Abrogation of USP7 is an alternative strategy to downregulate PD-L1 and sensitize gastric cancer cells to T cells killing

Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it...

Full description

Saved in:
Bibliographic Details
Published inActa pharmaceutica Sinica. B Vol. 11; no. 3; pp. 694 - 707
Main Authors Wang, Zhiru, Kang, Wenting, Li, Ouwen, Qi, Fengyu, Wang, Junwei, You, Yinghua, He, Pengxing, Suo, Zhenhe, Zheng, Yichao, Liu, Hong-Min
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2021
Elsevier
Subjects
FDA
TCR
WB
DUB
CHX
HDN
HDT
PDN
GC
PBS
BCA
PDT
Online AccessGet full text

Cover

Loading…
Abstract Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing in vitro and in vivo. Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 in vitro and in vivo. Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor. This study supports that small molecule USP7 inhibitors may be used as novel promoter of the tumor immune response. [Display omitted]
AbstractList Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing in vitro and in vivo. Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 in vitro and in vivo. Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor.
Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing in vitro and in vivo. Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 in vitro and in vivo. Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor. This study supports that small molecule USP7 inhibitors may be used as novel promoter of the tumor immune response. [Display omitted]
Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing in vitro and in vivo. Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 in vitro and in vivo. Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor.Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing in vitro and in vivo. Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 in vitro and in vivo. Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor.
Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing in vitro and in vivo . Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 in vitro and in vivo . Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor. This study supports that small molecule USP7 inhibitors may be used as novel promoter of the tumor immune response. Image 1
Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing and . Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 and . Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor.
Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing in vitro and in vivo. Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 in vitro and in vivo. Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor.
Author Li, Ouwen
Kang, Wenting
You, Yinghua
He, Pengxing
Liu, Hong-Min
Wang, Zhiru
Zheng, Yichao
Wang, Junwei
Suo, Zhenhe
Qi, Fengyu
Author_xml – sequence: 1
  givenname: Zhiru
  surname: Wang
  fullname: Wang, Zhiru
  organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China
– sequence: 2
  givenname: Wenting
  surname: Kang
  fullname: Kang, Wenting
  organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China
– sequence: 3
  givenname: Ouwen
  surname: Li
  fullname: Li, Ouwen
  organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China
– sequence: 4
  givenname: Fengyu
  surname: Qi
  fullname: Qi, Fengyu
  organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China
– sequence: 5
  givenname: Junwei
  surname: Wang
  fullname: Wang, Junwei
  organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China
– sequence: 6
  givenname: Yinghua
  surname: You
  fullname: You, Yinghua
  organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China
– sequence: 7
  givenname: Pengxing
  surname: He
  fullname: He, Pengxing
  organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China
– sequence: 8
  givenname: Zhenhe
  surname: Suo
  fullname: Suo, Zhenhe
  organization: Department of Pathology, the Norwegian Radium Hospital, Oslo University Hospital; Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0379, Norway
– sequence: 9
  givenname: Yichao
  surname: Zheng
  fullname: Zheng, Yichao
  email: yichaozheng@zzu.edu.cn
  organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China
– sequence: 10
  givenname: Hong-Min
  surname: Liu
  fullname: Liu, Hong-Min
  email: liuhm@zzu.edu.cn
  organization: School of Pharmaceutical Sciences, Zhengzhou University; Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001 China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33777676$$D View this record in MEDLINE/PubMed
BookMark eNp9UktvEzEQXqEiWkL_AAfwsZcEP9aPSAipKq9KkahEe7a83tnFYWMH2ykKvx5vkkaUQ-2DRzPzffPw97I68cFDVb0meEYwEe-WM7NOzYxiWhxkhjF_Vp1RSsiUqZqdHG3GT6vzlJa4HIEplfxFdcqYlFJIcVZtL5sYepNd8Ch06O77jUQuIeORGTJEXyL3gFKOJkO_RTmgNvz2EfrNUDzo5uN0QUp2ixL45LL7A6g3Jd1ZZI23EJGFYUgj8PZg_nTD4Hz_qnremSHB-eGdVHefP91efZ0uvn25vrpcTC2veZ6Ckp2az01Xd4YzoQRnQE1rLZsrITllQtDGWuDAMJYMy8YYShVuGkZFxwmbVNd73jaYpV5HtzJxq4NxeucIsdcmZmcH0FR2tG2YorZTdblzM7dQ27praG2YMIXrw55rvWlW0FrwZTHDI9LHEe9-6D7cazlXlGNeCN7uCWx0KTuvfYhGE6w41YqP40yqi0OJGH5tIGW9cmlcnPEQNkkXGlGYqBwne_NvN8c2Hn63JNCHaiGlCN0xhWA9qkgv9agiPapIE6LxrkX1H8i6vBNImcgNT0Pf76FQ_vPeQdTJOigqaF0Em8vC3VPwvzl84Ys
CitedBy_id crossref_primary_10_1002_cac2_12460
crossref_primary_10_1136_jitc_2022_006345
crossref_primary_10_1158_1541_7786_MCR_23_0113
crossref_primary_10_1186_s12967_024_05962_6
crossref_primary_10_3390_biom14091191
crossref_primary_10_1016_j_biopha_2024_116323
crossref_primary_10_1016_j_biopha_2023_114700
crossref_primary_10_1152_ajpcell_00712_2024
crossref_primary_10_1186_s12935_022_02524_y
crossref_primary_10_1002_advs_202303473
crossref_primary_10_1016_j_jot_2023_05_007
crossref_primary_10_1038_s41401_024_01263_2
crossref_primary_10_3390_cancers14235831
crossref_primary_10_1016_j_gendis_2023_101158
crossref_primary_10_1016_j_molmed_2025_01_001
crossref_primary_10_1186_s13045_024_01578_x
crossref_primary_10_3389_fgene_2024_1453191
crossref_primary_10_1016_j_ejmech_2024_116752
crossref_primary_10_1111_imm_13573
crossref_primary_10_1002_advs_202304521
crossref_primary_10_1080_14728222_2023_2266571
crossref_primary_10_3389_fphar_2024_1382256
crossref_primary_10_3389_fimmu_2023_1123244
crossref_primary_10_1038_s12276_022_00887_w
crossref_primary_10_3389_fimmu_2023_1228200
crossref_primary_10_1007_s00018_022_04431_x
crossref_primary_10_3390_ijms23031119
crossref_primary_10_3390_ijms25052939
crossref_primary_10_1038_s41467_023_44466_7
crossref_primary_10_1016_j_intimp_2024_113244
crossref_primary_10_1016_j_cmet_2024_11_012
crossref_primary_10_1016_j_apsb_2021_04_019
crossref_primary_10_1016_j_biopha_2024_117348
crossref_primary_10_1186_s11658_022_00343_7
crossref_primary_10_3389_fimmu_2022_1016817
crossref_primary_10_52547_ibj_3784
crossref_primary_10_1080_08820139_2022_2083972
crossref_primary_10_1186_s12943_024_02005_y
crossref_primary_10_1016_j_semcancer_2025_02_004
crossref_primary_10_1016_j_bbcan_2024_189119
crossref_primary_10_3389_fchem_2022_1005727
crossref_primary_10_1016_j_ejmech_2024_116267
crossref_primary_10_3389_fimmu_2023_1226057
crossref_primary_10_1016_j_jbc_2022_102443
crossref_primary_10_1111_imm_13683
crossref_primary_10_3390_ijms221910800
crossref_primary_10_4240_wjgs_v16_i8_2521
crossref_primary_10_1002_ca_24057
crossref_primary_10_3389_fimmu_2024_1392546
crossref_primary_10_1016_j_bbcan_2023_188903
crossref_primary_10_1186_s12920_025_02108_5
crossref_primary_10_1021_acs_jmedchem_2c01444
crossref_primary_10_3390_cancers14225539
crossref_primary_10_3389_fimmu_2024_1436174
crossref_primary_10_1002_mco2_70036
crossref_primary_10_1038_s41418_023_01219_9
crossref_primary_10_3389_fimmu_2022_1060497
crossref_primary_10_1002_ctd2_242
crossref_primary_10_1038_s41420_023_01629_1
crossref_primary_10_1002_advs_202307899
crossref_primary_10_1186_s12935_025_03693_2
crossref_primary_10_3389_fonc_2022_920287
crossref_primary_10_1016_j_gendis_2022_01_002
crossref_primary_10_1016_j_compbiomed_2023_107068
crossref_primary_10_3389_fimmu_2023_1202633
crossref_primary_10_3389_fonc_2024_1456710
crossref_primary_10_1016_j_phrs_2025_107668
crossref_primary_10_7717_peerj_14799
crossref_primary_10_1186_s13046_023_02805_y
crossref_primary_10_1186_s40164_023_00394_2
crossref_primary_10_1080_13543776_2022_2058873
crossref_primary_10_1016_j_yexcr_2023_113714
crossref_primary_10_1007_s10555_024_10174_x
crossref_primary_10_3389_fimmu_2022_874589
crossref_primary_10_1186_s12943_024_02023_w
crossref_primary_10_1186_s40164_024_00552_0
crossref_primary_10_1016_j_apsb_2023_07_019
Cites_doi 10.1172/jci.insight.126908
10.1038/s41591-018-0014-x
10.1158/0008-5472.CAN-09-4152
10.1016/j.molcel.2018.07.030
10.1016/j.ccell.2018.01.009
10.4251/wjgo.v4.i7.156
10.1073/pnas.92.18.8493
10.1038/s41467-018-04313-6
10.1038/nrc.2016.36
10.1001/jamaoncol.2018.0013
10.1038/sj.embor.7401099
10.1007/s10120-018-00909-5
10.18632/oncotarget.10337
10.18632/oncotarget.19309
10.1038/nature14011
10.1182/blood-2008-07-168203
10.1016/j.ccell.2016.10.010
10.1158/1078-0432.CCR-12-2063
10.1136/bmj.k3529
10.1080/13543776.2018.1512706
10.1016/j.apsb.2019.07.004
10.1097/PPO.0000000000000056
10.1038/ncomms12632
10.1038/nature23643
10.1016/j.apsb.2018.08.009
10.1177/1756284819869767
10.1038/nature24006
10.1126/scitranslmed.aad7118
10.1172/JCI126022
10.1016/j.molcel.2019.09.030
10.1016/S1097-2765(04)00157-1
10.1016/j.apsb.2019.01.018
10.1016/j.celrep.2016.02.049
10.3322/caac.21492
10.1056/NEJMoa1503093
10.1016/j.molcel.2005.02.029
10.1038/s41422-018-0124-5
10.3390/molecules24112071
10.1158/1078-0432.CCR-16-3215
10.1016/j.canlet.2018.11.001
10.1158/1541-7786.MCR-17-0166
10.1038/s41551-019-0375-6
10.1016/S1470-2045(16)00175-3
10.1038/nchembio.2528
10.1053/j.gastro.2019.01.252
10.1016/S0140-6736(18)31257-1
10.1016/0955-0674(95)80031-X
10.1016/j.canlet.2017.11.014
10.1016/j.ceb.2013.07.004
10.1084/jem.20161462
10.1074/jbc.M303977200
10.1016/S0140-6736(17)31827-5
10.1158/2326-6066.CIR-18-0910
10.1093/nar/gkx247
10.1038/ncb1469
10.1038/nature02501
10.1038/nsmb1067
10.1002/cam4.1675
10.2174/1574892813666181029142812
10.1038/nature25015
10.1016/j.immuni.2016.05.002
10.1038/nature23669
10.1016/j.apsb.2020.06.014
10.1016/j.abb.2010.08.020
10.1038/onc.2009.427
10.3892/mmr.2014.2914
10.1016/j.coi.2011.12.009
10.3389/fphar.2019.00427
ContentType Journal Article
Copyright 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
info:eu-repo/semantics/openAccess
2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
Copyright_xml – notice: 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
– notice: 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
– notice: info:eu-repo/semantics/openAccess
– notice: 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
3HK
5PM
DOA
DOI 10.1016/j.apsb.2020.11.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
NORA - Norwegian Open Research Archives
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2211-3843
EndPage 707
ExternalDocumentID oai_doaj_org_article_27f2db382cf848489a9ce4c4fb24a36a
PMC7982505
10852_85752
33777676
10_1016_j_apsb_2020_11_005
S2211383520307930
Genre Journal Article
GroupedDBID ---
--K
-05
-0E
-SE
-S~
0R~
0SF
1~5
4.4
457
4G.
53G
5VR
5VS
6I.
7-5
92M
9D9
9DE
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABKZE
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AEXQZ
AFUIB
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
CAJEE
CAJUS
CCEZO
CIEJG
DIK
EBS
EJD
FDB
GROUPED_DOAJ
GX1
HH5
HYE
HZ~
IPNFZ
IXB
JUIAU
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
Q--
Q-4
R-E
RIG
ROL
RPM
RT5
SES
SSZ
T8U
U1F
U1G
U5E
U5O
XH2
~NG
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
AAXDM
NPM
7X8
3HK
CDYEO
5PM
ID FETCH-LOGICAL-c545t-e87f899af4fa5368653e2adcc39867523662bcce5e3007307baa2280bb326f513
IEDL.DBID M48
ISSN 2211-3835
IngestDate Wed Aug 27 01:27:36 EDT 2025
Thu Aug 21 18:04:58 EDT 2025
Sat Apr 29 05:40:37 EDT 2023
Fri Jul 11 16:34:08 EDT 2025
Thu Jan 02 22:57:58 EST 2025
Thu Apr 24 22:51:52 EDT 2025
Tue Jul 01 01:53:05 EDT 2025
Thu Jul 20 20:15:38 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords FDA
TCR
GEPIA
USP38
CSN5
EBNA1
FOXO4
WB
H2O2
HAUSP
USP18
RIPA
DUB
Ubiquitination
CHX
Cancer biology
HDN
Immunotherapy
PD-L1
ICP0
HDT
PDN
GC
Gastric cancer
PBS
BCA
PDT
USP7
USP9X
USP22
qRT-PCR
IL-2
PBMC
TCGA
PTMs
Immunosuppression
Epigenetics
MDM2
irAEs
TILs
PD-1
PD-L1, programmed death ligand-1
IL-2, interleukin 2
USP38, ubiquitin specific peptidase 38
FOXO4, forkhead box O4
PBMC, peripheral blood mononuclear cells
CHX, cycloheximide
DUB, deubiquitinating enzymes
TILs, tumor-infiltrating T cells
GC, gastric cancer
GEPIA, Gene-Expression Profiling Interactive Analysis
WB, Western blotting
qRT-PCR, quantitative real time polymerase chain reaction
PTMs, post-translational modifications
EBNA1, Epstein–Barr nuclear antigen 1
CSN5, COP9 signalosome 5
RIPA, radioimmunoprecipitation
TCGA, the Cancer Genome Atlas
PBS, phosphate buffer saline
PDN, poor differentiated matched adjacent normal tissues
USP7, ubiquitin-specific processing protease 7
USP9X, ubiquitin specific peptidase 9 X-linked
HDN, well differentiated matched adjacent normal tissues
HAUSP, herpes virus-associated ubiquitin-specific protease
FDA, U.S. Food and Drug Administration
PDT, poor differentiated tumor tissues
BCA, bicinchoninic acid
USP18, ubiquitin specific peptidase 18
H2O2, hydrogen peroxidase
MDM2, murine double minute-2
HDT, well differentiated tumor tissues
ICP0, infected cell protein 0
USP22, ubiquitin specific peptidase 22
irAEs, immune-related adverse effects
PD-1, programmed cell death protein 1
TCR, T cell receptor
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-e87f899af4fa5368653e2adcc39867523662bcce5e3007307baa2280bb326f513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.apsb.2020.11.005
PMID 33777676
PQID 2506505271
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_27f2db382cf848489a9ce4c4fb24a36a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7982505
cristin_nora_10852_85752
proquest_miscellaneous_2506505271
pubmed_primary_33777676
crossref_primary_10_1016_j_apsb_2020_11_005
crossref_citationtrail_10_1016_j_apsb_2020_11_005
elsevier_sciencedirect_doi_10_1016_j_apsb_2020_11_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Acta pharmaceutica Sinica. B
PublicationTitleAlternate Acta Pharm Sin B
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Topalian, Taube, Anders, Pardoll (bib53) 2016; 16
Huang, Zhang, Lou, Wang, Zhao, Wang (bib35) 2019; 7
Chan, Li, Xia, Hsu, Lee, Cha (bib62) 2019; 129
Li, Lim, Xia, Lee, Chan, Kuo (bib30) 2016; 7
Ribas, Hu-Lieskovan (bib18) 2016; 213
Kang, Boku, Satoh, Ryu, Chao, Kato (bib54) 2017; 390
Yao, Lan, Li, Shi, Brosseau, Wang (bib70) 2019; 3
Hsu, Xia, Hsu, Chan, Yu, Cha (bib66) 2018; 9
Kopalli, Kang, Lee, Koppula (bib12) 2019; 14
Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (bib1) 2018; 68
Jiao, Xia, Yamaguchi, Wei, Chen, Hsu (bib59) 2017; 23
Li, Brooks, Kon, Gu (bib27) 2004; 13
Ma, Martin, Xue, Lor, Kennedy-Wilson, Sinnamon (bib42) 2010; 503
Tang, Li, Kang, Gao, Li, Zhang (bib36) 2017; 45
Muro, Chung, Shankaran, Geva, Catenacci, Gupta (bib7) 2016; 17
Teng, Meng, Kong, Yu (bib31) 2018; 414
Brar, Shah (bib52) 2019; 12
Li, Lim, Chung, Kim, Park, Yao (bib65) 2018; 33
D'Arrigo, Russo, Rea, Tufano, Guadagno, Del Basso De Caro (bib67) 2017; 8
Lim, Li, Xia, Cha, Chan, Wu (bib33) 2016; 30
Li, Li, Li, Ding, Guo, Liu (bib61) 2019; 156
Fuchs, Doi, Jang, Muro, Satoh, Machado (bib8) 2018; 4
Saridakis, Sheng, Sarkari, Holowaty, Shire, Nguyen (bib49) 2005; 18
Topalian, Drake, Pardoll (bib38) 2012; 24
Guzik, Tomala, Muszak, Konieczny, Hec, Blaszkiewicz (bib11) 2019; 24
Shaabani, Huizinga, Butera, Kouchi, Guzik, Magiera-Mularz (bib14) 2018; 28
Smith, Purvis, Bomstad, Labak, Velpula, Tsung (bib13) 2019; 11
Deng, Tan, Gao, Zou, Xu, Tu (bib20) 2020; 10
Zou, Wolchok, Chen (bib6) 2016; 8
Cha, Chan, Li, Hsu, Hung (bib58) 2019; 76
Burr, Sparbier, Chan, Williamson, Woods, Beavis (bib64) 2017; 549
Shen, Zhao (bib56) 2018; 362
Sznol (bib57) 2014; 20
Liu, Liu, Zhang, Yin, Dong, Zeng (bib21) 2020; 10
Craney, Rape (bib22) 2013; 25
Holowaty, Zeghouf, Wu, Tellam, Athanasopoulos, Greenblatt (bib47) 2003; 278
Wei, Long, Guo, Liu, Tang, Rao (bib15) 2019; 9
Maher, Thomas, Haas, Longen, Oyer, Tong (bib68) 2018; 16
Shitara, Ozguroglu, Bang, Di Bartolomeo, Mandala, Ryu (bib10) 2018; 392
Herbst, Soria, Kowanetz, Fine, Hamid, Gordon (bib17) 2014; 515
Cummins, Rago, Kohli, Kinzler, Lengauer, Vogelstein (bib48) 2004; 428
Koemans, Chalabi, van Sandick, van Dieren, Kodach (bib32) 2019; 442
Szasz, Lanczky, Nagy, Forster, Hark, Green (bib37) 2016; 7
Kon, Kobayashi, Li, Brooks, Ludwig, Gu (bib41) 2010; 29
Nagini (bib2) 2012; 4
Wang, Kang, You, Pang, Ren, Suo (bib25) 2019; 10
Hochstrasser (bib23) 1995; 7
Mungamuri, Qiao, Yao, Manfredi, Gu, Aaronson (bib26) 2016; 14
McFarlane, Kelvin, de la Vega, Govender, Scott, Burrows (bib24) 2010; 70
Li, Jiang, Chen, Zheng (bib45) 2015; 11
Yarchoan, Albacker, Hopkins, Montesion, Murugesan, Vithayathil (bib55) 2019; 4
Kategaya, Di Lello, Rouge, Pastor, Clark, Drummond (bib28) 2017; 550
Agarwal, Agarwal, Taylor, Stark (bib43) 1995; 92
Sznol, Chen (bib19) 2013; 19
Bachmann, Oxenius (bib40) 2007; 8
van der Horst, de Vries-Smits, Brenkman, van Triest, van den Broek, Colland (bib51) 2006; 8
Gavory, O'Dowd, Helm, Flasz, Arkoudis, Dossang (bib29) 2018; 14
Mezzadra, Sun, Jae, Gomez-Eerland, de Vries, Wu (bib63) 2017; 549
Robert, Schachter, Long, Arance, Grob, Mortier (bib4) 2015; 372
Schildberg, Klein, Freeman, Sharpe (bib5) 2016; 44
Binnewies, Roberts, Kersten, Chan (bib44) 2018; 24
Bang, Kang, Catenacci, Muro, Fuchs, Geva (bib9) 2019; 22
Cha, Yang, Xia, Wei, Chan, Lim (bib60) 2018; 71
Howlader, Krapcho, Miller, Brest, Yu (bib3) 1975–2016
Daubeuf, Singh, Tan, Liu, Federoff, Bowers (bib46) 2009; 113
Zhao, Guo, Wu, Yang, Zhong, Deng (bib16) 2019; 9
Zhang, Bu, Wang, Zhu, Geng, Nihira (bib39) 2018; 553
Sheng, Saridakis, Sarkari, Duan, Wu, Arrowsmith (bib50) 2006; 13
Jingjing, Wenzheng, Donghua, Guangyu, Aiping, Wenjuan (bib34) 2018; 7
Yang, Hsu, Sun, Chan, Li, Hsu (bib69) 2019; 29
Szasz (10.1016/j.apsb.2020.11.005_bib37) 2016; 7
Herbst (10.1016/j.apsb.2020.11.005_bib17) 2014; 515
Brar (10.1016/j.apsb.2020.11.005_bib52) 2019; 12
D'Arrigo (10.1016/j.apsb.2020.11.005_bib67) 2017; 8
Kang (10.1016/j.apsb.2020.11.005_bib54) 2017; 390
Zhao (10.1016/j.apsb.2020.11.005_bib16) 2019; 9
Lim (10.1016/j.apsb.2020.11.005_bib33) 2016; 30
Smith (10.1016/j.apsb.2020.11.005_bib13) 2019; 11
Agarwal (10.1016/j.apsb.2020.11.005_bib43) 1995; 92
Li (10.1016/j.apsb.2020.11.005_bib61) 2019; 156
Daubeuf (10.1016/j.apsb.2020.11.005_bib46) 2009; 113
Robert (10.1016/j.apsb.2020.11.005_bib4) 2015; 372
Guzik (10.1016/j.apsb.2020.11.005_bib11) 2019; 24
Ma (10.1016/j.apsb.2020.11.005_bib42) 2010; 503
Wei (10.1016/j.apsb.2020.11.005_bib15) 2019; 9
van der Horst (10.1016/j.apsb.2020.11.005_bib51) 2006; 8
Topalian (10.1016/j.apsb.2020.11.005_bib53) 2016; 16
Deng (10.1016/j.apsb.2020.11.005_bib20) 2020; 10
Liu (10.1016/j.apsb.2020.11.005_bib21) 2020; 10
Hochstrasser (10.1016/j.apsb.2020.11.005_bib23) 1995; 7
Sheng (10.1016/j.apsb.2020.11.005_bib50) 2006; 13
Yao (10.1016/j.apsb.2020.11.005_bib70) 2019; 3
Howlader (10.1016/j.apsb.2020.11.005_bib3) 1975
Sznol (10.1016/j.apsb.2020.11.005_bib19) 2013; 19
Fuchs (10.1016/j.apsb.2020.11.005_bib8) 2018; 4
Burr (10.1016/j.apsb.2020.11.005_bib64) 2017; 549
Wang (10.1016/j.apsb.2020.11.005_bib25) 2019; 10
Koemans (10.1016/j.apsb.2020.11.005_bib32) 2019; 442
Shaabani (10.1016/j.apsb.2020.11.005_bib14) 2018; 28
Cummins (10.1016/j.apsb.2020.11.005_bib48) 2004; 428
Li (10.1016/j.apsb.2020.11.005_bib30) 2016; 7
Kategaya (10.1016/j.apsb.2020.11.005_bib28) 2017; 550
Kon (10.1016/j.apsb.2020.11.005_bib41) 2010; 29
Shen (10.1016/j.apsb.2020.11.005_bib56) 2018; 362
Cha (10.1016/j.apsb.2020.11.005_bib58) 2019; 76
Chan (10.1016/j.apsb.2020.11.005_bib62) 2019; 129
Bang (10.1016/j.apsb.2020.11.005_bib9) 2019; 22
Tang (10.1016/j.apsb.2020.11.005_bib36) 2017; 45
Mungamuri (10.1016/j.apsb.2020.11.005_bib26) 2016; 14
Teng (10.1016/j.apsb.2020.11.005_bib31) 2018; 414
Jiao (10.1016/j.apsb.2020.11.005_bib59) 2017; 23
Schildberg (10.1016/j.apsb.2020.11.005_bib5) 2016; 44
Mezzadra (10.1016/j.apsb.2020.11.005_bib63) 2017; 549
Saridakis (10.1016/j.apsb.2020.11.005_bib49) 2005; 18
Jingjing (10.1016/j.apsb.2020.11.005_bib34) 2018; 7
Li (10.1016/j.apsb.2020.11.005_bib45) 2015; 11
Li (10.1016/j.apsb.2020.11.005_bib27) 2004; 13
Topalian (10.1016/j.apsb.2020.11.005_bib38) 2012; 24
Holowaty (10.1016/j.apsb.2020.11.005_bib47) 2003; 278
Huang (10.1016/j.apsb.2020.11.005_bib35) 2019; 7
Nagini (10.1016/j.apsb.2020.11.005_bib2) 2012; 4
Yang (10.1016/j.apsb.2020.11.005_bib69) 2019; 29
Muro (10.1016/j.apsb.2020.11.005_bib7) 2016; 17
Bachmann (10.1016/j.apsb.2020.11.005_bib40) 2007; 8
Yarchoan (10.1016/j.apsb.2020.11.005_bib55) 2019; 4
Bray (10.1016/j.apsb.2020.11.005_bib1) 2018; 68
Binnewies (10.1016/j.apsb.2020.11.005_bib44) 2018; 24
Sznol (10.1016/j.apsb.2020.11.005_bib57) 2014; 20
Maher (10.1016/j.apsb.2020.11.005_bib68) 2018; 16
Zou (10.1016/j.apsb.2020.11.005_bib6) 2016; 8
Craney (10.1016/j.apsb.2020.11.005_bib22) 2013; 25
Shitara (10.1016/j.apsb.2020.11.005_bib10) 2018; 392
Cha (10.1016/j.apsb.2020.11.005_bib60) 2018; 71
Li (10.1016/j.apsb.2020.11.005_bib65) 2018; 33
Kopalli (10.1016/j.apsb.2020.11.005_bib12) 2019; 14
Gavory (10.1016/j.apsb.2020.11.005_bib29) 2018; 14
Hsu (10.1016/j.apsb.2020.11.005_bib66) 2018; 9
Ribas (10.1016/j.apsb.2020.11.005_bib18) 2016; 213
McFarlane (10.1016/j.apsb.2020.11.005_bib24) 2010; 70
Zhang (10.1016/j.apsb.2020.11.005_bib39) 2018; 553
References_xml – volume: 11
  start-page: 1566
  year: 2015
  end-page: 1572
  ident: bib45
  article-title: Ki67 is a promising molecular target in the diagnosis of cancer
  publication-title: Mol Med Rep
– volume: 549
  start-page: 106
  year: 2017
  end-page: 110
  ident: bib63
  article-title: Identification of CMTM6 and CMTM4 as PD-L1 protein regulators
  publication-title: Nature
– volume: 129
  start-page: 3324
  year: 2019
  end-page: 3338
  ident: bib62
  article-title: IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion
  publication-title: J Clin Invest
– volume: 8
  start-page: 68291
  year: 2017
  end-page: 68304
  ident: bib67
  article-title: A regulatory role for the co-chaperone FKBP51s in PD-L1 expression in glioma
  publication-title: Oncotarget
– volume: 7
  start-page: 215
  year: 1995
  end-page: 223
  ident: bib23
  article-title: Ubiquitin, proteasomes, and the regulation of intracellular protein degradation
  publication-title: Curr Opin Cell Biol
– volume: 113
  start-page: 3264
  year: 2009
  end-page: 3275
  ident: bib46
  article-title: HSV ICP0 recruits USP7 to modulate TLR-mediated innate response
  publication-title: Blood
– volume: 362
  start-page: k3529
  year: 2018
  ident: bib56
  article-title: Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: Meta-analysis
  publication-title: BMJ
– volume: 156
  start-page: 1849
  year: 2019
  end-page: 1861 e13
  ident: bib61
  article-title: MET inhibitors promote liver tumor evasion of the immune response by stabilizing PDL1
  publication-title: Gastroenterology
– volume: 10
  start-page: 427
  year: 2019
  ident: bib25
  article-title: USP7: Novel drug target in cancer therapy
  publication-title: Front Pharmacol
– volume: 7
  start-page: 12632
  year: 2016
  ident: bib30
  article-title: Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity
  publication-title: Nat Commun
– volume: 30
  start-page: 925
  year: 2016
  end-page: 939
  ident: bib33
  article-title: Deubiquitination and stabilization of PD-L1 by CSN5
  publication-title: Canc Cell
– volume: 503
  start-page: 207
  year: 2010
  end-page: 212
  ident: bib42
  article-title: C-terminal region of USP7/HAUSP is critical for deubiquitination activity and contains a second mdm2/p53 binding site
  publication-title: Arch Biochem Biophys
– volume: 24
  start-page: 541
  year: 2018
  end-page: 550
  ident: bib44
  article-title: Understanding the tumor immune microenvironment (TIME) for effective therapy
  publication-title: Nat Med
– volume: 13
  start-page: 879
  year: 2004
  end-page: 886
  ident: bib27
  article-title: A dynamic role of HAUSP in the p53–Mdm2 pathway
  publication-title: Mol Cell
– volume: 24
  start-page: 2071
  year: 2019
  ident: bib11
  article-title: Development of the inhibitors that target the PD-1/PD-L1 interaction-a brief look at progress on small molecules, peptides and macrocycles
  publication-title: Molecules
– volume: 8
  start-page: 328rv4
  year: 2016
  ident: bib6
  article-title: PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations
  publication-title: Sci Transl Med
– volume: 7
  start-page: 4004
  year: 2018
  end-page: 4011
  ident: bib34
  article-title: Deubiquitination and stabilization of programmed cell death ligand 1 by ubiquitin-specific peptidase 9, X-linked in oral squamous cell carcinoma
  publication-title: Canc Med
– volume: 9
  start-page: 304
  year: 2019
  end-page: 315
  ident: bib16
  article-title: SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade
  publication-title: Acta Pharm Sin B
– volume: 8
  start-page: 1064
  year: 2006
  end-page: 1073
  ident: bib51
  article-title: FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP
  publication-title: Nat Cell Biol
– volume: 392
  start-page: 123
  year: 2018
  end-page: 133
  ident: bib10
  article-title: Pembrolizumab
  publication-title: Lancet
– volume: 17
  start-page: 717
  year: 2016
  end-page: 726
  ident: bib7
  article-title: Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial
  publication-title: Lancet Oncol
– volume: 22
  start-page: 828
  year: 2019
  end-page: 837
  ident: bib9
  article-title: Pembrolizumab alone or in combination with chemotherapy as first-line therapy for patients with advanced gastric or gastroesophageal junction adenocarcinoma: Results from the phase II nonrandomized KEYNOTE-059 study
  publication-title: Gastric Cancer
– volume: 550
  start-page: 534
  year: 2017
  end-page: 538
  ident: bib28
  article-title: USP7 small-molecule inhibitors interfere with ubiquitin binding
  publication-title: Nature
– volume: 442
  start-page: 279
  year: 2019
  end-page: 286
  ident: bib32
  article-title: Beyond the PD-L1 horizon: In search for a good biomarker to predict success of immunotherapy in gastric and esophageal adenocarcinoma
  publication-title: Canc Lett
– volume: 515
  start-page: 563
  year: 2014
  end-page: 567
  ident: bib17
  article-title: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients
  publication-title: Nature
– volume: 25
  start-page: 704
  year: 2013
  end-page: 710
  ident: bib22
  article-title: Dynamic regulation of ubiquitin-dependent cell cycle control
  publication-title: Curr Opin Cell Biol
– volume: 20
  start-page: 290
  year: 2014
  end-page: 295
  ident: bib57
  article-title: Blockade of the B7-H1/PD-1 pathway as a basis for combination anticancer therapy
  publication-title: Canc J
– volume: 10
  start-page: 2299
  year: 2020
  end-page: 2312
  ident: bib21
  article-title: Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity
  publication-title: Acta Pharm Sin B
– volume: 14
  start-page: 118
  year: 2018
  end-page: 125
  ident: bib29
  article-title: Discovery and characterization of highly potent and selective allosteric USP7 inhibitors
  publication-title: Nat Chem Biol
– volume: 4
  start-page: 1286
  year: 2019
  end-page: 1295
  ident: bib55
  article-title: PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers
  publication-title: JCI Insight
– year: 1975–2016
  ident: bib3
  article-title: SEER cancer statistics review
– volume: 92
  start-page: 8493
  year: 1995
  end-page: 8497
  ident: bib43
  article-title: p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts
  publication-title: Proc Natl Acad Sci U S A
– volume: 28
  start-page: 665
  year: 2018
  end-page: 678
  ident: bib14
  article-title: A patent review on PD-1/PD-L1 antagonists: Small molecules, peptides, and macrocycles (2015–2018)
  publication-title: Expert Opin Ther Pat
– volume: 9
  start-page: 819
  year: 2019
  end-page: 831
  ident: bib15
  article-title: Multifunctional polymeric micelle-based chemo-immunotherapy with immune checkpoint blockade for efficient treatment of orthotopic and metastatic breast cancer
  publication-title: Acta Pharm Sin B
– volume: 414
  start-page: 166
  year: 2018
  end-page: 173
  ident: bib31
  article-title: Progress and challenges of predictive biomarkers of anti PD-1/PD-L1 immunotherapy: A systematic review
  publication-title: Canc Lett
– volume: 10
  start-page: 358
  year: 2020
  end-page: 373
  ident: bib20
  article-title: knocking out mediated by CRISPR-Cas9 genome editing for PD-L1 attenuation and enhanced antitumor immunity
  publication-title: Acta Pharm Sin B
– volume: 4
  start-page: 156
  year: 2012
  end-page: 169
  ident: bib2
  article-title: Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention
  publication-title: World J Gastrointest Oncol
– volume: 44
  start-page: 955
  year: 2016
  end-page: 972
  ident: bib5
  article-title: Coinhibitory pathways in the B7-CD28 ligand-receptor family
  publication-title: Immunity
– volume: 553
  start-page: 91
  year: 2018
  end-page: 95
  ident: bib39
  article-title: Cyclin D-CDK4 kinase destabilizes PD-L1
  publication-title: Nature
– volume: 71
  start-page: 606
  year: 2018
  end-page: 620
  ident: bib60
  article-title: Metformin promotes antitumor immunity
  publication-title: Mol Cell
– volume: 7
  start-page: 49322
  year: 2016
  end-page: 49333
  ident: bib37
  article-title: Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients
  publication-title: Oncotarget
– volume: 278
  start-page: 29987
  year: 2003
  end-page: 29994
  ident: bib47
  article-title: Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7
  publication-title: J Biol Chem
– volume: 11
  start-page: 529
  year: 2019
  end-page: 541
  ident: bib13
  article-title: Therapeutic targeting of immune checkpoints with small molecule inhibitors
  publication-title: Am J Transl Res
– volume: 18
  start-page: 25
  year: 2005
  end-page: 36
  ident: bib49
  article-title: Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization
  publication-title: Mol Cell
– volume: 390
  start-page: 2461
  year: 2017
  end-page: 2471
  ident: bib54
  article-title: Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial
  publication-title: Lancet
– volume: 428
  start-page: 1
  year: 2004
  end-page: 2
  ident: bib48
  article-title: Tumour suppression: Disruption of HAUSP gene stabilizes p53
  publication-title: Nature
– volume: 9
  start-page: 1908
  year: 2018
  ident: bib66
  article-title: STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion
  publication-title: Nat Commun
– volume: 16
  start-page: 243
  year: 2018
  end-page: 255
  ident: bib68
  article-title: Small-molecule sigma1 modulator induces autophagic degradation of PD-L1
  publication-title: Mol Canc Res
– volume: 19
  start-page: 1021
  year: 2013
  end-page: 1034
  ident: bib19
  article-title: Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer
  publication-title: Clin Canc Res
– volume: 4
  year: 2018
  ident: bib8
  article-title: Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 trial
  publication-title: JAMA Oncol
– volume: 8
  start-page: 1142
  year: 2007
  end-page: 1148
  ident: bib40
  article-title: Interleukin 2: From immunostimulation to immunoregulation and back again
  publication-title: EMBO Rep
– volume: 3
  start-page: 306
  year: 2019
  end-page: 317
  ident: bib70
  article-title: Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours
  publication-title: Nat Biomed Eng
– volume: 70
  start-page: 3329
  year: 2010
  end-page: 3339
  ident: bib24
  article-title: The deubiquitinating enzyme USP17 is highly expressed in tumor biopsies, is cell cycle regulated, and is required for G1–S progression
  publication-title: Canc Res
– volume: 45
  start-page: W98
  year: 2017
  end-page: W102
  ident: bib36
  article-title: GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses
  publication-title: Nucleic Acids Res
– volume: 76
  start-page: 359
  year: 2019
  end-page: 370
  ident: bib58
  article-title: Mechanisms controlling PD-L1 expression in cancer
  publication-title: Mol Cell
– volume: 23
  start-page: 3711
  year: 2017
  end-page: 3720
  ident: bib59
  article-title: PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression
  publication-title: Clin Canc Res
– volume: 7
  start-page: 1580
  year: 2019
  end-page: 1590
  ident: bib35
  article-title: USP22 deubiquitinates CD274 to suppress anticancer immunity
  publication-title: Canc Immunol Res
– volume: 372
  start-page: 2521
  year: 2015
  end-page: 2532
  ident: bib4
  article-title: Pembrolizumab
  publication-title: N Engl J Med
– volume: 14
  start-page: 2528
  year: 2016
  end-page: 2537
  ident: bib26
  article-title: USP7 enforces heterochromatinization of p53 target promoters by protecting SUV39H1 from MDM2-mediated degradation
  publication-title: Cell Rep
– volume: 14
  start-page: 100
  year: 2019
  end-page: 112
  ident: bib12
  article-title: Novel small molecule inhibitors of programmed cell death (PD)-1, and its ligand, PD-L1 in cancer immunotherapy: A review update of patent literature
  publication-title: Recent Pat Anti-Cancer Drug Discov
– volume: 16
  start-page: 275
  year: 2016
  end-page: 287
  ident: bib53
  article-title: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy
  publication-title: Nat Rev Canc
– volume: 29
  start-page: 83
  year: 2019
  end-page: 86
  ident: bib69
  article-title: Palmitoylation stabilizes PD-L1 to promote breast tumor growth
  publication-title: Cell Res
– volume: 213
  start-page: 2835
  year: 2016
  end-page: 2840
  ident: bib18
  article-title: What does PD-L1 positive or negative mean?.
  publication-title: J Exp Med
– volume: 68
  start-page: 394
  year: 2018
  end-page: 424
  ident: bib1
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
– volume: 33
  start-page: 187
  year: 2018
  end-page: 201
  ident: bib65
  article-title: Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1
  publication-title: Canc Cell
– volume: 29
  start-page: 1270
  year: 2010
  end-page: 1279
  ident: bib41
  article-title: Inactivation of HAUSP
  publication-title: Oncogene
– volume: 24
  start-page: 207
  year: 2012
  end-page: 212
  ident: bib38
  article-title: Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity
  publication-title: Curr Opin Immunol
– volume: 13
  start-page: 285
  year: 2006
  end-page: 291
  ident: bib50
  article-title: Molecular recognition of p53 and MDM2 by USP7/HAUSP
  publication-title: Nat Struct Mol Biol
– volume: 549
  start-page: 101
  year: 2017
  end-page: 105
  ident: bib64
  article-title: CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity
  publication-title: Nature
– volume: 12
  year: 2019
  ident: bib52
  article-title: The role of pembrolizumab in the treatment of PD-L1 expressing gastric and gastroesophageal junction adenocarcinoma
  publication-title: Therap Adv Gastroenterol
– volume: 4
  start-page: 1286
  year: 2019
  ident: 10.1016/j.apsb.2020.11.005_bib55
  article-title: PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.126908
– volume: 24
  start-page: 541
  year: 2018
  ident: 10.1016/j.apsb.2020.11.005_bib44
  article-title: Understanding the tumor immune microenvironment (TIME) for effective therapy
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0014-x
– volume: 70
  start-page: 3329
  year: 2010
  ident: 10.1016/j.apsb.2020.11.005_bib24
  article-title: The deubiquitinating enzyme USP17 is highly expressed in tumor biopsies, is cell cycle regulated, and is required for G1–S progression
  publication-title: Canc Res
  doi: 10.1158/0008-5472.CAN-09-4152
– volume: 71
  start-page: 606
  year: 2018
  ident: 10.1016/j.apsb.2020.11.005_bib60
  article-title: Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2018.07.030
– volume: 33
  start-page: 187
  year: 2018
  ident: 10.1016/j.apsb.2020.11.005_bib65
  article-title: Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1
  publication-title: Canc Cell
  doi: 10.1016/j.ccell.2018.01.009
– volume: 4
  start-page: 156
  year: 2012
  ident: 10.1016/j.apsb.2020.11.005_bib2
  article-title: Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention
  publication-title: World J Gastrointest Oncol
  doi: 10.4251/wjgo.v4.i7.156
– volume: 92
  start-page: 8493
  year: 1995
  ident: 10.1016/j.apsb.2020.11.005_bib43
  article-title: p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.92.18.8493
– volume: 9
  start-page: 1908
  year: 2018
  ident: 10.1016/j.apsb.2020.11.005_bib66
  article-title: STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04313-6
– volume: 16
  start-page: 275
  year: 2016
  ident: 10.1016/j.apsb.2020.11.005_bib53
  article-title: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy
  publication-title: Nat Rev Canc
  doi: 10.1038/nrc.2016.36
– volume: 4
  year: 2018
  ident: 10.1016/j.apsb.2020.11.005_bib8
  article-title: Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 trial
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2018.0013
– volume: 8
  start-page: 1142
  year: 2007
  ident: 10.1016/j.apsb.2020.11.005_bib40
  article-title: Interleukin 2: From immunostimulation to immunoregulation and back again
  publication-title: EMBO Rep
  doi: 10.1038/sj.embor.7401099
– volume: 22
  start-page: 828
  year: 2019
  ident: 10.1016/j.apsb.2020.11.005_bib9
  article-title: Pembrolizumab alone or in combination with chemotherapy as first-line therapy for patients with advanced gastric or gastroesophageal junction adenocarcinoma: Results from the phase II nonrandomized KEYNOTE-059 study
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-018-00909-5
– volume: 7
  start-page: 49322
  year: 2016
  ident: 10.1016/j.apsb.2020.11.005_bib37
  article-title: Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.10337
– volume: 8
  start-page: 68291
  year: 2017
  ident: 10.1016/j.apsb.2020.11.005_bib67
  article-title: A regulatory role for the co-chaperone FKBP51s in PD-L1 expression in glioma
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.19309
– volume: 515
  start-page: 563
  year: 2014
  ident: 10.1016/j.apsb.2020.11.005_bib17
  article-title: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients
  publication-title: Nature
  doi: 10.1038/nature14011
– volume: 113
  start-page: 3264
  year: 2009
  ident: 10.1016/j.apsb.2020.11.005_bib46
  article-title: HSV ICP0 recruits USP7 to modulate TLR-mediated innate response
  publication-title: Blood
  doi: 10.1182/blood-2008-07-168203
– volume: 30
  start-page: 925
  year: 2016
  ident: 10.1016/j.apsb.2020.11.005_bib33
  article-title: Deubiquitination and stabilization of PD-L1 by CSN5
  publication-title: Canc Cell
  doi: 10.1016/j.ccell.2016.10.010
– volume: 19
  start-page: 1021
  year: 2013
  ident: 10.1016/j.apsb.2020.11.005_bib19
  article-title: Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer
  publication-title: Clin Canc Res
  doi: 10.1158/1078-0432.CCR-12-2063
– volume: 362
  start-page: k3529
  year: 2018
  ident: 10.1016/j.apsb.2020.11.005_bib56
  article-title: Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: Meta-analysis
  publication-title: BMJ
  doi: 10.1136/bmj.k3529
– volume: 28
  start-page: 665
  year: 2018
  ident: 10.1016/j.apsb.2020.11.005_bib14
  article-title: A patent review on PD-1/PD-L1 antagonists: Small molecules, peptides, and macrocycles (2015–2018)
  publication-title: Expert Opin Ther Pat
  doi: 10.1080/13543776.2018.1512706
– volume: 10
  start-page: 358
  year: 2020
  ident: 10.1016/j.apsb.2020.11.005_bib20
  article-title: Cdk5 knocking out mediated by CRISPR-Cas9 genome editing for PD-L1 attenuation and enhanced antitumor immunity
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2019.07.004
– volume: 20
  start-page: 290
  year: 2014
  ident: 10.1016/j.apsb.2020.11.005_bib57
  article-title: Blockade of the B7-H1/PD-1 pathway as a basis for combination anticancer therapy
  publication-title: Canc J
  doi: 10.1097/PPO.0000000000000056
– volume: 7
  start-page: 12632
  year: 2016
  ident: 10.1016/j.apsb.2020.11.005_bib30
  article-title: Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity
  publication-title: Nat Commun
  doi: 10.1038/ncomms12632
– volume: 549
  start-page: 101
  year: 2017
  ident: 10.1016/j.apsb.2020.11.005_bib64
  article-title: CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity
  publication-title: Nature
  doi: 10.1038/nature23643
– volume: 9
  start-page: 304
  year: 2019
  ident: 10.1016/j.apsb.2020.11.005_bib16
  article-title: SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2018.08.009
– volume: 12
  year: 2019
  ident: 10.1016/j.apsb.2020.11.005_bib52
  article-title: The role of pembrolizumab in the treatment of PD-L1 expressing gastric and gastroesophageal junction adenocarcinoma
  publication-title: Therap Adv Gastroenterol
  doi: 10.1177/1756284819869767
– volume: 550
  start-page: 534
  year: 2017
  ident: 10.1016/j.apsb.2020.11.005_bib28
  article-title: USP7 small-molecule inhibitors interfere with ubiquitin binding
  publication-title: Nature
  doi: 10.1038/nature24006
– volume: 8
  start-page: 328rv4
  year: 2016
  ident: 10.1016/j.apsb.2020.11.005_bib6
  article-title: PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aad7118
– volume: 129
  start-page: 3324
  year: 2019
  ident: 10.1016/j.apsb.2020.11.005_bib62
  article-title: IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion
  publication-title: J Clin Invest
  doi: 10.1172/JCI126022
– volume: 76
  start-page: 359
  year: 2019
  ident: 10.1016/j.apsb.2020.11.005_bib58
  article-title: Mechanisms controlling PD-L1 expression in cancer
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2019.09.030
– volume: 13
  start-page: 879
  year: 2004
  ident: 10.1016/j.apsb.2020.11.005_bib27
  article-title: A dynamic role of HAUSP in the p53–Mdm2 pathway
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(04)00157-1
– volume: 9
  start-page: 819
  year: 2019
  ident: 10.1016/j.apsb.2020.11.005_bib15
  article-title: Multifunctional polymeric micelle-based chemo-immunotherapy with immune checkpoint blockade for efficient treatment of orthotopic and metastatic breast cancer
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2019.01.018
– volume: 14
  start-page: 2528
  year: 2016
  ident: 10.1016/j.apsb.2020.11.005_bib26
  article-title: USP7 enforces heterochromatinization of p53 target promoters by protecting SUV39H1 from MDM2-mediated degradation
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.02.049
– volume: 68
  start-page: 394
  year: 2018
  ident: 10.1016/j.apsb.2020.11.005_bib1
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21492
– volume: 372
  start-page: 2521
  year: 2015
  ident: 10.1016/j.apsb.2020.11.005_bib4
  article-title: Pembrolizumab versus ipilimumab in advanced melanoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1503093
– volume: 18
  start-page: 25
  year: 2005
  ident: 10.1016/j.apsb.2020.11.005_bib49
  article-title: Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2005.02.029
– volume: 29
  start-page: 83
  year: 2019
  ident: 10.1016/j.apsb.2020.11.005_bib69
  article-title: Palmitoylation stabilizes PD-L1 to promote breast tumor growth
  publication-title: Cell Res
  doi: 10.1038/s41422-018-0124-5
– volume: 24
  start-page: 2071
  year: 2019
  ident: 10.1016/j.apsb.2020.11.005_bib11
  article-title: Development of the inhibitors that target the PD-1/PD-L1 interaction-a brief look at progress on small molecules, peptides and macrocycles
  publication-title: Molecules
  doi: 10.3390/molecules24112071
– volume: 23
  start-page: 3711
  year: 2017
  ident: 10.1016/j.apsb.2020.11.005_bib59
  article-title: PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression
  publication-title: Clin Canc Res
  doi: 10.1158/1078-0432.CCR-16-3215
– volume: 442
  start-page: 279
  year: 2019
  ident: 10.1016/j.apsb.2020.11.005_bib32
  article-title: Beyond the PD-L1 horizon: In search for a good biomarker to predict success of immunotherapy in gastric and esophageal adenocarcinoma
  publication-title: Canc Lett
  doi: 10.1016/j.canlet.2018.11.001
– volume: 16
  start-page: 243
  year: 2018
  ident: 10.1016/j.apsb.2020.11.005_bib68
  article-title: Small-molecule sigma1 modulator induces autophagic degradation of PD-L1
  publication-title: Mol Canc Res
  doi: 10.1158/1541-7786.MCR-17-0166
– volume: 3
  start-page: 306
  year: 2019
  ident: 10.1016/j.apsb.2020.11.005_bib70
  article-title: Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-019-0375-6
– volume: 17
  start-page: 717
  year: 2016
  ident: 10.1016/j.apsb.2020.11.005_bib7
  article-title: Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(16)00175-3
– volume: 14
  start-page: 118
  year: 2018
  ident: 10.1016/j.apsb.2020.11.005_bib29
  article-title: Discovery and characterization of highly potent and selective allosteric USP7 inhibitors
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2528
– volume: 156
  start-page: 1849
  year: 2019
  ident: 10.1016/j.apsb.2020.11.005_bib61
  article-title: MET inhibitors promote liver tumor evasion of the immune response by stabilizing PDL1
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.01.252
– volume: 392
  start-page: 123
  year: 2018
  ident: 10.1016/j.apsb.2020.11.005_bib10
  article-title: Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)31257-1
– volume: 7
  start-page: 215
  year: 1995
  ident: 10.1016/j.apsb.2020.11.005_bib23
  article-title: Ubiquitin, proteasomes, and the regulation of intracellular protein degradation
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/0955-0674(95)80031-X
– volume: 414
  start-page: 166
  year: 2018
  ident: 10.1016/j.apsb.2020.11.005_bib31
  article-title: Progress and challenges of predictive biomarkers of anti PD-1/PD-L1 immunotherapy: A systematic review
  publication-title: Canc Lett
  doi: 10.1016/j.canlet.2017.11.014
– volume: 25
  start-page: 704
  year: 2013
  ident: 10.1016/j.apsb.2020.11.005_bib22
  article-title: Dynamic regulation of ubiquitin-dependent cell cycle control
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2013.07.004
– volume: 213
  start-page: 2835
  year: 2016
  ident: 10.1016/j.apsb.2020.11.005_bib18
  article-title: What does PD-L1 positive or negative mean?.
  publication-title: J Exp Med
  doi: 10.1084/jem.20161462
– volume: 278
  start-page: 29987
  year: 2003
  ident: 10.1016/j.apsb.2020.11.005_bib47
  article-title: Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M303977200
– volume: 390
  start-page: 2461
  year: 2017
  ident: 10.1016/j.apsb.2020.11.005_bib54
  article-title: Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)31827-5
– volume: 11
  start-page: 529
  year: 2019
  ident: 10.1016/j.apsb.2020.11.005_bib13
  article-title: Therapeutic targeting of immune checkpoints with small molecule inhibitors
  publication-title: Am J Transl Res
– year: 1975
  ident: 10.1016/j.apsb.2020.11.005_bib3
– volume: 7
  start-page: 1580
  year: 2019
  ident: 10.1016/j.apsb.2020.11.005_bib35
  article-title: USP22 deubiquitinates CD274 to suppress anticancer immunity
  publication-title: Canc Immunol Res
  doi: 10.1158/2326-6066.CIR-18-0910
– volume: 45
  start-page: W98
  year: 2017
  ident: 10.1016/j.apsb.2020.11.005_bib36
  article-title: GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx247
– volume: 8
  start-page: 1064
  year: 2006
  ident: 10.1016/j.apsb.2020.11.005_bib51
  article-title: FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1469
– volume: 428
  start-page: 1
  year: 2004
  ident: 10.1016/j.apsb.2020.11.005_bib48
  article-title: Tumour suppression: Disruption of HAUSP gene stabilizes p53
  publication-title: Nature
  doi: 10.1038/nature02501
– volume: 13
  start-page: 285
  year: 2006
  ident: 10.1016/j.apsb.2020.11.005_bib50
  article-title: Molecular recognition of p53 and MDM2 by USP7/HAUSP
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb1067
– volume: 7
  start-page: 4004
  year: 2018
  ident: 10.1016/j.apsb.2020.11.005_bib34
  article-title: Deubiquitination and stabilization of programmed cell death ligand 1 by ubiquitin-specific peptidase 9, X-linked in oral squamous cell carcinoma
  publication-title: Canc Med
  doi: 10.1002/cam4.1675
– volume: 14
  start-page: 100
  year: 2019
  ident: 10.1016/j.apsb.2020.11.005_bib12
  article-title: Novel small molecule inhibitors of programmed cell death (PD)-1, and its ligand, PD-L1 in cancer immunotherapy: A review update of patent literature
  publication-title: Recent Pat Anti-Cancer Drug Discov
  doi: 10.2174/1574892813666181029142812
– volume: 553
  start-page: 91
  year: 2018
  ident: 10.1016/j.apsb.2020.11.005_bib39
  article-title: Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance
  publication-title: Nature
  doi: 10.1038/nature25015
– volume: 44
  start-page: 955
  year: 2016
  ident: 10.1016/j.apsb.2020.11.005_bib5
  article-title: Coinhibitory pathways in the B7-CD28 ligand-receptor family
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.05.002
– volume: 549
  start-page: 106
  year: 2017
  ident: 10.1016/j.apsb.2020.11.005_bib63
  article-title: Identification of CMTM6 and CMTM4 as PD-L1 protein regulators
  publication-title: Nature
  doi: 10.1038/nature23669
– volume: 10
  start-page: 2299
  year: 2020
  ident: 10.1016/j.apsb.2020.11.005_bib21
  article-title: Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity via inhibiting the deubiquitination activity of CSN5
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2020.06.014
– volume: 503
  start-page: 207
  year: 2010
  ident: 10.1016/j.apsb.2020.11.005_bib42
  article-title: C-terminal region of USP7/HAUSP is critical for deubiquitination activity and contains a second mdm2/p53 binding site
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2010.08.020
– volume: 29
  start-page: 1270
  year: 2010
  ident: 10.1016/j.apsb.2020.11.005_bib41
  article-title: Inactivation of HAUSP in vivo modulates p53 function
  publication-title: Oncogene
  doi: 10.1038/onc.2009.427
– volume: 11
  start-page: 1566
  year: 2015
  ident: 10.1016/j.apsb.2020.11.005_bib45
  article-title: Ki67 is a promising molecular target in the diagnosis of cancer
  publication-title: Mol Med Rep
  doi: 10.3892/mmr.2014.2914
– volume: 24
  start-page: 207
  year: 2012
  ident: 10.1016/j.apsb.2020.11.005_bib38
  article-title: Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2011.12.009
– volume: 10
  start-page: 427
  year: 2019
  ident: 10.1016/j.apsb.2020.11.005_bib25
  article-title: USP7: Novel drug target in cancer therapy
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2019.00427
SSID ssj0000602275
Score 2.4926393
Snippet Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma,...
SourceID doaj
pubmedcentral
cristin
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 694
SubjectTerms Cancer biology
Epigenetics
Gastric cancer
Immunosuppression
Immunotherapy
Original
PD-L1
Ubiquitination
USP7
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuiPLVQEFGQr3QwNpO7ORYPqoKAVqJXak3y3acEkBJtUkPy69nxs5uNyCVC8olSuwkzhvbb-TxG0JeVhW3QDtYWldKphnzKrWiKoDIFUzWM6Ecw83Jn7_Is2X28Tw_30n1hTFhUR44_rg3XNW8sqLgri4yOEpTOp-5rLY8M0IGagRz3o4zFcdglMbD-EXOUacPeMa4YyYGd5nL3oJzyHHIeD3D3HW3XehU7WR-CjL-k2nqbxr6ZzTlzvR0eo_cHXklPYnt2Se3fHufHM2jMPX6mC6u91n1x_SIzq8lq9cPyPrErrqLABLtarr8Ole06alpaVhNb4M6OO2jku2aDh2twHtfxTz2ns7fp58YlK5oj_HwQ_PL0wuDGUEcdWhWK4oLBD1WXIynP5qgBv6QLE8_LN6dpWNShtQB2RpSX6gafDRTZ7XJhSxkLjw3lXOiLMD54EJKbp3zuRe4CjhT1hiU3LEWiGKdM_GI7LVd6w8IRdwcL13FlM08A5B4hXr7zrJCWWUScjCColvoD6hlmnONKUV5QtgGJe1GMXPMqfFTb6LWvmvEWCPG4OVowDghr7Z1LqOUx42l3yL425Iowx0ugHHq0Tj1v4wzIfnGdPTIaCJTgUc1N778xcbONHR3xMW0vrvqNTBWibkHFUvI42h3208UQqE2k0yImljkpA3TO23zLUiKq7JALvzkfzT6KbnDMfAnBOodkr1hdeWfAXMb7PPQSX8Dp6s_Uw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBalMNhl7He9X2gwelm9xJItyce2WyljG4EmkJuQZDn1Nuxgu4fsr5-eLKfzBj2MXIIjxVa-J-l70XvfQ-hdURDtaEcSlwVncZpYHmtaCEfkRMLKOeUmgeTkr9_Y5Sr9vM7WB-h8zIWBsMqw9g9rul-tw5VZ-DVn26qaXRHnu1AgEGCnOQW_nabCJ_Gtz_b_s8wZiORBJCO0j6FDyJ0ZwrzUttPOTSSweHyYQxW7e8ZPr3qyU3lB_8mG9S8h_Tuu8o-N6uIhehAYJj4dBvEIHdj6MTpeDBLVuxO8vM246k7wMV7cilfvnqDdqW6bjYcLNyVeXS04rjqsauzP1WuvE467QdN2h_sGF86Pb4eK9hYvPsZfEte6wB1ExvfVL4s3CmqDGGzAwFoMRwUddFyGtz8qrwv-FK0uPi3PL-NQniE2jnb1sRW8dN6aKtNSZZQJllFLVGEMzYVzQwhljGhjbGYpnAfOuVYKxHe0dpSxzBL6DB3WTW2PECaOtRiSmyLhOrWAKilAed_oRHDNVYSOAiiydjMDVE0zIqG4KIlQMqIkTZA1h-oaP-UYv_ZdAsYSMHb-jnQYR-j9vs92EPW4s_UZgL9vCYLc_kLTbmSwSEl4SQpNBTGlSN0rV7mxqUlLTVJFmRtBNpqOnNi3-6rqzpu_He1MuokPuKjaNjeddNyVQRVCnkTo-WB3-0eklINKE4sQn1jkZAzTT-rq2ouL81wAK37xn8_7Et0nEPXjo_ReocO-vbGvHW3r9Rs_L38DwgM_Fw
  priority: 102
  providerName: Elsevier
Title Abrogation of USP7 is an alternative strategy to downregulate PD-L1 and sensitize gastric cancer cells to T cells killing
URI https://dx.doi.org/10.1016/j.apsb.2020.11.005
https://www.ncbi.nlm.nih.gov/pubmed/33777676
https://www.proquest.com/docview/2506505271
http://hdl.handle.net/10852/85752
https://pubmed.ncbi.nlm.nih.gov/PMC7982505
https://doaj.org/article/27f2db382cf848489a9ce4c4fb24a36a
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLam8cIL4r5ymYyE9sIyzXYSJw8IbcA0LkNFtFLfLN9SClMykkyi_HrOcZKWwjQJVYqqxrmec-zv1MffR8hz57gB2MGiwsk0ipmXkREuAyCXsbQ4FNIyXJx89ik9ncbvZ8lsiwxyR_0LbK5M7VBPalqfH_z8sXwFAf9yXaulLxoDuR7HHuAgUJregJFJoqLBWQ_3u54ZCfOwqpFzZO8D9NGvo7n6NICJbQi1cmPUCuT-G4PXv-D07xrLPwatk9vkVo826VHnHnfIli_vkr1xR1e93KeT9eqrZp_u0fGayHp5jyyPTF3Ng-loVdDpl7Gki4bqkoY59jJwhtOm47dd0raiDnL6ulO393T8JvrIoLWjDVbJt4tfns416oRYatHZaorTBg0eOOm_fl8EjvD7ZHrydvL6NOqlGiILEKyNfCYLyNx0ERc6EWmWJsJz7awVeQYpCRdpyo21PvEC5wYPpdEaiXiMAfhYJEw8INtlVfodQjkgGMtz65g0sWdgJO6Qhd8alkkj9Yjs9EZRJUQJMpwmXKHQKB8RNlhJ2Z7iHJU2ztVQy_ZNoY0V2hhyHwU2HpEXq2MuOoKPa1sfo_FXLZGcO_xQ1XPVx7risuDOiIzbIovhk-vc-tjGheGxFik8QTK4jupxTodf4FSLay_-bPAzBZ0A2kWXvrpsFODYFBUJJRuRh53frW5RCImMTemIyA2P3HiGzT3l4msgGpd5hgj50X-9osfkJse6n1Cn94Rst_WlfwrArTW74Q8P2L6bHcP2w-dsN8TnbzksQcE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamIQQXxO-Fn0ZCu7DQxk7s5LgNpg66qdJaqTfLdpwSQEnVdIfy1_Oek3YEpB1QL1VqN3G_9-zv1c_fI-R9njMDtCMKi1yKMI6cDA3PUyByaSSKIZc2wsPJF5diNIu_zJP5HjndnoXBtMpu7m_ndD9bd1cG3a85WJbl4IpB7MKRQKCdZhzi9jvABiR65_n8ZPdHy1CgSh6mMmKHEHt0h2faPC-9bAzEiQxnj49DLGN313r_qnpLlVf0761Y_zLSvxMr_1ipzh6SBx3FpMftKB6RPVc9JoeTVqN6c0SnN0eumiN6SCc36tWbJ2RzbFb1wuNF64LOriaSlg3VFfUb65UXCqdNK2q7oeua5hDIr9qS9o5OPoXjCFrntMHU-HX5y9GFxuIgllq0sBXFvYIGO067tz9KLwz-lMzOPk9PR2FXnyG0wLvWoUtlAeGaLuJCJ1ykIuGO6dxanqUQhzAuBDPWusRx3BAcSqM1qu8YA5yxSCL-jOxXdeUOCGVAWyzLbB5JEzuEleUovW9NlEojdUAOOlBUBa6BsqYJU1hdlAUk2qKkbKdrjuU1fqptAtt3hRgrxBgCHgUYB-TDrs-yVfW4tfUJgr9riYrc_kK9WqjOJBWTBcsNT5kt0hhemc6si21cGBZrLmAEydZ0VM_A4avKW2_-bmtnCjwfcdGVq68bBeRVYBlCGQXkeWt3u0fkXKJMkwiI7Flkbwz9T6rym1cXl1mKtPjFfz7vW3JvNL0Yq_H55deX5D7DFCCfsveK7K9X1-41cLi1eeN99DfCE0I3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abrogation+of+USP7+is+an+alternative+strategy+to+downregulate+PD-L1+and+sensitize+gastric+cancer+cells+to+T+cells+killing&rft.jtitle=Acta+pharmaceutica+Sinica.+B&rft.au=Wang%2C+Zhiru&rft.au=Kang%2C+Wenting&rft.au=Li%2C+Ouwen&rft.au=Qi%2C+Fengyu&rft.date=2021-03-01&rft.issn=2211-3835&rft.volume=11&rft.issue=3&rft.spage=694&rft.epage=707&rft_id=info:doi/10.1016%2Fj.apsb.2020.11.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apsb_2020_11_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3835&client=summon