A Quantitative Data-Driven Analysis Framework for Resting-State Functional Magnetic Resonance Imaging: A Study of the Impact of Adult Age

The objective of this study is to introduce a new quantitative data-driven analysis (QDA) framework for the analysis of resting-state fMRI (R-fMRI) and use it to investigate the effect of adult age on resting-state functional connectivity (RFC). Whole-brain R-fMRI measurements were conducted on a 3T...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 15; p. 768418
Main Authors Li, Xia, Fischer, Håkan, Manzouri, Amirhossein, Månsson, Kristoffer N. T., Li, Tie-Qiang
Format Journal Article
LanguageEnglish
Published Lausanne Frontiers Research Foundation 20.10.2021
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The objective of this study is to introduce a new quantitative data-driven analysis (QDA) framework for the analysis of resting-state fMRI (R-fMRI) and use it to investigate the effect of adult age on resting-state functional connectivity (RFC). Whole-brain R-fMRI measurements were conducted on a 3T clinical MRI scanner in 227 healthy adult volunteers ( N = 227, aged 18–76 years old, male/female = 99/128). With the proposed QDA framework we derived two types of voxel-wise RFC metrics: the connectivity strength index and connectivity density index utilizing the convolutions of the cross-correlation histogram with different kernels. Furthermore, we assessed the negative and positive portions of these metrics separately. With the QDA framework we found age-related declines of RFC metrics in the superior and middle frontal gyri, posterior cingulate cortex (PCC), right insula and inferior parietal lobule of the default mode network (DMN), which resembles previously reported results using other types of RFC data processing methods. Importantly, our new findings complement previously undocumented results in the following aspects: (1) the PCC and right insula are anti-correlated and tend to manifest simultaneously declines of both the negative and positive connectivity strength with subjects’ age; (2) separate assessment of the negative and positive RFC metrics provides enhanced sensitivity to the aging effect; and (3) the sensorimotor network depicts enhanced negative connectivity strength with the adult age. The proposed QDA framework can produce threshold-free and voxel-wise RFC metrics from R-fMRI data. The detected adult age effect is largely consistent with previously reported studies using different R-fMRI analysis approaches. Moreover, the separate assessment of the negative and positive contributions to the RFC metrics can enhance the RFC sensitivity and clarify some of the mixed results in the literature regarding to the DMN and sensorimotor network involvement in adult aging.
AbstractList The objective of this study is to introduce a new quantitative data-driven analysis (QDA) framework for the analysis of resting-state fMRI (R-fMRI) and use it to investigate the effect of adult age on resting-state functional connectivity (RFC). Whole-brain R-fMRI measurements were conducted on a 3T clinical MRI scanner in 227 healthy adult volunteers ( N = 227, aged 18–76 years old, male/female = 99/128). With the proposed QDA framework we derived two types of voxel-wise RFC metrics: the connectivity strength index and connectivity density index utilizing the convolutions of the cross-correlation histogram with different kernels. Furthermore, we assessed the negative and positive portions of these metrics separately. With the QDA framework we found age-related declines of RFC metrics in the superior and middle frontal gyri, posterior cingulate cortex (PCC), right insula and inferior parietal lobule of the default mode network (DMN), which resembles previously reported results using other types of RFC data processing methods. Importantly, our new findings complement previously undocumented results in the following aspects: (1) the PCC and right insula are anti-correlated and tend to manifest simultaneously declines of both the negative and positive connectivity strength with subjects’ age; (2) separate assessment of the negative and positive RFC metrics provides enhanced sensitivity to the aging effect; and (3) the sensorimotor network depicts enhanced negative connectivity strength with the adult age. The proposed QDA framework can produce threshold-free and voxel-wise RFC metrics from R-fMRI data. The detected adult age effect is largely consistent with previously reported studies using different R-fMRI analysis approaches. Moreover, the separate assessment of the negative and positive contributions to the RFC metrics can enhance the RFC sensitivity and clarify some of the mixed results in the literature regarding to the DMN and sensorimotor network involvement in adult aging.
The objective of this study is to introduce a new quantitative data-driven analysis (QDA) framework for the analysis of resting-state fMRI (R-fMRI) and use it to investigate the effect of adult age on resting-state functional connectivity (RFC). Whole-brain R-fMRI measurements were conducted on a 3T clinical MRI scanner in 227 healthy adult volunteers (N = 227, aged 18–76 years old, male/female = 99/128). With the proposed QDA framework we derived two types of voxel-wise RFC metrics: the connectivity strength index and connectivity density index utilizing the convolutions of the cross-correlation histogram with different kernels. Furthermore, we assessed the negative and positive portions of these metrics separately. With the QDA framework we found age-related declines of RFC metrics in the superior and middle frontal gyri, posterior cingulate cortex (PCC), right insula and inferior parietal lobule of the default mode network (DMN), which resembles previously reported results using other types of RFC data processing methods. Importantly, our new findings complement previously undocumented results in the following aspects: (1) the PCC and right insula are anti-correlated and tend to manifest simultaneously declines of both the negative and positive connectivity strength with subjects’ age; (2) separate assessment of the negative and positive RFC metrics provides enhanced sensitivity to the aging effect; and (3) the sensorimotor network depicts enhanced negative connectivity strength with the adult age. The proposed QDA framework can produce threshold-free and voxel-wise RFC metrics from R-fMRI data. The detected adult age effect is largely consistent with previously reported studies using different R-fMRI analysis approaches. Moreover, the separate assessment of the negative and positive contributions to the RFC metrics can enhance the RFC sensitivity and clarify some of the mixed results in the literature regarding to the DMN and sensorimotor network involvement in adult aging.
The objective of this study is to introduce a new quantitative data-driven analysis (QDA) framework for the analysis of resting-state fMRI (R-fMRI) and use it to investigate the effect of adult age on resting-state functional connectivity (RFC). Whole-brain R-fMRI measurements were conducted on a 3T clinical MRI scanner in 227 healthy adult volunteers (N=227, aged 18-74 years old, male/female=99/128). With the proposed QDA framework we derived two types of voxel-wise RFC metrics: the connectivity strength index (CSI) and connectivity density index (CDI) utilizing the convolutions of the cross-correlation (CC) histogram with different kernels. Furthermore, we assessed the negative and positive portions of these metrics separately. With the QDA framework we found age-related declines of RFC metrics in the superior and middle frontal gyrus (MFG), posterior cingulate cortex (PCC), right insula and inferior parietal lobule (IPL) of the default mode network (DMN), which resembles previously reported results using other types of RFC data processing methods. Importantly, our new findings complement previously undocumented results in the following aspects: 1) the PCC and right insula are anti-correlated and tend to manifest simultaneously declines of both the negative and positive connectivity strength with subjects’ age; 2) separate assessment of the negative and positive RFC metrics provides enhanced sensitivity to the aging effect; 3) the sensorimotor network depicts enhanced negative connectivity strength with the adult age. The proposed QDA framework can produce threshold-free, voxel-wise analysis of R-fMRI data the RFC metrics. The detected adult age effect is largely consistent with previously reported studies using different R-fMRI analysis approaches. Moreover, the separate assessment of the negative and positive contributions to the RFC metrics can enhance the RFC sensitivity and clarify some of the mixed results in the literature regarding to the DMN and sensorimotor network involvement in adult aging.
The objective of this study is to introduce a new quantitative data-driven analysis (QDA) framework for the analysis of resting-state fMRI (R-fMRI) and use it to investigate the effect of adult age on resting-state functional connectivity (RFC). Whole-brain R-fMRI measurements were conducted on a 3T clinical MRI scanner in 227 healthy adult volunteers (N = 227, aged 18-76 years old, male/female = 99/128). With the proposed QDA framework we derived two types of voxel-wise RFC metrics: the connectivity strength index and connectivity density index utilizing the convolutions of the cross-correlation histogram with different kernels. Furthermore, we assessed the negative and positive portions of these metrics separately. With the QDA framework we found age-related declines of RFC metrics in the superior and middle frontal gyri, posterior cingulate cortex (PCC), right insula and inferior parietal lobule of the default mode network (DMN), which resembles previously reported results using other types of RFC data processing methods. Importantly, our new findings complement previously undocumented results in the following aspects: (1) the PCC and right insula are anti-correlated and tend to manifest simultaneously declines of both the negative and positive connectivity strength with subjects' age; (2) separate assessment of the negative and positive RFC metrics provides enhanced sensitivity to the aging effect; and (3) the sensorimotor network depicts enhanced negative connectivity strength with the adult age. The proposed QDA framework can produce threshold-free and voxel-wise RFC metrics from R-fMRI data. The detected adult age effect is largely consistent with previously reported studies using different R-fMRI analysis approaches. Moreover, the separate assessment of the negative and positive contributions to the RFC metrics can enhance the RFC sensitivity and clarify some of the mixed results in the literature regarding to the DMN and sensorimotor network involvement in adult aging.The objective of this study is to introduce a new quantitative data-driven analysis (QDA) framework for the analysis of resting-state fMRI (R-fMRI) and use it to investigate the effect of adult age on resting-state functional connectivity (RFC). Whole-brain R-fMRI measurements were conducted on a 3T clinical MRI scanner in 227 healthy adult volunteers (N = 227, aged 18-76 years old, male/female = 99/128). With the proposed QDA framework we derived two types of voxel-wise RFC metrics: the connectivity strength index and connectivity density index utilizing the convolutions of the cross-correlation histogram with different kernels. Furthermore, we assessed the negative and positive portions of these metrics separately. With the QDA framework we found age-related declines of RFC metrics in the superior and middle frontal gyri, posterior cingulate cortex (PCC), right insula and inferior parietal lobule of the default mode network (DMN), which resembles previously reported results using other types of RFC data processing methods. Importantly, our new findings complement previously undocumented results in the following aspects: (1) the PCC and right insula are anti-correlated and tend to manifest simultaneously declines of both the negative and positive connectivity strength with subjects' age; (2) separate assessment of the negative and positive RFC metrics provides enhanced sensitivity to the aging effect; and (3) the sensorimotor network depicts enhanced negative connectivity strength with the adult age. The proposed QDA framework can produce threshold-free and voxel-wise RFC metrics from R-fMRI data. The detected adult age effect is largely consistent with previously reported studies using different R-fMRI analysis approaches. Moreover, the separate assessment of the negative and positive contributions to the RFC metrics can enhance the RFC sensitivity and clarify some of the mixed results in the literature regarding to the DMN and sensorimotor network involvement in adult aging.
Author Li, Tie-Qiang
Li, Xia
Månsson, Kristoffer N. T.
Fischer, Håkan
Manzouri, Amirhossein
AuthorAffiliation 1 Institute of Informatics Engineering, China Jiliang University , Hangzhou , China
2 Department of Psychology, Stockholm University , Stockholm , Sweden
3 Stockholm University Brain Imaging Centre , Stockholm , Sweden
4 Centre of Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden
6 Department of Medical Radiation and Nuclear Medicine, Karolinska University Hospital , Solna , Sweden
5 Department of Clinical Science, Intervention, and Technology, Karolinska Institute , Solna , Sweden
AuthorAffiliation_xml – name: 3 Stockholm University Brain Imaging Centre , Stockholm , Sweden
– name: 4 Centre of Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden
– name: 6 Department of Medical Radiation and Nuclear Medicine, Karolinska University Hospital , Solna , Sweden
– name: 1 Institute of Informatics Engineering, China Jiliang University , Hangzhou , China
– name: 2 Department of Psychology, Stockholm University , Stockholm , Sweden
– name: 5 Department of Clinical Science, Intervention, and Technology, Karolinska Institute , Solna , Sweden
Author_xml – sequence: 1
  givenname: Xia
  surname: Li
  fullname: Li, Xia
– sequence: 2
  givenname: Håkan
  surname: Fischer
  fullname: Fischer, Håkan
– sequence: 3
  givenname: Amirhossein
  surname: Manzouri
  fullname: Manzouri, Amirhossein
– sequence: 4
  givenname: Kristoffer N. T.
  surname: Månsson
  fullname: Månsson, Kristoffer N. T.
– sequence: 5
  givenname: Tie-Qiang
  surname: Li
  fullname: Li, Tie-Qiang
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-198144$$DView record from Swedish Publication Index
BookMark eNp9kt-O1CAUxhuzxv2jD-AdiTde2BEoUOqFSbPj6CRrjK4a7wiltMvYgRHobuYRfGvpdGOcvfAKOPy-L-fkfOfZiXVWZ9lzBBdFwavXnTU2LDDEaFEyThB_lJ0hxnBOaPHj5J_7aXYewgZChjnBT7LTgpSEMFycZb9r8HmUNpooo7nVYCmjzJc-XS2orRz2wQSw8nKr75z_CTrnwRcdorF9fp0kGqxGq6JxCQUfZW91NGoiUsEqDdZb2Sf2DajBdRzbPXAdiDdTfSdVnF51Ow4R1L1-mj3u5BD0s_vzIvu2evf18kN-9en9-rK-yhUlNOYSqaIhimmIcKMVwbjsipa2VVtC0jZaUow62hVlmrXSTcUUqbjsGCwlpZxXxUW2nn1bJzdi581W-r1w0ohDwfleSJ-mGLRouMQdL8qy0ZpQrBvIIFakYU2pCOzK5PVq9gp3ejc2R25L870-uIVRoIojQhL-dsYTu9Wt0jZ6ORypjn-suRG9uxWcMoo5SwYv7w28-zWmPYitCUoPg7TajUFgWlEEIadTay8eoBs3-rSmieIF43w2RDOlvAvB6-5vMwiKKWPikDExZUzMGUua8oFGHdLjpp7N8B_lH-b92gE
CitedBy_id crossref_primary_10_2340_jrmcc_v7_12436
crossref_primary_10_3389_fnagi_2022_1051056
Cites_doi 10.1016/j.dib.2021.107333
10.1177/1073858413494269
10.1016/j.neuroimage.2009.05.005
10.1016/j.neuroimage.2018.09.021
10.1016/j.neuroimage.2014.03.028
10.1016/j.neuroimage.2015.02.064
10.1371/journal.pone.0076315
10.1016/j.neuroimage.2016.03.029
10.1073/pnas.1005135107
10.1038/nature13163
10.1002/mrm.22818
10.1523/JNEUROSCI.3067-17.2018
10.1073/pnas.1804641115
10.1002/hbm.22720
10.1038/jcbfm.2010.164
10.1007/s11065-014-9249-6
10.1523/JNEUROSCI.2111-11.2011
10.3174/ajnr.A2733
10.1007/s11682-017-9790-z
10.1016/j.braindev.2006.07.002
10.1016/j.arr.2016.12.001
10.1016/j.neuroimage.2007.01.054
10.3389/fnagi.2020.00071
10.1016/j.mri.2019.07.017
10.1097/WNR.0b013e328300ebbf
10.1016/S1053-8119(03)00306-9
10.1016/j.neuroimage.2016.12.027
10.1038/s41598-018-21038-0
10.1016/j.neurobiolaging.2016.05.020
10.1152/jn.90777.2008
10.1016/j.anorl.2011.03.002
10.1016/j.neuroimage.2010.03.062
10.1016/j.neulet.2007.06.011
10.1002/hbm.24905
10.1016/j.neuroimage.2011.05.024
10.3233/BME-151417
10.1016/j.neuroimage.2014.03.047
10.1016/j.neuroimage.2003.12.030
10.1016/j.neuroimage.2015.11.028
10.1089/brain.2016.0429
10.1038/s41598-020-66100-y
10.1016/j.neuroimage.2009.12.008
10.1016/j.neuroimage.2020.117096
10.1002/acn3.384
10.1016/j.neuroimage.2014.09.042
10.1196/annals.1440.011
10.1089/brain.2015.0349
10.1038/s41598-017-06854-0
10.1016/j.neuroimage.2016.03.047
10.1073/pnas.1410233111
10.1073/pnas.0601417103
10.1038/502S84a
10.1016/j.neuroimage.2020.116707
10.3389/fnagi.2013.00073
10.1016/j.pneurobio.2014.02.004
10.1016/j.neuroimage.2015.04.013
10.1093/cercor/bht040
10.3389/fnhum.2015.00259
10.1016/j.jneumeth.2008.04.012
10.1038/s41598-017-08565-y
10.1093/cercor/bhm207
10.1148/radiol.2016151771
10.1002/hbm.24934
10.1016/j.neubiorev.2013.01.017
10.1002/hbm.23653
10.1073/pnas.0905267106
10.1073/pnas.98.2.676
10.1073/pnas.0911855107
10.1016/j.neuroimage.2010.12.047
10.1089/brain.2014.0323
10.1002/hbm.20968
10.1016/j.neuroimage.2015.07.050
10.1103/PhysRevE.82.046225
10.3389/fnins.2017.00546
10.1016/j.neuroimage.2017.12.073
10.1073/pnas.1121049109
10.1007/s00429-010-0262-0
10.1162/089892903770007416
10.1016/j.neuroimage.2014.12.016
10.3389/fnsys.2011.00002
10.1007/s11682-016-9520-y
10.1016/j.jalz.2014.02.007
10.1007/s12035-016-0050-9
10.1523/JNEUROSCI.2612-10.2010
10.1016/j.neuroimage.2009.12.051
10.1523/JNEUROSCI.5062-08.2009
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Li, Fischer, Manzouri, Månsson and Li.
Copyright © 2021 Li, Fischer, Manzouri, Månsson and Li. 2021 Li, Fischer, Manzouri, Månsson and Li
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Li, Fischer, Manzouri, Månsson and Li.
– notice: Copyright © 2021 Li, Fischer, Manzouri, Månsson and Li. 2021 Li, Fischer, Manzouri, Månsson and Li
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ABAVF
ADTPV
AOWAS
D8T
DG7
ZZAVC
DOA
DOI 10.3389/fnins.2021.768418
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Stockholms universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Stockholms universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Psychology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_b8a2f8377bee452eb0602c4b6b7c40f7
oai_DiVA_org_su_198144
PMC8565286
10_3389_fnins_2021_768418
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ABAVF
ADTPV
AOWAS
C1A
D8T
DG7
ZZAVC
PUEGO
ID FETCH-LOGICAL-c545t-a1c3b4c6e012bec4227f3d5d9d704dbea521f5f376289eb96c498af607a558893
IEDL.DBID BENPR
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:25:23 EDT 2025
Thu Aug 21 06:20:36 EDT 2025
Thu Aug 21 18:42:35 EDT 2025
Fri Jul 11 04:54:56 EDT 2025
Fri Jul 25 11:56:24 EDT 2025
Thu Apr 24 22:59:12 EDT 2025
Tue Jul 01 01:39:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-a1c3b4c6e012bec4227f3d5d9d704dbea521f5f376289eb96c498af607a558893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Xiaopeng Song, Harvard Medical School, United States
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Reviewed by: Yameng Gu, The Pennsylvania State University (PSU), United States; Faruque Reza, Universiti Sains Malaysia Health Campus, Malaysia
OpenAccessLink https://www.proquest.com/docview/2583688286?pq-origsite=%requestingapplication%
PMID 34744623
PQID 2583688286
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_b8a2f8377bee452eb0602c4b6b7c40f7
swepub_primary_oai_DiVA_org_su_198144
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8565286
proquest_miscellaneous_2595100857
proquest_journals_2583688286
crossref_primary_10_3389_fnins_2021_768418
crossref_citationtrail_10_3389_fnins_2021_768418
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-20
PublicationDateYYYYMMDD 2021-10-20
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-20
  day: 20
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationYear 2021
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Gruszecki (B26) 2018; 8
Salami (B59) 2014; 111
Weissman-Fogel (B74) 2010; 31
Smith (B62) 2009; 106
Zou (B85) 2008; 172
Vossel (B70) 2014; 20
Williams (B75) 2013; 502
Ciuciu (B11) 2014; 95
Wu (B77) 2019; 184
Gore (B25) 2019; 63
Pasquini (B49) 2015; 11
Campbell (B9) 2013; 5
Li (B36) 2020; 12
Fox (B20) 2009; 101
Viol (B69) 2017; 7
Damoiseaux (B15) 2006; 103
Tomasi (B67) 2011; 57
Joel (B32) 2011; 66
Persson (B50) 2014; 103
Pruim (B53) 2015; 112
Bluhm (B5) 2008; 19
Persson (B51) 2016; 126
Luo (B40) 2020; 41
Dennis (B17) 2014; 24
Buckner (B8) 2009; 29
Pan (B47) 2017; 35
Ng (B46) 2016; 133
Rieckmann (B56) 2018; 115
Lawrence (B34) 2003; 15
Raichle (B54) 2001; 98
Tyszka (B68) 2014; 24
McColgan (B42) 2017; 4
Wu (B76) 2007; 422
Song (B63) 2016; 6
Staffaroni (B65) 2018; 38
Parkes (B48) 2018; 171
Fjell (B19) 2014; 117
Golestani (B22) 2017; 11
Alarcon (B1) 2015; 115
Zhang (B83) 2016; 54
Allen (B2) 2011; 5
Damoiseaux (B13) 2008; 18
Weissenbacher (B73) 2009; 47
Zhang (B82) 2016; 6
Wang (B72) 2015; 9
de Araujo (B16) 2003; 20
He (B28) 2011; 31
Ferreira (B18) 2013; 37
Muschelli (B45) 2014; 96
Meier (B43) 2017; 11
Wang (B71) 2013; 8
Geerligs (B21) 2017; 38
Reynolds (B55) 2017; 12
Sakka (B58) 2011; 128
Zhao (B84) 2010
Spreng (B64) 2016; 45
Gonzalez-Castillo (B23) 2012; 109
Bright (B6) 2017; 154
Sun (B66) 2016; 281
Yang (B78) 2007; 36
Biswal (B4) 2010; 107
Gopinath (B24) 2015; 5
Zang (B81) 2004; 22
Damoiseaux (B14) 2016; 133
Costumero (B12) 2020; 10
Koch (B33) 2010; 51
Li (B37) 2021; 38
Liu (B38) 2015
Lu (B39) 2014; 507
Schwarz (B61) 2011; 55
Hyder (B30) 2010; 107
Buckner (B7) 2008; 1124
Zang (B80) 2007; 29
Persson (B52) 2015; 122
Zuo (B86) 2010; 30
Bianciardi (B3) 2011; 31
Ystad (B79) 2010; 52
Hussein (B29) 2020; 41
Menon (B44) 2010; 214
Chen (B10) 2020; 213
Jia (B31) 2017; 7
Manza (B41) 2015; 107
Hayasaka (B27) 2010; 50
Li (B35) 2020; 220
Scheinost (B60) 2015; 36
Rosazza (B57) 2012; 33
References_xml – volume: 38
  year: 2021
  ident: B37
  article-title: Dataset of whole-brain resting-state fMRI of 227 young and elderly adults acquired at 3T.
  publication-title: Data Brief
  doi: 10.1016/j.dib.2021.107333
– volume: 20
  start-page: 150
  year: 2014
  ident: B70
  article-title: Dorsal and ventral attention systems: distinct neural circuits but collaborative roles.
  publication-title: Neuroscientist
  doi: 10.1177/1073858413494269
– volume: 47
  start-page: 1408
  year: 2009
  ident: B73
  article-title: Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.005
– volume: 184
  start-page: 45
  year: 2019
  ident: B77
  article-title: Resting-state white matter-cortical connectivity in non-human primate brain.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.09.021
– volume: 96
  start-page: 22
  year: 2014
  ident: B45
  article-title: Reduction of motion-related artifacts in resting state fMRI using aCompCor.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.028
– volume: 112
  start-page: 267
  year: 2015
  ident: B53
  article-title: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.064
– volume: 8
  year: 2013
  ident: B71
  article-title: Analysis of whole-brain resting-state FMRI data using hierarchical clustering approach.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0076315
– volume: 133
  start-page: 321
  year: 2016
  ident: B46
  article-title: Reduced functional segregation between the default mode network and the executive control network in healthy older adults: a longitudinal study.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.03.029
– volume: 107
  start-page: 10773
  year: 2010
  ident: B30
  article-title: Neuronal correlate of BOLD signal fluctuations at rest: err on the side of the baseline.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1005135107
– volume: 507
  start-page: 448
  year: 2014
  ident: B39
  article-title: REST and stress resistance in ageing and Alzheimer’s disease.
  publication-title: Nature
  doi: 10.1038/nature13163
– volume: 66
  start-page: 644
  year: 2011
  ident: B32
  article-title: On the relationship between seed-based and ICA-based measures of functional connectivity.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22818
– volume: 38
  start-page: 2809
  year: 2018
  ident: B65
  article-title: The longitudinal trajectory of default mode network connectivity in healthy older adults varies as a function of age and is associated with changes in episodic memory and processing speed.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3067-17.2018
– volume: 115
  start-page: 10160
  year: 2018
  ident: B56
  article-title: Dedifferentiation of caudate functional connectivity and striatal dopamine transporter density predict memory change in normal aging.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1804641115
– volume: 36
  start-page: 1524
  year: 2015
  ident: B60
  article-title: Sex differences in normal age trajectories of functional brain networks.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22720
– volume: 31
  start-page: 401
  year: 2011
  ident: B3
  article-title: Negative BOLD-fMRI signals in large cerebral veins.
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2010.164
– volume: 24
  start-page: 49
  year: 2014
  ident: B17
  article-title: Functional brain connectivity using fMRI in aging and Alzheimer’s disease.
  publication-title: Neuropsychol Rev.
  doi: 10.1007/s11065-014-9249-6
– volume: 31
  start-page: 13786
  year: 2011
  ident: B28
  article-title: Scale-free properties of the functional magnetic resonance imaging signal during rest and task.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2111-11.2011
– volume: 33
  start-page: 180
  year: 2012
  ident: B57
  article-title: Functional connectivity during resting-state functional MR imaging: study of the correspondence between independent component analysis and region-of-interest-based methods.
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A2733
– volume: 12
  start-page: 1332
  year: 2017
  ident: B55
  article-title: Investigating the effects of subconcussion on functional connectivity using mass-univariate and multivariate approaches.
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-017-9790-z
– volume: 29
  start-page: 83
  year: 2007
  ident: B80
  article-title: Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI.
  publication-title: Brain Dev.
  doi: 10.1016/j.braindev.2006.07.002
– volume: 35
  start-page: 12
  year: 2017
  ident: B47
  article-title: Aberrant spontaneous low-frequency brain activity in amnestic mild cognitive impairment: a meta-analysis of resting-state fMRI studies.
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2016.12.001
– volume: 36
  start-page: 144
  year: 2007
  ident: B78
  article-title: Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.01.054
– volume: 12
  year: 2020
  ident: B36
  article-title: Longitudinal changes in whole-brain functional connectivity strength patterns and the relationship with the global cognitive decline in older adults.
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2020.00071
– volume: 63
  start-page: 1
  year: 2019
  ident: B25
  article-title: Functional MRI and resting state connectivity in white matter – a mini-review.
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2019.07.017
– volume: 19
  start-page: 887
  year: 2008
  ident: B5
  article-title: Default mode network connectivity: effects of age, sex, and analytic approach.
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e328300ebbf
– volume: 20
  start-page: 311
  year: 2003
  ident: B16
  article-title: Shannon entropy applied to the analysis of event-related fMRI time series.
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00306-9
– volume: 154
  start-page: 159
  year: 2017
  ident: B6
  article-title: Potential pitfalls when denoising resting state fMRI data using nuisance regression.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.12.027
– volume: 8
  year: 2018
  ident: B26
  article-title: Human subarachnoid space width oscillations in the resting state.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21038-0
– volume: 45
  start-page: 149
  year: 2016
  ident: B64
  article-title: Attenuated anticorrelation between the default and dorsal attention networks with aging: evidence from task and rest.
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2016.05.020
– volume: 101
  start-page: 3270
  year: 2009
  ident: B20
  article-title: The global signal and observed anticorrelated resting state brain networks.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90777.2008
– volume: 128
  start-page: 309
  year: 2011
  ident: B58
  article-title: Anatomy and physiology of cerebrospinal fluid.
  publication-title: Eur. Ann. Otorhinolaryngol. Head Neck Dis.
  doi: 10.1016/j.anorl.2011.03.002
– volume: 52
  start-page: 379
  year: 2010
  ident: B79
  article-title: Subcortical functional connectivity and verbal episodic memory in healthy elderly–a resting state fMRI study.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.062
– volume: 422
  start-page: 164
  year: 2007
  ident: B76
  article-title: Aging influence on functional connectivity of the motor network in the resting state.
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2007.06.011
– volume: 41
  start-page: 1725
  year: 2020
  ident: B40
  article-title: Age-related structural and functional variations in 5,967 individuals across the adult lifespan.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24905
– volume: 57
  start-page: 908
  year: 2011
  ident: B67
  article-title: Functional connectivity hubs in the human brain.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.05.024
– start-page: S1201
  year: 2015
  ident: B38
  article-title: Anticorrelated networks in resting-state fMRI-BOLD data.
  publication-title: Biomed. Mater. Eng.
  doi: 10.3233/BME-151417
– volume: 95
  start-page: 248
  year: 2014
  ident: B11
  article-title: Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.047
– volume: 22
  start-page: 394
  year: 2004
  ident: B81
  article-title: Regional homogeneity approach to fMRI data analysis.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.12.030
– volume: 126
  start-page: 15
  year: 2016
  ident: B51
  article-title: Regional brain shrinkage and change in cognitive performance over two years: the bidirectional influences of the brain and cognitive reserve factors.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.11.028
– volume: 6
  start-page: 700
  year: 2016
  ident: B82
  article-title: Sex and age effects of functional connectivity in early adulthood.
  publication-title: Brain Connect.
  doi: 10.1089/brain.2016.0429
– volume: 10
  year: 2020
  ident: B12
  article-title: Opening or closing eyes at rest modulates the functional connectivity of V1 with default and salience networks.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-66100-y
– volume: 51
  start-page: 280
  year: 2010
  ident: B33
  article-title: Effects of aging on default mode network activity in resting state fMRI: does the method of analysis matter?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.008
– volume: 220
  year: 2020
  ident: B35
  article-title: Functional engagement of white matter in resting-state brain networks.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117096
– volume: 4
  start-page: 106
  year: 2017
  ident: B42
  article-title: White matter predicts functional connectivity in premanifest Huntington’s disease.
  publication-title: Ann. Clin. Transl. Neurol.
  doi: 10.1002/acn3.384
– volume: 103
  start-page: 334
  year: 2014
  ident: B50
  article-title: Regional brain shrinkage over two years: individual differences and effects of pro-inflammatory genetic polymorphisms.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.09.042
– volume: 1124
  start-page: 1
  year: 2008
  ident: B7
  article-title: The brain’s default network: anatomy, function, and relevance to disease.
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1440.011
– volume: 6
  start-page: 136
  year: 2016
  ident: B63
  article-title: Data-driven and predefined ROI-based quantification of long-term resting-state fMRI reproducibility.
  publication-title: Brain Connect.
  doi: 10.1089/brain.2015.0349
– volume: 7
  year: 2017
  ident: B69
  article-title: Shannon entropy of brain functional complex networks under the influence of the psychedelic Ayahuasca.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06854-0
– volume: 133
  start-page: 468
  year: 2016
  ident: B14
  article-title: Differential effect of age on posterior and anterior hippocampal functional connectivity.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.03.047
– volume: 111
  start-page: 17654
  year: 2014
  ident: B59
  article-title: Elevated hippocampal resting-state connectivity underlies deficient neurocognitive function in aging.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1410233111
– volume: 103
  year: 2006
  ident: B15
  article-title: Consistent resting-state networks across healthy subjects.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0601417103
– volume: 502
  start-page: S84
  year: 2013
  ident: B75
  article-title: Alzheimer’s disease: mapping the brain’s decline.
  publication-title: Nature
  doi: 10.1038/502S84a
– volume: 213
  year: 2020
  ident: B10
  article-title: Resting-state “physiological networks”.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116707
– volume: 5
  year: 2013
  ident: B9
  article-title: Age differences in the intrinsic functional connectivity of default network subsystems.
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2013.00073
– volume: 117
  start-page: 20
  year: 2014
  ident: B19
  article-title: What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus.
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2014.02.004
– volume: 115
  start-page: 235
  year: 2015
  ident: B1
  article-title: Developmental sex differences in resting state functional connectivity of amygdala sub-regions.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.04.013
– volume: 24
  start-page: 1894
  year: 2014
  ident: B68
  article-title: Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bht040
– volume: 9
  year: 2015
  ident: B72
  article-title: Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM.
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00259
– volume: 172
  start-page: 137
  year: 2008
  ident: B85
  article-title: An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF.
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2008.04.012
– volume: 7
  year: 2017
  ident: B31
  article-title: Sample entropy reveals an age-related reduction in the complexity of dynamic brain.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08565-y
– volume: 18
  start-page: 1856
  year: 2008
  ident: B13
  article-title: Reduced resting-state brain activity in the “default network” in normal aging.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhm207
– volume: 281
  start-page: 185
  year: 2016
  ident: B66
  article-title: Subjective cognitive decline: mapping functional and structural brain changes-a combined resting-state functional and structural MR imaging study.
  publication-title: Radiology
  doi: 10.1148/radiol.2016151771
– volume: 41
  start-page: 2121
  year: 2020
  ident: B29
  article-title: The association between resting-state functional magnetic resonance imaging and aortic pulse-wave velocity in healthy adults.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24934
– volume: 37
  start-page: 384
  year: 2013
  ident: B18
  article-title: Resting-state functional connectivity in normal brain aging.
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2013.01.017
– volume: 38
  start-page: 4125
  year: 2017
  ident: B21
  article-title: Challenges in measuring individual differences in functional connectivity using fMRI: the case of healthy aging.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23653
– volume: 106
  start-page: 13040
  year: 2009
  ident: B62
  article-title: Correspondence of the brain’s functional architecture during activation and rest.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0905267106
– volume: 98
  start-page: 676
  year: 2001
  ident: B54
  article-title: A default mode of brain function.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.98.2.676
– volume: 107
  start-page: 4734
  year: 2010
  ident: B4
  article-title: Toward discovery science of human brain function.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0911855107
– volume: 55
  start-page: 1132
  year: 2011
  ident: B61
  article-title: Negative edges and soft thresholding in complex network analysis of resting state functional connectivity data.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.12.047
– volume: 5
  start-page: 267
  year: 2015
  ident: B24
  article-title: Hubs of anticorrelation in high-resolution resting-state functional connectivity network architecture.
  publication-title: Brain Connect.
  doi: 10.1089/brain.2014.0323
– volume: 31
  start-page: 1713
  year: 2010
  ident: B74
  article-title: Cognitive and default-mode resting state networks: do male and female brains “rest” differently?
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20968
– volume: 122
  start-page: 385
  year: 2015
  ident: B52
  article-title: Age and sex related differences in subcortical brain iron concentrations among healthy adults.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.050
– year: 2010
  ident: B84
  article-title: Complexity versus modularity and heterogeneity in oscillatory networks: combining segregation and integration in neural systems.
  publication-title: Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys.
  doi: 10.1103/PhysRevE.82.046225
– volume: 11
  year: 2017
  ident: B22
  article-title: The effect of low-frequency physiological correction on the reproducibility and specificity of resting-state fMRI metrics: functional connectivity, ALFF, and ReHo.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00546
– volume: 171
  start-page: 415
  year: 2018
  ident: B48
  article-title: An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.12.073
– volume: 109
  start-page: 5487
  year: 2012
  ident: B23
  article-title: Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1121049109
– volume: 214
  start-page: 655
  year: 2010
  ident: B44
  article-title: Saliency, switching, attention and control: a network model of insula function.
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-010-0262-0
– volume: 15
  start-page: 1028
  year: 2003
  ident: B34
  article-title: Multiple neuronal networks mediate sustained attention.
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/089892903770007416
– volume: 107
  start-page: 311
  year: 2015
  ident: B41
  article-title: The effects of age on resting state functional connectivity of the basal ganglia from young to middle adulthood.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.12.016
– volume: 5
  year: 2011
  ident: B2
  article-title: A baseline for the multivariate comparison of resting-state networks.
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2011.00002
– volume: 11
  start-page: 129
  year: 2017
  ident: B43
  article-title: Longitudinal assessment of local and global functional connectivity following sports-related concussion.
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-016-9520-y
– volume: 11
  start-page: 475
  year: 2015
  ident: B49
  article-title: Link between hippocampus’ raised local and eased global intrinsic connectivity in AD.
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2014.02.007
– volume: 54
  start-page: 5225
  year: 2016
  ident: B83
  article-title: Decreased coupling between functional connectivity density and amplitude of low frequency fluctuation in non-neuropsychiatric systemic lupulupus erythematosus: a resting-stage functional mri study.
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-016-0050-9
– volume: 30
  start-page: 15034
  year: 2010
  ident: B86
  article-title: Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2612-10.2010
– volume: 50
  start-page: 499
  year: 2010
  ident: B27
  article-title: Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.051
– volume: 29
  start-page: 1860
  year: 2009
  ident: B8
  article-title: Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5062-08.2009
SSID ssj0062842
Score 2.2870924
Snippet The objective of this study is to introduce a new quantitative data-driven analysis (QDA) framework for the analysis of resting-state fMRI (R-fMRI) and use it...
SourceID doaj
swepub
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 768418
SubjectTerms adult age
Age
Aging
Brain
Brain mapping
Computer simulation
connectivity density index (CDI)
connectivity strength index (CSI)
Cortex (cingulate)
Frontal gyrus
Functional magnetic resonance imaging
Magnetic resonance imaging
Neural networks
Neuroimaging
Neuroscience
Physiology
Psychology
psykologi
quantitative data-driven analysis (QDA)
Regions
resting-state functional connectivity (RFC)
resting-state functional magnetic resonance imaging (R-fMRI)
Sensorimotor system
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQT1wQUBCBglwJOCCZZh3bSXoLXVYFqUgginqzbMdeVqJeVHYP_QT-ujN2smo4wIXjJk428Yxn3sQzbwh56UWoAQhYJqo6MOGtZa1VnBlnZABjaGRq2nf2SZ2ei48X8uJWqy_MCcv0wHnijmxjeIAoqrbeC8m9LVXJnbDK1k6UIdWRg88bg6lsgxUYXZ73MCEEa49CXEXk5uazt7jxhB0-bnmhRNY_QZh_5kdOWEST51ncJ_cGyEi7_KgPyB0fH5L9LkK4fHlNX9OUxJm-ju-T3x39vDUxVY6BHaNzszFsfoUmjY78I3QxJmRRQKz0C_JsxCVLsJMuwM_lz4P0zCwjljjiiDXycnj64TI1NTqmHcUExGu6DhQQJBzHWkv81SGfB-2W_hE5X7z_enLKhm4LzAGK2jAzc5UVTnlwWSBYwXkdql72bV-XorfegKMPMoBBghjN21Y50TYmqLI2UjYAex6TvbiO_gmhrne1F_2sFZUSKvimDz5UHExBy8FoiIKU4-xrN1CRY0eMHxpCEhSYTgLTKDCdBVaQN7tLfmYejr8Nfoci3Q1ECu10ABRLD4ql_6VYBTkYFUIP6xr-RDaVarD0viCHu9OwInGbxUS_3uIYRK3YOaAg9USRJg80PRNX3xO3dwMAO939VVa5ySXz1bcuvcOvrZ61DcTCT__Hmz4jd3Hy0CPz8oDsba62_jlArY19kVbVDX0IKvs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ri9QwEA7n-eKLqKe4ekoE9UHo2aZp0goi1XU5hRUUV-4tJGmyLtylurcL7k_wXzuTtguV4x7bpqXNTGa-6WS-IeS5414CEDAJz6VPuDMmqYxgiba68GAMdRGb9s2_iNMF_3xWnB2Qob1VP4GXV4Z22E9qsT4_-fN79w4W_FuMOMHfvvZhFZB5m2UnmFbKyhvkJjgmiet0zvdJBQGWOCY_BRYKAVLvkpxXP2LkpiKb_wiC_r-BckQzGl3T7A653WNKWndKcJccuHCPHNUB4umLHX1J4y7P-Pv8iPyt6detDrG0DAwdneqNTqZrtHl0ICihs2HHFgVIS78hEUdYJhGX0hk4wu7_IZ3rZcAaSBzRInGHo58uYtejN7SmuENxR1tPAWLCeSzGxKMaCT9ovXT3yWL28fuH06Rvx5BYgFmbRGc2N9wKBz4NJM8Zkz5viqZqZMob4zQgAV94sFgQxDlTCcurUnuRSl0UJeCiB-QwtME9JNQ2VjreZBXPBRfelY13PmdgKyoGVoVPSDrMvrI9Vzm2zDhXELOgwFQUmEKBqU5gE_Jqf8uvjqjjusHvUaT7gcixHU-066Xql6wypWYe4ndpnOMFcyYVKbPcCCMtT72ckONBIdSgt4oVZS5KrM2fkGf7y7BkMQ-jg2u3OAZhLbYWmBA5UqTRC42vhNXPSP5dAgKPT3_RqdzolunqRx2_4XKrsqqEYPnR9S_5mNzCaUFnzNJjcrhZb90TQFkb8zSunX9dSyfj
  priority: 102
  providerName: Scholars Portal
Title A Quantitative Data-Driven Analysis Framework for Resting-State Functional Magnetic Resonance Imaging: A Study of the Impact of Adult Age
URI https://www.proquest.com/docview/2583688286
https://www.proquest.com/docview/2595100857
https://pubmed.ncbi.nlm.nih.gov/PMC8565286
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-198144
https://doaj.org/article/b8a2f8377bee452eb0602c4b6b7c40f7
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Bb9MwFLZgu3BBwEBkjMlIwAHJLHUcx-GCMrpqIHWCiaHdItuxSyXmjK497Cfwr3nPSSrCYZdKTZwmzbO_9z37-XuEvHbCF0AEDBNZ4ZlwxrDSSM601bkHMNR5LNo3P5OnF-LLZX7ZT7jd9GmVAyZGoG5ai3PkRzxXmVS46fnj9W-GVaNwdbUvoXGf7AIEKwi-do9Pzr6eD1gsAXzjeqfEvUFAzrt1TQjLyiMflgH1uvnkPS5GYdWPfzxTFPAfsc7_cyZHyqLRG80ekYc9jaRVZ_fH5J4LT8heFSCEvrqlb2lM7Iwz5nvkT0W_bXSIu8kA2-hUrzWbrhDm6KBJQmdDkhYFFkvPUXsjLFikonQGvq-bMqRzvQi47RFbtKjV4ejnq1jo6AOtKCYl3tLWU2CVcBz3X-K3CjU-aLVwT8nF7OT7p1PWV2BgFpjVmumJzYyw0oEbA2MLzgufNXlTNkUqGuM0OH-fewApiNucKaUVpdJepoXOcwVU6BnZCW1wzwm1jS2caCalyKSQ3qnGO59xgIeSA5CIhKTD269tL0-OVTJ-1RCmoMHqaLAaDVZ3BkvIu-0l1502x12Nj9Gk24Yoqx0PtKtF3Y_S2ijNPYTshXFO5NyZVKbcCiNNYUXqi4QcDB2i7sc63GTbMxPyansaRikuvejg2g22QSaL1QQSUow60uiBxmfC8mfU-1ZAuuOvv-m63OiS6fJHFf_DzaaelAri4_27H_IFeYCvBf0vTw_Iznq1cS-BWK3NYT96DuPEBHzOhfoLvm8nOw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELem7gFeEDAQhQFGYjwghSWOEydICGV0VcvWCqYN7S2zE7tUYs7oWqF-BL4Mn5E7J6kID3vbYxI7_-7885199ztCXmtuBBgCyuOhMB7XSnmpipknCxkZAEMZuaJ9k2k8OuOfz6PzLfKnzYXBsMoWEx1Ql1WBa-T7LErCOMGk549XPz2sGoW7q20JjVotjvT6F7hs1x_GA5DvHmPDw9NPI6-pKuAVYC0sPRkUoeJFrAGa4QM4Y8KEZVSmpfB5qbSECc1EBgYe-CJapXHB00Sa2BcyipIEyZcA8rd5CK5Mj2wfHE6_nLTYD11cuZ4gxlwkcAbqfVRwA9N9Y-cW-cFZ8A43v7DKyD8zoSsY0LFy_4_R7DCZutlveJ_ca8xWmtV69oBsafuQ7GQWXPbLNX1DXSCpW6HfIb8z-nUlrcteAyylA7mU3mCBsEpbDhQ6bIPCKFjN9AS5PuzMc6YvHcJcWy9R0omcWUyzxBYVcoNoOr50hZXe04xiEOSaVoaCFQvnMd8TjzLkFKHZTD8iZ7cim8ekZyurnxBalIXQvAxSEBSPjU5Ko03IAI5SBsDF-8Rv_35eNHToWJXjRw5uEQosdwLLUWB5LbA-ebvpclVzgdzU-ABFummINN7uRLWY5Q0q5CqRzCShEEprHjGt_NhnBVexEgX3jeiT3VYh8gZb4CGbkdAnrzaXARVwq0daXa2wDVrOWL2gT0RHkTov1L1i598dv3gCRr67-16tcp0ug_m3zH3D9SoP0gT88ac3v-RLcmd0OjnOj8fTo2fkLv4inPuZv0t6y8VKPwejbqleNCOJkovbHrx_AROjYjE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELamTkK8IGAgCgOMxHhACk0dx06QEMroqpWxakwM7S3YiV0qMWd0rVB_An-JX8edk1SEh73tsYmTJjn783f23XeEvDTcSiACOuCRtAE3WgepFixQhYotgKGKfdG-46k4POMfz-PzLfKnzYXBsMoWEz1Ql1WBa-QDFieRSDDpeWCbsIiT0fj95c8AK0jhTmtbTqPuIkdm_Qvct6t3kxHYeo-x8cGXD4dBU2EgKIA5LAM1LCLNC2EApuFlOGPSRmVcpqUMeamNgsnNxhYGIfglRqei4GmirAiliuMkQSEmgP9tCV5R2CPb-wfTk9N2HoBLfOmeocC8JHAM6j1VcAnTgXVzh1rhbPgGN8Kw4sg_s6IvHtBhvP_Ha3ZUTf1MOL5L7jQUlmZ1n7tHtoy7T3YyB-77xZq-oj6o1K_W75DfGf28Us5nsgGu0pFaqmC0QIilrR4KHbcBYhQYND1F3Q83CzwNpmOYd-vlSnqsZg5TLrFFhTohhk4ufJGltzSjGBC5ppWlwGjhOOZ-4q8M9UVoNjMPyNmN2OYh6bnKmUeEFmUhDS-HKY8EF9YkpTU2YgBNKQMQ430Stl8_LxppdKzQ8SMHFwkNlnuD5WiwvDZYn7zeXHJZ64Jc13gfTbppiJLe_kC1mOUNQuQ6UcwmkZTaGB4zo0MRsoJroWXBQyv7ZLftEHmDM_Anm1HRJy82pwEhcNtHOVOtsA2yaKxk0Cey05E6D9Q94-bfvdZ4AoTf332v7nKdS0bzr5l_h6tVPkwT8M0fX_-Qz8ktGLT5p8n06Am5jV8IaQALd0lvuViZp8DvlvpZM5Ao-XbTY_cvdZVmZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Quantitative+Data-Driven+Analysis+Framework+for+Resting-State+Functional+Magnetic+Resonance+Imaging%3A+A+Study+of+the+Impact+of+Adult+Age&rft.jtitle=Frontiers+in+neuroscience&rft.au=Li%2C+Xia&rft.au=Fischer%2C+H%C3%A5kan&rft.au=Manzouri%2C+Amirhossein&rft.au=M%C3%A5nsson%2C+Kristoffer+N+T&rft.date=2021-10-20&rft.pub=Frontiers+Research+Foundation&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389%2Ffnins.2021.768418&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon