A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein
The unprecedented pandemic of pneumonia caused by a novel coronavirus, SARS-CoV-2, in China and beyond has had major public health impacts on a global scale [1, 2]. Although bats are regarded as the most likely natural hosts for SARS-CoV-2 [3], the origins of the virus remain unclear. Here, we repor...
Saved in:
Published in | Current biology Vol. 30; no. 11; pp. 2196 - 2203.e3 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
08.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The unprecedented pandemic of pneumonia caused by a novel coronavirus, SARS-CoV-2, in China and beyond has had major public health impacts on a global scale [1, 2]. Although bats are regarded as the most likely natural hosts for SARS-CoV-2 [3], the origins of the virus remain unclear. Here, we report a novel bat-derived coronavirus, denoted RmYN02, identified from a metagenomic analysis of samples from 227 bats collected from Yunnan Province in China between May and October 2019. Notably, RmYN02 shares 93.3% nucleotide identity with SARS-CoV-2 at the scale of the complete virus genome and 97.2% identity in the 1ab gene, in which it is the closest relative of SARS-CoV-2 reported to date. In contrast, RmYN02 showed low sequence identity (61.3%) to SARS-CoV-2 in the receptor-binding domain (RBD) and might not bind to angiotensin-converting enzyme 2 (ACE2). Critically, and in a similar manner to SARS-CoV-2, RmYN02 was characterized by the insertion of multiple amino acids at the junction site of the S1 and S2 subunits of the spike (S) protein. This provides strong evidence that such insertion events can occur naturally in animal betacoronaviruses.
•Metagenomic analysis identified a novel coronavirus, RmYN02, from R. malayanus•RmYN02 was the closest relative of SARS-CoV-2 in most of the virus genome•Two loop deletions in RBD may reduce the binding of RmYN02 with ACE2•RmYN02 contains an insertion at the S1/S2 cleavage site in the spike protein
Zhou et al. report a bat-derived coronavirus, RmYN02, which is the closest relative of SARS-CoV-2 in most of the virus genome reported to date. RmYN02 contains an insertion at the S1/S2 cleavage site in the spike protein in a similar manner to SARS-CoV-2. This suggests that such insertion events can occur naturally in animal betacoronaviruses. |
---|---|
AbstractList | The unprecedented pandemic of pneumonia caused by a novel coronavirus, SARS-CoV-2, in China and beyond has had major public health impacts on a global scale [1, 2]. Although bats are regarded as the most likely natural hosts for SARS-CoV-2 [3], the origins of the virus remain unclear. Here, we report a novel bat-derived coronavirus, denoted RmYN02, identified from a metagenomic analysis of samples from 227 bats collected from Yunnan Province in China between May and October 2019. Notably, RmYN02 shares 93.3% nucleotide identity with SARS-CoV-2 at the scale of the complete virus genome and 97.2% identity in the 1ab gene, in which it is the closest relative of SARS-CoV-2 reported to date. In contrast, RmYN02 showed low sequence identity (61.3%) to SARS-CoV-2 in the receptor-binding domain (RBD) and might not bind to angiotensin-converting enzyme 2 (ACE2). Critically, and in a similar manner to SARS-CoV-2, RmYN02 was characterized by the insertion of multiple amino acids at the junction site of the S1 and S2 subunits of the spike (S) protein. This provides strong evidence that such insertion events can occur naturally in animal betacoronaviruses.The unprecedented pandemic of pneumonia caused by a novel coronavirus, SARS-CoV-2, in China and beyond has had major public health impacts on a global scale [1, 2]. Although bats are regarded as the most likely natural hosts for SARS-CoV-2 [3], the origins of the virus remain unclear. Here, we report a novel bat-derived coronavirus, denoted RmYN02, identified from a metagenomic analysis of samples from 227 bats collected from Yunnan Province in China between May and October 2019. Notably, RmYN02 shares 93.3% nucleotide identity with SARS-CoV-2 at the scale of the complete virus genome and 97.2% identity in the 1ab gene, in which it is the closest relative of SARS-CoV-2 reported to date. In contrast, RmYN02 showed low sequence identity (61.3%) to SARS-CoV-2 in the receptor-binding domain (RBD) and might not bind to angiotensin-converting enzyme 2 (ACE2). Critically, and in a similar manner to SARS-CoV-2, RmYN02 was characterized by the insertion of multiple amino acids at the junction site of the S1 and S2 subunits of the spike (S) protein. This provides strong evidence that such insertion events can occur naturally in animal betacoronaviruses. The unprecedented pandemic of pneumonia caused by a novel coronavirus, SARS-CoV-2, in China and beyond has had major public health impacts on a global scale [1, 2]. Although bats are regarded as the most likely natural hosts for SARS-CoV-2 [3], the origins of the virus remain unclear. Here, we report a novel bat-derived coronavirus, denoted RmYN02, identified from a metagenomic analysis of samples from 227 bats collected from Yunnan Province in China between May and October 2019. Notably, RmYN02 shares 93.3% nucleotide identity with SARS-CoV-2 at the scale of the complete virus genome and 97.2% identity in the 1ab gene, in which it is the closest relative of SARS-CoV-2 reported to date. In contrast, RmYN02 showed low sequence identity (61.3%) to SARS-CoV-2 in the receptor-binding domain (RBD) and might not bind to angiotensin-converting enzyme 2 (ACE2). Critically, and in a similar manner to SARS-CoV-2, RmYN02 was characterized by the insertion of multiple amino acids at the junction site of the S1 and S2 subunits of the spike (S) protein. This provides strong evidence that such insertion events can occur naturally in animal betacoronaviruses. •Metagenomic analysis identified a novel coronavirus, RmYN02, from R. malayanus•RmYN02 was the closest relative of SARS-CoV-2 in most of the virus genome•Two loop deletions in RBD may reduce the binding of RmYN02 with ACE2•RmYN02 contains an insertion at the S1/S2 cleavage site in the spike protein Zhou et al. report a bat-derived coronavirus, RmYN02, which is the closest relative of SARS-CoV-2 in most of the virus genome reported to date. RmYN02 contains an insertion at the S1/S2 cleavage site in the spike protein in a similar manner to SARS-CoV-2. This suggests that such insertion events can occur naturally in animal betacoronaviruses. The unprecedented pandemic of pneumonia caused by a novel coronavirus, SARS-CoV-2, in China and beyond has had major public health impacts on a global scale [1, 2]. Although bats are regarded as the most likely natural hosts for SARS-CoV-2 [3], the origins of the virus remain unclear. Here, we report a novel bat-derived coronavirus, denoted RmYN02, identified from a metagenomic analysis of samples from 227 bats collected from Yunnan Province in China between May and October 2019. Notably, RmYN02 shares 93.3% nucleotide identity with SARS-CoV-2 at the scale of the complete virus genome and 97.2% identity in the 1ab gene, in which it is the closest relative of SARS-CoV-2 reported to date. In contrast, RmYN02 showed low sequence identity (61.3%) to SARS-CoV-2 in the receptor-binding domain (RBD) and might not bind to angiotensin-converting enzyme 2 (ACE2). Critically, and in a similar manner to SARS-CoV-2, RmYN02 was characterized by the insertion of multiple amino acids at the junction site of the S1 and S2 subunits of the spike (S) protein. This provides strong evidence that such insertion events can occur naturally in animal betacoronaviruses. The unprecedented pandemic of pneumonia caused by a novel coronavirus, SARS-CoV-2, in China and beyond has had major public health impacts on a global scale [ 1 , 2 ]. Although bats are regarded as the most likely natural hosts for SARS-CoV-2 [ 3 ], the origins of the virus remain unclear. Here, we report a novel bat-derived coronavirus, denoted RmYN02, identified from a metagenomic analysis of samples from 227 bats collected from Yunnan Province in China between May and October 2019. Notably, RmYN02 shares 93.3% nucleotide identity with SARS-CoV-2 at the scale of the complete virus genome and 97.2% identity in the 1ab gene, in which it is the closest relative of SARS-CoV-2 reported to date. In contrast, RmYN02 showed low sequence identity (61.3%) to SARS-CoV-2 in the receptor-binding domain (RBD) and might not bind to angiotensin-converting enzyme 2 (ACE2). Critically, and in a similar manner to SARS-CoV-2, RmYN02 was characterized by the insertion of multiple amino acids at the junction site of the S1 and S2 subunits of the spike (S) protein. This provides strong evidence that such insertion events can occur naturally in animal betacoronaviruses. • Metagenomic analysis identified a novel coronavirus, RmYN02, from R. malayanus • RmYN02 was the closest relative of SARS-CoV-2 in most of the virus genome • Two loop deletions in RBD may reduce the binding of RmYN02 with ACE2 • RmYN02 contains an insertion at the S1/S2 cleavage site in the spike protein Zhou et al. report a bat-derived coronavirus, RmYN02, which is the closest relative of SARS-CoV-2 in most of the virus genome reported to date. RmYN02 contains an insertion at the S1/S2 cleavage site in the spike protein in a similar manner to SARS-CoV-2. This suggests that such insertion events can occur naturally in animal betacoronaviruses. |
Author | Hu, Tao Wang, Peihan Chen, Xing Li, Juan Holmes, Edward C. Song, Hao Bi, Yuhai Shi, Weifeng Liu, Yanran Yang, Jing Liu, Di Hughes, Alice C. Zhou, Hong |
Author_xml | – sequence: 1 givenname: Hong surname: Zhou fullname: Zhou, Hong organization: Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China – sequence: 2 givenname: Xing surname: Chen fullname: Chen, Xing organization: Landscape Ecology Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China – sequence: 3 givenname: Tao surname: Hu fullname: Hu, Tao organization: Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China – sequence: 4 givenname: Juan surname: Li fullname: Li, Juan organization: Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China – sequence: 5 givenname: Hao surname: Song fullname: Song, Hao organization: Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China – sequence: 6 givenname: Yanran surname: Liu fullname: Liu, Yanran organization: Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China – sequence: 7 givenname: Peihan surname: Wang fullname: Wang, Peihan organization: Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China – sequence: 8 givenname: Di surname: Liu fullname: Liu, Di organization: Computational Virology Group, Center for Bacteria and Virus Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China – sequence: 9 givenname: Jing surname: Yang fullname: Yang, Jing organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China – sequence: 10 givenname: Edward C. surname: Holmes fullname: Holmes, Edward C. organization: Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia – sequence: 11 givenname: Alice C. surname: Hughes fullname: Hughes, Alice C. email: ach_conservation2@hotmail.com organization: Landscape Ecology Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China – sequence: 12 givenname: Yuhai surname: Bi fullname: Bi, Yuhai email: beeyh@im.ac.cn organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China – sequence: 13 givenname: Weifeng surname: Shi fullname: Shi, Weifeng email: shiwf@ioz.ac.cn organization: Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, and Shandong Academy of Medical Sciences, Taian 271000, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32416074$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1v1DAUtFAR3RZ-ABfkI5ekthPHiZCQloiPSlVBXeBq2c7b1kvWXmwnUo_95_VqSwUcKh8s-83MG82coCPnHSD0mpKSEtqcbUoz6ZIRRkrCS8KqZ2hBW9EVpK75EVqQriFF1zJ2jE5i3BBCWds1L9BxxWraEFEv0N0SX_oZRvxBJdz74J2abZgi7kcfYbzFVzCqBANOHq-WV6ui9z8LlpEuKesivlRpCmrE5y5CSNbnryyUbgCv6NkqA0dQs7rOT5sA-_VhtLO_AH8LPoF1L9HztRojvHq4T9GPTx-_91-Ki6-fz_vlRWF4zVMhsl9OeaOrQXPTCaE7PTDTKKE05RpqrQctxEC7dcebqlG07tbA2hYAmDFNdYreH3R3k97CYMClbFzugt2qcCu9svLfibM38trPUjBKGyaywNsHgeB_TxCT3NpoYByVAz9FyWqSD2OsztA3f-96XPIn9wygB4AJPsYA60cIJXLfrdzI3K3cdysJl7nbzBH_cYxNap95tmvHJ5nvDkzI-c4WgozGgjMw2AAmycHbJ9j3WUe-ZA |
CitedBy_id | crossref_primary_10_1371_journal_pone_0269105 crossref_primary_10_1038_s41419_020_02995_9 crossref_primary_10_3390_microorganisms9122518 crossref_primary_10_3390_v13101908 crossref_primary_10_1002_bies_202000240 crossref_primary_10_1016_j_cell_2021_06_008 crossref_primary_10_1016_j_cell_2020_08_012 crossref_primary_10_1038_s41579_020_00468_6 crossref_primary_10_1017_sus_2022_18 crossref_primary_10_1099_jgv_0_001584 crossref_primary_10_1111_1751_7915_13638 crossref_primary_10_1128_jvi_01100_24 crossref_primary_10_1128_mBio_01006_21 crossref_primary_10_3389_fpubh_2021_717941 crossref_primary_10_3390_v15051187 crossref_primary_10_1016_j_xcrm_2020_100126 crossref_primary_10_3390_ijms23169115 crossref_primary_10_3390_ani13101646 crossref_primary_10_3389_fmicb_2021_614494 crossref_primary_10_3390_vaccines8040587 crossref_primary_10_1515_mr_2021_0035 crossref_primary_10_1016_j_cell_2020_08_021 crossref_primary_10_1111_geb_13304 crossref_primary_10_1186_s12920_022_01208_w crossref_primary_10_1021_acs_jproteome_0c00717 crossref_primary_10_1080_07391102_2023_2250479 crossref_primary_10_1007_s11010_022_04356_w crossref_primary_10_1371_journal_pone_0309557 crossref_primary_10_15347_wjm_2022_005 crossref_primary_10_1111_mec_17645 crossref_primary_10_2174_1874467214666210906125959 crossref_primary_10_1016_j_biocon_2022_109591 crossref_primary_10_1038_s41467_021_23166_0 crossref_primary_10_3390_biom11030398 crossref_primary_10_1080_02648725_2022_2115682 crossref_primary_10_1142_S0218348X21500316 crossref_primary_10_3390_v15020578 crossref_primary_10_1016_j_fsigen_2021_102551 crossref_primary_10_1016_j_jgg_2023_05_002 crossref_primary_10_1016_j_virusres_2021_198551 crossref_primary_10_1093_nsr_nwac213 crossref_primary_10_1080_07391102_2021_1958061 crossref_primary_10_1111_tbed_14478 crossref_primary_10_1038_s42003_023_05436_3 crossref_primary_10_3390_pathogens12070926 crossref_primary_10_3389_fvets_2021_719834 crossref_primary_10_1016_j_micpath_2025_107328 crossref_primary_10_1097_IM9_0000000000000051 crossref_primary_10_3390_v13071192 crossref_primary_10_1093_abt_tbaa020 crossref_primary_10_1007_s00705_021_05258_w crossref_primary_10_3389_fmicb_2021_682603 crossref_primary_10_2174_1871526521666210913110500 crossref_primary_10_1111_bph_15206 crossref_primary_10_32415_jscientia_2021_7_6_28_70 crossref_primary_10_1186_s13104_020_05242_8 crossref_primary_10_1093_gbe_evac161 crossref_primary_10_1016_j_jcv_2020_104594 crossref_primary_10_1016_j_intimp_2020_106980 crossref_primary_10_3389_fimmu_2022_952229 crossref_primary_10_1080_22221751_2022_2151383 crossref_primary_10_1111_tbed_13926 crossref_primary_10_1093_femsre_fuaa057 crossref_primary_10_1080_22221751_2021_1956373 crossref_primary_10_3389_fmicb_2021_675528 crossref_primary_10_1016_j_jare_2021_09_012 crossref_primary_10_1080_08830185_2020_1840567 crossref_primary_10_1016_j_heha_2022_100006 crossref_primary_10_1016_j_meegid_2020_104451 crossref_primary_10_1126_science_abe3354 crossref_primary_10_3390_ijms22116150 crossref_primary_10_1186_s12863_022_01044_y crossref_primary_10_2993_0278_0771_41_1_35 crossref_primary_10_1016_j_cell_2020_09_032 crossref_primary_10_1016_j_virusres_2022_198712 crossref_primary_10_3390_v13010109 crossref_primary_10_1016_j_gene_2022_146641 crossref_primary_10_3366_legal_2023_0046 crossref_primary_10_3390_v14030600 crossref_primary_10_1111_cla_12454 crossref_primary_10_1016_j_biocon_2023_109944 crossref_primary_10_7759_cureus_38067 crossref_primary_10_1016_j_envres_2021_112173 crossref_primary_10_7717_peerj_12681 crossref_primary_10_1051_medsci_2020123 crossref_primary_10_2222_jsv_70_155 crossref_primary_10_1016_j_onehlt_2024_100923 crossref_primary_10_1007_s10311_021_01211_0 crossref_primary_10_1016_j_isci_2020_101212 crossref_primary_10_1038_s41586_021_04188_6 crossref_primary_10_1016_j_meegid_2020_104384 crossref_primary_10_3390_v15071556 crossref_primary_10_1016_j_xinn_2022_100306 crossref_primary_10_1038_s41598_021_94011_z crossref_primary_10_1016_j_jped_2020_09_002 crossref_primary_10_1016_j_scitotenv_2021_149562 crossref_primary_10_2217_fvl_2021_0277 crossref_primary_10_3389_fmicb_2022_1037455 crossref_primary_10_1038_s41541_024_00997_8 crossref_primary_10_1016_j_bbrc_2020_10_028 crossref_primary_10_1016_j_watres_2021_117002 crossref_primary_10_15252_embj_2022111737 crossref_primary_10_3390_microorganisms8111678 crossref_primary_10_36233_0507_4088_140 crossref_primary_10_1038_s41586_020_03128_0 crossref_primary_10_1039_D1MD00202C crossref_primary_10_1021_acsomega_3c00944 crossref_primary_10_1111_mam_12225 crossref_primary_10_21061_spectra_v8i2_179 crossref_primary_10_1128_spectrum_01789_21 crossref_primary_10_1016_j_coviro_2021_04_013 crossref_primary_10_1021_acsomega_0c05635 crossref_primary_10_1111_brv_12774 crossref_primary_10_1002_jmv_27580 crossref_primary_10_1371_journal_ppat_1012704 crossref_primary_10_1038_s41581_020_00357_4 crossref_primary_10_1016_j_jobb_2021_11_001 crossref_primary_10_1007_s00216_021_03680_2 crossref_primary_10_1016_j_tree_2020_10_001 crossref_primary_10_3389_fcimb_2022_869889 crossref_primary_10_1093_bib_bbaa386 crossref_primary_10_1186_s40792_020_01054_x crossref_primary_10_1093_nsr_nwac287 crossref_primary_10_1016_j_omtm_2023_06_009 crossref_primary_10_1093_bib_bbab107 crossref_primary_10_1080_21505594_2021_1920741 crossref_primary_10_1002_2211_5463_13626 crossref_primary_10_1016_j_cell_2020_10_043 crossref_primary_10_1557_s43577_021_00167_4 crossref_primary_10_3389_fmicb_2023_1199561 crossref_primary_10_3389_fmicb_2020_580137 crossref_primary_10_1038_s41421_020_00210_9 crossref_primary_10_3390_biomed3020025 crossref_primary_10_1111_zph_12833 crossref_primary_10_1002_ajhb_23497 crossref_primary_10_3390_biomedicines11020643 crossref_primary_10_3390_v13030494 crossref_primary_10_1007_s13337_023_00827_w crossref_primary_10_3390_v12121413 crossref_primary_10_3390_v13091847 crossref_primary_10_1093_molbev_msab327 crossref_primary_10_1073_pnas_2008281117 crossref_primary_10_3390_v14020440 crossref_primary_10_2174_2666958702101010139 crossref_primary_10_3390_microorganisms10091875 crossref_primary_10_1038_s41579_020_00459_7 crossref_primary_10_1002_bies_202100194 crossref_primary_10_1186_s43094_021_00259_7 crossref_primary_10_1038_s41467_022_31749_8 crossref_primary_10_1007_s11356_022_22333_0 crossref_primary_10_1093_bib_bbab456 crossref_primary_10_1016_j_cell_2021_09_015 crossref_primary_10_1038_s41598_023_50952_1 crossref_primary_10_1186_s13073_021_00943_6 crossref_primary_10_1016_j_jbc_2021_100902 crossref_primary_10_1038_s41467_023_39835_1 crossref_primary_10_1021_acs_chemrev_1c00965 crossref_primary_10_1016_j_cell_2021_05_031 crossref_primary_10_1111_1348_0421_12945 crossref_primary_10_1007_s11427_020_1847_7 crossref_primary_10_1016_j_xinn_2022_100221 crossref_primary_10_1016_j_celrep_2023_112307 crossref_primary_10_1126_science_abf6840 crossref_primary_10_1071_ZO20046 crossref_primary_10_1093_bib_bbac069 crossref_primary_10_3390_pathogens10030304 crossref_primary_10_1016_j_cell_2021_08_017 crossref_primary_10_1038_s41580_021_00418_x crossref_primary_10_1016_j_str_2021_04_005 crossref_primary_10_1038_s41385_020_00340_z crossref_primary_10_1002_jmv_27132 crossref_primary_10_1016_j_onehlt_2021_100282 crossref_primary_10_1038_s41564_020_0771_4 crossref_primary_10_1111_febs_15442 crossref_primary_10_1007_s10441_021_09425_z crossref_primary_10_1016_S1773_035X_20_30314_2 crossref_primary_10_3390_microorganisms9040868 crossref_primary_10_1002_bies_202100015 crossref_primary_10_3390_microorganisms9020433 crossref_primary_10_1016_j_chom_2020_11_007 crossref_primary_10_1093_ve_veac040 crossref_primary_10_52547_JoMMID_9_1_1 crossref_primary_10_1073_pnas_2020216118 crossref_primary_10_1111_1751_7915_13800 crossref_primary_10_15252_embr_202154341 crossref_primary_10_1038_s41421_023_00581_9 crossref_primary_10_3390_v13061073 crossref_primary_10_1039_D0RA08901J crossref_primary_10_1016_j_nmni_2021_100918 crossref_primary_10_3389_fmicb_2021_663815 crossref_primary_10_1128_jvi_00608_22 crossref_primary_10_1002_vms3_70218 crossref_primary_10_3390_microorganisms9122578 crossref_primary_10_1098_rspb_2021_1651 crossref_primary_10_1128_JVI_01751_20 crossref_primary_10_3390_v13112188 crossref_primary_10_1128_mbio_02566_22 crossref_primary_10_1080_22221751_2021_1964925 crossref_primary_10_4049_jimmunol_2300378 crossref_primary_10_1007_s41247_020_00079_y crossref_primary_10_1128_jvi_00958_22 crossref_primary_10_1111_mam_12261 crossref_primary_10_1186_s12866_021_02158_6 crossref_primary_10_1016_j_nexres_2025_100178 crossref_primary_10_1016_j_heliyon_2024_e31556 crossref_primary_10_1038_s41598_022_17573_6 crossref_primary_10_1093_ve_veae005 crossref_primary_10_3389_fimmu_2020_571481 crossref_primary_10_3390_mi12121464 crossref_primary_10_3390_microorganisms10091815 crossref_primary_10_1093_oxfimm_iqac003 crossref_primary_10_3390_v15040914 crossref_primary_10_3390_cells9112343 crossref_primary_10_1055_s_0042_1759564 crossref_primary_10_1111_aje_12995 crossref_primary_10_3389_fpubh_2022_786060 crossref_primary_10_1007_s10311_020_01151_1 crossref_primary_10_1016_j_envc_2021_100140 crossref_primary_10_1126_sciadv_adr8772 crossref_primary_10_1016_j_animal_2021_100241 crossref_primary_10_3389_fevo_2022_854509 crossref_primary_10_1016_j_virs_2023_04_009 crossref_primary_10_1093_molbev_msab246 crossref_primary_10_3390_v14081793 crossref_primary_10_3389_fmicb_2021_649314 crossref_primary_10_4103_mamcjms_mamcjms_75_20 crossref_primary_10_1146_annurev_virology_100120_015057 crossref_primary_10_1002_ece3_70614 crossref_primary_10_1128_AEM_00859_21 crossref_primary_10_3390_ijms22010080 crossref_primary_10_1038_d41586_020_01989_z crossref_primary_10_1051_medsci_2022079 crossref_primary_10_1590_1678_4685_gmb_2020_0355 crossref_primary_10_1071_MA21003 crossref_primary_10_1042_ETLS20200097 crossref_primary_10_3389_fmed_2021_656926 crossref_primary_10_1038_s41586_021_03807_6 crossref_primary_10_3389_fmicb_2021_621719 crossref_primary_10_3389_fpubh_2022_826116 crossref_primary_10_1016_j_virusres_2022_198674 crossref_primary_10_1080_20477724_2020_1833161 crossref_primary_10_1093_molbev_msaa281 crossref_primary_10_1111_tbed_14732 crossref_primary_10_3390_v15030790 crossref_primary_10_1002_rmv_2222 crossref_primary_10_1146_annurev_virology_093022_013037 crossref_primary_10_2174_1871526522666220420093029 crossref_primary_10_1038_s41467_020_17687_3 crossref_primary_10_15252_embj_2020105938 crossref_primary_10_1159_000515341 crossref_primary_10_1002_jmv_28147 crossref_primary_10_1016_j_ebiom_2024_105181 crossref_primary_10_1016_j_onehlt_2021_100247 crossref_primary_10_1016_j_jiph_2021_07_021 crossref_primary_10_1038_s41467_021_21240_1 crossref_primary_10_1261_rna_078972_121 crossref_primary_10_1038_s41467_024_55384_7 crossref_primary_10_3389_fcimb_2021_632490 crossref_primary_10_1002_smtd_202000792 crossref_primary_10_3390_life11030219 crossref_primary_10_3390_v13030425 crossref_primary_10_1016_j_jobb_2021_06_002 crossref_primary_10_1038_s41598_021_91264_6 crossref_primary_10_1111_tbed_13856 crossref_primary_10_1016_j_genrep_2022_101505 crossref_primary_10_17537_2022_17_289 crossref_primary_10_3390_v14010104 crossref_primary_10_7717_peerj_9648 crossref_primary_10_1016_j_coviro_2021_12_008 crossref_primary_10_1128_JVI_01583_20 crossref_primary_10_1186_s12967_020_02534_2 crossref_primary_10_1093_ilar_ilab031 crossref_primary_10_1155_2022_7754329 crossref_primary_10_1038_s41467_022_31860_w crossref_primary_10_15252_embj_2021107786 crossref_primary_10_3389_fmed_2021_702066 crossref_primary_10_1016_j_meegid_2021_104812 crossref_primary_10_3389_fpubh_2021_636679 crossref_primary_10_1016_j_bbrep_2021_100907 crossref_primary_10_1016_j_biochi_2021_05_001 crossref_primary_10_1016_j_cell_2021_07_007 crossref_primary_10_1016_j_celrep_2021_108916 crossref_primary_10_5802_crbiol_29 crossref_primary_10_1371_journal_pcbi_1011539 crossref_primary_10_1007_s00705_023_05956_7 crossref_primary_10_1038_s41564_023_01476_x crossref_primary_10_1128_mBio_01930_20 crossref_primary_10_3390_v14010113 crossref_primary_10_1007_s12274_021_3832_y crossref_primary_10_1016_j_celrep_2020_108185 crossref_primary_10_1093_biosci_biab122 crossref_primary_10_1126_sciadv_ade5085 crossref_primary_10_1093_ve_vead002 crossref_primary_10_1007_s10393_022_01602_x crossref_primary_10_1016_j_clim_2022_109093 crossref_primary_10_1093_ve_veaa098 crossref_primary_10_3390_v13091790 crossref_primary_10_1038_s41592_021_01318_w crossref_primary_10_1186_s44149_021_00005_9 crossref_primary_10_1007_s00705_021_05357_8 crossref_primary_10_1016_j_micpath_2021_104809 crossref_primary_10_1128_spectrum_03426_22 crossref_primary_10_30802_AALAS_CM_21_000027 crossref_primary_10_1038_s12276_021_00658_z crossref_primary_10_1038_s41597_023_02558_5 crossref_primary_10_1128_JVI_01713_20 crossref_primary_10_3390_v13050936 crossref_primary_10_3390_v14010005 crossref_primary_10_1016_j_celrep_2022_111831 crossref_primary_10_1146_annurev_animal_020420_025011 crossref_primary_10_1126_sciadv_add7221 crossref_primary_10_3390_pathogens12050713 crossref_primary_10_3390_v13050938 crossref_primary_10_1128_spectrum_00449_22 crossref_primary_10_1007_s10123_022_00239_8 crossref_primary_10_1016_j_ijbiomac_2021_02_212 crossref_primary_10_1159_000514225 crossref_primary_10_1093_gbe_evaa229 crossref_primary_10_1128_jvi_01719_22 crossref_primary_10_1016_j_gpb_2020_07_003 crossref_primary_10_1016_j_tree_2020_12_002 crossref_primary_10_1128_JVI_00940_20 crossref_primary_10_1177_0024363920942431 crossref_primary_10_1002_jmv_27519 crossref_primary_10_15252_embr_202154322 crossref_primary_10_1038_s41467_024_49693_0 crossref_primary_10_1111_acv_12636 crossref_primary_10_1177_1176934320954870 crossref_primary_10_1007_s11684_024_1066_6 crossref_primary_10_1371_journal_ppat_1010106 crossref_primary_10_1038_s41586_023_06043_2 crossref_primary_10_1093_cid_ciaa953 crossref_primary_10_3390_pathogens9070529 |
Cites_doi | 10.1038/s41586-020-2169-0 10.1093/bioinformatics/bty202 10.1016/j.bbrc.2004.09.106 10.1128/JVI.73.1.152-160.1999 10.1016/j.tim.2016.03.003 10.1038/s41564-020-0695-z 10.1093/bioinformatics/bty121 10.1126/science.abb2507 10.1128/JVI.00127-20 10.1093/bioinformatics/btu033 10.1056/NEJMoa2001017 10.1093/bioinformatics/bty560 10.1074/jbc.M600697200 10.1371/journal.ppat.1006698 10.1016/j.jinf.2017.04.001 10.1038/s41586-020-2012-7 10.1038/s41591-020-0820-9 10.1016/j.cub.2020.03.022 10.1016/S0140-6736(20)30251-8 10.1038/nmeth.1923 10.1093/nar/gky427 10.1038/nbt.1883 10.1128/JVI.03181-13 10.1038/ismej.2015.138 10.1093/bioinformatics/btg180 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. 2020 Elsevier Inc. 2020 Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. – notice: 2020 Elsevier Inc. 2020 Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cub.2020.05.023 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0445 |
EndPage | 2203.e3 |
ExternalDocumentID | PMC7211627 32416074 10_1016_j_cub_2020_05_023 S096098222030662X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AGUBO AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID IHE IXB J1W JIG LX5 M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SCP SDG SES SSZ TR2 WQ6 ZA5 29F 5VS AAEDT AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP ASPBG AVWKF CAG CITATION COF EJD FEDTE FGOYB G-2 HVGLF HZ~ OZT R2- RIG SEW UHS XIH XPP Y6R ZGI CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c545t-76075156b3db5c977b9bd2c6a7ab15be4bbdb77d19f95636a149fe288eee2cc63 |
IEDL.DBID | IXB |
ISSN | 0960-9822 1879-0445 |
IngestDate | Thu Aug 21 18:23:13 EDT 2025 Fri Jul 11 15:45:12 EDT 2025 Thu Apr 03 07:00:13 EDT 2025 Tue Jul 01 01:57:12 EDT 2025 Thu Apr 24 22:51:32 EDT 2025 Fri Feb 23 02:50:22 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | COVID-19 SARS-CoV-2 bat coronavirus S1/S2 cleavage site spike protein |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c545t-76075156b3db5c977b9bd2c6a7ab15be4bbdb77d19f95636a149fe288eee2cc63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7211627 |
PMID | 32416074 |
PQID | 2404042224 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7211627 proquest_miscellaneous_2404042224 pubmed_primary_32416074 crossref_primary_10_1016_j_cub_2020_05_023 crossref_citationtrail_10_1016_j_cub_2020_05_023 elsevier_sciencedirect_doi_10_1016_j_cub_2020_05_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-08 |
PublicationDateYYYYMMDD | 2020-06-08 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current biology |
PublicationTitleAlternate | Curr Biol |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zhang, Wu, Zhang (bib8) 2020; 30 He, Zhou, Liu, Kou, Li, Farzan, Jiang (bib16) 2004; 324 Li, Duan, Zhang, Shi, Chen, Chen (bib29) 2020; 18 Monne, Fusaro, Nelson, Bonfanti, Mulatti, Hughes, Murcia, Schivo, Valastro, Moreno (bib17) 2014; 88 Chen, Zhao, Sun (bib25) 2018; 34 Waterhouse, Bertoni, Bienert, Studer, Tauriello, Gumienny, Heer, de Beer, Rempfer, Bordoli (bib12) 2018; 46 Lam, Shum, Zhu, Tong, Ni, Liao, Wei, Cheung, Li, Li (bib6) 2020 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib11) 2020; 367 Su, Wong, Shi, Liu, Lai, Zhou, Liu, Bi, Gao (bib4) 2016; 24 Grabherr, Haas, Yassour, Levin, Thompson, Amit, Adiconis, Fan, Raychowdhury, Zeng (bib24) 2011; 29 Xiao, Zhai, Feng, Zhou, Zhang, Zou, Li, Guo, Li, Shen (bib7) 2020 Prabakaran, Gan, Feng, Zhu, Choudhry, Xiao, Ji, Dimitrov (bib13) 2006; 281 Zhang, Bi, Wang, Wong, Shi, Hu, Yang, Yang, Deng, Jiang (bib18) 2017; 75 Zhu, Zhang, Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu (bib1) 2020; 382 Wan, Shang, Graham, Baric, Li (bib14) 2020; 94 Langmead, Salzberg (bib23) 2012; 9 Wu, Yang, Ren, He, Zhang, Yang, Qian, Dong, Sun, Zhu (bib9) 2016; 10 Ronquist, Huelsenbeck (bib27) 2003; 19 Stamatakis (bib20) 2014; 30 Chen, Zhou, Chen, Gu (bib22) 2018; 34 Andersen, Rambaut, Lipkin, Holmes, Garry (bib19) 2020; 26 Hu, Zeng, Yang, Ge, Zhang, Li, Xie, Shen, Zhang, Wang (bib21) 2017; 13 Lu, Zhao, Li, Niu, Yang, Wu, Wang, Song, Huang, Zhu (bib2) 2020; 395 Nakamura, Yamada, Tomii, Katoh (bib26) 2018; 34 Gorbalenya, Baker, Baric, de Groot, Drosten, Gulyaeva, Haagmans, Lauber, Leontovich, Neuman (bib5) 2020; 5 Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib3) 2020; 579 Lole, Bollinger, Paranjape, Gadkari, Kulkarni, Novak, Ingersoll, Sheppard, Ray (bib10) 1999; 73 Wong, Javornik Cregeen, Ajami, Petrosino (bib15) 2020 Su (10.1016/j.cub.2020.05.023_bib4) 2016; 24 Wan (10.1016/j.cub.2020.05.023_bib14) 2020; 94 Li (10.1016/j.cub.2020.05.023_bib29) 2020; 18 He (10.1016/j.cub.2020.05.023_bib16) 2004; 324 Grabherr (10.1016/j.cub.2020.05.023_bib24) 2011; 29 Zhou (10.1016/j.cub.2020.05.023_bib3) 2020; 579 Zhang (10.1016/j.cub.2020.05.023_bib8) 2020; 30 Wu (10.1016/j.cub.2020.05.023_bib9) 2016; 10 Wrapp (10.1016/j.cub.2020.05.023_bib11) 2020; 367 Langmead (10.1016/j.cub.2020.05.023_bib23) 2012; 9 Hu (10.1016/j.cub.2020.05.023_bib21) 2017; 13 Zhang (10.1016/j.cub.2020.05.023_bib18) 2017; 75 Lole (10.1016/j.cub.2020.05.023_bib10) 1999; 73 Andersen (10.1016/j.cub.2020.05.023_bib19) 2020; 26 Lu (10.1016/j.cub.2020.05.023_bib2) 2020; 395 Ronquist (10.1016/j.cub.2020.05.023_bib27) 2003; 19 Monne (10.1016/j.cub.2020.05.023_bib17) 2014; 88 Gorbalenya (10.1016/j.cub.2020.05.023_bib5) 2020; 5 Xiao (10.1016/j.cub.2020.05.023_bib7) 2020 Chen (10.1016/j.cub.2020.05.023_bib25) 2018; 34 Waterhouse (10.1016/j.cub.2020.05.023_bib12) 2018; 46 Stamatakis (10.1016/j.cub.2020.05.023_bib20) 2014; 30 Prabakaran (10.1016/j.cub.2020.05.023_bib13) 2006; 281 Wong (10.1016/j.cub.2020.05.023_bib15) 2020 Zhu (10.1016/j.cub.2020.05.023_bib1) 2020; 382 Chen (10.1016/j.cub.2020.05.023_bib22) 2018; 34 Nakamura (10.1016/j.cub.2020.05.023_bib26) 2018; 34 Lam (10.1016/j.cub.2020.05.023_bib6) 2020 33022232 - Curr Biol. 2020 Oct 5;30(19):3896 |
References_xml | – volume: 34 start-page: 2490 year: 2018 end-page: 2492 ident: bib26 article-title: Parallelization of MAFFT for large-scale multiple sequence alignments publication-title: Bioinformatics – volume: 19 start-page: 1572 year: 2003 end-page: 1574 ident: bib27 article-title: MrBayes 3: Bayesian phylogenetic inference under mixed models publication-title: Bioinformatics – volume: 34 start-page: i884 year: 2018 end-page: i890 ident: bib22 article-title: fastp: an ultra-fast all-in-one FASTQ preprocessor publication-title: Bioinformatics – volume: 30 start-page: 1346 year: 2020 end-page: 1351.e2 ident: bib8 article-title: Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak publication-title: Curr. Biol. – volume: 18 start-page: 1 year: 2020 end-page: 4 ident: bib29 article-title: A furin cleavage site was discovered in the S protein of the 2019 novel coronavirus publication-title: Chinese Journal of Bioinformatics (In Chinese) – volume: 29 start-page: 644 year: 2011 end-page: 652 ident: bib24 article-title: Full-length transcriptome assembly from RNA-Seq data without a reference genome publication-title: Nat. Biotechnol. – volume: 395 start-page: 565 year: 2020 end-page: 574 ident: bib2 article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding publication-title: Lancet – volume: 94 start-page: 94 year: 2020 ident: bib14 article-title: Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus publication-title: J. Virol. – volume: 75 start-page: 71 year: 2017 end-page: 75 ident: bib18 article-title: Human infections with recently-emerging highly pathogenic H7N9 avian influenza virus in China publication-title: J. Infect. – volume: 26 start-page: 450 year: 2020 end-page: 452 ident: bib19 article-title: The proximal origin of SARS-CoV-2 publication-title: Nat. Med. – volume: 281 start-page: 15829 year: 2006 end-page: 15836 ident: bib13 article-title: Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody publication-title: J. Biol. Chem. – year: 2020 ident: bib6 article-title: Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins publication-title: Nature – volume: 5 start-page: 536 year: 2020 end-page: 544 ident: bib5 article-title: The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 publication-title: Nat. Microbiol. – volume: 24 start-page: 490 year: 2016 end-page: 502 ident: bib4 article-title: Epidemiology, genetic recombination, and pathogenesis of coronaviruses publication-title: Trends Microbiol. – volume: 88 start-page: 4375 year: 2014 end-page: 4388 ident: bib17 article-title: Emergence of a highly pathogenic avian influenza virus from a low-pathogenic progenitor publication-title: J. Virol. – year: 2020 ident: bib7 article-title: Isolation and characterization of 2019-nCoV-like coronavirus from Malayan pangolins publication-title: bioRxiv – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: bib11 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: bib3 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature – volume: 324 start-page: 773 year: 2004 end-page: 781 ident: bib16 article-title: Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine publication-title: Biochem. Biophys. Res. Commun. – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: bib23 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods – volume: 46 start-page: W296 year: 2018 end-page: W303 ident: bib12 article-title: SWISS-MODEL: homology modelling of protein structures and complexes publication-title: Nucleic Acids Res. – volume: 73 start-page: 152 year: 1999 end-page: 160 ident: bib10 article-title: Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination publication-title: J. Virol. – year: 2020 ident: bib15 article-title: Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019 publication-title: bioRxiv – volume: 34 start-page: 2927 year: 2018 end-page: 2935 ident: bib25 article-title: De novo haplotype reconstruction in viral quasispecies using paired-end read guided path finding publication-title: Bioinformatics – volume: 382 start-page: 727 year: 2020 end-page: 733 ident: bib1 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. – volume: 10 start-page: 609 year: 2016 end-page: 620 ident: bib9 article-title: Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases publication-title: ISME J. – volume: 30 start-page: 1312 year: 2014 end-page: 1313 ident: bib20 article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies publication-title: Bioinformatics – volume: 13 start-page: e1006698 year: 2017 ident: bib21 article-title: Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus publication-title: PLoS Pathog. – year: 2020 ident: 10.1016/j.cub.2020.05.023_bib6 article-title: Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins publication-title: Nature doi: 10.1038/s41586-020-2169-0 – volume: 34 start-page: 2927 year: 2018 ident: 10.1016/j.cub.2020.05.023_bib25 article-title: De novo haplotype reconstruction in viral quasispecies using paired-end read guided path finding publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty202 – year: 2020 ident: 10.1016/j.cub.2020.05.023_bib15 article-title: Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019 publication-title: bioRxiv – volume: 324 start-page: 773 year: 2004 ident: 10.1016/j.cub.2020.05.023_bib16 article-title: Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2004.09.106 – volume: 73 start-page: 152 year: 1999 ident: 10.1016/j.cub.2020.05.023_bib10 article-title: Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination publication-title: J. Virol. doi: 10.1128/JVI.73.1.152-160.1999 – volume: 24 start-page: 490 year: 2016 ident: 10.1016/j.cub.2020.05.023_bib4 article-title: Epidemiology, genetic recombination, and pathogenesis of coronaviruses publication-title: Trends Microbiol. doi: 10.1016/j.tim.2016.03.003 – volume: 5 start-page: 536 year: 2020 ident: 10.1016/j.cub.2020.05.023_bib5 article-title: The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0695-z – volume: 34 start-page: 2490 year: 2018 ident: 10.1016/j.cub.2020.05.023_bib26 article-title: Parallelization of MAFFT for large-scale multiple sequence alignments publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty121 – year: 2020 ident: 10.1016/j.cub.2020.05.023_bib7 article-title: Isolation and characterization of 2019-nCoV-like coronavirus from Malayan pangolins publication-title: bioRxiv – volume: 367 start-page: 1260 year: 2020 ident: 10.1016/j.cub.2020.05.023_bib11 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 94 start-page: 94 year: 2020 ident: 10.1016/j.cub.2020.05.023_bib14 article-title: Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus publication-title: J. Virol. doi: 10.1128/JVI.00127-20 – volume: 30 start-page: 1312 year: 2014 ident: 10.1016/j.cub.2020.05.023_bib20 article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – volume: 18 start-page: 1 year: 2020 ident: 10.1016/j.cub.2020.05.023_bib29 article-title: A furin cleavage site was discovered in the S protein of the 2019 novel coronavirus publication-title: Chinese Journal of Bioinformatics (In Chinese) – volume: 382 start-page: 727 year: 2020 ident: 10.1016/j.cub.2020.05.023_bib1 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 34 start-page: i884 year: 2018 ident: 10.1016/j.cub.2020.05.023_bib22 article-title: fastp: an ultra-fast all-in-one FASTQ preprocessor publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty560 – volume: 281 start-page: 15829 year: 2006 ident: 10.1016/j.cub.2020.05.023_bib13 article-title: Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody publication-title: J. Biol. Chem. doi: 10.1074/jbc.M600697200 – volume: 13 start-page: e1006698 year: 2017 ident: 10.1016/j.cub.2020.05.023_bib21 article-title: Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006698 – volume: 75 start-page: 71 year: 2017 ident: 10.1016/j.cub.2020.05.023_bib18 article-title: Human infections with recently-emerging highly pathogenic H7N9 avian influenza virus in China publication-title: J. Infect. doi: 10.1016/j.jinf.2017.04.001 – volume: 579 start-page: 270 year: 2020 ident: 10.1016/j.cub.2020.05.023_bib3 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 26 start-page: 450 year: 2020 ident: 10.1016/j.cub.2020.05.023_bib19 article-title: The proximal origin of SARS-CoV-2 publication-title: Nat. Med. doi: 10.1038/s41591-020-0820-9 – volume: 30 start-page: 1346 year: 2020 ident: 10.1016/j.cub.2020.05.023_bib8 article-title: Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.03.022 – volume: 395 start-page: 565 year: 2020 ident: 10.1016/j.cub.2020.05.023_bib2 article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding publication-title: Lancet doi: 10.1016/S0140-6736(20)30251-8 – volume: 9 start-page: 357 year: 2012 ident: 10.1016/j.cub.2020.05.023_bib23 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 46 start-page: W296 issue: W1 year: 2018 ident: 10.1016/j.cub.2020.05.023_bib12 article-title: SWISS-MODEL: homology modelling of protein structures and complexes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky427 – volume: 29 start-page: 644 year: 2011 ident: 10.1016/j.cub.2020.05.023_bib24 article-title: Full-length transcriptome assembly from RNA-Seq data without a reference genome publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1883 – volume: 88 start-page: 4375 year: 2014 ident: 10.1016/j.cub.2020.05.023_bib17 article-title: Emergence of a highly pathogenic avian influenza virus from a low-pathogenic progenitor publication-title: J. Virol. doi: 10.1128/JVI.03181-13 – volume: 10 start-page: 609 year: 2016 ident: 10.1016/j.cub.2020.05.023_bib9 article-title: Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases publication-title: ISME J. doi: 10.1038/ismej.2015.138 – volume: 19 start-page: 1572 year: 2003 ident: 10.1016/j.cub.2020.05.023_bib27 article-title: MrBayes 3: Bayesian phylogenetic inference under mixed models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg180 – reference: 33022232 - Curr Biol. 2020 Oct 5;30(19):3896 |
SSID | ssj0012896 |
Score | 2.7027178 |
Snippet | The unprecedented pandemic of pneumonia caused by a novel coronavirus, SARS-CoV-2, in China and beyond has had major public health impacts on a global scale... The unprecedented pandemic of pneumonia caused by a novel coronavirus, SARS-CoV-2, in China and beyond has had major public health impacts on a global scale [... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2196 |
SubjectTerms | Amino Acid Sequence Animals bat coronavirus Betacoronavirus - chemistry Betacoronavirus - genetics Betacoronavirus - isolation & purification Chiroptera - virology COVID-19 Eutheria - virology Feces - virology Genome, Viral Models, Molecular Mutagenesis, Insertional Phylogeny RNA, Viral - genetics S1/S2 cleavage site SARS Virus - genetics SARS-CoV-2 Sequence Alignment Sequence Analysis, RNA Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - genetics spike protein |
Title | A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein |
URI | https://dx.doi.org/10.1016/j.cub.2020.05.023 https://www.ncbi.nlm.nih.gov/pubmed/32416074 https://www.proquest.com/docview/2404042224 https://pubmed.ncbi.nlm.nih.gov/PMC7211627 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalMNjL2Lpf2daiwp4GIrEsy_ZjalbalYUxryNv4iTLzJuxQ-ME-tj_vCfZDsvG-rBHW2cjdKe777jTJ0LelzIFMLiRMHRwJgpuWZpAyooyMCaEEqRwh5M_L-TFtfi0jJYHJBvPwri2ysH39z7de-vhzXRYzemqqqa5J0tz8c3BXsmX6IdDkfhDfMuzXSUBEwpfr0Rh5qTHyqbv8TIbjSkin3nyTh7-Kzb9jT3_bKH8LSadPyVPBjBJ5_18n5ED2xyRR_31krfPyd2cLtqtrekZdDRzVAWwrW42a5rV7drWt9R3wtmCdi3N519zlrXfGaeOsAqqZk0X4Ek56GXjSvbOPin-CBEjzYNpjoK1hS36I5ojbqVt2Q-tql-WfnH0D1Xzglyff_yWXbDhygVmEEp1LJYIITCl02GhI4PYUKe64EZCDDqItBVaFzqOiyAtMbEKJWCCVVqeJNZabowMX5LDpm3sa0KtKGYBpNygKQiEZQCpDIowjSxCmoTDhMzGxVZm4CN312LUamw8-6lQP8rpR80ihfqZkA-7T1Y9GcdDwmLUoNqzKIXB4qHPTkdtK9xprnwCjW03a4XYRzjGNC4m5FWv_d0sEJY6pj4ciffsYifgWLz3R5rqh2fzdim45PGb_5vuW_LYPfnmteQdOexuNvYYYVKnTzBBuLw68bvhHvZMETA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRQguiDflaSS4IEVtnMRJDhy6hVXL7laI7KLejO04IhAl1SYt6pHfxB9kxkkqCmIPSHvN2NHI45n5Rh5_JuRlxmMpNTgSpA7m-CkzThzJ2EkzV2tPZpL7eDn5ZM6nZ_77RbDYIz_7uzDYVtnF_jam22jdfRl2qzlc5vkwsWRpmN8Q9nK26Dorj8zmO9Rt9ZvZWzDyK8YO351Opk73tICjATI0TsghVULporxUBRowkIpVyjSXoVRuoIyvVKrCMHXjDAoIj0soJDLDosgYw7TmHvz3CrkK6CPEaDBbHGyPLqCCsQekoJ2D6vVHqbapTK8U1KRsZNlCmfevZPg32P2zZ_O3JHh4i9zs0Csdtwt0m-yZ8g651r5nublLfozpvFqbgh7Ihk6QG0Gu8_NVTSdFVZtiQ23rnUlpU9Fk_DFxJtUnh1FkyJJ5WdO5tCwgdFZijwA6BIUfAUSliTtMYGBh5BoCIE0AKNMqa0XL_JuhH5BvIi_vkbNLMcR9sl9WpXlIqPHTkStjpmHv-YADpYy5m3pxYABDRUwOyKhfbKE7AnR8h6MQfafbVwH2EWgfMQoE2GdAXm-nLFv2j4sG-70Fxc4WFpCdLpr2ore2ANfG8xpZmmpVCwBbPlK0MX9AHrTW32oBOBipAUES7uyL7QCkDd-VlPkXSx-ONT9n4aP_U_c5uT49PTkWx7P50WNyAyW2cy56Qvab85V5ChitUc-sT1Dy-bKd8BcnOk57 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Bat+Coronavirus+Closely+Related+to+SARS-CoV-2+Contains+Natural+Insertions+at+the+S1%2FS2+Cleavage+Site+of+the+Spike+Protein&rft.jtitle=Current+biology&rft.au=Zhou%2C+Hong&rft.au=Chen%2C+Xing&rft.au=Hu%2C+Tao&rft.au=Li%2C+Juan&rft.date=2020-06-08&rft.issn=1879-0445&rft.eissn=1879-0445&rft.volume=30&rft.issue=11&rft.spage=2196&rft_id=info:doi/10.1016%2Fj.cub.2020.05.023&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |