Estimating and testing variance components in a multi-level GLM
Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide ‘activation’ in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 59; no. 1; pp. 490 - 501 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
02.01.2012
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide ‘activation’ in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a general linear model (GLM) analysis. However, important information can also be obtained by testing whether there exist significant individual differences in effect magnitude between subjects, i.e. whether the variance of a COPE is significantly different from zero. Intuitively, such a test amounts to testing whether inter-individual differences are larger than would be expected given the within-subject error variance. We compare several methods for estimating variance components, including a) a naïve estimate using ordinary least squares (OLS); b) linear mixed effects in R (LMER); c) a novel Matlab implementation of iterative generalized least squares (IGLS) and its restricted maximum likelihood variant (RIGLS). All methods produced reasonable estimates of within- and between-subject variance components, with IGLS providing an attractive balance between sensitivity and appropriate control of false positives. Finally, we use the IGLS method to estimate inter-subject variance in a perfusion fMRI study (N=18) of social evaluative threat, and show evidence for significant inter-individual differences in ventromedial prefrontal cortex (VMPFC), amygdala, hippocampus and medial temporal lobes, insula, and brainstem, with predicted inverse coupling between VMPFC and the midbrain periaqueductal gray only when high inter-individual variance was used to define the seed for functional connectivity analyses. In sum, tests of variance provides a way of selecting regions that show significant inter-individual variability for subsequent analyses that attempt to explain those individual differences.
► Multi-level models provide tests of inter-individual variances in effect magnitude. ► Can test whether there are true individual differences in brain activity. ► Allows us to determine appropriate ROIs to test for brain–behavior correlations. ► We compare several methods for estimating and testing variance components. ► Our suggested approach provides a balance between sensitivity and specificity. |
---|---|
AbstractList | Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide 'activation' in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a general linear model (GLM) analysis. However, important information can also be obtained by testing whether there exist significantindividual differencesin effect magnitude between subjects, i.e. whether thevarianceof a COPE is significantly different from zero. Intuitively, such a test amounts to testing whether inter-individual differences are larger than would be expected given the within-subject error variance. We compare several methods for estimating variance components, including a) a naïve estimate using ordinary least squares (OLS); b) linear mixed effects in R (LMER); c) a novel Matlab implementation of iterative generalized least squares (IGLS) and its restricted maximum likelihood variant (RIGLS). All methods produced reasonable estimates of within- and between-subject variance components, with IGLS providing an attractive balance between sensitivity and appropriate control of false positives. Finally, we use the IGLS method to estimate inter-subject variance in a perfusion fMRI study (N=18) of social evaluative threat, and show evidence for significant inter-individual differences in ventromedial prefrontal cortex (VMPFC), amygdala, hippocampus and medial temporal lobes, insula, and brainstem, with predicted inverse coupling between VMPFC and the midbrain periaqueductal gray only when high inter-individual variance was used to define the seed for functional connectivity analyses. In sum, tests of variance provides a way of selecting regions that show significant inter-individual variability for subsequent analyses that attempt to explain those individual differences. Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide 'activation' in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a general linear model (GLM) analysis. However, important information can also be obtained by testing whether there exist significant individual differences in effect magnitude between subjects, i.e. whether the variance of a COPE is significantly different from zero. Intuitively, such a test amounts to testing whether inter-individual differences are larger than would be expected given the within-subject error variance. We compare several methods for estimating variance components, including a) a naïve estimate using ordinary least squares (OLS); b) linear mixed effects in R (LMER); c) a novel Matlab implementation of iterative generalized least squares (IGLS) and its restricted maximum likelihood variant (RIGLS). All methods produced reasonable estimates of within- and between-subject variance components, with IGLS providing an attractive balance between sensitivity and appropriate control of false positives. Finally, we use the IGLS method to estimate inter-subject variance in a perfusion fMRI study (N=18) of social evaluative threat, and show evidence for significant inter-individual differences in ventromedial prefrontal cortex (VMPFC), amygdala, hippocampus and medial temporal lobes, insula, and brainstem, with predicted inverse coupling between VMPFC and the midbrain periaqueductal gray only when high inter-individual variance was used to define the seed for functional connectivity analyses. In sum, tests of variance provides a way of selecting regions that show significant inter-individual variability for subsequent analyses that attempt to explain those individual differences.Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide 'activation' in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a general linear model (GLM) analysis. However, important information can also be obtained by testing whether there exist significant individual differences in effect magnitude between subjects, i.e. whether the variance of a COPE is significantly different from zero. Intuitively, such a test amounts to testing whether inter-individual differences are larger than would be expected given the within-subject error variance. We compare several methods for estimating variance components, including a) a naïve estimate using ordinary least squares (OLS); b) linear mixed effects in R (LMER); c) a novel Matlab implementation of iterative generalized least squares (IGLS) and its restricted maximum likelihood variant (RIGLS). All methods produced reasonable estimates of within- and between-subject variance components, with IGLS providing an attractive balance between sensitivity and appropriate control of false positives. Finally, we use the IGLS method to estimate inter-subject variance in a perfusion fMRI study (N=18) of social evaluative threat, and show evidence for significant inter-individual differences in ventromedial prefrontal cortex (VMPFC), amygdala, hippocampus and medial temporal lobes, insula, and brainstem, with predicted inverse coupling between VMPFC and the midbrain periaqueductal gray only when high inter-individual variance was used to define the seed for functional connectivity analyses. In sum, tests of variance provides a way of selecting regions that show significant inter-individual variability for subsequent analyses that attempt to explain those individual differences. Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide 'activation' in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a general linear model (GLM) analysis. However, important information can also be obtained by testing whether there exist significant individual differences in effect magnitude between subjects, i.e. whether the variance of a COPE is significantly different from zero. Intuitively, such a test amounts to testing whether inter-individual differences are larger than would be expected given the within-subject error variance. We compare several methods for estimating variance components, including a) a naïve estimate using ordinary least squares (OLS); b) linear mixed effects in R (LMER); c) a novel Matlab implementation of iterative generalized least squares (IGLS) and its restricted maximum likelihood variant (RIGLS). All methods produced reasonable estimates of within- and between-subject variance components, with IGLS providing an attractive balance between sensitivity and appropriate control of false positives. Finally, we use the IGLS method to estimate inter-subject variance in a perfusion fMRI study (N=18) of social evaluative threat, and show evidence for significant inter-individual differences in ventromedial prefrontal cortex (VMPFC), amygdala, hippocampus and medial temporal lobes, insula, and brainstem, with predicted inverse coupling between VMPFC and the midbrain periaqueductal gray only when high inter-individual variance was used to define the seed for functional connectivity analyses. In sum, tests of variance provides a way of selecting regions that show significant inter-individual variability for subsequent analyses that attempt to explain those individual differences. Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide ‘activation’ in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a general linear model (GLM) analysis. However, important information can also be obtained by testing whether there exist significant individual differences in effect magnitude between subjects, i.e. whether the variance of a COPE is significantly different from zero. Intuitively, such a test amounts to testing whether inter-individual differences are larger than would be expected given the within-subject error variance. We compare several methods for estimating variance components, including a) a naïve estimate using ordinary least squares (OLS); b) linear mixed effects in R (LMER); c) a novel Matlab implementation of iterative generalized least squares (IGLS) and its restricted maximum likelihood variant (RIGLS). All methods produced reasonable estimates of within- and between-subject variance components, with IGLS providing an attractive balance between sensitivity and appropriate control of false positives. Finally, we use the IGLS method to estimate inter-subject variance in a perfusion fMRI study (N = 18) of social evaluative threat, and show evidence for significant inter-individual differences in ventromedial prefrontal cortex (VMPFC), amygdala, hippocampus and medial temporal lobes, insula, and brainstem, with predicted inverse coupling between VMPFC and the midbrain periaqueductal gray only when high inter-individual variance was used to define the seed for functional connectivity analyses. In sum, tests of variance provides a way of selecting regions that show significant inter-individual variability for subsequent analyses that attempt to explain those individual differences. Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide 'activation' in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a general linear model (GLM) analysis. However, important information can also be obtained by testing whether there exist significant individual differences in effect magnitude between subjects, i.e. whether the variance of a COPE is significantly different from zero. Intuitively, such a test amounts to testing whether inter-individual differences are larger than would be expected given the within-subject error variance. We compare several methods for estimating variance components, including a) a naieve estimate using ordinary least squares (OLS); b) linear mixed effects in R (LMER); c) a novel Matlab implementation of iterative generalized least squares (IGLS) and its restricted maximum likelihood variant (RIGLS). All methods produced reasonable estimates of within- and between-subject variance components, with IGLS providing an attractive balance between sensitivity and appropriate control of false positives. Finally, we use the IGLS method to estimate inter-subject variance in a perfusion fMRI study (N = 18) of social evaluative threat, and show evidence for significant inter-individual differences in ventromedial prefrontal cortex (VMPFC), amygdala, hippocampus and medial temporal lobes, insula, and brainstem, with predicted inverse coupling between VMPFC and the midbrain periaqueductal gray only when high inter-individual variance was used to define the seed for functional connectivity analyses. In sum, tests of variance provides a way of selecting regions that show significant inter-individual variability for subsequent analyses that attempt to explain those individual differences. Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide ‘activation’ in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a general linear model (GLM) analysis. However, important information can also be obtained by testing whether there exist significant individual differences in effect magnitude between subjects, i.e. whether the variance of a COPE is significantly different from zero. Intuitively, such a test amounts to testing whether inter-individual differences are larger than would be expected given the within-subject error variance. We compare several methods for estimating variance components, including a) a naïve estimate using ordinary least squares (OLS); b) linear mixed effects in R (LMER); c) a novel Matlab implementation of iterative generalized least squares (IGLS) and its restricted maximum likelihood variant (RIGLS). All methods produced reasonable estimates of within- and between-subject variance components, with IGLS providing an attractive balance between sensitivity and appropriate control of false positives. Finally, we use the IGLS method to estimate inter-subject variance in a perfusion fMRI study (N=18) of social evaluative threat, and show evidence for significant inter-individual differences in ventromedial prefrontal cortex (VMPFC), amygdala, hippocampus and medial temporal lobes, insula, and brainstem, with predicted inverse coupling between VMPFC and the midbrain periaqueductal gray only when high inter-individual variance was used to define the seed for functional connectivity analyses. In sum, tests of variance provides a way of selecting regions that show significant inter-individual variability for subsequent analyses that attempt to explain those individual differences. ► Multi-level models provide tests of inter-individual variances in effect magnitude. ► Can test whether there are true individual differences in brain activity. ► Allows us to determine appropriate ROIs to test for brain–behavior correlations. ► We compare several methods for estimating and testing variance components. ► Our suggested approach provides a balance between sensitivity and specificity. |
Author | Lindquist, Martin A. Asllani, Iris Spicer, Julie Wager, Tor D. |
AuthorAffiliation | 3 Program for Imaging and Cognitive Sciences, Columbia University, USA 4 Department of Psychology, University of Colorado, Boulder, USA 2 Department of Psychology, Columbia University, USA 1 Department of Statistics, Columbia University, USA |
AuthorAffiliation_xml | – name: 2 Department of Psychology, Columbia University, USA – name: 3 Program for Imaging and Cognitive Sciences, Columbia University, USA – name: 4 Department of Psychology, University of Colorado, Boulder, USA – name: 1 Department of Statistics, Columbia University, USA |
Author_xml | – sequence: 1 givenname: Martin A. surname: Lindquist fullname: Lindquist, Martin A. email: martin@stat.columbia.edu organization: Department of Statistics, Columbia University, USA – sequence: 2 givenname: Julie surname: Spicer fullname: Spicer, Julie organization: Department of Psychology, Columbia University, USA – sequence: 3 givenname: Iris surname: Asllani fullname: Asllani, Iris organization: Program for Imaging and Cognitive Sciences, Columbia University, USA – sequence: 4 givenname: Tor D. surname: Wager fullname: Wager, Tor D. organization: Department of Psychology, University of Colorado, Boulder, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21835242$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URNuBv4AisWCVqZ-JveFVlRZpEBtYW45zZ_Dg2IOdjNR_j0NbCrNhpCvZks_97rk-5-gkxAAIVQQvCSbNxXYZYErRDWYDS4oJWeK2VPsEnRGsRK1ES0_mu2C1JESdovOctxhjRbh8hk4pkUxQTs_Q26s8FszowqYyoa9GyL_ve5OcCRYqG4ddGR7GXLlQmWqY_OhqD3vw1fXq83P0dG18hhf35wJ9-3j19fKmXn25_nT5flVbwcVYd1wYQtZN13W9wRZ3Ulq2bhqjDKaUMtP3HIxRDYGGE8apbYnkpOl6ArZbY7ZAb-64u6kboLfFUDJe71Ixn251NE7_-xLcd72Je82IElKqAnh9D0jx51S21IPLFrw3AeKUtcKUtS2n7L9KqaTkGBfpAr06UG7jlEL5B00EbqRgvJ1VL_-2_sfzQwiPu9kUc06w1taNJZI4b-K8JljPqeutfkxdz6lr3JZqC0AeAB5mHNH64a4VSnh7B0ln66AE37sEdtR9dMdA3h1ArHfBWeN_wO1xiF99ROPd |
CitedBy_id | crossref_primary_10_1007_s12010_017_2633_y crossref_primary_10_1097_PSY_0000000000000148 crossref_primary_10_1177_0001699312450591 crossref_primary_10_1093_biostatistics_kxz046 crossref_primary_10_1371_journal_pone_0123975 crossref_primary_10_1016_j_neuroimage_2011_12_060 crossref_primary_10_1093_biostatistics_kxx027 crossref_primary_10_1038_nn_3842 crossref_primary_10_1016_j_jpain_2014_02_010 crossref_primary_10_1080_01621459_2019_1611582 crossref_primary_10_1016_j_neuroimage_2014_03_029 crossref_primary_10_1016_j_procs_2023_10_486 crossref_primary_10_1007_s12021_024_09657_7 crossref_primary_10_1038_s41562_020_0819_8 crossref_primary_10_1002_hbm_24611 crossref_primary_10_1002_hbm_26579 crossref_primary_10_1093_scan_nsu110 crossref_primary_10_1002_hbm_25627 crossref_primary_10_1371_journal_pbio_1002036 crossref_primary_10_1093_biostatistics_kxad026 crossref_primary_10_1016_j_anbehav_2015_02_008 crossref_primary_10_1016_j_neuroimage_2013_04_079 crossref_primary_10_1080_01621459_2015_1006729 crossref_primary_10_1080_01621459_2014_922886 crossref_primary_10_1097_PR9_0000000000000574 crossref_primary_10_1016_j_drugalcdep_2020_108388 crossref_primary_10_1371_journal_pone_0085291 crossref_primary_10_1162_imag_a_00058 crossref_primary_10_1016_j_neuroimage_2021_118141 crossref_primary_10_1016_j_neuroimage_2024_120557 crossref_primary_10_1080_03610926_2020_1776327 crossref_primary_10_1186_s12874_015_0030_1 |
Cites_doi | 10.2307/2533455 10.1093/scan/nsm015 10.1111/j.1745-6924.2009.01127.x 10.1006/nimg.1997.0306 10.1148/radiol.2351031663 10.1080/01621459.1977.10480998 10.1093/biomet/73.1.43 10.1038/nn.2303 10.1016/j.neuroimage.2004.08.055 10.2307/2533680 10.1016/j.neuroimage.2009.05.034 10.1016/j.neuroimage.2009.05.044 10.1126/science.1144298 10.1016/j.neuroimage.2007.07.061 10.1016/j.neuroimage.2005.01.011 10.1038/nn1399 10.1016/j.neuroimage.2009.05.043 10.1111/j.1745-6924.2009.01128.x 10.1111/j.1467-9868.2004.00438.x 10.1016/j.psyneuen.2009.02.016 10.1093/biomet/76.3.622 10.1038/jcbfm.2010.86 10.1016/S1053-8119(03)00435-X 10.1523/JNEUROSCI.3606-07.2008 10.1155/2009/723912 10.1016/S0361-9230(00)00313-0 10.1080/01621459.1987.10478472 10.1111/j.1745-6924.2009.01125.x 10.1097/00004647-199611000-00019 10.1214/09-STS282 10.1016/j.neuroimage.2009.04.073 10.1016/j.neuroimage.2007.10.015 10.1080/00401706.1977.10489550 10.1002/cne.20749 10.1016/j.neuroimage.2007.01.038 10.1006/nimg.2002.1090 10.1159/000119004 10.1016/j.neuroimage.2003.12.023 10.1111/j.1745-6924.2009.01130.x |
ContentType | Journal Article |
Copyright | 2011 Elsevier Inc. Copyright © 2011 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jan 2, 2012 2010 Elsevier Inc. All rights reserved. 2010 |
Copyright_xml | – notice: 2011 Elsevier Inc. – notice: Copyright © 2011 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jan 2, 2012 – notice: 2010 Elsevier Inc. All rights reserved. 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
DOI | 10.1016/j.neuroimage.2011.07.077 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 501 |
ExternalDocumentID | PMC3195889 3244983761 21835242 10_1016_j_neuroimage_2011_07_077 S105381191100872X |
Genre | Journal Article Comparative Study |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: RC1 DA028608 – fundername: National Institute on Drug Abuse : NIDA grantid: RC1 DA028608-02 || DA |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM PMFND 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c545t-b45a11f6bbbda0c0b88c3f66a9a02223add4eaa961e641342c718416bd1ecbf03 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 13:37:25 EDT 2025 Mon Jul 21 11:42:32 EDT 2025 Fri Jul 11 10:38:34 EDT 2025 Wed Aug 13 07:28:58 EDT 2025 Sat May 31 02:07:13 EDT 2025 Tue Jul 01 02:14:43 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Fri Feb 23 02:20:30 EST 2024 Tue Aug 26 16:33:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Restricted iterative generalized least squares fMRI Iterative generalized least squares Variance components Likelihood ratio tests Multi-level GLM |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c545t-b45a11f6bbbda0c0b88c3f66a9a02223add4eaa961e641342c718416bd1ecbf03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 21835242 |
PQID | 1506853472 |
PQPubID | 2031077 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3195889 proquest_miscellaneous_902377423 proquest_miscellaneous_898840042 proquest_journals_1506853472 pubmed_primary_21835242 crossref_citationtrail_10_1016_j_neuroimage_2011_07_077 crossref_primary_10_1016_j_neuroimage_2011_07_077 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2011_07_077 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2011_07_077 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-02 |
PublicationDateYYYYMMDD | 2012-01-02 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Beckmann, Jenkinson, Smith (bb0025) 2003; 20 Goldstein (bb0085) 1989; 76 Harville (bb0095) 1997 Lindstrom, Bates (bb0135) 1988; 83 Mumford, Nichols (bb0155) 2008; 39 Wager, Keller, Lacey, Jonides (bb0200) 2005; 26 Woolrich, Behrens, Beckmann, Jenkinson, Smith (bb0235) 2004; 21 Wang, Zhang, Wolf, Roc, Alsop, Detre (bb0230) 2005; 235 Loh, Lindquist, Wager (bb0140) 2008; 18 Yarkoni (bb0240) 2009; 4 Gianaros, Sheu (bb0070) 2009; 47 Mobbs, Petrovic, Marchant, Hassabis, Weiskopf, Seymour, Dolan, Frith (bb0145) 2007; 317 Pruessner, Dedovic, Pruessner, Lord, Buss, Collins (bb0175) 2010; 35 Pinheiro, Bates (bb0170) 2000 Browne (bb0035) 1974; 8 Asllani, Borogovac, Wright, Sacco, Brown, Zarahn (bb0015) 2008; 39 Alsop, Detre (bb0005) 1996; 16 Bilodeau, Brenner (bb0030) 1999 Neter, Kutner, Nachtsheim, Wasserman (bb0165) 1996 Eisenberger, Taylor, Gable, Hilmert, Lieberman (bb0050) 2007; 35 Vul, Harris, Winkielman, Pashler (bb0195) 2009; 4 Critchley (bb0045) 2005; 493 Raudenbush, Bryk (bb0180) 2002 Wager, Lindquist, Kaplan (bb0205) 2007; 2 Morrell (bb0150) 1998; 54 Stram, Lee (bb0190) 1994; 50 Friston, Fletcher, Josephs, Holmes, Rugg, Turner (bb0055) 1998; 7 Friston, Penny, Phillips, Kiebel, Hinton, Ashburner (bb0060) 2002; 16 Self, Liang (bb0185) 1987; 82 Kirschbaum, Pirke, Hellhammer (bb0105) 1993; 28 Kriegeskorte, Simmons, Bellgowan, Baker (bb0110) 2009; 12 Mumford, Nichols (bb0160) 2009; 47 Wager, Waugh, Lindquist, Noll, Fredrickson, Taylor (bb0215) 2009; 47 Waldorp (bb0225) 2009 Hinkley (bb0100) 1977; 19 Friston, Stephan, Lund, Morcom, Kiebel (bb0065) 2005; 24 Harville (bb0090) 1977; 72 Crainiceanu, Ruppert (bb0040) 2004; 66 Goldstein (bb0080) 1986; 73 Bandler, Keay, Floyd, Price (bb0020) 2000; 53 Amat, Baratta, Paul, Bland, Watkins, Maier (bb0010) 2005; 8 Wager, van Ast, Hughes, Davidson, Lindquist, Ochsner (bb0220) 2009; 47 Lindquist, Gelman (bb0130) 2009; 4 Lindquist (bb0125) 2008; 23 Gianaros, Sheu, Matthews, Jennings, Manuck, Hariri (bb0075) 2008; 28 Kriegeskorte, Lindquist, Nichols, Poldrack, Vul (bb0115) 2010; 30 Lieberman, Berkman, Wager (bb0120) 2009; 4 Crainiceanu (10.1016/j.neuroimage.2011.07.077_bb0040) 2004; 66 Wager (10.1016/j.neuroimage.2011.07.077_bb0205) 2007; 2 Friston (10.1016/j.neuroimage.2011.07.077_bb0055) 1998; 7 Kirschbaum (10.1016/j.neuroimage.2011.07.077_bb0105) 1993; 28 Kriegeskorte (10.1016/j.neuroimage.2011.07.077_bb0110) 2009; 12 Gianaros (10.1016/j.neuroimage.2011.07.077_bb0070) 2009; 47 Vul (10.1016/j.neuroimage.2011.07.077_bb0195) 2009; 4 Mobbs (10.1016/j.neuroimage.2011.07.077_bb0145) 2007; 317 Raudenbush (10.1016/j.neuroimage.2011.07.077_bb0180) 2002 Mumford (10.1016/j.neuroimage.2011.07.077_bb0155) 2008; 39 Wager (10.1016/j.neuroimage.2011.07.077_bb0220) 2009; 47 Amat (10.1016/j.neuroimage.2011.07.077_bb0010) 2005; 8 Goldstein (10.1016/j.neuroimage.2011.07.077_bb0085) 1989; 76 Goldstein (10.1016/j.neuroimage.2011.07.077_bb0080) 1986; 73 Lieberman (10.1016/j.neuroimage.2011.07.077_bb0120) 2009; 4 Lindquist (10.1016/j.neuroimage.2011.07.077_bb0130) 2009; 4 Waldorp (10.1016/j.neuroimage.2011.07.077_bb0225) 2009 Harville (10.1016/j.neuroimage.2011.07.077_bb0095) 1997 Critchley (10.1016/j.neuroimage.2011.07.077_bb0045) 2005; 493 Pruessner (10.1016/j.neuroimage.2011.07.077_bb0175) 2010; 35 Hinkley (10.1016/j.neuroimage.2011.07.077_bb0100) 1977; 19 Loh (10.1016/j.neuroimage.2011.07.077_bb0140) 2008; 18 Neter (10.1016/j.neuroimage.2011.07.077_bb0165) 1996 Eisenberger (10.1016/j.neuroimage.2011.07.077_bb0050) 2007; 35 Gianaros (10.1016/j.neuroimage.2011.07.077_bb0075) 2008; 28 Woolrich (10.1016/j.neuroimage.2011.07.077_bb0235) 2004; 21 Alsop (10.1016/j.neuroimage.2011.07.077_bb0005) 1996; 16 Friston (10.1016/j.neuroimage.2011.07.077_bb0065) 2005; 24 Kriegeskorte (10.1016/j.neuroimage.2011.07.077_bb0115) 2010; 30 Bilodeau (10.1016/j.neuroimage.2011.07.077_bb0030) 1999 Bandler (10.1016/j.neuroimage.2011.07.077_bb0020) 2000; 53 Wang (10.1016/j.neuroimage.2011.07.077_bb0230) 2005; 235 Mumford (10.1016/j.neuroimage.2011.07.077_bb0160) 2009; 47 Pinheiro (10.1016/j.neuroimage.2011.07.077_bb0170) 2000 Stram (10.1016/j.neuroimage.2011.07.077_bb0190) 1994; 50 Friston (10.1016/j.neuroimage.2011.07.077_bb0060) 2002; 16 Harville (10.1016/j.neuroimage.2011.07.077_bb0090) 1977; 72 Wager (10.1016/j.neuroimage.2011.07.077_bb0215) 2009; 47 Asllani (10.1016/j.neuroimage.2011.07.077_bb0015) 2008; 39 Beckmann (10.1016/j.neuroimage.2011.07.077_bb0025) 2003; 20 Yarkoni (10.1016/j.neuroimage.2011.07.077_bb0240) 2009; 4 Browne (10.1016/j.neuroimage.2011.07.077_bb0035) 1974; 8 Morrell (10.1016/j.neuroimage.2011.07.077_bb0150) 1998; 54 Lindstrom (10.1016/j.neuroimage.2011.07.077_bb0135) 1988; 83 Self (10.1016/j.neuroimage.2011.07.077_bb0185) 1987; 82 Wager (10.1016/j.neuroimage.2011.07.077_bb0200) 2005; 26 Lindquist (10.1016/j.neuroimage.2011.07.077_bb0125) 2008; 23 |
References_xml | – volume: 47 start-page: 821 year: 2009 end-page: 835 ident: bb0215 article-title: Brain mediators of cardiovascular responses to social threat, Part I: reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity publication-title: NeuroImage – volume: 28 start-page: 990 year: 2008 end-page: 999 ident: bb0075 article-title: Individual differences in stressor-evoked blood pressure reactivity vary with activation, volume, and functional connectivity of the amygdala publication-title: Journal of Neuroscience – volume: 35 start-page: 179 year: 2010 end-page: 191 ident: bb0175 article-title: Stress regulation in the central nervous system: evidence from structural and functional neuroimaging studies in human populations — 2008 Curt Richter Award Winner publication-title: Psychoneuroendocrinology – volume: 235 start-page: 218 year: 2005 end-page: 228 ident: bb0230 article-title: Amplitude-modulated continuous arterial spin-labeling 3.0-T perfusion MR imaging with a single coil: feasibility study publication-title: Radiology – volume: 47 start-page: 1469 year: 2009 end-page: 1475 ident: bb0160 article-title: Simple group fMRI modeling and inference publication-title: NeuroImage – volume: 21 start-page: 1732 year: 2004 end-page: 1747 ident: bb0235 article-title: Multilevel linear modelling for FMRI group analysis using Bayesian inference publication-title: NeuroImage – volume: 20 start-page: 1052 year: 2003 end-page: 1063 ident: bb0025 article-title: General multilevel linear modeling for group analysis in fMRI publication-title: NeuroImage – volume: 7 start-page: 30 year: 1998 end-page: 40 ident: bb0055 article-title: Event-related fMRI: characterising differential responses publication-title: NeuroImage – volume: 72 start-page: 320 year: 1977 end-page: 338 ident: bb0090 article-title: Maximum likelihood approaches to variance component estimation and to related problems publication-title: Journal of the American Statistical Association – volume: 16 start-page: 1236 year: 1996 end-page: 1249 ident: bb0005 article-title: Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow publication-title: Journal of Cerebral Blood Flow and Metabolism – year: 2000 ident: bb0170 article-title: Mixed Effects Models in S and S-PLUS – volume: 83 start-page: 1014 year: 1988 end-page: 1022 ident: bb0135 article-title: Newton–Raphson and EM algorithms for linear mixed-effects models for repeated-measures data publication-title: Journal of the American Statistical Association – volume: 18 start-page: 1421 year: 2008 end-page: 1448 ident: bb0140 article-title: Residual analysis for detecting mis-modeling in fMRI publication-title: Statistica Sinica – year: 1996 ident: bb0165 article-title: Applied Linear Statistical Models (Fourth Edition) – year: 1997 ident: bb0095 article-title: Matrix Algebra from a Statisticians's Perspective – volume: 35 start-page: 1601 year: 2007 end-page: 1612 ident: bb0050 article-title: Neural pathways link social support to attenuated neuroendocrine stress responses publication-title: NeuroImage – volume: 53 start-page: 95 year: 2000 end-page: 104 ident: bb0020 article-title: Central circuits mediating patterned autonomic activity during active vs. passive emotional coping publication-title: Brain Research Bulletin – volume: 50 start-page: 1171 year: 1994 end-page: 1177 ident: bb0190 article-title: Variance components testing in the longitudinal mixed effects model publication-title: Biometrics – volume: 26 start-page: 99 year: 2005 end-page: 113 ident: bb0200 article-title: Increased sensitivity in neuroimaging analyses using robust regression publication-title: NeuroImage – volume: 24 start-page: 244 year: 2005 end-page: 252 ident: bb0065 article-title: Mixed-effects and fMRI studies publication-title: NeuroImage – volume: 8 start-page: 1 year: 1974 end-page: 24 ident: bb0035 article-title: Generalized least squares estimators in the analysis of covariance structures publication-title: South African Statistical Journal – volume: 66 start-page: 165 year: 2004 end-page: 185 ident: bb0040 article-title: Likelihood ratio tests in linear mixed models with one variance component publication-title: Journal of the Royal Statistical Society Series B – volume: 19 start-page: 285 year: 1977 end-page: 292 ident: bb0100 article-title: Jackknifing in unbalanced situations publication-title: Technometrics – volume: 317 start-page: 1079 year: 2007 end-page: 1083 ident: bb0145 article-title: When fear is near: threat imminence elicits prefrontal–periaqueductal gray shifts in humans publication-title: Science – volume: 4 start-page: 294 year: 2009 end-page: 298 ident: bb0240 article-title: Big Correlations in little studies: inflated fMRI correlations reflect low statistical power-commentary on Vul et al. (2009) publication-title: Perspectives on Psychological Science – year: 1999 ident: bb0030 article-title: Theory of Multivariate Statistics – volume: 54 start-page: 1560 year: 1998 end-page: 1568 ident: bb0150 article-title: Likelihood ratio testing of variance components in the linear mixed-effects model using restricted maximum likelihood publication-title: Biometrics – volume: 2 start-page: 150 year: 2007 end-page: 158 ident: bb0205 article-title: Meta-analysis of functional neuroimaging data: current and future directions publication-title: Social Cognitive and Affective Neuroscience – volume: 8 start-page: 365 year: 2005 end-page: 371 ident: bb0010 article-title: Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus publication-title: Nature Neuroscience – year: 2002 ident: bb0180 article-title: Hierarchical Linear Models – volume: 39 start-page: 1246 year: 2008 end-page: 1256 ident: bb0015 article-title: An investigation of statistical power for continuous arterial spin labeling imaging at 1.5 publication-title: NeuroImage – volume: 28 start-page: 76 year: 1993 end-page: 81 ident: bb0105 article-title: The ‘Trier Social Stress Test’ — a tool for investigating psychobiological stress responses in a laboratory setting publication-title: Neuropsychobiology – volume: 4 start-page: 299 year: 2009 end-page: 307 ident: bb0120 article-title: Correlations in social neuroscience aren't voodoo: commentary on Vul et al. (2009) publication-title: Perspectives on Psychological Science – volume: 4 start-page: 310 year: 2009 end-page: 313 ident: bb0130 article-title: Correlations and multiple comparisons in functional imaging: a statistical perspective — commentary on Vul et al., (2009) publication-title: Perspectives on Psychological Science – volume: 39 start-page: 261 year: 2008 end-page: 268 ident: bb0155 article-title: Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation publication-title: NeuroImage – volume: 4 start-page: 274 year: 2009 end-page: 290 ident: bb0195 article-title: Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition publication-title: Perspectives on Psychological Science – volume: 16 start-page: 465 year: 2002 end-page: 483 ident: bb0060 article-title: Classical and Bayesian inference in neuroimaging: theory publication-title: NeuroImage – volume: 23 start-page: 439 year: 2008 end-page: 464 ident: bb0125 article-title: The statistical analysis of fMRI data publication-title: Statistical Science – volume: 12 start-page: 535 year: 2009 end-page: 540 ident: bb0110 article-title: Circular analysis in systems neuroscience: the dangers of double dipping publication-title: Nature Neuroscience – year: 2009 ident: bb0225 article-title: Robust and unbiased variance of GLM coefficients for misspecified autocorrelation and hemodynamic response models in fMRI publication-title: International Journal of Biomedical Imaging – volume: 493 start-page: 154 year: 2005 end-page: 166 ident: bb0045 article-title: Neural mechanisms of autonomic, affective, and cognitive integration publication-title: The Journal of Comparative Neurology – volume: 47 start-page: 922 year: 2009 end-page: 936 ident: bb0070 article-title: A review of neuroimaging studies of stressor-evoked blood pressure reactivity: emerging evidence for a brain–body pathway to coronary heart disease risk publication-title: NeuroImage – volume: 82 start-page: 605 year: 1987 end-page: 610 ident: bb0185 article-title: Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions publication-title: Journal of the American Statistical Association – volume: 76 start-page: 622 year: 1989 end-page: 623 ident: bb0085 article-title: Restricted unbiased iterative generalised least squares estimation publication-title: Biometrika – volume: 30 start-page: 1551 year: 2010 end-page: 1557 ident: bb0115 article-title: Everything you never wanted to know about circular analysis, but were afraid to ask publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 47 start-page: 836 year: 2009 end-page: 851 ident: bb0220 article-title: Brain mediators of cardiovascular responses to social threat, Part II: prefrontal–subcortical pathways and relationship with anxiety publication-title: NeuroImage – volume: 73 start-page: 43 year: 1986 end-page: 56 ident: bb0080 article-title: Multilevel mixed linear model analysis using iterative generalized least squares publication-title: Biometrika – volume: 50 start-page: 1171 issue: 4 year: 1994 ident: 10.1016/j.neuroimage.2011.07.077_bb0190 article-title: Variance components testing in the longitudinal mixed effects model publication-title: Biometrics doi: 10.2307/2533455 – volume: 18 start-page: 1421 year: 2008 ident: 10.1016/j.neuroimage.2011.07.077_bb0140 article-title: Residual analysis for detecting mis-modeling in fMRI publication-title: Statistica Sinica – volume: 2 start-page: 150 year: 2007 ident: 10.1016/j.neuroimage.2011.07.077_bb0205 article-title: Meta-analysis of functional neuroimaging data: current and future directions publication-title: Social Cognitive and Affective Neuroscience doi: 10.1093/scan/nsm015 – volume: 4 start-page: 294 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2011.07.077_bb0240 article-title: Big Correlations in little studies: inflated fMRI correlations reflect low statistical power-commentary on Vul et al. (2009) publication-title: Perspectives on Psychological Science doi: 10.1111/j.1745-6924.2009.01127.x – volume: 7 start-page: 30 year: 1998 ident: 10.1016/j.neuroimage.2011.07.077_bb0055 article-title: Event-related fMRI: characterising differential responses publication-title: NeuroImage doi: 10.1006/nimg.1997.0306 – volume: 235 start-page: 218 year: 2005 ident: 10.1016/j.neuroimage.2011.07.077_bb0230 article-title: Amplitude-modulated continuous arterial spin-labeling 3.0-T perfusion MR imaging with a single coil: feasibility study publication-title: Radiology doi: 10.1148/radiol.2351031663 – volume: 72 start-page: 320 year: 1977 ident: 10.1016/j.neuroimage.2011.07.077_bb0090 article-title: Maximum likelihood approaches to variance component estimation and to related problems publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1977.10480998 – volume: 73 start-page: 43 issue: 1 year: 1986 ident: 10.1016/j.neuroimage.2011.07.077_bb0080 article-title: Multilevel mixed linear model analysis using iterative generalized least squares publication-title: Biometrika doi: 10.1093/biomet/73.1.43 – volume: 12 start-page: 535 year: 2009 ident: 10.1016/j.neuroimage.2011.07.077_bb0110 article-title: Circular analysis in systems neuroscience: the dangers of double dipping publication-title: Nature Neuroscience doi: 10.1038/nn.2303 – volume: 24 start-page: 244 year: 2005 ident: 10.1016/j.neuroimage.2011.07.077_bb0065 article-title: Mixed-effects and fMRI studies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.08.055 – volume: 54 start-page: 1560 issue: 4 year: 1998 ident: 10.1016/j.neuroimage.2011.07.077_bb0150 article-title: Likelihood ratio testing of variance components in the linear mixed-effects model using restricted maximum likelihood publication-title: Biometrics doi: 10.2307/2533680 – volume: 47 start-page: 1469 issue: 4 year: 2009 ident: 10.1016/j.neuroimage.2011.07.077_bb0160 article-title: Simple group fMRI modeling and inference publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.034 – volume: 47 start-page: 836 year: 2009 ident: 10.1016/j.neuroimage.2011.07.077_bb0220 article-title: Brain mediators of cardiovascular responses to social threat, Part II: prefrontal–subcortical pathways and relationship with anxiety publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.044 – volume: 317 start-page: 1079 year: 2007 ident: 10.1016/j.neuroimage.2011.07.077_bb0145 article-title: When fear is near: threat imminence elicits prefrontal–periaqueductal gray shifts in humans publication-title: Science doi: 10.1126/science.1144298 – volume: 39 start-page: 261 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2011.07.077_bb0155 article-title: Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.07.061 – volume: 26 start-page: 99 issue: 1 year: 2005 ident: 10.1016/j.neuroimage.2011.07.077_bb0200 article-title: Increased sensitivity in neuroimaging analyses using robust regression publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.01.011 – year: 1997 ident: 10.1016/j.neuroimage.2011.07.077_bb0095 – volume: 8 start-page: 365 issue: 3 year: 2005 ident: 10.1016/j.neuroimage.2011.07.077_bb0010 article-title: Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus publication-title: Nature Neuroscience doi: 10.1038/nn1399 – volume: 47 start-page: 821 year: 2009 ident: 10.1016/j.neuroimage.2011.07.077_bb0215 article-title: Brain mediators of cardiovascular responses to social threat, Part I: reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.043 – year: 1999 ident: 10.1016/j.neuroimage.2011.07.077_bb0030 – volume: 4 start-page: 299 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2011.07.077_bb0120 article-title: Correlations in social neuroscience aren't voodoo: commentary on Vul et al. (2009) publication-title: Perspectives on Psychological Science doi: 10.1111/j.1745-6924.2009.01128.x – volume: 66 start-page: 165 issue: 1 year: 2004 ident: 10.1016/j.neuroimage.2011.07.077_bb0040 article-title: Likelihood ratio tests in linear mixed models with one variance component publication-title: Journal of the Royal Statistical Society Series B doi: 10.1111/j.1467-9868.2004.00438.x – year: 1996 ident: 10.1016/j.neuroimage.2011.07.077_bb0165 – volume: 35 start-page: 179 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2011.07.077_bb0175 article-title: Stress regulation in the central nervous system: evidence from structural and functional neuroimaging studies in human populations — 2008 Curt Richter Award Winner publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2009.02.016 – volume: 76 start-page: 622 year: 1989 ident: 10.1016/j.neuroimage.2011.07.077_bb0085 article-title: Restricted unbiased iterative generalised least squares estimation publication-title: Biometrika doi: 10.1093/biomet/76.3.622 – volume: 30 start-page: 1551 year: 2010 ident: 10.1016/j.neuroimage.2011.07.077_bb0115 article-title: Everything you never wanted to know about circular analysis, but were afraid to ask publication-title: Journal of Cerebral Blood Flow and Metabolism doi: 10.1038/jcbfm.2010.86 – volume: 20 start-page: 1052 year: 2003 ident: 10.1016/j.neuroimage.2011.07.077_bb0025 article-title: General multilevel linear modeling for group analysis in fMRI publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00435-X – volume: 28 start-page: 990 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2011.07.077_bb0075 article-title: Individual differences in stressor-evoked blood pressure reactivity vary with activation, volume, and functional connectivity of the amygdala publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.3606-07.2008 – year: 2009 ident: 10.1016/j.neuroimage.2011.07.077_bb0225 article-title: Robust and unbiased variance of GLM coefficients for misspecified autocorrelation and hemodynamic response models in fMRI publication-title: International Journal of Biomedical Imaging doi: 10.1155/2009/723912 – volume: 53 start-page: 95 issue: 1 year: 2000 ident: 10.1016/j.neuroimage.2011.07.077_bb0020 article-title: Central circuits mediating patterned autonomic activity during active vs. passive emotional coping publication-title: Brain Research Bulletin doi: 10.1016/S0361-9230(00)00313-0 – volume: 82 start-page: 605 year: 1987 ident: 10.1016/j.neuroimage.2011.07.077_bb0185 article-title: Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1987.10478472 – volume: 4 start-page: 274 year: 2009 ident: 10.1016/j.neuroimage.2011.07.077_bb0195 article-title: Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition publication-title: Perspectives on Psychological Science doi: 10.1111/j.1745-6924.2009.01125.x – volume: 16 start-page: 1236 year: 1996 ident: 10.1016/j.neuroimage.2011.07.077_bb0005 article-title: Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow publication-title: Journal of Cerebral Blood Flow and Metabolism doi: 10.1097/00004647-199611000-00019 – volume: 23 start-page: 439 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2011.07.077_bb0125 article-title: The statistical analysis of fMRI data publication-title: Statistical Science doi: 10.1214/09-STS282 – volume: 47 start-page: 922 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2011.07.077_bb0070 article-title: A review of neuroimaging studies of stressor-evoked blood pressure reactivity: emerging evidence for a brain–body pathway to coronary heart disease risk publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.04.073 – volume: 39 start-page: 1246 year: 2008 ident: 10.1016/j.neuroimage.2011.07.077_bb0015 article-title: An investigation of statistical power for continuous arterial spin labeling imaging at 1.5T publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.10.015 – volume: 8 start-page: 1 year: 1974 ident: 10.1016/j.neuroimage.2011.07.077_bb0035 article-title: Generalized least squares estimators in the analysis of covariance structures publication-title: South African Statistical Journal – volume: 19 start-page: 285 year: 1977 ident: 10.1016/j.neuroimage.2011.07.077_bb0100 article-title: Jackknifing in unbalanced situations publication-title: Technometrics doi: 10.1080/00401706.1977.10489550 – volume: 493 start-page: 154 issue: 1 year: 2005 ident: 10.1016/j.neuroimage.2011.07.077_bb0045 article-title: Neural mechanisms of autonomic, affective, and cognitive integration publication-title: The Journal of Comparative Neurology doi: 10.1002/cne.20749 – volume: 83 start-page: 1014 year: 1988 ident: 10.1016/j.neuroimage.2011.07.077_bb0135 article-title: Newton–Raphson and EM algorithms for linear mixed-effects models for repeated-measures data publication-title: Journal of the American Statistical Association – volume: 35 start-page: 1601 issue: 4 year: 2007 ident: 10.1016/j.neuroimage.2011.07.077_bb0050 article-title: Neural pathways link social support to attenuated neuroendocrine stress responses publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.01.038 – year: 2002 ident: 10.1016/j.neuroimage.2011.07.077_bb0180 – volume: 16 start-page: 465 issue: 2 year: 2002 ident: 10.1016/j.neuroimage.2011.07.077_bb0060 article-title: Classical and Bayesian inference in neuroimaging: theory publication-title: NeuroImage doi: 10.1006/nimg.2002.1090 – year: 2000 ident: 10.1016/j.neuroimage.2011.07.077_bb0170 – volume: 28 start-page: 76 issue: 1–2 year: 1993 ident: 10.1016/j.neuroimage.2011.07.077_bb0105 article-title: The ‘Trier Social Stress Test’ — a tool for investigating psychobiological stress responses in a laboratory setting publication-title: Neuropsychobiology doi: 10.1159/000119004 – volume: 21 start-page: 1732 year: 2004 ident: 10.1016/j.neuroimage.2011.07.077_bb0235 article-title: Multilevel linear modelling for FMRI group analysis using Bayesian inference publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.12.023 – volume: 4 start-page: 310 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2011.07.077_bb0130 article-title: Correlations and multiple comparisons in functional imaging: a statistical perspective — commentary on Vul et al., (2009) publication-title: Perspectives on Psychological Science doi: 10.1111/j.1745-6924.2009.01130.x |
SSID | ssj0009148 |
Score | 2.1989095 |
Snippet | Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide ‘activation’ in a comparison between... Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide 'activation' in a comparison between... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 490 |
SubjectTerms | Amygdala Behavior Brain - physiology Brain Mapping - methods Design Estimates fMRI Humans Image Interpretation, Computer-Assisted - methods Iterative generalized least squares Likelihood ratio tests Linear Models Magnetic Resonance Imaging Medical imaging Models, Neurological Multi-level GLM Population Restricted iterative generalized least squares Sensitivity and Specificity Studies Variance components |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaKlW9IKCvhaXyoVereTh-iANCCLqq2J6KtDfLdux2K5oFduH3M5M4WWhVtFIOkeJREtsz89n-_JmQz1p5JYRyzPPAGbelZVZGz2LhdCx41L4dKE6_i8kl_zarZmnCbZlolX1MbAN1vfA4R_4FlfAgtXBZHF_fMDw1CldX0xEaL8krlC5DSpecybXobs67rXBVyRQUSEyejt_V6kXO_4DXJiFPCZf8X3r6F37-zaJ8lJbOd8h2wpP0pOsAu-RFaPbI62laMX9Ljs_AhxGVNj-pbWq6QlUNuL-HMTI2OEVO-aJBOgWdN9TSlmHIrpBLRL9eTN-Ry_OzH6cTlg5NYB7A0Io5Xtk8j8I5V9vMZ04pX0YhrLY4tishnvFgrRZ5EJDAeOEhOwEqc3UevItZ-Z5sNfDaj4S6CgpHwCtRSe4yr0IthS6Cz23wJbcjIvu6Mj4piuPBFlemp479NutaNljLJpNwyRHJB8vrTlVjAxvdN4fpd41CnDMQ-jewPRpsE7LoEMOG1uO-9U3y8KVZ98cRocNj8E1ccLFNWNwtjdJKYYx8pogGzCRxtXxEPnTdaagQBK9VgcbySUcbCqAy-NMnzfxXqxBeojMovf_8hx-QN_CXRTuhVIzJ1ur2LhwCxFq5T60fPQAE0ij7 priority: 102 providerName: ProQuest |
Title | Estimating and testing variance components in a multi-level GLM |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381191100872X https://dx.doi.org/10.1016/j.neuroimage.2011.07.077 https://www.ncbi.nlm.nih.gov/pubmed/21835242 https://www.proquest.com/docview/1506853472 https://www.proquest.com/docview/898840042 https://www.proquest.com/docview/902377423 https://pubmed.ncbi.nlm.nih.gov/PMC3195889 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqIiEuiPIMlMoHrib78PohDlWpUsIjEQIq5WbZjl0WlW1F0x7725nZ9W4JCBQJaZVssh4lGXtmPsefvyXkhVZeCaEc8zxwxm1pmZXRs1g4HQsetW8nirO5mB7zd4tqsUUO-70wSKtMub_L6W22Tu-MkzfH53U9_gzIAMoNzDdQn0YWC9zBziWO8pfXNzQPnfNuO1xVMmyd2Dwdx6vVjKy_Q-QmMU8Jh_xbifoTgv7OpPylNB3dI3cTpqQH3dfeIVuhuU9uz9Kq-QOyP4E4RmTanFDbLOkKlTXg_ArmydjpFHnlZw1SKmjdUEtbliE7RT4RffNh9pAcH02-HE5ZunEC8wCIVszxyuZ5FM65pc185pTyZRTCaovzuxJyGg_WapEHAUWMFx4qFCAzt8yDdzErH5HtBj72CaGugsYRMEtUkrvMq7CUQhfB5zb4ktsRkb2vjE-q4nhzi1PT08e-mRsvG_SyySQcckTywfK8U9bYwEb33WH6naOQ6wyk_w1sXw22ayNsQ-vdvvdNivILg-qMAHe4LEaEDpchPnHRxTbh7PLCKK0U5sl_NNGAmySumI_I4244DQ5BAFsVaCzXBtrQANXB16809ddWJbxEGSGln_7Xz35G7sCrov3Pqdgl26sfl-E5oLCV22vDDB7lQu6RWwdv30_n8Px6Mv_46SeR9jiQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuiGcJFPABjiuyXu_aFkIVj5SUJhFCrdSbsb1eCCqbQlIQf4rfyMy-QkFUuVTaQ6T1JJvx-PM36_FngMdaeZVlykVeBBEJm9jIysJHBXe64KLQvkoUJ9NsdCjeHqVHG_Cr3QtDZZUtJlZAnc89vSN_Skp4OLUIyXdOvkZ0ahStrrZHaNRhsR9-_sCUbfF87zX27xPOd4cHr0ZRc6pA5JEtLCMnUhvHReacy-3AD5xSPimyzGpLyU-CA14Ea3UWhwwRXnCP8I20xeVx8K4YJPi9l2BTJJjK9GDz5XD67v1K5jcW9ea7NIlUHOumdqiuKKsUKmdfECca6VCJl_zfhPgv4f27bvOPiXD3OlxrGCx7UYfcDdgI5U24PGnW6G_BzhBRg3hw-ZHZMmdL0vHAz98xK6cQY1TFPi-pgIPNSmZZVdMYHVP1EnszntyGwwtx6B3olfizd4G5FBsXyJAKJYUbeBVymWkefGyDT4Ttg2x9ZXyjYU5HaRybtljts1l52ZCXzUDiJfsQd5YntY7HGja67Q7T7lNFZDU42axh-6yzbbhMzVHWtN5ue980mLIwqxHQB9bdRjSgJR5bhvnpwiitFKHyOU00sjRJ6_N92KrDqXMI0eWUk7E8E2hdA9IiP3unnH2qNMkTEi1S-t75D_4IrowOJmMz3pvu34er-I959TqLb0Nv-e00PECCt3QPm1HF4MNFD-TfyjFoKg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELVKkSouiG8CBXyAo9XY613bQqhCtKGlTcWBSrkZ22uXoLIpJAXx1_h1zOxXKIgql0p7iLSeZDOeGT-vn58JeW500EWhPQsySiZd5phTKbAkvElCJhPqieL4qNg7lu8m-WSN_Or2wiCtsquJdaEuZwHfkW-hEh4MLVKJrdTSIt7vjLbPvjI8QQpXWrvjNJoQOYg_f8D0bf5qfwf6-oUQo90Pb_ZYe8IAC4AcFszL3HGeCu996YZh6LUOWSoKZxxOhDJIfhmdMwWPBVR7KQKUcoAwvuQx-DTM4HuvkesqyznmmJqopeAvl802vDxjmnPTsogablmtVTn9AhWjFRFVcKn_DY3_Qt-_GZx_DImjW-Rmi2Xp6yb4bpO1WN0hG-N2tf4u2d6F-oGIuDqhrirpAhU94PN3mJ9jsFHks88qpHLQaUUdrdmN7BR5TPTt4fgeOb4Sd94n6xX87ENCfQ6NE2ClpJX0w6BjqQojYuAuhky6AVGdr2xo1czxUI1T29HWPtully162Q4VXGpAeG951ih6rGBjuu6w3Y5VqLEWhp0VbF_2ti2qadDKitabXe_btrrM7TIXBoT2t6Eu4GKPq-LsfG610Rrr8yVNDOA1hSv1A_KgCafeIQicc4HG6kKg9Q1QlfzinWr6qVYnz1C-SJtHlz_4M7IB6WsP948OHpMb8IdF_V5LbJL1xbfz-ASQ3sI_rVOKko9XncO_AUyYavo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+and+testing+variance+components+in+a+multi-level+GLM&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Lindquist%2C+Martin+A&rft.au=Spicer%2C+Julie&rft.au=Asllani%2C+Iris&rft.au=Wager%2C+Tor+D&rft.date=2012-01-02&rft.eissn=1095-9572&rft.volume=59&rft.issue=1&rft.spage=490&rft_id=info:doi/10.1016%2Fj.neuroimage.2011.07.077&rft_id=info%3Apmid%2F21835242&rft.externalDocID=21835242 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |