Estimating and testing variance components in a multi-level GLM

Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide ‘activation’ in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 59; no. 1; pp. 490 - 501
Main Authors Lindquist, Martin A., Spicer, Julie, Asllani, Iris, Wager, Tor D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 02.01.2012
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide ‘activation’ in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a general linear model (GLM) analysis. However, important information can also be obtained by testing whether there exist significant individual differences in effect magnitude between subjects, i.e. whether the variance of a COPE is significantly different from zero. Intuitively, such a test amounts to testing whether inter-individual differences are larger than would be expected given the within-subject error variance. We compare several methods for estimating variance components, including a) a naïve estimate using ordinary least squares (OLS); b) linear mixed effects in R (LMER); c) a novel Matlab implementation of iterative generalized least squares (IGLS) and its restricted maximum likelihood variant (RIGLS). All methods produced reasonable estimates of within- and between-subject variance components, with IGLS providing an attractive balance between sensitivity and appropriate control of false positives. Finally, we use the IGLS method to estimate inter-subject variance in a perfusion fMRI study (N=18) of social evaluative threat, and show evidence for significant inter-individual differences in ventromedial prefrontal cortex (VMPFC), amygdala, hippocampus and medial temporal lobes, insula, and brainstem, with predicted inverse coupling between VMPFC and the midbrain periaqueductal gray only when high inter-individual variance was used to define the seed for functional connectivity analyses. In sum, tests of variance provides a way of selecting regions that show significant inter-individual variability for subsequent analyses that attempt to explain those individual differences. ► Multi-level models provide tests of inter-individual variances in effect magnitude. ► Can test whether there are true individual differences in brain activity. ► Allows us to determine appropriate ROIs to test for brain–behavior correlations. ► We compare several methods for estimating and testing variance components. ► Our suggested approach provides a balance between sensitivity and specificity.
AbstractList Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide 'activation' in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a general linear model (GLM) analysis. However, important information can also be obtained by testing whether there exist significantindividual differencesin effect magnitude between subjects, i.e. whether thevarianceof a COPE is significantly different from zero. Intuitively, such a test amounts to testing whether inter-individual differences are larger than would be expected given the within-subject error variance. We compare several methods for estimating variance components, including a) a naïve estimate using ordinary least squares (OLS); b) linear mixed effects in R (LMER); c) a novel Matlab implementation of iterative generalized least squares (IGLS) and its restricted maximum likelihood variant (RIGLS). All methods produced reasonable estimates of within- and between-subject variance components, with IGLS providing an attractive balance between sensitivity and appropriate control of false positives. Finally, we use the IGLS method to estimate inter-subject variance in a perfusion fMRI study (N=18) of social evaluative threat, and show evidence for significant inter-individual differences in ventromedial prefrontal cortex (VMPFC), amygdala, hippocampus and medial temporal lobes, insula, and brainstem, with predicted inverse coupling between VMPFC and the midbrain periaqueductal gray only when high inter-individual variance was used to define the seed for functional connectivity analyses. In sum, tests of variance provides a way of selecting regions that show significant inter-individual variability for subsequent analyses that attempt to explain those individual differences.
Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide 'activation' in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a general linear model (GLM) analysis. However, important information can also be obtained by testing whether there exist significant individual differences in effect magnitude between subjects, i.e. whether the variance of a COPE is significantly different from zero. Intuitively, such a test amounts to testing whether inter-individual differences are larger than would be expected given the within-subject error variance. We compare several methods for estimating variance components, including a) a naïve estimate using ordinary least squares (OLS); b) linear mixed effects in R (LMER); c) a novel Matlab implementation of iterative generalized least squares (IGLS) and its restricted maximum likelihood variant (RIGLS). All methods produced reasonable estimates of within- and between-subject variance components, with IGLS providing an attractive balance between sensitivity and appropriate control of false positives. Finally, we use the IGLS method to estimate inter-subject variance in a perfusion fMRI study (N=18) of social evaluative threat, and show evidence for significant inter-individual differences in ventromedial prefrontal cortex (VMPFC), amygdala, hippocampus and medial temporal lobes, insula, and brainstem, with predicted inverse coupling between VMPFC and the midbrain periaqueductal gray only when high inter-individual variance was used to define the seed for functional connectivity analyses. In sum, tests of variance provides a way of selecting regions that show significant inter-individual variability for subsequent analyses that attempt to explain those individual differences.Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide 'activation' in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a general linear model (GLM) analysis. However, important information can also be obtained by testing whether there exist significant individual differences in effect magnitude between subjects, i.e. whether the variance of a COPE is significantly different from zero. Intuitively, such a test amounts to testing whether inter-individual differences are larger than would be expected given the within-subject error variance. We compare several methods for estimating variance components, including a) a naïve estimate using ordinary least squares (OLS); b) linear mixed effects in R (LMER); c) a novel Matlab implementation of iterative generalized least squares (IGLS) and its restricted maximum likelihood variant (RIGLS). All methods produced reasonable estimates of within- and between-subject variance components, with IGLS providing an attractive balance between sensitivity and appropriate control of false positives. Finally, we use the IGLS method to estimate inter-subject variance in a perfusion fMRI study (N=18) of social evaluative threat, and show evidence for significant inter-individual differences in ventromedial prefrontal cortex (VMPFC), amygdala, hippocampus and medial temporal lobes, insula, and brainstem, with predicted inverse coupling between VMPFC and the midbrain periaqueductal gray only when high inter-individual variance was used to define the seed for functional connectivity analyses. In sum, tests of variance provides a way of selecting regions that show significant inter-individual variability for subsequent analyses that attempt to explain those individual differences.
Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide 'activation' in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a general linear model (GLM) analysis. However, important information can also be obtained by testing whether there exist significant individual differences in effect magnitude between subjects, i.e. whether the variance of a COPE is significantly different from zero. Intuitively, such a test amounts to testing whether inter-individual differences are larger than would be expected given the within-subject error variance. We compare several methods for estimating variance components, including a) a naïve estimate using ordinary least squares (OLS); b) linear mixed effects in R (LMER); c) a novel Matlab implementation of iterative generalized least squares (IGLS) and its restricted maximum likelihood variant (RIGLS). All methods produced reasonable estimates of within- and between-subject variance components, with IGLS providing an attractive balance between sensitivity and appropriate control of false positives. Finally, we use the IGLS method to estimate inter-subject variance in a perfusion fMRI study (N=18) of social evaluative threat, and show evidence for significant inter-individual differences in ventromedial prefrontal cortex (VMPFC), amygdala, hippocampus and medial temporal lobes, insula, and brainstem, with predicted inverse coupling between VMPFC and the midbrain periaqueductal gray only when high inter-individual variance was used to define the seed for functional connectivity analyses. In sum, tests of variance provides a way of selecting regions that show significant inter-individual variability for subsequent analyses that attempt to explain those individual differences.
Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide ‘activation’ in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a general linear model (GLM) analysis. However, important information can also be obtained by testing whether there exist significant individual differences in effect magnitude between subjects, i.e. whether the variance of a COPE is significantly different from zero. Intuitively, such a test amounts to testing whether inter-individual differences are larger than would be expected given the within-subject error variance. We compare several methods for estimating variance components, including a) a naïve estimate using ordinary least squares (OLS); b) linear mixed effects in R (LMER); c) a novel Matlab implementation of iterative generalized least squares (IGLS) and its restricted maximum likelihood variant (RIGLS). All methods produced reasonable estimates of within- and between-subject variance components, with IGLS providing an attractive balance between sensitivity and appropriate control of false positives. Finally, we use the IGLS method to estimate inter-subject variance in a perfusion fMRI study (N = 18) of social evaluative threat, and show evidence for significant inter-individual differences in ventromedial prefrontal cortex (VMPFC), amygdala, hippocampus and medial temporal lobes, insula, and brainstem, with predicted inverse coupling between VMPFC and the midbrain periaqueductal gray only when high inter-individual variance was used to define the seed for functional connectivity analyses. In sum, tests of variance provides a way of selecting regions that show significant inter-individual variability for subsequent analyses that attempt to explain those individual differences.
Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide 'activation' in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a general linear model (GLM) analysis. However, important information can also be obtained by testing whether there exist significant individual differences in effect magnitude between subjects, i.e. whether the variance of a COPE is significantly different from zero. Intuitively, such a test amounts to testing whether inter-individual differences are larger than would be expected given the within-subject error variance. We compare several methods for estimating variance components, including a) a naieve estimate using ordinary least squares (OLS); b) linear mixed effects in R (LMER); c) a novel Matlab implementation of iterative generalized least squares (IGLS) and its restricted maximum likelihood variant (RIGLS). All methods produced reasonable estimates of within- and between-subject variance components, with IGLS providing an attractive balance between sensitivity and appropriate control of false positives. Finally, we use the IGLS method to estimate inter-subject variance in a perfusion fMRI study (N = 18) of social evaluative threat, and show evidence for significant inter-individual differences in ventromedial prefrontal cortex (VMPFC), amygdala, hippocampus and medial temporal lobes, insula, and brainstem, with predicted inverse coupling between VMPFC and the midbrain periaqueductal gray only when high inter-individual variance was used to define the seed for functional connectivity analyses. In sum, tests of variance provides a way of selecting regions that show significant inter-individual variability for subsequent analyses that attempt to explain those individual differences.
Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide ‘activation’ in a comparison between two or more conditions. This is typically assessed by testing the average value of a contrast of parameter estimates (COPE) against zero in a general linear model (GLM) analysis. However, important information can also be obtained by testing whether there exist significant individual differences in effect magnitude between subjects, i.e. whether the variance of a COPE is significantly different from zero. Intuitively, such a test amounts to testing whether inter-individual differences are larger than would be expected given the within-subject error variance. We compare several methods for estimating variance components, including a) a naïve estimate using ordinary least squares (OLS); b) linear mixed effects in R (LMER); c) a novel Matlab implementation of iterative generalized least squares (IGLS) and its restricted maximum likelihood variant (RIGLS). All methods produced reasonable estimates of within- and between-subject variance components, with IGLS providing an attractive balance between sensitivity and appropriate control of false positives. Finally, we use the IGLS method to estimate inter-subject variance in a perfusion fMRI study (N=18) of social evaluative threat, and show evidence for significant inter-individual differences in ventromedial prefrontal cortex (VMPFC), amygdala, hippocampus and medial temporal lobes, insula, and brainstem, with predicted inverse coupling between VMPFC and the midbrain periaqueductal gray only when high inter-individual variance was used to define the seed for functional connectivity analyses. In sum, tests of variance provides a way of selecting regions that show significant inter-individual variability for subsequent analyses that attempt to explain those individual differences. ► Multi-level models provide tests of inter-individual variances in effect magnitude. ► Can test whether there are true individual differences in brain activity. ► Allows us to determine appropriate ROIs to test for brain–behavior correlations. ► We compare several methods for estimating and testing variance components. ► Our suggested approach provides a balance between sensitivity and specificity.
Author Lindquist, Martin A.
Asllani, Iris
Spicer, Julie
Wager, Tor D.
AuthorAffiliation 3 Program for Imaging and Cognitive Sciences, Columbia University, USA
4 Department of Psychology, University of Colorado, Boulder, USA
2 Department of Psychology, Columbia University, USA
1 Department of Statistics, Columbia University, USA
AuthorAffiliation_xml – name: 2 Department of Psychology, Columbia University, USA
– name: 3 Program for Imaging and Cognitive Sciences, Columbia University, USA
– name: 4 Department of Psychology, University of Colorado, Boulder, USA
– name: 1 Department of Statistics, Columbia University, USA
Author_xml – sequence: 1
  givenname: Martin A.
  surname: Lindquist
  fullname: Lindquist, Martin A.
  email: martin@stat.columbia.edu
  organization: Department of Statistics, Columbia University, USA
– sequence: 2
  givenname: Julie
  surname: Spicer
  fullname: Spicer, Julie
  organization: Department of Psychology, Columbia University, USA
– sequence: 3
  givenname: Iris
  surname: Asllani
  fullname: Asllani, Iris
  organization: Program for Imaging and Cognitive Sciences, Columbia University, USA
– sequence: 4
  givenname: Tor D.
  surname: Wager
  fullname: Wager, Tor D.
  organization: Department of Psychology, University of Colorado, Boulder, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21835242$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URNuBv4AisWCVqZ-JveFVlRZpEBtYW45zZ_Dg2IOdjNR_j0NbCrNhpCvZks_97rk-5-gkxAAIVQQvCSbNxXYZYErRDWYDS4oJWeK2VPsEnRGsRK1ES0_mu2C1JESdovOctxhjRbh8hk4pkUxQTs_Q26s8FszowqYyoa9GyL_ve5OcCRYqG4ddGR7GXLlQmWqY_OhqD3vw1fXq83P0dG18hhf35wJ9-3j19fKmXn25_nT5flVbwcVYd1wYQtZN13W9wRZ3Ulq2bhqjDKaUMtP3HIxRDYGGE8apbYnkpOl6ArZbY7ZAb-64u6kboLfFUDJe71Ixn251NE7_-xLcd72Je82IElKqAnh9D0jx51S21IPLFrw3AeKUtcKUtS2n7L9KqaTkGBfpAr06UG7jlEL5B00EbqRgvJ1VL_-2_sfzQwiPu9kUc06w1taNJZI4b-K8JljPqeutfkxdz6lr3JZqC0AeAB5mHNH64a4VSnh7B0ln66AE37sEdtR9dMdA3h1ArHfBWeN_wO1xiF99ROPd
CitedBy_id crossref_primary_10_1007_s12010_017_2633_y
crossref_primary_10_1097_PSY_0000000000000148
crossref_primary_10_1177_0001699312450591
crossref_primary_10_1093_biostatistics_kxz046
crossref_primary_10_1371_journal_pone_0123975
crossref_primary_10_1016_j_neuroimage_2011_12_060
crossref_primary_10_1093_biostatistics_kxx027
crossref_primary_10_1038_nn_3842
crossref_primary_10_1016_j_jpain_2014_02_010
crossref_primary_10_1080_01621459_2019_1611582
crossref_primary_10_1016_j_neuroimage_2014_03_029
crossref_primary_10_1016_j_procs_2023_10_486
crossref_primary_10_1007_s12021_024_09657_7
crossref_primary_10_1038_s41562_020_0819_8
crossref_primary_10_1002_hbm_24611
crossref_primary_10_1002_hbm_26579
crossref_primary_10_1093_scan_nsu110
crossref_primary_10_1002_hbm_25627
crossref_primary_10_1371_journal_pbio_1002036
crossref_primary_10_1093_biostatistics_kxad026
crossref_primary_10_1016_j_anbehav_2015_02_008
crossref_primary_10_1016_j_neuroimage_2013_04_079
crossref_primary_10_1080_01621459_2015_1006729
crossref_primary_10_1080_01621459_2014_922886
crossref_primary_10_1097_PR9_0000000000000574
crossref_primary_10_1016_j_drugalcdep_2020_108388
crossref_primary_10_1371_journal_pone_0085291
crossref_primary_10_1162_imag_a_00058
crossref_primary_10_1016_j_neuroimage_2021_118141
crossref_primary_10_1016_j_neuroimage_2024_120557
crossref_primary_10_1080_03610926_2020_1776327
crossref_primary_10_1186_s12874_015_0030_1
Cites_doi 10.2307/2533455
10.1093/scan/nsm015
10.1111/j.1745-6924.2009.01127.x
10.1006/nimg.1997.0306
10.1148/radiol.2351031663
10.1080/01621459.1977.10480998
10.1093/biomet/73.1.43
10.1038/nn.2303
10.1016/j.neuroimage.2004.08.055
10.2307/2533680
10.1016/j.neuroimage.2009.05.034
10.1016/j.neuroimage.2009.05.044
10.1126/science.1144298
10.1016/j.neuroimage.2007.07.061
10.1016/j.neuroimage.2005.01.011
10.1038/nn1399
10.1016/j.neuroimage.2009.05.043
10.1111/j.1745-6924.2009.01128.x
10.1111/j.1467-9868.2004.00438.x
10.1016/j.psyneuen.2009.02.016
10.1093/biomet/76.3.622
10.1038/jcbfm.2010.86
10.1016/S1053-8119(03)00435-X
10.1523/JNEUROSCI.3606-07.2008
10.1155/2009/723912
10.1016/S0361-9230(00)00313-0
10.1080/01621459.1987.10478472
10.1111/j.1745-6924.2009.01125.x
10.1097/00004647-199611000-00019
10.1214/09-STS282
10.1016/j.neuroimage.2009.04.073
10.1016/j.neuroimage.2007.10.015
10.1080/00401706.1977.10489550
10.1002/cne.20749
10.1016/j.neuroimage.2007.01.038
10.1006/nimg.2002.1090
10.1159/000119004
10.1016/j.neuroimage.2003.12.023
10.1111/j.1745-6924.2009.01130.x
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright © 2011 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jan 2, 2012
2010 Elsevier Inc. All rights reserved. 2010
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jan 2, 2012
– notice: 2010 Elsevier Inc. All rights reserved. 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2011.07.077
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList ProQuest One Psychology
MEDLINE - Academic
MEDLINE

Engineering Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 501
ExternalDocumentID PMC3195889
3244983761
21835242
10_1016_j_neuroimage_2011_07_077
S105381191100872X
Genre Journal Article
Comparative Study
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: RC1 DA028608
– fundername: National Institute on Drug Abuse : NIDA
  grantid: RC1 DA028608-02 || DA
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
5PM
ID FETCH-LOGICAL-c545t-b45a11f6bbbda0c0b88c3f66a9a02223add4eaa961e641342c718416bd1ecbf03
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 13:37:25 EDT 2025
Mon Jul 21 11:42:32 EDT 2025
Fri Jul 11 10:38:34 EDT 2025
Wed Aug 13 07:28:58 EDT 2025
Sat May 31 02:07:13 EDT 2025
Tue Jul 01 02:14:43 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Fri Feb 23 02:20:30 EST 2024
Tue Aug 26 16:33:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Restricted iterative generalized least squares
fMRI
Iterative generalized least squares
Variance components
Likelihood ratio tests
Multi-level GLM
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-b45a11f6bbbda0c0b88c3f66a9a02223add4eaa961e641342c718416bd1ecbf03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 21835242
PQID 1506853472
PQPubID 2031077
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3195889
proquest_miscellaneous_902377423
proquest_miscellaneous_898840042
proquest_journals_1506853472
pubmed_primary_21835242
crossref_citationtrail_10_1016_j_neuroimage_2011_07_077
crossref_primary_10_1016_j_neuroimage_2011_07_077
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2011_07_077
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2011_07_077
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-02
PublicationDateYYYYMMDD 2012-01-02
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2012
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Beckmann, Jenkinson, Smith (bb0025) 2003; 20
Goldstein (bb0085) 1989; 76
Harville (bb0095) 1997
Lindstrom, Bates (bb0135) 1988; 83
Mumford, Nichols (bb0155) 2008; 39
Wager, Keller, Lacey, Jonides (bb0200) 2005; 26
Woolrich, Behrens, Beckmann, Jenkinson, Smith (bb0235) 2004; 21
Wang, Zhang, Wolf, Roc, Alsop, Detre (bb0230) 2005; 235
Loh, Lindquist, Wager (bb0140) 2008; 18
Yarkoni (bb0240) 2009; 4
Gianaros, Sheu (bb0070) 2009; 47
Mobbs, Petrovic, Marchant, Hassabis, Weiskopf, Seymour, Dolan, Frith (bb0145) 2007; 317
Pruessner, Dedovic, Pruessner, Lord, Buss, Collins (bb0175) 2010; 35
Pinheiro, Bates (bb0170) 2000
Browne (bb0035) 1974; 8
Asllani, Borogovac, Wright, Sacco, Brown, Zarahn (bb0015) 2008; 39
Alsop, Detre (bb0005) 1996; 16
Bilodeau, Brenner (bb0030) 1999
Neter, Kutner, Nachtsheim, Wasserman (bb0165) 1996
Eisenberger, Taylor, Gable, Hilmert, Lieberman (bb0050) 2007; 35
Vul, Harris, Winkielman, Pashler (bb0195) 2009; 4
Critchley (bb0045) 2005; 493
Raudenbush, Bryk (bb0180) 2002
Wager, Lindquist, Kaplan (bb0205) 2007; 2
Morrell (bb0150) 1998; 54
Stram, Lee (bb0190) 1994; 50
Friston, Fletcher, Josephs, Holmes, Rugg, Turner (bb0055) 1998; 7
Friston, Penny, Phillips, Kiebel, Hinton, Ashburner (bb0060) 2002; 16
Self, Liang (bb0185) 1987; 82
Kirschbaum, Pirke, Hellhammer (bb0105) 1993; 28
Kriegeskorte, Simmons, Bellgowan, Baker (bb0110) 2009; 12
Mumford, Nichols (bb0160) 2009; 47
Wager, Waugh, Lindquist, Noll, Fredrickson, Taylor (bb0215) 2009; 47
Waldorp (bb0225) 2009
Hinkley (bb0100) 1977; 19
Friston, Stephan, Lund, Morcom, Kiebel (bb0065) 2005; 24
Harville (bb0090) 1977; 72
Crainiceanu, Ruppert (bb0040) 2004; 66
Goldstein (bb0080) 1986; 73
Bandler, Keay, Floyd, Price (bb0020) 2000; 53
Amat, Baratta, Paul, Bland, Watkins, Maier (bb0010) 2005; 8
Wager, van Ast, Hughes, Davidson, Lindquist, Ochsner (bb0220) 2009; 47
Lindquist, Gelman (bb0130) 2009; 4
Lindquist (bb0125) 2008; 23
Gianaros, Sheu, Matthews, Jennings, Manuck, Hariri (bb0075) 2008; 28
Kriegeskorte, Lindquist, Nichols, Poldrack, Vul (bb0115) 2010; 30
Lieberman, Berkman, Wager (bb0120) 2009; 4
Crainiceanu (10.1016/j.neuroimage.2011.07.077_bb0040) 2004; 66
Wager (10.1016/j.neuroimage.2011.07.077_bb0205) 2007; 2
Friston (10.1016/j.neuroimage.2011.07.077_bb0055) 1998; 7
Kirschbaum (10.1016/j.neuroimage.2011.07.077_bb0105) 1993; 28
Kriegeskorte (10.1016/j.neuroimage.2011.07.077_bb0110) 2009; 12
Gianaros (10.1016/j.neuroimage.2011.07.077_bb0070) 2009; 47
Vul (10.1016/j.neuroimage.2011.07.077_bb0195) 2009; 4
Mobbs (10.1016/j.neuroimage.2011.07.077_bb0145) 2007; 317
Raudenbush (10.1016/j.neuroimage.2011.07.077_bb0180) 2002
Mumford (10.1016/j.neuroimage.2011.07.077_bb0155) 2008; 39
Wager (10.1016/j.neuroimage.2011.07.077_bb0220) 2009; 47
Amat (10.1016/j.neuroimage.2011.07.077_bb0010) 2005; 8
Goldstein (10.1016/j.neuroimage.2011.07.077_bb0085) 1989; 76
Goldstein (10.1016/j.neuroimage.2011.07.077_bb0080) 1986; 73
Lieberman (10.1016/j.neuroimage.2011.07.077_bb0120) 2009; 4
Lindquist (10.1016/j.neuroimage.2011.07.077_bb0130) 2009; 4
Waldorp (10.1016/j.neuroimage.2011.07.077_bb0225) 2009
Harville (10.1016/j.neuroimage.2011.07.077_bb0095) 1997
Critchley (10.1016/j.neuroimage.2011.07.077_bb0045) 2005; 493
Pruessner (10.1016/j.neuroimage.2011.07.077_bb0175) 2010; 35
Hinkley (10.1016/j.neuroimage.2011.07.077_bb0100) 1977; 19
Loh (10.1016/j.neuroimage.2011.07.077_bb0140) 2008; 18
Neter (10.1016/j.neuroimage.2011.07.077_bb0165) 1996
Eisenberger (10.1016/j.neuroimage.2011.07.077_bb0050) 2007; 35
Gianaros (10.1016/j.neuroimage.2011.07.077_bb0075) 2008; 28
Woolrich (10.1016/j.neuroimage.2011.07.077_bb0235) 2004; 21
Alsop (10.1016/j.neuroimage.2011.07.077_bb0005) 1996; 16
Friston (10.1016/j.neuroimage.2011.07.077_bb0065) 2005; 24
Kriegeskorte (10.1016/j.neuroimage.2011.07.077_bb0115) 2010; 30
Bilodeau (10.1016/j.neuroimage.2011.07.077_bb0030) 1999
Bandler (10.1016/j.neuroimage.2011.07.077_bb0020) 2000; 53
Wang (10.1016/j.neuroimage.2011.07.077_bb0230) 2005; 235
Mumford (10.1016/j.neuroimage.2011.07.077_bb0160) 2009; 47
Pinheiro (10.1016/j.neuroimage.2011.07.077_bb0170) 2000
Stram (10.1016/j.neuroimage.2011.07.077_bb0190) 1994; 50
Friston (10.1016/j.neuroimage.2011.07.077_bb0060) 2002; 16
Harville (10.1016/j.neuroimage.2011.07.077_bb0090) 1977; 72
Wager (10.1016/j.neuroimage.2011.07.077_bb0215) 2009; 47
Asllani (10.1016/j.neuroimage.2011.07.077_bb0015) 2008; 39
Beckmann (10.1016/j.neuroimage.2011.07.077_bb0025) 2003; 20
Yarkoni (10.1016/j.neuroimage.2011.07.077_bb0240) 2009; 4
Browne (10.1016/j.neuroimage.2011.07.077_bb0035) 1974; 8
Morrell (10.1016/j.neuroimage.2011.07.077_bb0150) 1998; 54
Lindstrom (10.1016/j.neuroimage.2011.07.077_bb0135) 1988; 83
Self (10.1016/j.neuroimage.2011.07.077_bb0185) 1987; 82
Wager (10.1016/j.neuroimage.2011.07.077_bb0200) 2005; 26
Lindquist (10.1016/j.neuroimage.2011.07.077_bb0125) 2008; 23
References_xml – volume: 47
  start-page: 821
  year: 2009
  end-page: 835
  ident: bb0215
  article-title: Brain mediators of cardiovascular responses to social threat, Part I: reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity
  publication-title: NeuroImage
– volume: 28
  start-page: 990
  year: 2008
  end-page: 999
  ident: bb0075
  article-title: Individual differences in stressor-evoked blood pressure reactivity vary with activation, volume, and functional connectivity of the amygdala
  publication-title: Journal of Neuroscience
– volume: 35
  start-page: 179
  year: 2010
  end-page: 191
  ident: bb0175
  article-title: Stress regulation in the central nervous system: evidence from structural and functional neuroimaging studies in human populations — 2008 Curt Richter Award Winner
  publication-title: Psychoneuroendocrinology
– volume: 235
  start-page: 218
  year: 2005
  end-page: 228
  ident: bb0230
  article-title: Amplitude-modulated continuous arterial spin-labeling 3.0-T perfusion MR imaging with a single coil: feasibility study
  publication-title: Radiology
– volume: 47
  start-page: 1469
  year: 2009
  end-page: 1475
  ident: bb0160
  article-title: Simple group fMRI modeling and inference
  publication-title: NeuroImage
– volume: 21
  start-page: 1732
  year: 2004
  end-page: 1747
  ident: bb0235
  article-title: Multilevel linear modelling for FMRI group analysis using Bayesian inference
  publication-title: NeuroImage
– volume: 20
  start-page: 1052
  year: 2003
  end-page: 1063
  ident: bb0025
  article-title: General multilevel linear modeling for group analysis in fMRI
  publication-title: NeuroImage
– volume: 7
  start-page: 30
  year: 1998
  end-page: 40
  ident: bb0055
  article-title: Event-related fMRI: characterising differential responses
  publication-title: NeuroImage
– volume: 72
  start-page: 320
  year: 1977
  end-page: 338
  ident: bb0090
  article-title: Maximum likelihood approaches to variance component estimation and to related problems
  publication-title: Journal of the American Statistical Association
– volume: 16
  start-page: 1236
  year: 1996
  end-page: 1249
  ident: bb0005
  article-title: Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– year: 2000
  ident: bb0170
  article-title: Mixed Effects Models in S and S-PLUS
– volume: 83
  start-page: 1014
  year: 1988
  end-page: 1022
  ident: bb0135
  article-title: Newton–Raphson and EM algorithms for linear mixed-effects models for repeated-measures data
  publication-title: Journal of the American Statistical Association
– volume: 18
  start-page: 1421
  year: 2008
  end-page: 1448
  ident: bb0140
  article-title: Residual analysis for detecting mis-modeling in fMRI
  publication-title: Statistica Sinica
– year: 1996
  ident: bb0165
  article-title: Applied Linear Statistical Models (Fourth Edition)
– year: 1997
  ident: bb0095
  article-title: Matrix Algebra from a Statisticians's Perspective
– volume: 35
  start-page: 1601
  year: 2007
  end-page: 1612
  ident: bb0050
  article-title: Neural pathways link social support to attenuated neuroendocrine stress responses
  publication-title: NeuroImage
– volume: 53
  start-page: 95
  year: 2000
  end-page: 104
  ident: bb0020
  article-title: Central circuits mediating patterned autonomic activity during active vs. passive emotional coping
  publication-title: Brain Research Bulletin
– volume: 50
  start-page: 1171
  year: 1994
  end-page: 1177
  ident: bb0190
  article-title: Variance components testing in the longitudinal mixed effects model
  publication-title: Biometrics
– volume: 26
  start-page: 99
  year: 2005
  end-page: 113
  ident: bb0200
  article-title: Increased sensitivity in neuroimaging analyses using robust regression
  publication-title: NeuroImage
– volume: 24
  start-page: 244
  year: 2005
  end-page: 252
  ident: bb0065
  article-title: Mixed-effects and fMRI studies
  publication-title: NeuroImage
– volume: 8
  start-page: 1
  year: 1974
  end-page: 24
  ident: bb0035
  article-title: Generalized least squares estimators in the analysis of covariance structures
  publication-title: South African Statistical Journal
– volume: 66
  start-page: 165
  year: 2004
  end-page: 185
  ident: bb0040
  article-title: Likelihood ratio tests in linear mixed models with one variance component
  publication-title: Journal of the Royal Statistical Society Series B
– volume: 19
  start-page: 285
  year: 1977
  end-page: 292
  ident: bb0100
  article-title: Jackknifing in unbalanced situations
  publication-title: Technometrics
– volume: 317
  start-page: 1079
  year: 2007
  end-page: 1083
  ident: bb0145
  article-title: When fear is near: threat imminence elicits prefrontal–periaqueductal gray shifts in humans
  publication-title: Science
– volume: 4
  start-page: 294
  year: 2009
  end-page: 298
  ident: bb0240
  article-title: Big Correlations in little studies: inflated fMRI correlations reflect low statistical power-commentary on Vul et al. (2009)
  publication-title: Perspectives on Psychological Science
– year: 1999
  ident: bb0030
  article-title: Theory of Multivariate Statistics
– volume: 54
  start-page: 1560
  year: 1998
  end-page: 1568
  ident: bb0150
  article-title: Likelihood ratio testing of variance components in the linear mixed-effects model using restricted maximum likelihood
  publication-title: Biometrics
– volume: 2
  start-page: 150
  year: 2007
  end-page: 158
  ident: bb0205
  article-title: Meta-analysis of functional neuroimaging data: current and future directions
  publication-title: Social Cognitive and Affective Neuroscience
– volume: 8
  start-page: 365
  year: 2005
  end-page: 371
  ident: bb0010
  article-title: Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus
  publication-title: Nature Neuroscience
– year: 2002
  ident: bb0180
  article-title: Hierarchical Linear Models
– volume: 39
  start-page: 1246
  year: 2008
  end-page: 1256
  ident: bb0015
  article-title: An investigation of statistical power for continuous arterial spin labeling imaging at 1.5
  publication-title: NeuroImage
– volume: 28
  start-page: 76
  year: 1993
  end-page: 81
  ident: bb0105
  article-title: The ‘Trier Social Stress Test’ — a tool for investigating psychobiological stress responses in a laboratory setting
  publication-title: Neuropsychobiology
– volume: 4
  start-page: 299
  year: 2009
  end-page: 307
  ident: bb0120
  article-title: Correlations in social neuroscience aren't voodoo: commentary on Vul et al. (2009)
  publication-title: Perspectives on Psychological Science
– volume: 4
  start-page: 310
  year: 2009
  end-page: 313
  ident: bb0130
  article-title: Correlations and multiple comparisons in functional imaging: a statistical perspective — commentary on Vul et al., (2009)
  publication-title: Perspectives on Psychological Science
– volume: 39
  start-page: 261
  year: 2008
  end-page: 268
  ident: bb0155
  article-title: Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation
  publication-title: NeuroImage
– volume: 4
  start-page: 274
  year: 2009
  end-page: 290
  ident: bb0195
  article-title: Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition
  publication-title: Perspectives on Psychological Science
– volume: 16
  start-page: 465
  year: 2002
  end-page: 483
  ident: bb0060
  article-title: Classical and Bayesian inference in neuroimaging: theory
  publication-title: NeuroImage
– volume: 23
  start-page: 439
  year: 2008
  end-page: 464
  ident: bb0125
  article-title: The statistical analysis of fMRI data
  publication-title: Statistical Science
– volume: 12
  start-page: 535
  year: 2009
  end-page: 540
  ident: bb0110
  article-title: Circular analysis in systems neuroscience: the dangers of double dipping
  publication-title: Nature Neuroscience
– year: 2009
  ident: bb0225
  article-title: Robust and unbiased variance of GLM coefficients for misspecified autocorrelation and hemodynamic response models in fMRI
  publication-title: International Journal of Biomedical Imaging
– volume: 493
  start-page: 154
  year: 2005
  end-page: 166
  ident: bb0045
  article-title: Neural mechanisms of autonomic, affective, and cognitive integration
  publication-title: The Journal of Comparative Neurology
– volume: 47
  start-page: 922
  year: 2009
  end-page: 936
  ident: bb0070
  article-title: A review of neuroimaging studies of stressor-evoked blood pressure reactivity: emerging evidence for a brain–body pathway to coronary heart disease risk
  publication-title: NeuroImage
– volume: 82
  start-page: 605
  year: 1987
  end-page: 610
  ident: bb0185
  article-title: Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions
  publication-title: Journal of the American Statistical Association
– volume: 76
  start-page: 622
  year: 1989
  end-page: 623
  ident: bb0085
  article-title: Restricted unbiased iterative generalised least squares estimation
  publication-title: Biometrika
– volume: 30
  start-page: 1551
  year: 2010
  end-page: 1557
  ident: bb0115
  article-title: Everything you never wanted to know about circular analysis, but were afraid to ask
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 47
  start-page: 836
  year: 2009
  end-page: 851
  ident: bb0220
  article-title: Brain mediators of cardiovascular responses to social threat, Part II: prefrontal–subcortical pathways and relationship with anxiety
  publication-title: NeuroImage
– volume: 73
  start-page: 43
  year: 1986
  end-page: 56
  ident: bb0080
  article-title: Multilevel mixed linear model analysis using iterative generalized least squares
  publication-title: Biometrika
– volume: 50
  start-page: 1171
  issue: 4
  year: 1994
  ident: 10.1016/j.neuroimage.2011.07.077_bb0190
  article-title: Variance components testing in the longitudinal mixed effects model
  publication-title: Biometrics
  doi: 10.2307/2533455
– volume: 18
  start-page: 1421
  year: 2008
  ident: 10.1016/j.neuroimage.2011.07.077_bb0140
  article-title: Residual analysis for detecting mis-modeling in fMRI
  publication-title: Statistica Sinica
– volume: 2
  start-page: 150
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.077_bb0205
  article-title: Meta-analysis of functional neuroimaging data: current and future directions
  publication-title: Social Cognitive and Affective Neuroscience
  doi: 10.1093/scan/nsm015
– volume: 4
  start-page: 294
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.077_bb0240
  article-title: Big Correlations in little studies: inflated fMRI correlations reflect low statistical power-commentary on Vul et al. (2009)
  publication-title: Perspectives on Psychological Science
  doi: 10.1111/j.1745-6924.2009.01127.x
– volume: 7
  start-page: 30
  year: 1998
  ident: 10.1016/j.neuroimage.2011.07.077_bb0055
  article-title: Event-related fMRI: characterising differential responses
  publication-title: NeuroImage
  doi: 10.1006/nimg.1997.0306
– volume: 235
  start-page: 218
  year: 2005
  ident: 10.1016/j.neuroimage.2011.07.077_bb0230
  article-title: Amplitude-modulated continuous arterial spin-labeling 3.0-T perfusion MR imaging with a single coil: feasibility study
  publication-title: Radiology
  doi: 10.1148/radiol.2351031663
– volume: 72
  start-page: 320
  year: 1977
  ident: 10.1016/j.neuroimage.2011.07.077_bb0090
  article-title: Maximum likelihood approaches to variance component estimation and to related problems
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1977.10480998
– volume: 73
  start-page: 43
  issue: 1
  year: 1986
  ident: 10.1016/j.neuroimage.2011.07.077_bb0080
  article-title: Multilevel mixed linear model analysis using iterative generalized least squares
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.43
– volume: 12
  start-page: 535
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.077_bb0110
  article-title: Circular analysis in systems neuroscience: the dangers of double dipping
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.2303
– volume: 24
  start-page: 244
  year: 2005
  ident: 10.1016/j.neuroimage.2011.07.077_bb0065
  article-title: Mixed-effects and fMRI studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.08.055
– volume: 54
  start-page: 1560
  issue: 4
  year: 1998
  ident: 10.1016/j.neuroimage.2011.07.077_bb0150
  article-title: Likelihood ratio testing of variance components in the linear mixed-effects model using restricted maximum likelihood
  publication-title: Biometrics
  doi: 10.2307/2533680
– volume: 47
  start-page: 1469
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.077_bb0160
  article-title: Simple group fMRI modeling and inference
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.034
– volume: 47
  start-page: 836
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.077_bb0220
  article-title: Brain mediators of cardiovascular responses to social threat, Part II: prefrontal–subcortical pathways and relationship with anxiety
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.044
– volume: 317
  start-page: 1079
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.077_bb0145
  article-title: When fear is near: threat imminence elicits prefrontal–periaqueductal gray shifts in humans
  publication-title: Science
  doi: 10.1126/science.1144298
– volume: 39
  start-page: 261
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2011.07.077_bb0155
  article-title: Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.07.061
– volume: 26
  start-page: 99
  issue: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2011.07.077_bb0200
  article-title: Increased sensitivity in neuroimaging analyses using robust regression
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.01.011
– year: 1997
  ident: 10.1016/j.neuroimage.2011.07.077_bb0095
– volume: 8
  start-page: 365
  issue: 3
  year: 2005
  ident: 10.1016/j.neuroimage.2011.07.077_bb0010
  article-title: Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1399
– volume: 47
  start-page: 821
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.077_bb0215
  article-title: Brain mediators of cardiovascular responses to social threat, Part I: reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.043
– year: 1999
  ident: 10.1016/j.neuroimage.2011.07.077_bb0030
– volume: 4
  start-page: 299
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.077_bb0120
  article-title: Correlations in social neuroscience aren't voodoo: commentary on Vul et al. (2009)
  publication-title: Perspectives on Psychological Science
  doi: 10.1111/j.1745-6924.2009.01128.x
– volume: 66
  start-page: 165
  issue: 1
  year: 2004
  ident: 10.1016/j.neuroimage.2011.07.077_bb0040
  article-title: Likelihood ratio tests in linear mixed models with one variance component
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/j.1467-9868.2004.00438.x
– year: 1996
  ident: 10.1016/j.neuroimage.2011.07.077_bb0165
– volume: 35
  start-page: 179
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.077_bb0175
  article-title: Stress regulation in the central nervous system: evidence from structural and functional neuroimaging studies in human populations — 2008 Curt Richter Award Winner
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/j.psyneuen.2009.02.016
– volume: 76
  start-page: 622
  year: 1989
  ident: 10.1016/j.neuroimage.2011.07.077_bb0085
  article-title: Restricted unbiased iterative generalised least squares estimation
  publication-title: Biometrika
  doi: 10.1093/biomet/76.3.622
– volume: 30
  start-page: 1551
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.077_bb0115
  article-title: Everything you never wanted to know about circular analysis, but were afraid to ask
  publication-title: Journal of Cerebral Blood Flow and Metabolism
  doi: 10.1038/jcbfm.2010.86
– volume: 20
  start-page: 1052
  year: 2003
  ident: 10.1016/j.neuroimage.2011.07.077_bb0025
  article-title: General multilevel linear modeling for group analysis in fMRI
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00435-X
– volume: 28
  start-page: 990
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2011.07.077_bb0075
  article-title: Individual differences in stressor-evoked blood pressure reactivity vary with activation, volume, and functional connectivity of the amygdala
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.3606-07.2008
– year: 2009
  ident: 10.1016/j.neuroimage.2011.07.077_bb0225
  article-title: Robust and unbiased variance of GLM coefficients for misspecified autocorrelation and hemodynamic response models in fMRI
  publication-title: International Journal of Biomedical Imaging
  doi: 10.1155/2009/723912
– volume: 53
  start-page: 95
  issue: 1
  year: 2000
  ident: 10.1016/j.neuroimage.2011.07.077_bb0020
  article-title: Central circuits mediating patterned autonomic activity during active vs. passive emotional coping
  publication-title: Brain Research Bulletin
  doi: 10.1016/S0361-9230(00)00313-0
– volume: 82
  start-page: 605
  year: 1987
  ident: 10.1016/j.neuroimage.2011.07.077_bb0185
  article-title: Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1987.10478472
– volume: 4
  start-page: 274
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.077_bb0195
  article-title: Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition
  publication-title: Perspectives on Psychological Science
  doi: 10.1111/j.1745-6924.2009.01125.x
– volume: 16
  start-page: 1236
  year: 1996
  ident: 10.1016/j.neuroimage.2011.07.077_bb0005
  article-title: Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow
  publication-title: Journal of Cerebral Blood Flow and Metabolism
  doi: 10.1097/00004647-199611000-00019
– volume: 23
  start-page: 439
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2011.07.077_bb0125
  article-title: The statistical analysis of fMRI data
  publication-title: Statistical Science
  doi: 10.1214/09-STS282
– volume: 47
  start-page: 922
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.077_bb0070
  article-title: A review of neuroimaging studies of stressor-evoked blood pressure reactivity: emerging evidence for a brain–body pathway to coronary heart disease risk
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.04.073
– volume: 39
  start-page: 1246
  year: 2008
  ident: 10.1016/j.neuroimage.2011.07.077_bb0015
  article-title: An investigation of statistical power for continuous arterial spin labeling imaging at 1.5T
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.10.015
– volume: 8
  start-page: 1
  year: 1974
  ident: 10.1016/j.neuroimage.2011.07.077_bb0035
  article-title: Generalized least squares estimators in the analysis of covariance structures
  publication-title: South African Statistical Journal
– volume: 19
  start-page: 285
  year: 1977
  ident: 10.1016/j.neuroimage.2011.07.077_bb0100
  article-title: Jackknifing in unbalanced situations
  publication-title: Technometrics
  doi: 10.1080/00401706.1977.10489550
– volume: 493
  start-page: 154
  issue: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2011.07.077_bb0045
  article-title: Neural mechanisms of autonomic, affective, and cognitive integration
  publication-title: The Journal of Comparative Neurology
  doi: 10.1002/cne.20749
– volume: 83
  start-page: 1014
  year: 1988
  ident: 10.1016/j.neuroimage.2011.07.077_bb0135
  article-title: Newton–Raphson and EM algorithms for linear mixed-effects models for repeated-measures data
  publication-title: Journal of the American Statistical Association
– volume: 35
  start-page: 1601
  issue: 4
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.077_bb0050
  article-title: Neural pathways link social support to attenuated neuroendocrine stress responses
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.01.038
– year: 2002
  ident: 10.1016/j.neuroimage.2011.07.077_bb0180
– volume: 16
  start-page: 465
  issue: 2
  year: 2002
  ident: 10.1016/j.neuroimage.2011.07.077_bb0060
  article-title: Classical and Bayesian inference in neuroimaging: theory
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1090
– year: 2000
  ident: 10.1016/j.neuroimage.2011.07.077_bb0170
– volume: 28
  start-page: 76
  issue: 1–2
  year: 1993
  ident: 10.1016/j.neuroimage.2011.07.077_bb0105
  article-title: The ‘Trier Social Stress Test’ — a tool for investigating psychobiological stress responses in a laboratory setting
  publication-title: Neuropsychobiology
  doi: 10.1159/000119004
– volume: 21
  start-page: 1732
  year: 2004
  ident: 10.1016/j.neuroimage.2011.07.077_bb0235
  article-title: Multilevel linear modelling for FMRI group analysis using Bayesian inference
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.12.023
– volume: 4
  start-page: 310
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.077_bb0130
  article-title: Correlations and multiple comparisons in functional imaging: a statistical perspective — commentary on Vul et al., (2009)
  publication-title: Perspectives on Psychological Science
  doi: 10.1111/j.1745-6924.2009.01130.x
SSID ssj0009148
Score 2.1989095
Snippet Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide ‘activation’ in a comparison between...
Most analysis of multi-subject fMRI data is concerned with determining whether there exists a significant population-wide 'activation' in a comparison between...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 490
SubjectTerms Amygdala
Behavior
Brain - physiology
Brain Mapping - methods
Design
Estimates
fMRI
Humans
Image Interpretation, Computer-Assisted - methods
Iterative generalized least squares
Likelihood ratio tests
Linear Models
Magnetic Resonance Imaging
Medical imaging
Models, Neurological
Multi-level GLM
Population
Restricted iterative generalized least squares
Sensitivity and Specificity
Studies
Variance components
SummonAdditionalLinks – databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaKlW9IKCvhaXyoVereTh-iANCCLqq2J6KtDfLdux2K5oFduH3M5M4WWhVtFIOkeJREtsz89n-_JmQz1p5JYRyzPPAGbelZVZGz2LhdCx41L4dKE6_i8kl_zarZmnCbZlolX1MbAN1vfA4R_4FlfAgtXBZHF_fMDw1CldX0xEaL8krlC5DSpecybXobs67rXBVyRQUSEyejt_V6kXO_4DXJiFPCZf8X3r6F37-zaJ8lJbOd8h2wpP0pOsAu-RFaPbI62laMX9Ljs_AhxGVNj-pbWq6QlUNuL-HMTI2OEVO-aJBOgWdN9TSlmHIrpBLRL9eTN-Ry_OzH6cTlg5NYB7A0Io5Xtk8j8I5V9vMZ04pX0YhrLY4tishnvFgrRZ5EJDAeOEhOwEqc3UevItZ-Z5sNfDaj4S6CgpHwCtRSe4yr0IthS6Cz23wJbcjIvu6Mj4piuPBFlemp479NutaNljLJpNwyRHJB8vrTlVjAxvdN4fpd41CnDMQ-jewPRpsE7LoEMOG1uO-9U3y8KVZ98cRocNj8E1ccLFNWNwtjdJKYYx8pogGzCRxtXxEPnTdaagQBK9VgcbySUcbCqAy-NMnzfxXqxBeojMovf_8hx-QN_CXRTuhVIzJ1ur2LhwCxFq5T60fPQAE0ij7
  priority: 102
  providerName: ProQuest
Title Estimating and testing variance components in a multi-level GLM
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381191100872X
https://dx.doi.org/10.1016/j.neuroimage.2011.07.077
https://www.ncbi.nlm.nih.gov/pubmed/21835242
https://www.proquest.com/docview/1506853472
https://www.proquest.com/docview/898840042
https://www.proquest.com/docview/902377423
https://pubmed.ncbi.nlm.nih.gov/PMC3195889
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqIiEuiPIMlMoHrib78PohDlWpUsIjEQIq5WbZjl0WlW1F0x7725nZ9W4JCBQJaZVssh4lGXtmPsefvyXkhVZeCaEc8zxwxm1pmZXRs1g4HQsetW8nirO5mB7zd4tqsUUO-70wSKtMub_L6W22Tu-MkzfH53U9_gzIAMoNzDdQn0YWC9zBziWO8pfXNzQPnfNuO1xVMmyd2Dwdx6vVjKy_Q-QmMU8Jh_xbifoTgv7OpPylNB3dI3cTpqQH3dfeIVuhuU9uz9Kq-QOyP4E4RmTanFDbLOkKlTXg_ArmydjpFHnlZw1SKmjdUEtbliE7RT4RffNh9pAcH02-HE5ZunEC8wCIVszxyuZ5FM65pc185pTyZRTCaovzuxJyGg_WapEHAUWMFx4qFCAzt8yDdzErH5HtBj72CaGugsYRMEtUkrvMq7CUQhfB5zb4ktsRkb2vjE-q4nhzi1PT08e-mRsvG_SyySQcckTywfK8U9bYwEb33WH6naOQ6wyk_w1sXw22ayNsQ-vdvvdNivILg-qMAHe4LEaEDpchPnHRxTbh7PLCKK0U5sl_NNGAmySumI_I4244DQ5BAFsVaCzXBtrQANXB16809ddWJbxEGSGln_7Xz35G7sCrov3Pqdgl26sfl-E5oLCV22vDDB7lQu6RWwdv30_n8Px6Mv_46SeR9jiQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuiGcJFPABjiuyXu_aFkIVj5SUJhFCrdSbsb1eCCqbQlIQf4rfyMy-QkFUuVTaQ6T1JJvx-PM36_FngMdaeZVlykVeBBEJm9jIysJHBXe64KLQvkoUJ9NsdCjeHqVHG_Cr3QtDZZUtJlZAnc89vSN_Skp4OLUIyXdOvkZ0ahStrrZHaNRhsR9-_sCUbfF87zX27xPOd4cHr0ZRc6pA5JEtLCMnUhvHReacy-3AD5xSPimyzGpLyU-CA14Ea3UWhwwRXnCP8I20xeVx8K4YJPi9l2BTJJjK9GDz5XD67v1K5jcW9ea7NIlUHOumdqiuKKsUKmdfECca6VCJl_zfhPgv4f27bvOPiXD3OlxrGCx7UYfcDdgI5U24PGnW6G_BzhBRg3hw-ZHZMmdL0vHAz98xK6cQY1TFPi-pgIPNSmZZVdMYHVP1EnszntyGwwtx6B3olfizd4G5FBsXyJAKJYUbeBVymWkefGyDT4Ttg2x9ZXyjYU5HaRybtljts1l52ZCXzUDiJfsQd5YntY7HGja67Q7T7lNFZDU42axh-6yzbbhMzVHWtN5ue980mLIwqxHQB9bdRjSgJR5bhvnpwiitFKHyOU00sjRJ6_N92KrDqXMI0eWUk7E8E2hdA9IiP3unnH2qNMkTEi1S-t75D_4IrowOJmMz3pvu34er-I959TqLb0Nv-e00PECCt3QPm1HF4MNFD-TfyjFoKg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELVKkSouiG8CBXyAo9XY613bQqhCtKGlTcWBSrkZ22uXoLIpJAXx1_h1zOxXKIgql0p7iLSeZDOeGT-vn58JeW500EWhPQsySiZd5phTKbAkvElCJhPqieL4qNg7lu8m-WSN_Or2wiCtsquJdaEuZwHfkW-hEh4MLVKJrdTSIt7vjLbPvjI8QQpXWrvjNJoQOYg_f8D0bf5qfwf6-oUQo90Pb_ZYe8IAC4AcFszL3HGeCu996YZh6LUOWSoKZxxOhDJIfhmdMwWPBVR7KQKUcoAwvuQx-DTM4HuvkesqyznmmJqopeAvl802vDxjmnPTsogablmtVTn9AhWjFRFVcKn_DY3_Qt-_GZx_DImjW-Rmi2Xp6yb4bpO1WN0hG-N2tf4u2d6F-oGIuDqhrirpAhU94PN3mJ9jsFHks88qpHLQaUUdrdmN7BR5TPTt4fgeOb4Sd94n6xX87ENCfQ6NE2ClpJX0w6BjqQojYuAuhky6AVGdr2xo1czxUI1T29HWPtully162Q4VXGpAeG951ih6rGBjuu6w3Y5VqLEWhp0VbF_2ti2qadDKitabXe_btrrM7TIXBoT2t6Eu4GKPq-LsfG610Rrr8yVNDOA1hSv1A_KgCafeIQicc4HG6kKg9Q1QlfzinWr6qVYnz1C-SJtHlz_4M7IB6WsP948OHpMb8IdF_V5LbJL1xbfz-ASQ3sI_rVOKko9XncO_AUyYavo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+and+testing+variance+components+in+a+multi-level+GLM&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Lindquist%2C+Martin+A&rft.au=Spicer%2C+Julie&rft.au=Asllani%2C+Iris&rft.au=Wager%2C+Tor+D&rft.date=2012-01-02&rft.eissn=1095-9572&rft.volume=59&rft.issue=1&rft.spage=490&rft_id=info:doi/10.1016%2Fj.neuroimage.2011.07.077&rft_id=info%3Apmid%2F21835242&rft.externalDocID=21835242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon