rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data

The possibility of generating large RNA-sequencing datasets has led to development of various reference-based and de novo transcriptome assemblers with their own strengths and limitations. While reference-based tools are widely used in various transcriptomic studies, their application is limited to...

Full description

Saved in:
Bibliographic Details
Published inGigascience Vol. 8; no. 9
Main Authors Bushmanova, Elena, Antipov, Dmitry, Lapidus, Alla, Prjibelski, Andrey D
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The possibility of generating large RNA-sequencing datasets has led to development of various reference-based and de novo transcriptome assemblers with their own strengths and limitations. While reference-based tools are widely used in various transcriptomic studies, their application is limited to the organisms with finished and well-annotated genomes. De novo transcriptome reconstruction from short reads remains an open challenging problem, which is complicated by the varying expression levels across different genes, alternative splicing, and paralogous genes. Herein we describe the novel transcriptome assembler rnaSPAdes, which has been developed on top of the SPAdes genome assembler and explores computational parallels between assembly of transcriptomes and single-cell genomes. We also present quality assessment reports for rnaSPAdes assemblies, compare it with modern transcriptome assembly tools using several evaluation approaches on various RNA-sequencing datasets, and briefly highlight strong and weak points of different assemblers. Based on the performed comparison between different assembly methods, we infer that it is not possible to detect the absolute leader according to all quality metrics and all used datasets. However, rnaSPAdes typically outperforms other assemblers by such important property as the number of assembled genes and isoforms, and at the same time has higher accuracy statistics on average comparing to the closest competitors.
AbstractList Background The possibility of generating large RNA-sequencing datasets has led to development of various reference-based and de novo transcriptome assemblers with their own strengths and limitations. While reference-based tools are widely used in various transcriptomic studies, their application is limited to the organisms with finished and well-annotated genomes. De novo transcriptome reconstruction from short reads remains an open challenging problem, which is complicated by the varying expression levels across different genes, alternative splicing, and paralogous genes. Results Herein we describe the novel transcriptome assembler rnaSPAdes, which has been developed on top of the SPAdes genome assembler and explores computational parallels between assembly of transcriptomes and single-cell genomes. We also present quality assessment reports for rnaSPAdes assemblies, compare it with modern transcriptome assembly tools using several evaluation approaches on various RNA-sequencing datasets, and briefly highlight strong and weak points of different assemblers. Conclusions Based on the performed comparison between different assembly methods, we infer that it is not possible to detect the absolute leader according to all quality metrics and all used datasets. However, rnaSPAdes typically outperforms other assemblers by such important property as the number of assembled genes and isoforms, and at the same time has higher accuracy statistics on average comparing to the closest competitors.
BACKGROUNDThe possibility of generating large RNA-sequencing datasets has led to development of various reference-based and de novo transcriptome assemblers with their own strengths and limitations. While reference-based tools are widely used in various transcriptomic studies, their application is limited to the organisms with finished and well-annotated genomes. De novo transcriptome reconstruction from short reads remains an open challenging problem, which is complicated by the varying expression levels across different genes, alternative splicing, and paralogous genes. RESULTSHerein we describe the novel transcriptome assembler rnaSPAdes, which has been developed on top of the SPAdes genome assembler and explores computational parallels between assembly of transcriptomes and single-cell genomes. We also present quality assessment reports for rnaSPAdes assemblies, compare it with modern transcriptome assembly tools using several evaluation approaches on various RNA-sequencing datasets, and briefly highlight strong and weak points of different assemblers. CONCLUSIONSBased on the performed comparison between different assembly methods, we infer that it is not possible to detect the absolute leader according to all quality metrics and all used datasets. However, rnaSPAdes typically outperforms other assemblers by such important property as the number of assembled genes and isoforms, and at the same time has higher accuracy statistics on average comparing to the closest competitors.
The possibility of generating large RNA-sequencing datasets has led to development of various reference-based and de novo transcriptome assemblers with their own strengths and limitations. While reference-based tools are widely used in various transcriptomic studies, their application is limited to the organisms with finished and well-annotated genomes. De novo transcriptome reconstruction from short reads remains an open challenging problem, which is complicated by the varying expression levels across different genes, alternative splicing, and paralogous genes. Herein we describe the novel transcriptome assembler rnaSPAdes, which has been developed on top of the SPAdes genome assembler and explores computational parallels between assembly of transcriptomes and single-cell genomes. We also present quality assessment reports for rnaSPAdes assemblies, compare it with modern transcriptome assembly tools using several evaluation approaches on various RNA-sequencing datasets, and briefly highlight strong and weak points of different assemblers. Based on the performed comparison between different assembly methods, we infer that it is not possible to detect the absolute leader according to all quality metrics and all used datasets. However, rnaSPAdes typically outperforms other assemblers by such important property as the number of assembled genes and isoforms, and at the same time has higher accuracy statistics on average comparing to the closest competitors.
Author Antipov, Dmitry
Bushmanova, Elena
Prjibelski, Andrey D
Lapidus, Alla
AuthorAffiliation Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199004, 6 linia V.O. 11d, Russia
AuthorAffiliation_xml – name: Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199004, 6 linia V.O. 11d, Russia
Author_xml – sequence: 1
  givenname: Elena
  surname: Bushmanova
  fullname: Bushmanova, Elena
  organization: Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199004, 6 linia V.O. 11d, Russia
– sequence: 2
  givenname: Dmitry
  surname: Antipov
  fullname: Antipov, Dmitry
  organization: Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199004, 6 linia V.O. 11d, Russia
– sequence: 3
  givenname: Alla
  surname: Lapidus
  fullname: Lapidus, Alla
  organization: Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199004, 6 linia V.O. 11d, Russia
– sequence: 4
  givenname: Andrey D
  surname: Prjibelski
  fullname: Prjibelski, Andrey D
  organization: Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199004, 6 linia V.O. 11d, Russia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31494669$$D View this record in MEDLINE/PubMed
BookMark eNpdkV9rFTEQxYO02Fr7BXyQgC99WZs_u5usD8KlaCuUWqyCb2E2mb2m7CbbZG9BP31Tbi1X52UG8pvDmZxXZC_EgIS84ew9Z508Xfs1ZOsxWCzzH87YC3IoWK0qwdXPvZ35gBznfMtKKaW1ki_JgeR1V7dtd0iuU4Cb65XD_IECdUhDvI90SRCyTX5e4oQUcsapHzFRCI76JVOY59FbWHwMdIn029WqusE76mCB12R_gDHj8VM_Ij8-f_p-dlFdfj3_cra6rGxTN0ulrRZKCdsIobgu1kTv0PWCDU0Hg5KdYhI49INgSvO21pr3tXRDjw4tt508Ih-3uvOmn9BZDMX0aObkJ0i_TQRv_n0J_pdZx3vTKtlKoYvAyZNAincbzIuZfLY4jhAwbrIRQquGS8kf0Xf_obdxUz5uLJTijWZKCl4osaVsijknHJ7NcGYeMzM7mZltZmXp7e4Zzyt_E5IPuxGYJA
CitedBy_id crossref_primary_10_3389_fmicb_2020_01232
crossref_primary_10_3390_v13061129
crossref_primary_10_1101_gr_260174_119
crossref_primary_10_3389_fmars_2022_867007
crossref_primary_10_1186_s13104_022_06099_9
crossref_primary_10_1021_acsomega_2c03539
crossref_primary_10_1186_s12859_023_05614_4
crossref_primary_10_1080_03235408_2023_2170208
crossref_primary_10_1038_s41598_021_99903_8
crossref_primary_10_1111_1758_2229_12958
crossref_primary_10_1016_j_gene_2021_145626
crossref_primary_10_3389_fmicb_2022_955032
crossref_primary_10_1016_j_ympev_2022_107546
crossref_primary_10_1111_acel_13158
crossref_primary_10_3390_ijms24108972
crossref_primary_10_3390_microorganisms9091936
crossref_primary_10_1038_s41597_020_0565_9
crossref_primary_10_3390_genes12070952
crossref_primary_10_1038_s41396_021_01048_z
crossref_primary_10_2139_ssrn_4174577
crossref_primary_10_1098_rspb_2022_1073
crossref_primary_10_1109_TCBB_2021_3083277
crossref_primary_10_1016_j_biochi_2024_06_012
crossref_primary_10_1093_molbev_msad002
crossref_primary_10_3389_fmicb_2023_1129319
crossref_primary_10_3390_genes12070953
crossref_primary_10_1093_bioinformatics_btac827
crossref_primary_10_1111_tpj_16775
crossref_primary_10_1186_s12859_020_03614_2
crossref_primary_10_3390_ijms241914833
crossref_primary_10_1007_s10658_024_02904_2
crossref_primary_10_1007_s10327_021_01049_y
crossref_primary_10_7554_eLife_87198
crossref_primary_10_3390_toxins16020083
crossref_primary_10_1007_s13127_022_00581_9
crossref_primary_10_1016_j_tcsw_2021_100060
crossref_primary_10_1371_journal_pone_0288404
crossref_primary_10_3389_fmars_2023_1278131
crossref_primary_10_1016_j_indcrop_2020_112254
crossref_primary_10_1016_j_virusres_2024_199389
crossref_primary_10_1093_isd_ixac010
crossref_primary_10_3389_fmicb_2022_775646
crossref_primary_10_1093_molbev_msac066
crossref_primary_10_15212_ijafr_2023_0110
crossref_primary_10_7717_peerj_12983
crossref_primary_10_1016_j_isci_2024_109441
crossref_primary_10_1128_mra_00745_22
crossref_primary_10_1038_s41597_022_01724_5
crossref_primary_10_1080_19768354_2024_2302529
crossref_primary_10_1128_mSphere_00661_21
crossref_primary_10_1016_j_ijpara_2022_12_005
crossref_primary_10_1016_j_ygeno_2021_03_014
crossref_primary_10_1093_ve_veab022
crossref_primary_10_1128_mbio_00918_22
crossref_primary_10_3390_genes12091423
crossref_primary_10_1016_j_pmpp_2021_101638
crossref_primary_10_1038_s41525_020_0123_6
crossref_primary_10_1186_s40168_023_01571_5
crossref_primary_10_1016_j_indcrop_2022_115734
crossref_primary_10_1094_MPMI_34_12
crossref_primary_10_1186_s12864_021_08283_w
crossref_primary_10_1111_jpy_13160
crossref_primary_10_1038_s41477_024_01711_1
crossref_primary_10_3390_biom10070978
crossref_primary_10_1007_s10499_023_01144_1
crossref_primary_10_1093_gbe_evac160
crossref_primary_10_3389_fcell_2020_593007
crossref_primary_10_1016_j_ympev_2023_107964
crossref_primary_10_1038_s41597_023_02591_4
crossref_primary_10_3389_fmicb_2023_1242275
crossref_primary_10_3390_plants11182365
crossref_primary_10_1038_s41467_023_44658_1
crossref_primary_10_1093_molbev_msad147
crossref_primary_10_3390_ijms22115741
crossref_primary_10_1128_jvi_01381_22
crossref_primary_10_7554_eLife_82401
crossref_primary_10_1111_nph_18885
crossref_primary_10_1016_j_plgene_2021_100324
crossref_primary_10_1093_bib_bbad444
crossref_primary_10_1093_nar_gkz1198
crossref_primary_10_14202_vetworld_2023_439_448
crossref_primary_10_1016_j_jenvman_2022_115244
crossref_primary_10_1038_s41598_023_32654_w
crossref_primary_10_3390_v14061320
crossref_primary_10_1128_jvi_00783_22
crossref_primary_10_1093_g3journal_jkab268
crossref_primary_10_3390_microorganisms10030525
crossref_primary_10_1111_jeu_12852
crossref_primary_10_3390_microorganisms9081591
crossref_primary_10_3390_v15091850
crossref_primary_10_1111_mec_15439
crossref_primary_10_1111_nph_19320
crossref_primary_10_1186_s12915_022_01263_w
crossref_primary_10_1002_cpbi_102
crossref_primary_10_1016_j_xphs_2022_08_002
crossref_primary_10_1111_cla_12574
crossref_primary_10_3390_toxins11120721
crossref_primary_10_7717_peerj_14626
crossref_primary_10_1016_j_dib_2022_108760
crossref_primary_10_1093_ve_vead062
crossref_primary_10_1016_j_cell_2022_12_039
crossref_primary_10_1016_j_biortech_2021_124962
crossref_primary_10_1007_s00705_021_05281_x
crossref_primary_10_1080_17451000_2021_1967992
crossref_primary_10_1111_1755_0998_13328
crossref_primary_10_1371_journal_pgen_1011218
crossref_primary_10_1038_s41592_024_02298_3
crossref_primary_10_1094_MPMI_34_7
crossref_primary_10_1371_journal_pcbi_1009631
crossref_primary_10_3390_microorganisms10101933
crossref_primary_10_1038_s41598_023_30876_6
crossref_primary_10_3390_biology10060451
crossref_primary_10_1186_s12302_023_00785_6
crossref_primary_10_1093_molbev_msad060
crossref_primary_10_3389_fevo_2022_947186
crossref_primary_10_1038_s41598_022_21927_5
crossref_primary_10_1093_molbev_msac077
crossref_primary_10_3389_fgene_2021_695763
crossref_primary_10_1016_j_toxicon_2024_107740
crossref_primary_10_1093_bib_bbab563
crossref_primary_10_1038_s43587_021_00029_3
crossref_primary_10_1016_j_tig_2023_05_004
crossref_primary_10_3389_fmars_2022_798877
crossref_primary_10_1186_s12859_024_05811_9
crossref_primary_10_3390_microorganisms8010121
crossref_primary_10_1016_j_plgene_2021_100305
crossref_primary_10_1093_ve_vead053
crossref_primary_10_1007_s00203_023_03813_4
crossref_primary_10_1007_s13314_023_00508_z
crossref_primary_10_1093_gigascience_giz100
crossref_primary_10_1007_s00705_021_05061_7
crossref_primary_10_1182_bloodadvances_2019001260
crossref_primary_10_1016_j_hal_2022_102295
crossref_primary_10_3389_fmars_2022_838793
crossref_primary_10_1186_s12859_021_04174_9
crossref_primary_10_1371_journal_ppat_1009780
crossref_primary_10_1016_j_crpvbd_2021_100015
crossref_primary_10_1038_s41598_020_61857_8
crossref_primary_10_3390_pathogens11121470
crossref_primary_10_3390_v14122718
crossref_primary_10_1094_MPMI_10_20_0278_SC
crossref_primary_10_1186_s12870_021_03013_6
crossref_primary_10_1038_s41597_024_03285_1
crossref_primary_10_1093_gbe_evab029
crossref_primary_10_1186_s12859_024_05663_3
crossref_primary_10_7554_eLife_87198_3
crossref_primary_10_1128_mra_01025_23
crossref_primary_10_3390_ijms25137121
crossref_primary_10_1093_g3journal_jkae061
crossref_primary_10_1016_j_ympev_2023_107924
crossref_primary_10_1186_s12864_021_07937_z
crossref_primary_10_1038_s41598_024_53734_5
crossref_primary_10_1016_j_cbd_2022_101048
crossref_primary_10_3390_pharmaceutics16020190
crossref_primary_10_1021_jacs_2c00014
crossref_primary_10_1038_s41559_023_02241_3
crossref_primary_10_1186_s12859_023_05254_8
crossref_primary_10_1093_molbev_msaa235
crossref_primary_10_3390_toxins14050358
crossref_primary_10_1590_0034_737x202370050013
crossref_primary_10_1098_rsos_210140
crossref_primary_10_1038_s41597_024_03541_4
crossref_primary_10_1111_1755_0998_13434
crossref_primary_10_1093_ve_veae040
crossref_primary_10_3389_fpls_2024_1301526
crossref_primary_10_1016_j_margen_2020_100783
crossref_primary_10_1186_s12864_022_08743_x
crossref_primary_10_1007_s11262_022_01896_7
crossref_primary_10_1080_19420862_2019_1667740
crossref_primary_10_1080_15569543_2021_1878226
crossref_primary_10_3390_jof10040258
crossref_primary_10_1093_gigascience_giad116
crossref_primary_10_1093_database_baaa082
crossref_primary_10_1016_j_ibmb_2023_104060
crossref_primary_10_2174_1574893618666230725123211
crossref_primary_10_3390_v13101931
crossref_primary_10_3390_microorganisms8122024
crossref_primary_10_1016_j_cub_2023_08_064
crossref_primary_10_1098_rsob_220126
crossref_primary_10_3389_fphys_2023_1207620
crossref_primary_10_1111_1462_2920_15210
crossref_primary_10_3390_genes13050903
crossref_primary_10_1186_s13059_022_02715_w
crossref_primary_10_3390_plants12081582
crossref_primary_10_3390_v12030258
crossref_primary_10_1038_s41598_021_84068_1
crossref_primary_10_1098_rstb_2021_0294
crossref_primary_10_1016_j_dib_2020_105166
crossref_primary_10_3390_ijms22126257
crossref_primary_10_1126_sciadv_abf4792
crossref_primary_10_1111_ppl_14407
crossref_primary_10_1016_j_meegid_2022_105390
crossref_primary_10_1038_s41586_021_04332_2
crossref_primary_10_3389_av_2023_11782
crossref_primary_10_7554_eLife_82690
crossref_primary_10_1111_zsc_12619
crossref_primary_10_1371_journal_ppat_1011386
crossref_primary_10_3389_fmicb_2024_1358574
crossref_primary_10_1038_s41598_020_78118_3
crossref_primary_10_1186_s40168_023_01467_4
crossref_primary_10_1038_s41598_020_76628_8
crossref_primary_10_1099_jgv_0_001991
crossref_primary_10_1007_s10142_022_00860_w
crossref_primary_10_3390_toxins14060408
crossref_primary_10_1111_syen_12582
crossref_primary_10_1038_s41598_022_15320_5
crossref_primary_10_1038_s41597_023_02217_9
crossref_primary_10_1016_j_toxicon_2023_107285
crossref_primary_10_1016_j_ympev_2024_108120
crossref_primary_10_1038_s41598_021_86068_7
crossref_primary_10_1186_s12859_022_04973_8
crossref_primary_10_1111_syen_12468
crossref_primary_10_3389_fmars_2022_1010319
crossref_primary_10_1146_annurev_biodatasci_031121_103035
crossref_primary_10_1099_jgv_0_001717
crossref_primary_10_1186_s13071_023_06048_w
crossref_primary_10_1016_j_ympev_2021_107088
crossref_primary_10_1186_s12862_021_01772_2
crossref_primary_10_3389_fmicb_2020_560336
crossref_primary_10_1093_femsre_fuad051
crossref_primary_10_3389_fmicb_2021_613791
crossref_primary_10_3390_ijms232213881
crossref_primary_10_1186_s13015_022_00214_y
crossref_primary_10_1016_j_virol_2023_03_018
crossref_primary_10_1017_S0954102021000195
crossref_primary_10_1128_jvi_01556_21
crossref_primary_10_1051_e3sconf_202127001014
crossref_primary_10_2174_1389202924666230102092822
crossref_primary_10_3390_genes13081433
crossref_primary_10_3390_v14061274
crossref_primary_10_1111_2041_210X_14149
crossref_primary_10_1186_s13071_024_06131_w
crossref_primary_10_1038_s41598_021_97015_x
crossref_primary_10_1128_msystems_01002_22
crossref_primary_10_1002_pld3_511
crossref_primary_10_1016_j_gene_2023_147189
crossref_primary_10_1111_1755_0998_13593
crossref_primary_10_1186_s12859_021_04434_8
crossref_primary_10_1016_j_jinsphys_2023_104523
crossref_primary_10_3390_toxins14040237
crossref_primary_10_3390_microorganisms9040841
crossref_primary_10_1093_bioinformatics_btab597
crossref_primary_10_1007_s00705_024_06076_6
crossref_primary_10_1038_s41597_020_00581_4
crossref_primary_10_1016_j_cbd_2021_100926
crossref_primary_10_1093_gigascience_giac063
crossref_primary_10_1186_s12917_019_2204_2
crossref_primary_10_3390_v13071368
crossref_primary_10_1007_s00344_023_11222_6
crossref_primary_10_1186_s12862_021_01806_9
crossref_primary_10_1021_acssynbio_2c00018
crossref_primary_10_1186_s12915_021_01186_y
crossref_primary_10_1186_s12859_022_04972_9
crossref_primary_10_3389_fpls_2021_730251
crossref_primary_10_3390_cells10092289
crossref_primary_10_1094_MPMI_07_21_0173_A
crossref_primary_10_1093_nar_gkae528
crossref_primary_10_3389_fvets_2022_904698
crossref_primary_10_1038_s42003_021_02472_9
crossref_primary_10_1093_bioinformatics_btad781
crossref_primary_10_1111_gbi_12461
crossref_primary_10_1128_mmbr_00004_21
crossref_primary_10_1111_mec_17458
crossref_primary_10_1186_s13027_021_00404_0
crossref_primary_10_1186_s13059_021_02337_8
crossref_primary_10_1093_molbev_msad218
crossref_primary_10_1186_s12862_020_01662_z
crossref_primary_10_1007_s10142_022_00907_y
crossref_primary_10_1186_s12864_020_6670_5
crossref_primary_10_3390_genes12081129
crossref_primary_10_1016_j_envpol_2023_122306
crossref_primary_10_1038_s42003_022_04240_9
crossref_primary_10_3390_v14102163
crossref_primary_10_7554_eLife_87726_3
crossref_primary_10_15347_WJS_2021_004
crossref_primary_10_1016_j_cbpc_2023_109677
crossref_primary_10_1093_molbev_msaa192
crossref_primary_10_1111_1462_2920_16225
crossref_primary_10_1007_s42832_023_0217_z
crossref_primary_10_1126_sciadv_abg3088
crossref_primary_10_1186_s12983_024_00538_y
crossref_primary_10_3389_fmicb_2023_1275665
crossref_primary_10_3390_biology12081066
crossref_primary_10_1080_23802359_2021_1972857
crossref_primary_10_1093_bib_bbae313
crossref_primary_10_1128_mra_01199_21
crossref_primary_10_1094_PDIS_06_21_1288_PDN
crossref_primary_10_7717_peerj_12395
crossref_primary_10_12688_f1000research_108489_1
crossref_primary_10_3390_genes15050602
crossref_primary_10_1016_j_scitotenv_2021_149848
crossref_primary_10_1093_nar_gkab828
crossref_primary_10_3389_fmars_2022_914095
crossref_primary_10_7554_eLife_66954
crossref_primary_10_1186_s40168_022_01371_3
crossref_primary_10_1016_j_ympev_2023_107859
crossref_primary_10_1016_j_ygeno_2021_07_024
crossref_primary_10_1098_rsbl_2023_0585
crossref_primary_10_1038_s42003_022_03771_5
crossref_primary_10_1002_ece3_9740
crossref_primary_10_1016_j_ijbiomac_2023_124480
crossref_primary_10_1093_nar_gkac689
crossref_primary_10_3390_v15030743
crossref_primary_10_1186_s12864_023_09602_z
crossref_primary_10_1111_mec_17434
crossref_primary_10_7554_eLife_87726
crossref_primary_10_1016_j_biteb_2021_100910
crossref_primary_10_1002_arch_22123
crossref_primary_10_1007_s00425_021_03761_7
crossref_primary_10_1016_j_pmpp_2021_101715
crossref_primary_10_1126_sciadv_abm3230
crossref_primary_10_1126_sciadv_abf1586
crossref_primary_10_1038_s41598_020_80837_6
crossref_primary_10_3389_fmicb_2022_981458
crossref_primary_10_1007_s00300_022_03085_6
crossref_primary_10_1016_j_pmpp_2023_102175
crossref_primary_10_1071_IS24029
crossref_primary_10_1016_j_xplc_2022_100304
crossref_primary_10_1099_jgv_0_001927
crossref_primary_10_1094_PHYTOFR_03_22_0030_FI
crossref_primary_10_1007_s13337_023_00845_8
crossref_primary_10_1128_mBio_01964_20
crossref_primary_10_1111_mec_17422
crossref_primary_10_3390_md20010027
crossref_primary_10_1007_s00705_023_05813_7
crossref_primary_10_1371_journal_ppat_1008717
crossref_primary_10_1038_s41564_022_01203_y
crossref_primary_10_1016_j_margen_2022_100984
crossref_primary_10_1098_rsob_230196
crossref_primary_10_1186_s12864_023_09779_3
crossref_primary_10_1186_s13059_021_02507_8
crossref_primary_10_1371_journal_pone_0286846
crossref_primary_10_3390_biology12091199
crossref_primary_10_1016_j_cub_2022_05_049
crossref_primary_10_1101_gr_276601_122
crossref_primary_10_1007_s00203_024_03875_y
crossref_primary_10_1080_03235408_2023_2216342
crossref_primary_10_1371_journal_pgen_1009745
crossref_primary_10_1186_s40168_023_01562_6
crossref_primary_10_1186_s12859_022_05121_y
crossref_primary_10_1007_s40858_022_00524_x
crossref_primary_10_1094_PHYTO_03_20_0102_A
crossref_primary_10_1111_1462_2920_16457
crossref_primary_10_3390_genes13061092
Cites_doi 10.1089/cmb.2012.0021
10.1016/j.mib.2007.08.005
10.1093/bioinformatics/bts635
10.1093/bioinformatics/bts094
10.1101/701607
10.1089/cmb.2013.0042
10.1089/cmb.2014.0139
10.1186/s13059-014-0550-8
10.1073/pnas.1400447111
10.1038/ncomms16027
10.1186/s13059-015-0596-2
10.1101/420208
10.1038/nprot.2012.016
10.1371/journal.pcbi.1004772
10.1093/bioinformatics/btu170
10.1038/nmeth.3737
10.1038/ncomms11706
10.1089/cmb.2013.0084
10.1101/gr.196469.115
10.1371/journal.pone.0132628
10.1093/bioinformatics/btu077
10.1371/journal.pgen.1004365
10.1186/1471-2105-12-323
10.1038/nbt.3519
10.1038/nrg3068
10.1038/nmeth.1517
10.1093/bioinformatics/btw218
10.1186/s13059-014-0553-5
10.1093/bioinformatics/btv351
10.1038/nmeth.4577
10.1186/s13059-015-0729-7
10.1038/nbt.1883
10.1073/pnas.171285098
10.1093/bioinformatics/btu266
10.1038/nbt.3122
10.1101/gr.074492.107
10.1093/bioinformatics/btv688
10.1093/bioinformatics/btv337
10.1186/gb-2013-14-4-r36
10.1093/bioinformatics/btt219
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press.
The Author(s) 2019. Published by Oxford University Press. 2019
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press.
– notice: The Author(s) 2019. Published by Oxford University Press. 2019
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
JQ2
K9.
7X8
5PM
DOI 10.1093/gigascience/giz100
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Health & Medical Complete (Alumni)
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 2047-217X
ExternalDocumentID 10_1093_gigascience_giz100
31494669
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ; ;
– fundername: ; ;
  grantid: 15.61.951.2015
– fundername: ; ;
  grantid: 19-04-01074
GroupedDBID -A0
0R~
53G
5VS
7X7
AAFWJ
AAHBH
AAPPN
AAPXW
AAVAP
ABDBF
ABPTD
ABXVV
ACGFS
ACPRK
ADBBV
ADINQ
AEGXH
AENZO
AFULF
AHBYD
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BAYMD
BBNVY
BCNDV
BFQNJ
BTTYL
C24
C6C
CGR
CUY
CVF
DIK
EBS
ECM
EIF
EJD
GROUPED_DOAJ
GX1
H13
HYE
IAO
IHR
IHW
INR
KQ8
KSI
M48
M~E
NPM
O9-
OK1
RBZ
RNS
ROL
ROX
RPM
RSV
SBL
SOJ
TJX
TOX
AAYXX
ABEJV
CITATION
JQ2
K9.
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c545t-8c82772c5227180072bdedb20f59af739703a1abf2078164881b43dfbedec1c93
IEDL.DBID RPM
ISSN 2047-217X
IngestDate Tue Sep 17 21:19:57 EDT 2024
Wed Dec 04 04:28:19 EST 2024
Sat Nov 09 19:31:37 EST 2024
Fri Dec 06 07:19:26 EST 2024
Wed Oct 16 00:44:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords RNA-Seq
de novo assembly
transcriptome assembly
Language English
License The Author(s) 2019. Published by Oxford University Press.
http://creativecommons.org/licenses/by/4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-8c82772c5227180072bdedb20f59af739703a1abf2078164881b43dfbedec1c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0427-8731
0000-0003-2816-4608
0000-0002-2333-8229
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6736328/
PMID 31494669
PQID 2715807321
PQPubID 2040230
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6736328
proquest_miscellaneous_2287513318
proquest_journals_2715807321
crossref_primary_10_1093_gigascience_giz100
pubmed_primary_31494669
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Gigascience
PublicationTitleAlternate Gigascience
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Liu (2024111714502562900_bib19) 2016; 12
Peng (2024111714502562900_bib10) 2013; 29
Bushmanova (2024111714502562900_bib16) 2016; 32
Vasilinetc (2024111714502562900_bib39) 2015; 31
Xie (2024111714502562900_bib11) 2014; 30
Garalde (2024111714502562900_bib29) 2018; 15
Antipov (2024111714502562900_bib35) 2015; 32
Abdel-Ghany (2024111714502562900_bib33) 2016; 7
Prjibelski (2024111714502562900_bib38) 2014; 30
Kim (2024111714502562900_bib4) 2013; 14
Bolger (2024111714502562900_bib18) 2014; 30
Bankevich (2024111714502562900_bib13) 2012; 19
Martin (2024111714502562900_bib12) 2011; 12
Schulz (2024111714502562900_bib9) 2012; 28
Leung (2024111714502562900_bib27) 2013; 20
Nurk (2024111714502562900_bib14) 2013; 20
Leung (2024111714502562900_bib28) 2015; 22
Tilgner (2024111714502562900_bib30) 2014; 111
Bankevich (2024111714502562900_bib40) 2016; 13
Chang (2024111714502562900_bib20) 2015; 16
Nikolenko (2024111714502562900_bib26) 2013
Simão (2024111714502562900_bib23) 2015; 31
Grabherr (2024111714502562900_bib8) 2011; 29
Andrews (2024111714502562900_bib17) 2010
Aubry (2024111714502562900_bib42_132_224019) 2014; 10
Smith-Unna (2024111714502562900_bib22) 2016; 2
Li (2024111714502562900_bib24) 2014; 15
Gordon (2024111714502562900_bib34) 2015; 10
Lasken (2024111714502562900_bib15) 2007; 10
Zerbino (2024111714502562900_bib37) 2008; 18
Trapnell (2024111714502562900_bib2) 2012; 7
Robertson (2024111714502562900_bib7) 2010; 7
Li (2024111714502562900_bib1) 2011; 12
2024111714502562900_bib41
Nip (2024111714502562900_bib21) 2019
Pevzner (2024111714502562900_bib36) 2001; 98
Byrne (2024111714502562900_bib31) 2017; 8
Dobin (2024111714502562900_bib3) 2013; 29
Pertea (2024111714502562900_bib6) 2015; 33
Bray (2024111714502562900_bib25) 2016; 34
Love (2024111714502562900_bib5) 2014; 15
Minoche (2024111714502562900_bib32) 2015; 16
References_xml – volume: 19
  start-page: 455
  year: 2012
  ident: 2024111714502562900_bib13
  article-title: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2012.0021
  contributor:
    fullname: Bankevich
– volume: 10
  start-page: 510
  year: 2007
  ident: 2024111714502562900_bib15
  article-title: Single-cell genomic sequencing using multiple displacement amplification
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2007.08.005
  contributor:
    fullname: Lasken
– volume: 29
  start-page: 15
  issue: 1
  year: 2013
  ident: 2024111714502562900_bib3
  article-title: STAR: ultrafast universal RNA-Seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
  contributor:
    fullname: Dobin
– volume: 28
  start-page: 1086
  issue: 8
  year: 2012
  ident: 2024111714502562900_bib9
  article-title: Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts094
  contributor:
    fullname: Schulz
– year: 2019
  ident: 2024111714502562900_bib21
  article-title: RNA-Bloom provides lightweight reference-free transcriptome assembly for single cells
  publication-title: bioRxiv
  doi: 10.1101/701607
  contributor:
    fullname: Nip
– volume: 20
  start-page: 540
  issue: 7
  year: 2013
  ident: 2024111714502562900_bib27
  article-title: IDBA-MT: de novo assembler for metatranscriptomic data generated from next-generation sequencing technology
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2013.0042
  contributor:
    fullname: Leung
– volume: 22
  start-page: 367
  issue: 5
  year: 2015
  ident: 2024111714502562900_bib28
  article-title: IDBA-MTP: a hybrid metatranscriptomic assembler based on protein information
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2014.0139
  contributor:
    fullname: Leung
– volume: 15
  start-page: 550
  issue: 12
  year: 2014
  ident: 2024111714502562900_bib5
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
  contributor:
    fullname: Love
– volume: 111
  start-page: 9869
  issue: 27
  year: 2014
  ident: 2024111714502562900_bib30
  article-title: Defining a personal, allele-specific, and single-molecule long-read transcriptome
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1400447111
  contributor:
    fullname: Tilgner
– volume: 8
  start-page: 16027
  year: 2017
  ident: 2024111714502562900_bib31
  article-title: Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells
  publication-title: Nat Commun
  doi: 10.1038/ncomms16027
  contributor:
    fullname: Byrne
– volume: 16
  start-page: 30
  issue: 1
  year: 2015
  ident: 2024111714502562900_bib20
  article-title: Bridger: a new framework for de novo transcriptome assembly using RNA-seq data
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0596-2
  contributor:
    fullname: Chang
– ident: 2024111714502562900_bib41
  doi: 10.1101/420208
– volume: 7
  start-page: 562
  issue: 3
  year: 2012
  ident: 2024111714502562900_bib2
  article-title: Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2012.016
  contributor:
    fullname: Trapnell
– volume: 12
  start-page: e1004772
  issue: 2
  year: 2016
  ident: 2024111714502562900_bib19
  article-title: BinPacker: packing-based de novo transcriptome assembly from RNA-seq data
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004772
  contributor:
    fullname: Liu
– volume: 30
  start-page: 2114
  issue: 15
  year: 2014
  ident: 2024111714502562900_bib18
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
  contributor:
    fullname: Bolger
– volume: 13
  start-page: 248
  issue: 3
  year: 2016
  ident: 2024111714502562900_bib40
  article-title: TruSPAdes: barcode assembly of TruSeq synthetic long reads
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3737
  contributor:
    fullname: Bankevich
– volume: 7
  start-page: 11706
  year: 2016
  ident: 2024111714502562900_bib33
  article-title: A survey of the sorghum transcriptome using single-molecule long reads
  publication-title: Nat Commun
  doi: 10.1038/ncomms11706
  contributor:
    fullname: Abdel-Ghany
– volume: 20
  start-page: 1
  year: 2013
  ident: 2024111714502562900_bib14
  article-title: Assembling single-cell genomes and mini-metagenomes from chimeric MDA products
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2013.0084
  contributor:
    fullname: Nurk
– volume: 2
  start-page: 1134
  issue: 8
  year: 2016
  ident: 2024111714502562900_bib22
  article-title: TransRate: reference-free quality assessment of de novo transcriptome assemblies
  publication-title: Genome Res
  doi: 10.1101/gr.196469.115
  contributor:
    fullname: Smith-Unna
– volume: 10
  start-page: e0132628
  issue: 7
  year: 2015
  ident: 2024111714502562900_bib34
  article-title: Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0132628
  contributor:
    fullname: Gordon
– volume: 30
  start-page: 1660
  issue: 12
  year: 2014
  ident: 2024111714502562900_bib11
  article-title: SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu077
  contributor:
    fullname: Xie
– volume: 10
  start-page: e1004365
  year: 2014
  ident: 2024111714502562900_bib42_132_224019
  doi: 10.1371/journal.pgen.1004365
  contributor:
    fullname: Aubry
– volume: 12
  start-page: 323
  issue: 1
  year: 2011
  ident: 2024111714502562900_bib1
  article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-323
  contributor:
    fullname: Li
– volume: 34
  start-page: 525
  issue: 5
  year: 2016
  ident: 2024111714502562900_bib25
  article-title: Near-optimal probabilistic RNA-seq quantification
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3519
  contributor:
    fullname: Bray
– volume: 12
  start-page: 671
  issue: 10
  year: 2011
  ident: 2024111714502562900_bib12
  article-title: Next-generation transcriptome assembly
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3068
  contributor:
    fullname: Martin
– volume: 7
  start-page: 909
  issue: 11
  year: 2010
  ident: 2024111714502562900_bib7
  article-title: De novo assembly and analysis of RNA-seq data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1517
  contributor:
    fullname: Robertson
– volume: 32
  start-page: 2210
  issue: 14
  year: 2016
  ident: 2024111714502562900_bib16
  article-title: rnaQUAST: a quality assessment tool for de novo transcriptome assemblies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw218
  contributor:
    fullname: Bushmanova
– volume: 15
  start-page: 553
  issue: 12
  year: 2014
  ident: 2024111714502562900_bib24
  article-title: Evaluation of de novo transcriptome assemblies from RNA-Seq data
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0553-5
  contributor:
    fullname: Li
– volume: 31
  start-page: 3210
  issue: 19
  year: 2015
  ident: 2024111714502562900_bib23
  article-title: BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv351
  contributor:
    fullname: Simão
– volume: 15
  start-page: 201
  issue: 3
  year: 2018
  ident: 2024111714502562900_bib29
  article-title: Highly parallel direct RNA sequencing on an array of nanopores
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4577
  contributor:
    fullname: Garalde
– volume: 16
  start-page: 184
  issue: 1
  year: 2015
  ident: 2024111714502562900_bib32
  article-title: Exploiting single-molecule transcript sequencing for eukaryotic gene prediction
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0729-7
  contributor:
    fullname: Minoche
– volume: 29
  start-page: 644
  issue: 7
  year: 2011
  ident: 2024111714502562900_bib8
  article-title: Full-length transcriptome assembly from RNA-Seq data without a reference genome
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1883
  contributor:
    fullname: Grabherr
– volume: 98
  start-page: 9748
  issue: 17
  year: 2001
  ident: 2024111714502562900_bib36
  article-title: An Eulerian path approach to DNA fragment assembly
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.171285098
  contributor:
    fullname: Pevzner
– volume: 30
  start-page: i293
  issue: 12
  year: 2014
  ident: 2024111714502562900_bib38
  article-title: ExSPAnder: a universal repeat resolver for DNA fragment assembly
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu266
  contributor:
    fullname: Prjibelski
– volume: 33
  start-page: 290
  issue: 3
  year: 2015
  ident: 2024111714502562900_bib6
  article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3122
  contributor:
    fullname: Pertea
– start-page: 14
  year: 2013
  ident: 2024111714502562900_bib26
  article-title: BayesHammer: Bayesian clustering for error correction in single-cell sequencing
  publication-title: BMC Genomics
  contributor:
    fullname: Nikolenko
– volume: 18
  start-page: 821
  year: 2008
  ident: 2024111714502562900_bib37
  article-title: Velvet: algorithms for de novo short read assembly using de Bruijn graphs
  publication-title: Genome Res
  doi: 10.1101/gr.074492.107
  contributor:
    fullname: Zerbino
– year: 2010
  ident: 2024111714502562900_bib17
  publication-title: FastQC: a quality control tool for high throughput sequence data
  contributor:
    fullname: Andrews
– volume: 32
  start-page: 1009
  issue: 7
  year: 2015
  ident: 2024111714502562900_bib35
  article-title: hybridSPAdes: an algorithm for hybrid assembly of short and long reads
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv688
  contributor:
    fullname: Antipov
– volume: 31
  start-page: 3262
  issue: 20
  year: 2015
  ident: 2024111714502562900_bib39
  article-title: Assembling short reads from jumping libraries with large insert sizes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv337
  contributor:
    fullname: Vasilinetc
– volume: 14
  start-page: R36
  issue: 4
  year: 2013
  ident: 2024111714502562900_bib4
  article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-4-r36
  contributor:
    fullname: Kim
– volume: 29
  start-page: i326
  issue: 13
  year: 2013
  ident: 2024111714502562900_bib10
  article-title: IDBA-tran: a more robust de novo de Bruijn graph assembler for transcriptomes with uneven expression levels
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt219
  contributor:
    fullname: Peng
SSID ssj0000778873
Score 2.6521435
Snippet The possibility of generating large RNA-sequencing datasets has led to development of various reference-based and de novo transcriptome assemblers with their...
Background The possibility of generating large RNA-sequencing datasets has led to development of various reference-based and de novo transcriptome assemblers...
BACKGROUNDThe possibility of generating large RNA-sequencing datasets has led to development of various reference-based and de novo transcriptome assemblers...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Algorithms
Alternative splicing
Animals
Arabidopsis - genetics
Assembly
Caenorhabditis elegans - genetics
Computer applications
Datasets
Gene expression
Gene sequencing
Genes
Genomes
Humans
Isoforms
Mice
Quality assessment
Quality control
Ribonucleic acid
RNA
RNA-Seq
Splicing
Technical Note
Transcriptome
Transcriptomes
Transcriptomics
Zea mays - genetics
SummonAdditionalLinks – databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3rS8MwED9EQfZFfFtfRBC_SLVt-sgEkSEOEZThHPitNG0yB9rqVkX9671b0zFf3wpJ2nLJ3f2O_O4OYF9GLsF0tH7K17YvHWmLMNR2wLXIhK9lU1Du8PVNeNnzr-6D-xmo2x0ZAY7-DO2on1Rv-Hj0_vJxhgp_aoohHfcH_cT4C3z-dB0M4ec89IxE8bo2cH9smSPiznGTO_P30gbMc4wa_JAo0NOu6hf-_EmjnPJL7UVYMICStaoTsAQzKl-GHZOOwA6YyTci-TOjyCvQwTXdTitToxOWsEyxvHgrWEl-a2xFiifFEFWrJ_mohizJMzYoR2zqspuVBbu9adld9cKIZLoKvfbF3fmlbXor2CliptIWqfAQWKcIv9A7Uf1wmalMeo4OmomOEKU4PHETqT2qBhSimrvS55mWKlOpmzb5GszmRa42gAVCc55SYOI5foQRFDUSTQKck0aRqwMLDmsxxs9VCY24uvrm8ZT840r-FmzXko7r0xDjPwYCjZHnWrA3GUZFoNuNJFfFK87B2I-a1bjCgvVqYyafq3fUgujblk0mUJHt7yP54GFcbJt4b9wTm_--cwsaCKIM72wbZsvhq9pBoFLK3fHp-wK6V-m3
  priority: 102
  providerName: Scholars Portal
Title rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data
URI https://www.ncbi.nlm.nih.gov/pubmed/31494669
https://www.proquest.com/docview/2715807321
https://search.proquest.com/docview/2287513318
https://pubmed.ncbi.nlm.nih.gov/PMC6736328
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7UkxfxbX0RQbxI3bbpI-ttEUWElcUHeCtNmuiC26pbPXjwtzvTpkvVm5dQSELDZJL5hnwzA3AoE59gOt5-OjRuKD3pijg2bsSNyEVoZF9Q7PDwOr68D68eooc5iNpYmJq0r-T4pHienBTjp5pb-TJRvZYn1hsNz4iLxAPRm4d5NL8dF72-fhMiyHEbIIMOe-9x_JhZe4Lfn75H5d84ugZhTDznrj36AzJ_cyU7xudiGZYsamSDZnUrMKeLVdizMQfsiNmgIhIys6d1DUY453Y0yPX0lGUs16woP0pWkXGqr4pyohlCZz2Rz_qNZUXOxtWUdV60WVWym-uBe6tfGTFJ1-H-4vzu7NK1BRRchcCocoUSAaJnhRgLTRAlCZe5zmXgmaifmQShiMczP5MmoJQ_MZ5lX4Y8N1LnWvmqzzdgoSgLvQUsEoZzRd5H4IUJuklULTSLcIxKEt9EDhy3YkxfmjwZafO-zdOO_NNG_g7stpJO7ZmZprjGSOCNE_gOHMy6UdvpCSMrdPmOY9DBo4o0vnBgs9mY2e_aHXUg-bFlswGUSftnDypYnVHbKtT2v2fuwCIiKUs-24WF6u1d7yFaqeR-7eVjOwwFtV_n-7W-fgPWcu_4
link.rule.ids 230,314,727,780,784,864,885,24318,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOJRLBfRBeNWVql6qsHEcJ15uKwRaKLtaFZC4RbFjb1diE2ADB34948RZhXLrLZJtxRqPZ76Rv5kB-CETamE6Wj8dGT-SgfRFHBufMyNyERnZFzZ3eDSOhzfRxS2_XQHe5sLUpH0lZ0fF3fyomP2tuZX3c9VreWK9yejEcpFYKHqrsM5Z0qedIL02wImlyDGXIoMhe286m2bOo-D3Cw1sAziGwUEUW6Zz1yO9g5n_siU77udsEz463EgGzf62YEUX23Dgsg7IT-LSiqyYibuvn2CCa64mg1wvjklGck2K8rkklXVPtbEo55ogeNZzeacfSVbkZFYtSOdNm1Ql-TMe-Ff6gVgu6We4OTu9Phn6roWCrxAaVb5QIkT8rBBloROyZcJlrnMZBob3M5MgGAlYRjNpQlv0J8bbTGXEciN1rhVVffYF1oqy0DtAuDCMKRt_hEGUYKBk-4VmHOeoJKGGe_CrFWN631TKSJsXbpZ25J828vdgv5V06m7NIsU9coE2J6QefF8Oo77bR4ys0OUTzsEQz_akocKDr83BLH_XnqgHyZsjW06wtbTfjqCK1TW1nUrt_vfKb_BheD26TC_Px7_3YANxlaOi7cNa9fikDxC7VPKw1tRXr5fwTQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKqFeEG1pCU9XQlxQNg_n4e1tRVlBC6sVD2lvUfyCSGyysIEDv77jxLsK7Y1bJNuKNR7PfCN_MwNwyNPAwHS0firSbsR97rIk0W5MNZMs0rzPTO7w5Sg5u41-T-JJp9VXQ9oXvOiVD9NeWdw33MrZVHgLnpg3vjwxXCQaMm8mtfcBPsYUlawTqDdGODU0OWrTZDBs9-6Ku9x6Ffx-DXzTBI5igBAlhu3c9Ur_Qc1_GZMdFzTcgHWLHcmg3eNnWFHlF9izmQfkiNjUIiNqYu_sVxjjmuvxQKr5T5ITqUhZvVSkNi6qMRjVVBEE0GrKH9QTyUtJinpOOu_apK7I1WjgXqtHYvikm3A7PL05OXNtGwVXIDyqXSZYiBhaINJCR2RKhXOpJA99HfdznSIg8Wke5FyHpvBPgjc64BGVmiupRCD69BusllWptoDETFMqTAwS-lGKwZLpGZrHOEekaaBjB44XYsxmbbWMrH3lpllH_lkrfwd2F5LO7M2ZZ7jHmKHdCQMHfiyHUefNQ0ZequoZ52CYZ_rSBMyB7-3BLH-3OFEH0jdHtpxg6mm_HUE1a-pqW7XafvfKA1gb_xpmF-ejPzvwCaGVZaPtwmr99Kz2EL7UfL9R1L8dbvFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=rnaSPAdes%3A+a+de+novo+transcriptome+assembler+and+its+application+to+RNA-Seq+data&rft.jtitle=Gigascience&rft.au=Bushmanova%2C+Elena&rft.au=Antipov%2C+Dmitry&rft.au=Lapidus%2C+Alla&rft.au=Prjibelski%2C+Andrey+D&rft.date=2019-09-01&rft.eissn=2047-217X&rft.volume=8&rft.issue=9&rft_id=info:doi/10.1093%2Fgigascience%2Fgiz100&rft_id=info%3Apmid%2F31494669&rft.externalDocID=31494669
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-217X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-217X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-217X&client=summon