018; 71 Li (10.1016/j.apsb.2020.11.005_bib65) 2018; 33 Kopalli (10.1016/j.apsb.2020.11.005_bib12) 2019; 14 Gavory (10.1016/j.apsb.2020.11.005_bib29) 2018; 14 Hsu (10.1016/j.apsb.2020.11.005_bib66) 2018; 9 Ribas (10.1016/j.apsb.2020.11.005_bib18) 2016; 213 McFarlane (10.1016/j.apsb.2020.11.005_bib24) 2010; 70 Zhang (10.1016/j.apsb.2020.11.005_bib39) 2018; 553 |
References_xml | – volume: 11 start-page: 1566 year: 2015 end-page: 1572 ident: bib45 article-title: Ki67 is a promising molecular target in the diagnosis of cancer publication-title: Mol Med Rep – volume: 549 start-page: 106 year: 2017 end-page: 110 ident: bib63 article-title: Identification of CMTM6 and CMTM4 as PD-L1 protein regulators publication-title: Nature – volume: 129 start-page: 3324 year: 2019 end-page: 3338 ident: bib62 article-title: IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion publication-title: J Clin Invest – volume: 8 start-page: 68291 year: 2017 end-page: 68304 ident: bib67 article-title: A regulatory role for the co-chaperone FKBP51s in PD-L1 expression in glioma publication-title: Oncotarget – volume: 7 start-page: 215 year: 1995 end-page: 223 ident: bib23 article-title: Ubiquitin, proteasomes, and the regulation of intracellular protein degradation publication-title: Curr Opin Cell Biol – volume: 113 start-page: 3264 year: 2009 end-page: 3275 ident: bib46 article-title: HSV ICP0 recruits USP7 to modulate TLR-mediated innate response publication-title: Blood – volume: 362 start-page: k3529 year: 2018 ident: bib56 article-title: Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: Meta-analysis publication-title: BMJ – volume: 156 start-page: 1849 year: 2019 end-page: 1861 e13 ident: bib61 article-title: MET inhibitors promote liver tumor evasion of the immune response by stabilizing PDL1 publication-title: Gastroenterology – volume: 10 start-page: 427 year: 2019 ident: bib25 article-title: USP7: Novel drug target in cancer therapy publication-title: Front Pharmacol – volume: 7 start-page: 12632 year: 2016 ident: bib30 article-title: Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity publication-title: Nat Commun – volume: 30 start-page: 925 year: 2016 end-page: 939 ident: bib33 article-title: Deubiquitination and stabilization of PD-L1 by CSN5 publication-title: Canc Cell – volume: 503 start-page: 207 year: 2010 end-page: 212 ident: bib42 article-title: C-terminal region of USP7/HAUSP is critical for deubiquitination activity and contains a second mdm2/p53 binding site publication-title: Arch Biochem Biophys – volume: 24 start-page: 541 year: 2018 end-page: 550 ident: bib44 article-title: Understanding the tumor immune microenvironment (TIME) for effective therapy publication-title: Nat Med – volume: 13 start-page: 879 year: 2004 end-page: 886 ident: bib27 article-title: A dynamic role of HAUSP in the p53–Mdm2 pathway publication-title: Mol Cell – volume: 24 start-page: 2071 year: 2019 ident: bib11 article-title: Development of the inhibitors that target the PD-1/PD-L1 interaction-a brief look at progress on small molecules, peptides and macrocycles publication-title: Molecules – volume: 8 start-page: 328rv4 year: 2016 ident: bib6 article-title: PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations publication-title: Sci Transl Med – volume: 7 start-page: 4004 year: 2018 end-page: 4011 ident: bib34 article-title: Deubiquitination and stabilization of programmed cell death ligand 1 by ubiquitin-specific peptidase 9, X-linked in oral squamous cell carcinoma publication-title: Canc Med – volume: 9 start-page: 304 year: 2019 end-page: 315 ident: bib16 article-title: SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade publication-title: Acta Pharm Sin B – volume: 8 start-page: 1064 year: 2006 end-page: 1073 ident: bib51 article-title: FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP publication-title: Nat Cell Biol – volume: 392 start-page: 123 year: 2018 end-page: 133 ident: bib10 article-title: Pembrolizumab publication-title: Lancet – volume: 17 start-page: 717 year: 2016 end-page: 726 ident: bib7 article-title: Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial publication-title: Lancet Oncol – volume: 22 start-page: 828 year: 2019 end-page: 837 ident: bib9 article-title: Pembrolizumab alone or in combination with chemotherapy as first-line therapy for patients with advanced gastric or gastroesophageal junction adenocarcinoma: Results from the phase II nonrandomized KEYNOTE-059 study publication-title: Gastric Cancer – volume: 550 start-page: 534 year: 2017 end-page: 538 ident: bib28 article-title: USP7 small-molecule inhibitors interfere with ubiquitin binding publication-title: Nature – volume: 442 start-page: 279 year: 2019 end-page: 286 ident: bib32 article-title: Beyond the PD-L1 horizon: In search for a good biomarker to predict success of immunotherapy in gastric and esophageal adenocarcinoma publication-title: Canc Lett – volume: 515 start-page: 563 year: 2014 end-page: 567 ident: bib17 article-title: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients publication-title: Nature – volume: 25 start-page: 704 year: 2013 end-page: 710 ident: bib22 article-title: Dynamic regulation of ubiquitin-dependent cell cycle control publication-title: Curr Opin Cell Biol – volume: 20 start-page: 290 year: 2014 end-page: 295 ident: bib57 article-title: Blockade of the B7-H1/PD-1 pathway as a basis for combination anticancer therapy publication-title: Canc J – volume: 10 start-page: 2299 year: 2020 end-page: 2312 ident: bib21 article-title: Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity publication-title: Acta Pharm Sin B – volume: 14 start-page: 118 year: 2018 end-page: 125 ident: bib29 article-title: Discovery and characterization of highly potent and selective allosteric USP7 inhibitors publication-title: Nat Chem Biol – volume: 4 start-page: 1286 year: 2019 end-page: 1295 ident: bib55 article-title: PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers publication-title: JCI Insight – year: 1975–2016 ident: bib3 article-title: SEER cancer statistics review – volume: 92 start-page: 8493 year: 1995 end-page: 8497 ident: bib43 article-title: p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts publication-title: Proc Natl Acad Sci U S A – volume: 28 start-page: 665 year: 2018 end-page: 678 ident: bib14 article-title: A patent review on PD-1/PD-L1 antagonists: Small molecules, peptides, and macrocycles (2015–2018) publication-title: Expert Opin Ther Pat – volume: 9 start-page: 819 year: 2019 end-page: 831 ident: bib15 article-title: Multifunctional polymeric micelle-based chemo-immunotherapy with immune checkpoint blockade for efficient treatment of orthotopic and metastatic breast cancer publication-title: Acta Pharm Sin B – volume: 414 start-page: 166 year: 2018 end-page: 173 ident: bib31 article-title: Progress and challenges of predictive biomarkers of anti PD-1/PD-L1 immunotherapy: A systematic review publication-title: Canc Lett – volume: 10 start-page: 358 year: 2020 end-page: 373 ident: bib20 article-title: knocking out mediated by CRISPR-Cas9 genome editing for PD-L1 attenuation and enhanced antitumor immunity publication-title: Acta Pharm Sin B – volume: 4 start-page: 156 year: 2012 end-page: 169 ident: bib2 article-title: Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention publication-title: World J Gastrointest Oncol – volume: 44 start-page: 955 year: 2016 end-page: 972 ident: bib5 article-title: Coinhibitory pathways in the B7-CD28 ligand-receptor family publication-title: Immunity – volume: 553 start-page: 91 year: 2018 end-page: 95 ident: bib39 article-title: Cyclin D-CDK4 kinase destabilizes PD-L1 publication-title: Nature – volume: 71 start-page: 606 year: 2018 end-page: 620 ident: bib60 article-title: Metformin promotes antitumor immunity publication-title: Mol Cell – volume: 7 start-page: 49322 year: 2016 end-page: 49333 ident: bib37 article-title: Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients publication-title: Oncotarget – volume: 278 start-page: 29987 year: 2003 end-page: 29994 ident: bib47 article-title: Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7 publication-title: J Biol Chem – volume: 11 start-page: 529 year: 2019 end-page: 541 ident: bib13 article-title: Therapeutic targeting of immune checkpoints with small molecule inhibitors publication-title: Am J Transl Res – volume: 18 start-page: 25 year: 2005 end-page: 36 ident: bib49 article-title: Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization publication-title: Mol Cell – volume: 390 start-page: 2461 year: 2017 end-page: 2471 ident: bib54 article-title: Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial publication-title: Lancet – volume: 428 start-page: 1 year: 2004 end-page: 2 ident: bib48 article-title: Tumour suppression: Disruption of HAUSP gene stabilizes p53 publication-title: Nature – volume: 9 start-page: 1908 year: 2018 ident: bib66 article-title: STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion publication-title: Nat Commun – volume: 16 start-page: 243 year: 2018 end-page: 255 ident: bib68 article-title: Small-molecule sigma1 modulator induces autophagic degradation of PD-L1 publication-title: Mol Canc Res – volume: 19 start-page: 1021 year: 2013 end-page: 1034 ident: bib19 article-title: Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer publication-title: Clin Canc Res – volume: 4 year: 2018 ident: bib8 article-title: Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 trial publication-title: JAMA Oncol – volume: 8 start-page: 1142 year: 2007 end-page: 1148 ident: bib40 article-title: Interleukin 2: From immunostimulation to immunoregulation and back again publication-title: EMBO Rep – volume: 3 start-page: 306 year: 2019 end-page: 317 ident: bib70 article-title: Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours publication-title: Nat Biomed Eng – volume: 70 start-page: 3329 year: 2010 end-page: 3339 ident: bib24 article-title: The deubiquitinating enzyme USP17 is highly expressed in tumor biopsies, is cell cycle regulated, and is required for G1–S progression publication-title: Canc Res – volume: 45 start-page: W98 year: 2017 end-page: W102 ident: bib36 article-title: GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses publication-title: Nucleic Acids Res – volume: 76 start-page: 359 year: 2019 end-page: 370 ident: bib58 article-title: Mechanisms controlling PD-L1 expression in cancer publication-title: Mol Cell – volume: 23 start-page: 3711 year: 2017 end-page: 3720 ident: bib59 article-title: PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression publication-title: Clin Canc Res – volume: 7 start-page: 1580 year: 2019 end-page: 1590 ident: bib35 article-title: USP22 deubiquitinates CD274 to suppress anticancer immunity publication-title: Canc Immunol Res – volume: 372 start-page: 2521 year: 2015 end-page: 2532 ident: bib4 article-title: Pembrolizumab publication-title: N Engl J Med – volume: 14 start-page: 2528 year: 2016 end-page: 2537 ident: bib26 article-title: USP7 enforces heterochromatinization of p53 target promoters by protecting SUV39H1 from MDM2-mediated degradation publication-title: Cell Rep – volume: 14 start-page: 100 year: 2019 end-page: 112 ident: bib12 article-title: Novel small molecule inhibitors of programmed cell death (PD)-1, and its ligand, PD-L1 in cancer immunotherapy: A review update of patent literature publication-title: Recent Pat Anti-Cancer Drug Discov – volume: 16 start-page: 275 year: 2016 end-page: 287 ident: bib53 article-title: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy publication-title: Nat Rev Canc – volume: 29 start-page: 83 year: 2019 end-page: 86 ident: bib69 article-title: Palmitoylation stabilizes PD-L1 to promote breast tumor growth publication-title: Cell Res – volume: 213 start-page: 2835 year: 2016 end-page: 2840 ident: bib18 article-title: What does PD-L1 positive or negative mean?. publication-title: J Exp Med – volume: 68 start-page: 394 year: 2018 end-page: 424 ident: bib1 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin – volume: 33 start-page: 187 year: 2018 end-page: 201 ident: bib65 article-title: Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1 publication-title: Canc Cell – volume: 29 start-page: 1270 year: 2010 end-page: 1279 ident: bib41 article-title: Inactivation of HAUSP publication-title: Oncogene – volume: 24 start-page: 207 year: 2012 end-page: 212 ident: bib38 article-title: Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity publication-title: Curr Opin Immunol – volume: 13 start-page: 285 year: 2006 end-page: 291 ident: bib50 article-title: Molecular recognition of p53 and MDM2 by USP7/HAUSP publication-title: Nat Struct Mol Biol – volume: 549 start-page: 101 year: 2017 end-page: 105 ident: bib64 article-title: CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity publication-title: Nature – volume: 12 year: 2019 ident: bib52 article-title: The role of pembrolizumab in the treatment of PD-L1 expressing gastric and gastroesophageal junction adenocarcinoma publication-title: Therap Adv Gastroenterol – volume: 4 start-page: 1286 year: 2019 ident: 10.1016/j.apsb.2020.11.005_bib55 article-title: PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers publication-title: JCI Insight doi: 10.1172/jci.insight.126908 – volume: 24 start-page: 541 year: 2018 ident: 10.1016/j.apsb.2020.11.005_bib44 article-title: Understanding the tumor immune microenvironment (TIME) for effective therapy publication-title: Nat Med doi: 10.1038/s41591-018-0014-x – volume: 70 start-page: 3329 year: 2010 ident: 10.1016/j.apsb.2020.11.005_bib24 article-title: The deubiquitinating enzyme USP17 is highly expressed in tumor biopsies, is cell cycle regulated, and is required for G1–S progression publication-title: Canc Res doi: 10.1158/0008-5472.CAN-09-4152 – volume: 71 start-page: 606 year: 2018 ident: 10.1016/j.apsb.2020.11.005_bib60 article-title: Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1 publication-title: Mol Cell doi: 10.1016/j.molcel.2018.07.030 – volume: 33 start-page: 187 year: 2018 ident: 10.1016/j.apsb.2020.11.005_bib65 article-title: Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1 publication-title: Canc Cell doi: 10.1016/j.ccell.2018.01.009 – volume: 4 start-page: 156 year: 2012 ident: 10.1016/j.apsb.2020.11.005_bib2 article-title: Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention publication-title: World J Gastrointest Oncol doi: 10.4251/wjgo.v4.i7.156 – volume: 92 start-page: 8493 year: 1995 ident: 10.1016/j.apsb.2020.11.005_bib43 article-title: p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.92.18.8493 – volume: 9 start-page: 1908 year: 2018 ident: 10.1016/j.apsb.2020.11.005_bib66 article-title: STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion publication-title: Nat Commun doi: 10.1038/s41467-018-04313-6 – volume: 16 start-page: 275 year: 2016 ident: 10.1016/j.apsb.2020.11.005_bib53 article-title: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy publication-title: Nat Rev Canc doi: 10.1038/nrc.2016.36 – volume: 4 year: 2018 ident: 10.1016/j.apsb.2020.11.005_bib8 article-title: Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 trial publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2018.0013 – volume: 8 start-page: 1142 year: 2007 ident: 10.1016/j.apsb.2020.11.005_bib40 article-title: Interleukin 2: From immunostimulation to immunoregulation and back again publication-title: EMBO Rep doi: 10.1038/sj.embor.7401099 – volume: 22 start-page: 828 year: 2019 ident: 10.1016/j.apsb.2020.11.005_bib9 article-title: Pembrolizumab alone or in combination with chemotherapy as first-line therapy for patients with advanced gastric or gastroesophageal junction adenocarcinoma: Results from the phase II nonrandomized KEYNOTE-059 study publication-title: Gastric Cancer doi: 10.1007/s10120-018-00909-5 – volume: 7 start-page: 49322 year: 2016 ident: 10.1016/j.apsb.2020.11.005_bib37 article-title: Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients publication-title: Oncotarget doi: 10.18632/oncotarget.10337 – volume: 8 start-page: 68291 year: 2017 ident: 10.1016/j.apsb.2020.11.005_bib67 article-title: A regulatory role for the co-chaperone FKBP51s in PD-L1 expression in glioma publication-title: Oncotarget doi: 10.18632/oncotarget.19309 – volume: 515 start-page: 563 year: 2014 ident: 10.1016/j.apsb.2020.11.005_bib17 article-title: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients publication-title: Nature doi: 10.1038/nature14011 – volume: 113 start-page: 3264 year: 2009 ident: 10.1016/j.apsb.2020.11.005_bib46 article-title: HSV ICP0 recruits USP7 to modulate TLR-mediated innate response publication-title: Blood doi: 10.1182/blood-2008-07-168203 – volume: 30 start-page: 925 year: 2016 ident: 10.1016/j.apsb.2020.11.005_bib33 article-title: Deubiquitination and stabilization of PD-L1 by CSN5 publication-title: Canc Cell doi: 10.1016/j.ccell.2016.10.010 – volume: 19 start-page: 1021 year: 2013 ident: 10.1016/j.apsb.2020.11.005_bib19 article-title: Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer publication-title: Clin Canc Res doi: 10.1158/1078-0432.CCR-12-2063 – volume: 362 start-page: k3529 year: 2018 ident: 10.1016/j.apsb.2020.11.005_bib56 article-title: Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: Meta-analysis publication-title: BMJ doi: 10.1136/bmj.k3529 – volume: 28 start-page: 665 year: 2018 ident: 10.1016/j.apsb.2020.11.005_bib14 article-title: A patent review on PD-1/PD-L1 antagonists: Small molecules, peptides, and macrocycles (2015–2018) publication-title: Expert Opin Ther Pat doi: 10.1080/13543776.2018.1512706 – volume: 10 start-page: 358 year: 2020 ident: 10.1016/j.apsb.2020.11.005_bib20 article-title: Cdk5 knocking out mediated by CRISPR-Cas9 genome editing for PD-L1 attenuation and enhanced antitumor immunity publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2019.07.004 – volume: 20 start-page: 290 year: 2014 ident: 10.1016/j.apsb.2020.11.005_bib57 article-title: Blockade of the B7-H1/PD-1 pathway as a basis for combination anticancer therapy publication-title: Canc J doi: 10.1097/PPO.0000000000000056 – volume: 7 start-page: 12632 year: 2016 ident: 10.1016/j.apsb.2020.11.005_bib30 article-title: Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity publication-title: Nat Commun doi: 10.1038/ncomms12632 – volume: 549 start-page: 101 year: 2017 ident: 10.1016/j.apsb.2020.11.005_bib64 article-title: CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity publication-title: Nature doi: 10.1038/nature23643 – volume: 9 start-page: 304 year: 2019 ident: 10.1016/j.apsb.2020.11.005_bib16 article-title: SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2018.08.009 – volume: 12 year: 2019 ident: 10.1016/j.apsb.2020.11.005_bib52 article-title: The role of pembrolizumab in the treatment of PD-L1 expressing gastric and gastroesophageal junction adenocarcinoma publication-title: Therap Adv Gastroenterol doi: 10.1177/1756284819869767 – volume: 550 start-page: 534 year: 2017 ident: 10.1016/j.apsb.2020.11.005_bib28 article-title: USP7 small-molecule inhibitors interfere with ubiquitin binding publication-title: Nature doi: 10.1038/nature24006 – volume: 8 start-page: 328rv4 year: 2016 ident: 10.1016/j.apsb.2020.11.005_bib6 article-title: PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aad7118 – volume: 129 start-page: 3324 year: 2019 ident: 10.1016/j.apsb.2020.11.005_bib62 article-title: IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion publication-title: J Clin Invest doi: 10.1172/JCI126022 – volume: 76 start-page: 359 year: 2019 ident: 10.1016/j.apsb.2020.11.005_bib58 article-title: Mechanisms controlling PD-L1 expression in cancer publication-title: Mol Cell doi: 10.1016/j.molcel.2019.09.030 – volume: 13 start-page: 879 year: 2004 ident: 10.1016/j.apsb.2020.11.005_bib27 article-title: A dynamic role of HAUSP in the p53–Mdm2 pathway publication-title: Mol Cell doi: 10.1016/S1097-2765(04)00157-1 – volume: 9 start-page: 819 year: 2019 ident: 10.1016/j.apsb.2020.11.005_bib15 article-title: Multifunctional polymeric micelle-based chemo-immunotherapy with immune checkpoint blockade for efficient treatment of orthotopic and metastatic breast cancer publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2019.01.018 – volume: 14 start-page: 2528 year: 2016 ident: 10.1016/j.apsb.2020.11.005_bib26 article-title: USP7 enforces heterochromatinization of p53 target promoters by protecting SUV39H1 from MDM2-mediated degradation publication-title: Cell Rep doi: 10.1016/j.celrep.2016.02.049 – volume: 68 start-page: 394 year: 2018 ident: 10.1016/j.apsb.2020.11.005_bib1 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin doi: 10.3322/caac.21492 – volume: 372 start-page: 2521 year: 2015 ident: 10.1016/j.apsb.2020.11.005_bib4 article-title: Pembrolizumab versus ipilimumab in advanced melanoma publication-title: N Engl J Med doi: 10.1056/NEJMoa1503093 – volume: 18 start-page: 25 year: 2005 ident: 10.1016/j.apsb.2020.11.005_bib49 article-title: Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization publication-title: Mol Cell doi: 10.1016/j.molcel.2005.02.029 – volume: 29 start-page: 83 year: 2019 ident: 10.1016/j.apsb.2020.11.005_bib69 article-title: Palmitoylation stabilizes PD-L1 to promote breast tumor growth publication-title: Cell Res doi: 10.1038/s41422-018-0124-5 – volume: 24 start-page: 2071 year: 2019 ident: 10.1016/j.apsb.2020.11.005_bib11 article-title: Development of the inhibitors that target the PD-1/PD-L1 interaction-a brief look at progress on small molecules, peptides and macrocycles publication-title: Molecules doi: 10.3390/molecules24112071 – volume: 23 start-page: 3711 year: 2017 ident: 10.1016/j.apsb.2020.11.005_bib59 article-title: PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression publication-title: Clin Canc Res doi: 10.1158/1078-0432.CCR-16-3215 – volume: 442 start-page: 279 year: 2019 ident: 10.1016/j.apsb.2020.11.005_bib32 article-title: Beyond the PD-L1 horizon: In search for a good biomarker to predict success of immunotherapy in gastric and esophageal adenocarcinoma publication-title: Canc Lett doi: 10.1016/j.canlet.2018.11.001 – volume: 16 start-page: 243 year: 2018 ident: 10.1016/j.apsb.2020.11.005_bib68 article-title: Small-molecule sigma1 modulator induces autophagic degradation of PD-L1 publication-title: Mol Canc Res doi: 10.1158/1541-7786.MCR-17-0166 – volume: 3 start-page: 306 year: 2019 ident: 10.1016/j.apsb.2020.11.005_bib70 article-title: Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours publication-title: Nat Biomed Eng doi: 10.1038/s41551-019-0375-6 – volume: 17 start-page: 717 year: 2016 ident: 10.1016/j.apsb.2020.11.005_bib7 article-title: Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial publication-title: Lancet Oncol doi: 10.1016/S1470-2045(16)00175-3 – volume: 14 start-page: 118 year: 2018 ident: 10.1016/j.apsb.2020.11.005_bib29 article-title: Discovery and characterization of highly potent and selective allosteric USP7 inhibitors publication-title: Nat Chem Biol doi: 10.1038/nchembio.2528 – volume: 156 start-page: 1849 year: 2019 ident: 10.1016/j.apsb.2020.11.005_bib61 article-title: MET inhibitors promote liver tumor evasion of the immune response by stabilizing PDL1 publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.01.252 – volume: 392 start-page: 123 year: 2018 ident: 10.1016/j.apsb.2020.11.005_bib10 article-title: Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial publication-title: Lancet doi: 10.1016/S0140-6736(18)31257-1 – volume: 7 start-page: 215 year: 1995 ident: 10.1016/j.apsb.2020.11.005_bib23 article-title: Ubiquitin, proteasomes, and the regulation of intracellular protein degradation publication-title: Curr Opin Cell Biol doi: 10.1016/0955-0674(95)80031-X – volume: 414 start-page: 166 year: 2018 ident: 10.1016/j.apsb.2020.11.005_bib31 article-title: Progress and challenges of predictive biomarkers of anti PD-1/PD-L1 immunotherapy: A systematic review publication-title: Canc Lett doi: 10.1016/j.canlet.2017.11.014 – volume: 25 start-page: 704 year: 2013 ident: 10.1016/j.apsb.2020.11.005_bib22 article-title: Dynamic regulation of ubiquitin-dependent cell cycle control publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2013.07.004 – volume: 213 start-page: 2835 year: 2016 ident: 10.1016/j.apsb.2020.11.005_bib18 article-title: What does PD-L1 positive or negative mean?. publication-title: J Exp Med doi: 10.1084/jem.20161462 – volume: 278 start-page: 29987 year: 2003 ident: 10.1016/j.apsb.2020.11.005_bib47 article-title: Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7 publication-title: J Biol Chem doi: 10.1074/jbc.M303977200 – volume: 390 start-page: 2461 year: 2017 ident: 10.1016/j.apsb.2020.11.005_bib54 article-title: Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial publication-title: Lancet doi: 10.1016/S0140-6736(17)31827-5 – volume: 11 start-page: 529 year: 2019 ident: 10.1016/j.apsb.2020.11.005_bib13 article-title: Therapeutic targeting of immune checkpoints with small molecule inhibitors publication-title: Am J Transl Res – year: 1975 ident: 10.1016/j.apsb.2020.11.005_bib3 – volume: 7 start-page: 1580 year: 2019 ident: 10.1016/j.apsb.2020.11.005_bib35 article-title: USP22 deubiquitinates CD274 to suppress anticancer immunity publication-title: Canc Immunol Res doi: 10.1158/2326-6066.CIR-18-0910 – volume: 45 start-page: W98 year: 2017 ident: 10.1016/j.apsb.2020.11.005_bib36 article-title: GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx247 – volume: 8 start-page: 1064 year: 2006 ident: 10.1016/j.apsb.2020.11.005_bib51 article-title: FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP publication-title: Nat Cell Biol doi: 10.1038/ncb1469 – volume: 428 start-page: 1 year: 2004 ident: 10.1016/j.apsb.2020.11.005_bib48 article-title: Tumour suppression: Disruption of HAUSP gene stabilizes p53 publication-title: Nature doi: 10.1038/nature02501 – volume: 13 start-page: 285 year: 2006 ident: 10.1016/j.apsb.2020.11.005_bib50 article-title: Molecular recognition of p53 and MDM2 by USP7/HAUSP publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb1067 – volume: 7 start-page: 4004 year: 2018 ident: 10.1016/j.apsb.2020.11.005_bib34 article-title: Deubiquitination and stabilization of programmed cell death ligand 1 by ubiquitin-specific peptidase 9, X-linked in oral squamous cell carcinoma publication-title: Canc Med doi: 10.1002/cam4.1675 – volume: 14 start-page: 100 year: 2019 ident: 10.1016/j.apsb.2020.11.005_bib12 article-title: Novel small molecule inhibitors of programmed cell death (PD)-1, and its ligand, PD-L1 in cancer immunotherapy: A review update of patent literature publication-title: Recent Pat Anti-Cancer Drug Discov doi: 10.2174/1574892813666181029142812 – volume: 553 start-page: 91 year: 2018 ident: 10.1016/j.apsb.2020.11.005_bib39 article-title: Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance publication-title: Nature doi: 10.1038/nature25015 – volume: 44 start-page: 955 year: 2016 ident: 10.1016/j.apsb.2020.11.005_bib5 article-title: Coinhibitory pathways in the B7-CD28 ligand-receptor family publication-title: Immunity doi: 10.1016/j.immuni.2016.05.002 – volume: 549 start-page: 106 year: 2017 ident: 10.1016/j.apsb.2020.11.005_bib63 article-title: Identification of CMTM6 and CMTM4 as PD-L1 protein regulators publication-title: Nature doi: 10.1038/nature23669 – volume: 10 start-page: 2299 year: 2020 ident: 10.1016/j.apsb.2020.11.005_bib21 article-title: Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity via inhibiting the deubiquitination activity of CSN5 publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2020.06.014 – volume: 503 start-page: 207 year: 2010 ident: 10.1016/j.apsb.2020.11.005_bib42 article-title: C-terminal region of USP7/HAUSP is critical for deubiquitination activity and contains a second mdm2/p53 binding site publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2010.08.020 – volume: 29 start-page: 1270 year: 2010 ident: 10.1016/j.apsb.2020.11.005_bib41 article-title: Inactivation of HAUSP in vivo modulates p53 function publication-title: Oncogene doi: 10.1038/onc.2009.427 – volume: 11 start-page: 1566 year: 2015 ident: 10.1016/j.apsb.2020.11.005_bib45 article-title: Ki67 is a promising molecular target in the diagnosis of cancer publication-title: Mol Med Rep doi: 10.3892/mmr.2014.2914 – volume: 24 start-page: 207 year: 2012 ident: 10.1016/j.apsb.2020.11.005_bib38 article-title: Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2011.12.009 – volume: 10 start-page: 427 year: 2019 ident: 10.1016/j.apsb.2020.11.005_bib25 article-title: USP7: Novel drug target in cancer therapy publication-title: Front Pharmacol doi: 10.3389/fphar.2019.00427 |
SSID | ssj0000602275 |
Score | 2.4926393 |
Snippet | Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma,... |
SourceID | doaj pubmedcentral cristin proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 694 |
SubjectTerms | Cancer biology Epigenetics Gastric cancer Immunosuppression Immunotherapy Original PD-L1 Ubiquitination USP7 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuiPLVQEFGQr3QwNpO7ORYPqoKAVqJXak3y3acEkBJtUkPy69nxs5uNyCVC8olSuwkzhvbb-TxG0JeVhW3QDtYWldKphnzKrWiKoDIFUzWM6Ecw83Jn7_Is2X28Tw_30n1hTFhUR44_rg3XNW8sqLgri4yOEpTOp-5rLY8M0IGagRz3o4zFcdglMbD-EXOUacPeMa4YyYGd5nL3oJzyHHIeD3D3HW3XehU7WR-CjL-k2nqbxr6ZzTlzvR0eo_cHXklPYnt2Se3fHufHM2jMPX6mC6u91n1x_SIzq8lq9cPyPrErrqLABLtarr8Ole06alpaVhNb4M6OO2jku2aDh2twHtfxTz2ns7fp58YlK5oj_HwQ_PL0wuDGUEcdWhWK4oLBD1WXIynP5qgBv6QLE8_LN6dpWNShtQB2RpSX6gafDRTZ7XJhSxkLjw3lXOiLMD54EJKbp3zuRe4CjhT1hiU3LEWiGKdM_GI7LVd6w8IRdwcL13FlM08A5B4hXr7zrJCWWUScjCColvoD6hlmnONKUV5QtgGJe1GMXPMqfFTb6LWvmvEWCPG4OVowDghr7Z1LqOUx42l3yL425Iowx0ugHHq0Tj1v4wzIfnGdPTIaCJTgUc1N778xcbONHR3xMW0vrvqNTBWibkHFUvI42h3208UQqE2k0yImljkpA3TO23zLUiKq7JALvzkfzT6KbnDMfAnBOodkr1hdeWfAXMb7PPQSX8Dp6s_Uw priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBalMNhl7He9X2gwelm9xJItyce2WyljG4EmkJuQZDn1Nuxgu4fsr5-eLKfzBj2MXIIjxVa-J-l70XvfQ-hdURDtaEcSlwVncZpYHmtaCEfkRMLKOeUmgeTkr9_Y5Sr9vM7WB-h8zIWBsMqw9g9rul-tw5VZ-DVn26qaXRHnu1AgEGCnOQW_nabCJ_Gtz_b_s8wZiORBJCO0j6FDyJ0ZwrzUttPOTSSweHyYQxW7e8ZPr3qyU3lB_8mG9S8h_Tuu8o-N6uIhehAYJj4dBvEIHdj6MTpeDBLVuxO8vM246k7wMV7cilfvnqDdqW6bjYcLNyVeXS04rjqsauzP1WuvE467QdN2h_sGF86Pb4eK9hYvPsZfEte6wB1ExvfVL4s3CmqDGGzAwFoMRwUddFyGtz8qrwv-FK0uPi3PL-NQniE2jnb1sRW8dN6aKtNSZZQJllFLVGEMzYVzQwhljGhjbGYpnAfOuVYKxHe0dpSxzBL6DB3WTW2PECaOtRiSmyLhOrWAKilAed_oRHDNVYSOAiiydjMDVE0zIqG4KIlQMqIkTZA1h-oaP-UYv_ZdAsYSMHb-jnQYR-j9vs92EPW4s_UZgL9vCYLc_kLTbmSwSEl4SQpNBTGlSN0rV7mxqUlLTVJFmRtBNpqOnNi3-6rqzpu_He1MuokPuKjaNjeddNyVQRVCnkTo-WB3-0eklINKE4sQn1jkZAzTT-rq2ouL81wAK37xn8_7Et0nEPXjo_ReocO-vbGvHW3r9Rs_L38DwgM_Fw priority: 102 providerName: Elsevier |
Title | Abrogation of USP7 is an alternative strategy to downregulate PD-L1 and sensitize gastric cancer cells to T cells killing |
URI | https://dx.doi.org/10.1016/j.apsb.2020.11.005 https://www.ncbi.nlm.nih.gov/pubmed/33777676 https://www.proquest.com/docview/2506505271 http://hdl.handle.net/10852/85752 https://pubmed.ncbi.nlm.nih.gov/PMC7982505 https://doaj.org/article/27f2db382cf848489a9ce4c4fb24a36a |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLam8cIL4r5ymYyE9sIyzXYSJw8IbcA0LkNFtFLfLN9SClMykkyi_HrOcZKWwjQJVYqqxrmec-zv1MffR8hz57gB2MGiwsk0ipmXkREuAyCXsbQ4FNIyXJx89ik9ncbvZ8lsiwxyR_0LbK5M7VBPalqfH_z8sXwFAf9yXaulLxoDuR7HHuAgUJregJFJoqLBWQ_3u54ZCfOwqpFzZO8D9NGvo7n6NICJbQi1cmPUCuT-G4PXv-D07xrLPwatk9vkVo826VHnHnfIli_vkr1xR1e93KeT9eqrZp_u0fGayHp5jyyPTF3Ng-loVdDpl7Gki4bqkoY59jJwhtOm47dd0raiDnL6ulO393T8JvrIoLWjDVbJt4tfns416oRYatHZaorTBg0eOOm_fl8EjvD7ZHrydvL6NOqlGiILEKyNfCYLyNx0ERc6EWmWJsJz7awVeQYpCRdpyo21PvEC5wYPpdEaiXiMAfhYJEw8INtlVfodQjkgGMtz65g0sWdgJO6Qhd8alkkj9Yjs9EZRJUQJMpwmXKHQKB8RNlhJ2Z7iHJU2ztVQy_ZNoY0V2hhyHwU2HpEXq2MuOoKPa1sfo_FXLZGcO_xQ1XPVx7risuDOiIzbIovhk-vc-tjGheGxFik8QTK4jupxTodf4FSLay_-bPAzBZ0A2kWXvrpsFODYFBUJJRuRh53frW5RCImMTemIyA2P3HiGzT3l4msgGpd5hgj50X-9osfkJse6n1Cn94Rst_WlfwrArTW74Q8P2L6bHcP2w-dsN8TnbzksQcE |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamIQQXxO-Fn0ZCu7DQxk7s5LgNpg66qdJaqTfLdpwSQEnVdIfy1_Oek3YEpB1QL1VqN3G_9-zv1c_fI-R9njMDtCMKi1yKMI6cDA3PUyByaSSKIZc2wsPJF5diNIu_zJP5HjndnoXBtMpu7m_ndD9bd1cG3a85WJbl4IpB7MKRQKCdZhzi9jvABiR65_n8ZPdHy1CgSh6mMmKHEHt0h2faPC-9bAzEiQxnj49DLGN313r_qnpLlVf0761Y_zLSvxMr_1ipzh6SBx3FpMftKB6RPVc9JoeTVqN6c0SnN0eumiN6SCc36tWbJ2RzbFb1wuNF64LOriaSlg3VFfUb65UXCqdNK2q7oeua5hDIr9qS9o5OPoXjCFrntMHU-HX5y9GFxuIgllq0sBXFvYIGO067tz9KLwz-lMzOPk9PR2FXnyG0wLvWoUtlAeGaLuJCJ1ykIuGO6dxanqUQhzAuBDPWusRx3BAcSqM1qu8YA5yxSCL-jOxXdeUOCGVAWyzLbB5JEzuEleUovW9NlEojdUAOOlBUBa6BsqYJU1hdlAUk2qKkbKdrjuU1fqptAtt3hRgrxBgCHgUYB-TDrs-yVfW4tfUJgr9riYrc_kK9WqjOJBWTBcsNT5kt0hhemc6si21cGBZrLmAEydZ0VM_A4avKW2_-bmtnCjwfcdGVq68bBeRVYBlCGQXkeWt3u0fkXKJMkwiI7Flkbwz9T6rym1cXl1mKtPjFfz7vW3JvNL0Yq_H55deX5D7DFCCfsveK7K9X1-41cLi1eeN99DfCE0I3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abrogation+of+USP7+is+an+alternative+strategy+to+downregulate+PD-L1+and+sensitize+gastric+cancer+cells+to+T+cells+killing&rft.jtitle=Acta+pharmaceutica+Sinica.+B&rft.au=Wang%2C+Zhiru&rft.au=Kang%2C+Wenting&rft.au=Li%2C+Ouwen&rft.au=Qi%2C+Fengyu&rft.date=2021-03-01&rft.issn=2211-3835&rft.volume=11&rft.issue=3&rft.spage=694&rft.epage=707&rft_id=info:doi/10.1016%2Fj.apsb.2020.11.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apsb_2020_11_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3835&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3835&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3835&client=summon |