A trans-acting sRNA SaaS targeting hilD, cheA and csgA to inhibit biofilm formation of S. Enteritidis
[Display omitted] •sRNA SaaS inhibits biofilm formation by interacting with target mRNA (hilD, cheA, and csgA).•The space morphological structure of biofilm in polystyrene microplates was firstly obtained by using CLSM.•Transcriptomics and proteomics were applied to analysis the changes of gene expr...
Saved in:
Published in | Journal of advanced research Vol. 71; pp. 127 - 139 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Egypt
Elsevier B.V
01.05.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•sRNA SaaS inhibits biofilm formation by interacting with target mRNA (hilD, cheA, and csgA).•The space morphological structure of biofilm in polystyrene microplates was firstly obtained by using CLSM.•Transcriptomics and proteomics were applied to analysis the changes of gene expression and EPS component.•RNA-protein pull-down interactome datasets indicated that SaaS binds to Hfq uniquely among 193 candidate proteins.
Salmonella Enteritidis has brought great harm to public health, animal production and food safety worldwide. The biofilm formed by Salmonella Enteritidis plays a critical role in microbial cross-contamination. Small non-coding RNAs (sRNAs) have been demonstrated to be responsible for regulating the formation of biofilm. The sRNA SaaS has been identified previously, that promotes pathogenicity by regulating invasion and virulence factors. However, whether the SaaS is implicated in regulating biofilm formation in abiotic surfaces remains unclear.
This study aimed to clarify the effect of SaaS in Salmonella Enteritidis and explore the modulatory mechanism on the biofilm formation.
Motility characteristics and total biomass of biofilm of test strains were investigated by the phenotypes in three soft agar plates and crystal violet staining in polystyrene microplates. Studies of microscopic structure and extracellular polymeric substances (EPS) of biofilm on solid surfaces were carried out using confocal laser scanning microscope (CLSM) and Raman spectra. Transcriptomics and proteomics were applied to analyze the changes of gene expression and EPS component. The RNA-protein pull-down and promoter–reporter β-galactosidase activity assays were employed to analyze RNA binding proteins and identify target mRNAs, respectively.
SaaS inhibits biofilm formation by repressing the adhesion potential and the secretion of EPS components. Integration of transcriptomics and proteomics analysis revealed that SaaS strengthened the expression of the flagellar synthesis system and downregulated the expression of curli amyloid fibers. Furthermore, RNA-protein pull-down interactome datasets indicated that SaaS binds to Hfq (an RNA molecular chaperone protein, known as a host factor for phage Qbeta RNA replication) uniquely among 193 candidate proteins, and promoter–reporter β-galactosidase activity assay confirmed target mRNAs including hilD, cheA, and csgA.
SaaS inhibits the properties of bacterial mobility, perturbs the secretion of EPS, and contributes to the inhibition of biofilm formation by interacting with target mRNA (hilD, cheA, and csgA) through the Hfq-mediated pathway. |
---|---|
AbstractList | Salmonella Enteritidis has brought great harm to public health, animal production and food safety worldwide. The biofilm formed by Salmonella Enteritidis plays a critical role in microbial cross-contamination. Small non-coding RNAs (sRNAs) have been demonstrated to be responsible for regulating the formation of biofilm. The sRNA SaaS has been identified previously, that promotes pathogenicity by regulating invasion and virulence factors. However, whether the SaaS is implicated in regulating biofilm formation in abiotic surfaces remains unclear.INTRODUCTIONSalmonella Enteritidis has brought great harm to public health, animal production and food safety worldwide. The biofilm formed by Salmonella Enteritidis plays a critical role in microbial cross-contamination. Small non-coding RNAs (sRNAs) have been demonstrated to be responsible for regulating the formation of biofilm. The sRNA SaaS has been identified previously, that promotes pathogenicity by regulating invasion and virulence factors. However, whether the SaaS is implicated in regulating biofilm formation in abiotic surfaces remains unclear.This study aimed to clarify the effect of SaaS in Salmonella Enteritidis and explore the modulatory mechanism on the biofilm formation.OBJECTIVESThis study aimed to clarify the effect of SaaS in Salmonella Enteritidis and explore the modulatory mechanism on the biofilm formation.Motility characteristics and total biomass of biofilm of test strains were investigated by the phenotypes in three soft agar plates and crystal violet staining in polystyrene microplates. Studies of microscopic structure and extracellular polymeric substances (EPS) of biofilm on solid surfaces were carried out using confocal laser scanning microscope (CLSM) and Raman spectra. Transcriptomics and proteomics were applied to analyze the changes of gene expression and EPS component. The RNA-protein pull-down and promoter-reporter β-galactosidase activity assays were employed to analyze RNA binding proteins and identify target mRNAs, respectively.METHODSMotility characteristics and total biomass of biofilm of test strains were investigated by the phenotypes in three soft agar plates and crystal violet staining in polystyrene microplates. Studies of microscopic structure and extracellular polymeric substances (EPS) of biofilm on solid surfaces were carried out using confocal laser scanning microscope (CLSM) and Raman spectra. Transcriptomics and proteomics were applied to analyze the changes of gene expression and EPS component. The RNA-protein pull-down and promoter-reporter β-galactosidase activity assays were employed to analyze RNA binding proteins and identify target mRNAs, respectively.SaaS inhibits biofilm formation by repressing the adhesion potential and the secretion of EPS components. Integration of transcriptomics and proteomics analysis revealed that SaaS strengthened the expression of the flagellar synthesis system and downregulated the expression of curli amyloid fibers. Furthermore, RNA-protein pull-down interactome datasets indicated that SaaS binds to Hfq (an RNA molecular chaperone protein, known as a host factor for phage Qbeta RNA replication) uniquely among 193 candidate proteins, and promoter-reporter β-galactosidase activity assay confirmed target mRNAs including hilD, cheA, and csgA.RESULTSSaaS inhibits biofilm formation by repressing the adhesion potential and the secretion of EPS components. Integration of transcriptomics and proteomics analysis revealed that SaaS strengthened the expression of the flagellar synthesis system and downregulated the expression of curli amyloid fibers. Furthermore, RNA-protein pull-down interactome datasets indicated that SaaS binds to Hfq (an RNA molecular chaperone protein, known as a host factor for phage Qbeta RNA replication) uniquely among 193 candidate proteins, and promoter-reporter β-galactosidase activity assay confirmed target mRNAs including hilD, cheA, and csgA.SaaS inhibits the properties of bacterial mobility, perturbs the secretion of EPS, and contributes to the inhibition of biofilm formation by interacting with target mRNA (hilD, cheA, and csgA) through the Hfq-mediated pathway.CONCLUSIONSaaS inhibits the properties of bacterial mobility, perturbs the secretion of EPS, and contributes to the inhibition of biofilm formation by interacting with target mRNA (hilD, cheA, and csgA) through the Hfq-mediated pathway. Salmonella Enteritidis has brought great harm to public health, animal production and food safety worldwide. The biofilm formed by Salmonella Enteritidis plays a critical role in microbial cross-contamination. Small non-coding RNAs (sRNAs) have been demonstrated to be responsible for regulating the formation of biofilm. The sRNA SaaS has been identified previously, that promotes pathogenicity by regulating invasion and virulence factors. However, whether the SaaS is implicated in regulating biofilm formation in abiotic surfaces remains unclear. This study aimed to clarify the effect of SaaS in Salmonella Enteritidis and explore the modulatory mechanism on the biofilm formation. Motility characteristics and total biomass of biofilm of test strains were investigated by the phenotypes in three soft agar plates and crystal violet staining in polystyrene microplates. Studies of microscopic structure and extracellular polymeric substances (EPS) of biofilm on solid surfaces were carried out using confocal laser scanning microscope (CLSM) and Raman spectra. Transcriptomics and proteomics were applied to analyze the changes of gene expression and EPS component. The RNA-protein pull-down and promoter-reporter β-galactosidase activity assays were employed to analyze RNA binding proteins and identify target mRNAs, respectively. SaaS inhibits biofilm formation by repressing the adhesion potential and the secretion of EPS components. Integration of transcriptomics and proteomics analysis revealed that SaaS strengthened the expression of the flagellar synthesis system and downregulated the expression of curli amyloid fibers. Furthermore, RNA-protein pull-down interactome datasets indicated that SaaS binds to Hfq (an RNA molecular chaperone protein, known as a host factor for phage Qbeta RNA replication) uniquely among 193 candidate proteins, and promoter-reporter β-galactosidase activity assay confirmed target mRNAs including hilD, cheA, and csgA. SaaS inhibits the properties of bacterial mobility, perturbs the secretion of EPS, and contributes to the inhibition of biofilm formation by interacting with target mRNA (hilD, cheA, and csgA) through the Hfq-mediated pathway. [Display omitted] •sRNA SaaS inhibits biofilm formation by interacting with target mRNA (hilD, cheA, and csgA).•The space morphological structure of biofilm in polystyrene microplates was firstly obtained by using CLSM.•Transcriptomics and proteomics were applied to analysis the changes of gene expression and EPS component.•RNA-protein pull-down interactome datasets indicated that SaaS binds to Hfq uniquely among 193 candidate proteins. Salmonella Enteritidis has brought great harm to public health, animal production and food safety worldwide. The biofilm formed by Salmonella Enteritidis plays a critical role in microbial cross-contamination. Small non-coding RNAs (sRNAs) have been demonstrated to be responsible for regulating the formation of biofilm. The sRNA SaaS has been identified previously, that promotes pathogenicity by regulating invasion and virulence factors. However, whether the SaaS is implicated in regulating biofilm formation in abiotic surfaces remains unclear. This study aimed to clarify the effect of SaaS in Salmonella Enteritidis and explore the modulatory mechanism on the biofilm formation. Motility characteristics and total biomass of biofilm of test strains were investigated by the phenotypes in three soft agar plates and crystal violet staining in polystyrene microplates. Studies of microscopic structure and extracellular polymeric substances (EPS) of biofilm on solid surfaces were carried out using confocal laser scanning microscope (CLSM) and Raman spectra. Transcriptomics and proteomics were applied to analyze the changes of gene expression and EPS component. The RNA-protein pull-down and promoter–reporter β-galactosidase activity assays were employed to analyze RNA binding proteins and identify target mRNAs, respectively. SaaS inhibits biofilm formation by repressing the adhesion potential and the secretion of EPS components. Integration of transcriptomics and proteomics analysis revealed that SaaS strengthened the expression of the flagellar synthesis system and downregulated the expression of curli amyloid fibers. Furthermore, RNA-protein pull-down interactome datasets indicated that SaaS binds to Hfq (an RNA molecular chaperone protein, known as a host factor for phage Qbeta RNA replication) uniquely among 193 candidate proteins, and promoter–reporter β-galactosidase activity assay confirmed target mRNAs including hilD, cheA, and csgA. SaaS inhibits the properties of bacterial mobility, perturbs the secretion of EPS, and contributes to the inhibition of biofilm formation by interacting with target mRNA (hilD, cheA, and csgA) through the Hfq-mediated pathway. Introduction: Salmonella Enteritidis has brought great harm to public health, animal production and food safety worldwide. The biofilm formed by Salmonella Enteritidis plays a critical role in microbial cross-contamination. Small non-coding RNAs (sRNAs) have been demonstrated to be responsible for regulating the formation of biofilm. The sRNA SaaS has been identified previously, that promotes pathogenicity by regulating invasion and virulence factors. However, whether the SaaS is implicated in regulating biofilm formation in abiotic surfaces remains unclear. Objectives: This study aimed to clarify the effect of SaaS in Salmonella Enteritidis and explore the modulatory mechanism on the biofilm formation. Methods: Motility characteristics and total biomass of biofilm of test strains were investigated by the phenotypes in three soft agar plates and crystal violet staining in polystyrene microplates. Studies of microscopic structure and extracellular polymeric substances (EPS) of biofilm on solid surfaces were carried out using confocal laser scanning microscope (CLSM) and Raman spectra. Transcriptomics and proteomics were applied to analyze the changes of gene expression and EPS component. The RNA-protein pull-down and promoter–reporter β-galactosidase activity assays were employed to analyze RNA binding proteins and identify target mRNAs, respectively. Results: SaaS inhibits biofilm formation by repressing the adhesion potential and the secretion of EPS components. Integration of transcriptomics and proteomics analysis revealed that SaaS strengthened the expression of the flagellar synthesis system and downregulated the expression of curli amyloid fibers. Furthermore, RNA-protein pull-down interactome datasets indicated that SaaS binds to Hfq (an RNA molecular chaperone protein, known as a host factor for phage Qbeta RNA replication) uniquely among 193 candidate proteins, and promoter–reporter β-galactosidase activity assay confirmed target mRNAs including hilD, cheA, and csgA. Conclusion: SaaS inhibits the properties of bacterial mobility, perturbs the secretion of EPS, and contributes to the inhibition of biofilm formation by interacting with target mRNA (hilD, cheA, and csgA) through the Hfq-mediated pathway. • sRNA SaaS inhibits biofilm formation by interacting with target mRNA ( hilD , cheA, and csgA ). • The space morphological structure of biofilm in polystyrene microplates was firstly obtained by using CLSM. • Transcriptomics and proteomics were applied to analysis the changes of gene expression and EPS component. • RNA-protein pull-down interactome datasets indicated that SaaS binds to Hfq uniquely among 193 candidate proteins. |
Author | Wang, Huhu He, Shuwen Zhou, Guanghong Cai, Linlin Xu, Xinglian Lyu, Chongyang Hu, Haijing |
Author_xml | – sequence: 1 givenname: Chongyang surname: Lyu fullname: Lyu, Chongyang organization: State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China – sequence: 2 givenname: Haijing surname: Hu fullname: Hu, Haijing organization: State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China – sequence: 3 givenname: Linlin surname: Cai fullname: Cai, Linlin organization: State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China – sequence: 4 givenname: Shuwen surname: He fullname: He, Shuwen organization: State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China – sequence: 5 givenname: Xinglian surname: Xu fullname: Xu, Xinglian organization: State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China – sequence: 6 givenname: Guanghong surname: Zhou fullname: Zhou, Guanghong organization: State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China – sequence: 7 givenname: Huhu orcidid: 0000-0003-1688-7948 surname: Wang fullname: Wang, Huhu email: huuwang@njau.edu.cn organization: State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38852803$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLUv_AAfkI4du8FecREJCq1KgUgUSC2drYk92vcraxXYr8e9xumVFL_gyo5n33ozG72V14oPHqnrNaM0oU-929Q4i1pxyWVNVU9o9q8447emScS5Pjrngp9V5Sjtanui6nrEX1WlJGt5RcVbhiuQIPi3BZOc3JH3_uiJrgDXJEDf4UNu66eMFMduCBW-JSZtCCsT5rRtcJoMLo5v2ZAxxD9kFT8JI1jW58hmjy8669Kp6PsKU8PwxLqqfn65-XH5Z3nz7fH25ulmaRjZ5qVoxYCs6KqmwwyhHoSRwYQEUzGlLadNJrjrZyAFK7FvTczs0djR937ZiUV0fdG2Anb6Nbg_xtw7g9EMhxI2GmJ2ZUKNkLUpqu7EfZA9FB7BRdqCgjJoXWFQfDlq3d8MerUFfDjU9EX3a8W6rN-FeM864aikrCm8fFWL4dYcp671LBqcJPIa7pAVVSgjJxLz4m3-HHaf8_agC4AeAiSGliOMRwqieDaF3ejaEng2hqdLFEIX0_kDCcvN7h1En49AbtC6iyeUo7n_0P-3evD0 |
Cites_doi | 10.1016/j.tim.2012.10.008 10.1016/j.tim.2014.05.009 10.1128/AEM.00400-09 10.1128/JB.184.6.1767-1771.2002 10.1016/j.crphar.2022.100151 10.1016/j.cell.2021.10.010 10.1016/j.chemosphere.2014.05.070 10.1007/s00216-008-2470-5 10.1126/sciadv.abi8228 10.1016/j.foodcont.2017.12.027 10.1128/JB.188.8.3073-3087.2006 10.1016/j.ijfoodmicro.2013.10.005 10.3390/molecules200611357 10.1128/mBio.01064-15 10.1021/ac9015424 10.1016/j.foodcont.2014.10.048 10.1021/acs.biochem.7b00116 10.1093/nar/gkac1025 10.3390/s18124089 10.1021/ac0504971 10.1016/j.foodcont.2020.107571 10.1128/AEM.05561-11 10.1016/j.foodcont.2018.04.035 10.1128/jb.00333-22 10.1093/nar/gkz1168 10.1128/MRA.01434-18 10.1038/s41579-022-00767-0 10.1371/journal.pone.0089243 10.1111/j.1574-6968.2011.02225.x 10.1093/femsre/fuv015 10.1038/nrmicro2415 10.3389/fmicb.2021.757327 10.1038/s41556-022-00880-5 10.1111/j.1365-2958.2012.07965.x 10.1371/journal.ppat.1010953 10.1007/s11051-013-1841-9 10.1016/j.jare.2021.03.013 10.1371/journal.pcbi.1007721 10.1016/j.jmb.2010.12.009 10.1080/15476286.2018.1532252 10.1093/nar/gkac017 10.1038/s41579-022-00791-0 10.1016/j.cell.2020.08.016 10.1128/AEM.66.2.860-863.2000 10.1128/spectrum.02938-22 10.1128/JB.01468-10 10.1371/journal.pone.0135351 10.1111/j.1365-2672.2007.03688.x 10.1007/s00253-009-2072-y 10.1038/nrmicro2405 10.1111/j.1365-2958.1995.mmi_18040661.x 10.1046/j.1365-2958.2001.02337.x 10.1016/j.tim.2023.12.008 10.1038/s41589-022-01194-1 10.1016/0927-7765(96)01272-6 10.1111/j.1365-2672.2007.03413.x 10.2903/j.efsa.2021.6971 10.4315/0362-028X.JFP-13-093 10.1007/s10853-014-8384-z 10.1016/j.chemosphere.2013.01.059 10.1146/annurev-food-030713-092350 10.1038/s41467-021-26525-z 10.1371/journal.ppat.1009630 10.1128/JB.184.1.290-301.2002 |
ContentType | Journal Article |
Copyright | 2024 Copyright © 2024. Published by Elsevier B.V. Copyright © 2024. Production and hosting by Elsevier B.V. 2024 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2024 |
Copyright_xml | – notice: 2024 – notice: Copyright © 2024. Published by Elsevier B.V. – notice: Copyright © 2024. Production and hosting by Elsevier B.V. – notice: 2024 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2024 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.jare.2024.06.008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2090-1224 |
EndPage | 139 |
ExternalDocumentID | oai_doaj_org_article_e417e40d8f9b49ac92ae56db0a6c6040 PMC12126701 38852803 10_1016_j_jare_2024_06_008 S2090123224002327 |
Genre | Journal Article |
GroupedDBID | --K 0R~ 1B1 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABFRF ABMAC ACGFS ADBBV ADEZE ADVLN AEFWE AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV E3Z EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB J1W KQ8 M41 O-L O9- OK1 OZT RIG ROL RPM SES SSZ UNMZH XH2 AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c545t-673be7380403dbf4f364a23daa6a364a700584268454ba26897c92db5dfc99773 |
IEDL.DBID | DOA |
ISSN | 2090-1232 2090-1224 |
IngestDate | Wed Aug 27 01:23:26 EDT 2025 Thu Aug 21 18:24:34 EDT 2025 Thu Jul 10 17:12:56 EDT 2025 Mon Jul 21 05:30:19 EDT 2025 Tue Aug 05 12:13:33 EDT 2025 Sat May 24 17:05:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biofilm EPS Flagellar Target mRNAs Salmonella Enteritidis sRNA |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2024. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c545t-673be7380403dbf4f364a23daa6a364a700584268454ba26897c92db5dfc99773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1688-7948 |
OpenAccessLink | https://doaj.org/article/e417e40d8f9b49ac92ae56db0a6c6040 |
PMID | 38852803 |
PQID | 3066334137 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e417e40d8f9b49ac92ae56db0a6c6040 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12126701 proquest_miscellaneous_3066334137 pubmed_primary_38852803 crossref_primary_10_1016_j_jare_2024_06_008 elsevier_sciencedirect_doi_10_1016_j_jare_2024_06_008 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Egypt |
PublicationPlace_xml | – name: Egypt |
PublicationTitle | Journal of advanced research |
PublicationTitleAlternate | J Adv Res |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Cong, Wang, Chen, Xiong, Qiwang, Fuquan (b0070) 2011; 317 Sandt, Smith-Palmer, Pink, Brennan, Pink (b0325) 2007; 103 Fuentes, Calderón, Acuña, Rodas, Paredes-Sabja, Fuentes (b0155) 2015; 362(17):fnv135 Shi, Zhou, Chen (b0095) 2022; 24 Marshall, Flechtner, La Perle, Gunn (b0235) 2014; 9 Thomason, Fontaine, De Lay, Storz (b0055) 2012; 84 Di Ciccio, Vergara, Festino, Paludi, Zanardi, Ghidini (b0130) 2014; 50 Pérez-Morales, Jessica, Roberto, Teehan, Yakhnin, Melchy-Pérez (b0260) 2021; 17 Da Re, Ghigo (b0305) 2006; 188 Haijing, Jia, Wang, Xinglian, Zhou, He (b0100) 2020; 110 Begley, Hill (b0010) 2015; 6 Ogasawara, Yamamoto, Ishihama (b0150) 2011; 193 Choi, Kim, Suk, Park, Bak, Yoon (b0265) 2018; 15 De Débora, Oliveira, Kaneno, Silva, Júnior, Silva (b0175) 2013; 6 Seymour, Brumley, Stocker, Raina (b0060) 2024 Jackson, Suzuki, Oakford, Simecka, Hart, Romeo (b0280) 2002; 184 Holman, Miles, Hao, Eleanor Wozei, Anderson (b0345) 2009; 81 . Pourciau, Pannuri, Potts, Yakhnin (b0290) 2019; 10 Hidalgo, Chan, Tufenkji (b0065) 2011; 77 Gowthami Mahendran, Jayasinghe, Arachchilage, Silva (b0250) 2022; 30 Di Bonaventura, Piccolomini, Paludi, D’Orio, Vergara, Conter (b0180) 2007; 104 Espina, Pagán, López, García-Gonzalo (b0185) 2015; 20 Wang, Cai, Haijing, Xinglian, Zhou (b0090) 2019; 8 Luo, Wang, Sun, Liu, Xin (b0020) 2022; 12 Abdulla, Kyungsub Kim, Azam, Fatih Cakar, Slauch (b0270) 2023; 205 Opdyke, Fozo, Hemm, Storz (b0275) 2011; 406 Qi, Wang, Cai, Wang, Xinglian, Zhou (b0080) 2018; 88 Raad, Tandon, Hapfelmeier, Polacek (b0035) 2022; 50 Zarnowski, Noll, Chevrette, Sanchez, Jones (b0105) 2023; 12 He, Haijing, Xuqiu, Wang, Wang, Xinglian (b0240) 2022; 36 Wang, Chao, Matera, Gao, Vogel (b0045) 2020; 48 Carey, Gibson, Gibson, Greenberg, Heidari-Torkabadi, Pusztai-Carey (b0225) 2017; 56 Jianfeng, Xi (b0220) 2009; 75 Xie, Mace, Dinno, Li, Tang, Newton (b0350) 2005; 77 Hrubanova, Krzyzanek, Nebesarova, Ruzicka, Pilat, Samek (b0340) 2018; 18 Flausino, Soares, Magalhães, Magalhães, Martins, da Silva (b0170) 2014; 49 Hobley, Harkins, MacPhee, Stanley-Wall (b0210) 2015; 39 Sandt, Smith-Palmer, Jonathan Comeau (b0330) 2009; 83 European Food Safety Authority, European Centre for Disease Prevention and Control (EFSA & ECDC 2021). The European Union one health 2020 zoonoses report. EFSA J 2021;19(12): e06971. Doi Wang, Cai, Li, Xinglian, Zhou (b0075) 2018; 91 Santiveri, Roa-Eguiara, Kühne, Wadhwa, Haidai (b0140) 2022; 183 Hammar, Arnqvist, Bian, Olsén, Normark (b0315) 1995; 18 Sahoo, Murthy, Dhara, Venugopalan, Das, Tyagi (b0360) 2013; 15 Chambers, Sauer (b0030) 2013; 21 Ivleva, Wagner, Horn, Niessner, Haisch (b0355) 2009; 393 Palencia, García, Palencia (b0200) 2022; 35 Flemming, van Hullebusch, Neu, Neu, Neu (b0165) 2022; 21 Dhale, Ghorpade, Dharmadhikari (b0190) 2014; 8 Kong, Qian, Stewart, Ting (b0230) 2023; 19 Kavita, Zhang, Tai, Majdalani, Storz, Gottesman (b0245) 2022; 50 Mizrahi, Elbaz, Argaman, Altuvia, Katsowich, Socol (b0255) 2021; 7 Cedoljub Bundalovic-Torma, Whitfield, Marmont, Parkinson (b0205) 2020; 16 Zhang, Fang, You-Peng Chen, Shen, Yang (b0085) 2014; 117 Mey, Butz, Payne (b0285) 2015; 6 Dong, Qin, He, Zhou, Cui, Shi (b0040) 2021; 121 Deditius, Felgner, Spöring, Kühne, Frahm, Rohde (b0160) 2015; 10 Evans, Hughes, Fraser (b0145) 2014; 22 Flemming, Wingender (b0195) 2010; 8 Gosink, Kobayashi, Kawagishi, Häse (b0295) 2002; 184 Dubravka, Ljubojević, Ivana Čabarkapa, Karabasil, Velhner (b0015) 2017; 81 Bellon-Fontaine, Rault, van Oss (b0135) 1996; 7 Wang, Ding, Dong, Ye, Xinglian, Zhou (b0125) 2013; 76 Mo, Ma, Zhou, Gao (b0300) 2022; 18 Zogaj, Nimtz, Rohde, Bokranz, Römling (b0310) 2001; 39 Wang, Ding, Wang, Xinglian, Zhou (b0320) 2013; 167 Mitra, Mukhopadhyay (b0110) 2023; 4 Chen, Zhang, Guo, Fang Fang, Gao (b0335) 2013; 92 Sauer, Paul Stoodley, Goeres, Mette Burmølle, Stewart (b0025) 2022; 20 Vatanyoopaisarn, Nazli, Dodd, Rees, Waites (b0115) 2000; 66 Buzzo, Devaraj, Gloag, Jurcisek, Robledo-Avila, Kesler (b0215) 2021; 184 Kearns (b0120) 2010; 8 Cai, Xie, Haijing, Xinglian, Wang, Zhou (b0050) 2023; 11 Carey (10.1016/j.jare.2024.06.008_b0225) 2017; 56 Gowthami Mahendran (10.1016/j.jare.2024.06.008_b0250) 2022; 30 Opdyke (10.1016/j.jare.2024.06.008_b0275) 2011; 406 Hrubanova (10.1016/j.jare.2024.06.008_b0340) 2018; 18 Da Re (10.1016/j.jare.2024.06.008_b0305) 2006; 188 Palencia (10.1016/j.jare.2024.06.008_b0200) 2022; 35 Sauer (10.1016/j.jare.2024.06.008_b0025) 2022; 20 Mitra (10.1016/j.jare.2024.06.008_b0110) 2023; 4 Flausino (10.1016/j.jare.2024.06.008_b0170) 2014; 49 Qi (10.1016/j.jare.2024.06.008_b0080) 2018; 88 Shi (10.1016/j.jare.2024.06.008_b0095) 2022; 24 Flemming (10.1016/j.jare.2024.06.008_b0165) 2022; 21 Ogasawara (10.1016/j.jare.2024.06.008_b0150) 2011; 193 Flemming (10.1016/j.jare.2024.06.008_b0195) 2010; 8 Chambers (10.1016/j.jare.2024.06.008_b0030) 2013; 21 Gosink (10.1016/j.jare.2024.06.008_b0295) 2002; 184 Abdulla (10.1016/j.jare.2024.06.008_b0270) 2023; 205 Sahoo (10.1016/j.jare.2024.06.008_b0360) 2013; 15 Wang (10.1016/j.jare.2024.06.008_b0045) 2020; 48 Zhang (10.1016/j.jare.2024.06.008_b0085) 2014; 117 Dhale (10.1016/j.jare.2024.06.008_b0190) 2014; 8 Sandt (10.1016/j.jare.2024.06.008_b0330) 2009; 83 Begley (10.1016/j.jare.2024.06.008_b0010) 2015; 6 Hidalgo (10.1016/j.jare.2024.06.008_b0065) 2011; 77 Kavita (10.1016/j.jare.2024.06.008_b0245) 2022; 50 Mey (10.1016/j.jare.2024.06.008_b0285) 2015; 6 Luo (10.1016/j.jare.2024.06.008_b0020) 2022; 12 Jianfeng (10.1016/j.jare.2024.06.008_b0220) 2009; 75 Wang (10.1016/j.jare.2024.06.008_b0125) 2013; 76 Choi (10.1016/j.jare.2024.06.008_b0265) 2018; 15 Cong (10.1016/j.jare.2024.06.008_b0070) 2011; 317 De Débora (10.1016/j.jare.2024.06.008_b0175) 2013; 6 Evans (10.1016/j.jare.2024.06.008_b0145) 2014; 22 Cedoljub Bundalovic-Torma (10.1016/j.jare.2024.06.008_b0205) 2020; 16 Bellon-Fontaine (10.1016/j.jare.2024.06.008_b0135) 1996; 7 He (10.1016/j.jare.2024.06.008_b0240) 2022; 36 Mizrahi (10.1016/j.jare.2024.06.008_b0255) 2021; 7 Cai (10.1016/j.jare.2024.06.008_b0050) 2023; 11 Kearns (10.1016/j.jare.2024.06.008_b0120) 2010; 8 Deditius (10.1016/j.jare.2024.06.008_b0160) 2015; 10 Hammar (10.1016/j.jare.2024.06.008_b0315) 1995; 18 Thomason (10.1016/j.jare.2024.06.008_b0055) 2012; 84 Zarnowski (10.1016/j.jare.2024.06.008_b0105) 2023; 12 Zogaj (10.1016/j.jare.2024.06.008_b0310) 2001; 39 Jackson (10.1016/j.jare.2024.06.008_b0280) 2002; 184 Raad (10.1016/j.jare.2024.06.008_b0035) 2022; 50 Haijing (10.1016/j.jare.2024.06.008_b0100) 2020; 110 Pérez-Morales (10.1016/j.jare.2024.06.008_b0260) 2021; 17 Santiveri (10.1016/j.jare.2024.06.008_b0140) 2022; 183 Di Bonaventura (10.1016/j.jare.2024.06.008_b0180) 2007; 104 Pourciau (10.1016/j.jare.2024.06.008_b0290) 2019; 10 Sandt (10.1016/j.jare.2024.06.008_b0325) 2007; 103 Dong (10.1016/j.jare.2024.06.008_b0040) 2021; 121 Seymour (10.1016/j.jare.2024.06.008_b0060) 2024 Espina (10.1016/j.jare.2024.06.008_b0185) 2015; 20 Wang (10.1016/j.jare.2024.06.008_b0320) 2013; 167 Fuentes (10.1016/j.jare.2024.06.008_b0155) 2015; 362(17):fnv135 Xie (10.1016/j.jare.2024.06.008_b0350) 2005; 77 Ivleva (10.1016/j.jare.2024.06.008_b0355) 2009; 393 Di Ciccio (10.1016/j.jare.2024.06.008_b0130) 2014; 50 Marshall (10.1016/j.jare.2024.06.008_b0235) 2014; 9 Wang (10.1016/j.jare.2024.06.008_b0075) 2018; 91 Kong (10.1016/j.jare.2024.06.008_b0230) 2023; 19 Chen (10.1016/j.jare.2024.06.008_b0335) 2013; 92 Vatanyoopaisarn (10.1016/j.jare.2024.06.008_b0115) 2000; 66 Holman (10.1016/j.jare.2024.06.008_b0345) 2009; 81 Mo (10.1016/j.jare.2024.06.008_b0300) 2022; 18 Hobley (10.1016/j.jare.2024.06.008_b0210) 2015; 39 Buzzo (10.1016/j.jare.2024.06.008_b0215) 2021; 184 Wang (10.1016/j.jare.2024.06.008_b0090) 2019; 8 10.1016/j.jare.2024.06.008_b0005 Dubravka (10.1016/j.jare.2024.06.008_b0015) 2017; 81 |
References_xml | – volume: 8 start-page: 623 year: 2010 end-page: 633 ident: b0195 article-title: The biofilm matrix publication-title: Nat Rev Microbiol – volume: 18 start-page: 4089 year: 2018 ident: b0340 article-title: Monitoring publication-title: Sensors – volume: 205 start-page: e0033322 year: 2023 ident: b0270 article-title: Small RNAs activate publication-title: J Bacteriol – volume: 18 start-page: e1010953 year: 2022 ident: b0300 article-title: Polar localization of CheO under hypoxia promotes publication-title: PLoS Pathog – volume: 81 start-page: 1 year: 2017 end-page: 14 ident: b0015 article-title: Biofilm as risk factor for publication-title: Poult Sci – volume: 88 start-page: 40 year: 2018 end-page: 46 ident: b0080 article-title: Isolates: Attachment ability and sensitivity to four disinfectants publication-title: Food Control – volume: 50 start-page: 930 year: 2014 end-page: 936 ident: b0130 article-title: Biofilm formation by publication-title: Food Control – volume: 81 start-page: 8564 year: 2009 end-page: 8570 ident: b0345 article-title: Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy publication-title: Anal Chem – volume: 117 start-page: 59 year: 2014 end-page: 65 ident: b0085 article-title: Composition of EPS fractions from suspended sludge and biofilm and their roles in microbial cell aggregation publication-title: Chemosphere – reference: European Food Safety Authority, European Centre for Disease Prevention and Control (EFSA & ECDC 2021). The European Union one health 2020 zoonoses report. EFSA J 2021;19(12): e06971. Doi: – volume: 21 start-page: 70 year: 2022 end-page: 86 ident: b0165 article-title: The biofilm matrix: multitasking in a shared space publication-title: Nat Rev Microbiol – volume: 83 start-page: 1171 year: 2009 end-page: 1182 ident: b0330 article-title: Pink Quantification of water and biomass in small colony variant PAO1 biofilms by confocal Raman microspectroscopy publication-title: Appl Microbiol Biotechnol – volume: 184 start-page: 290 year: 2002 end-page: 301 ident: b0280 article-title: Biofilm formation and dispersal under the influence of the global regulator CsrA of publication-title: J Bacteriol – volume: 8 start-page: DC18-c20 year: 2014 ident: b0190 article-title: Comparison of various methods used to detect biofilm production of publication-title: J Clin Diagn Res – volume: 49 start-page: 6820 year: 2014 end-page: 6829 ident: b0170 article-title: Biofilm formation on different materials for tooth restoration: Analysis of surface characteristics publication-title: J Mater Sci – volume: 19 start-page: 488 year: 2023 end-page: 497 ident: b0230 article-title: De novo engineering of a bacterial lifestyle program publication-title: Nat Chem Biol – volume: 103 start-page: 1808 year: 2007 end-page: 1820 ident: b0325 article-title: Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ publication-title: J Appl Microbiol – volume: 48 start-page: 2126 year: 2020 end-page: 2143 ident: b0045 article-title: The conserved 3' UTR-derived small RNA NarS mediates mRNA crossregulation during nitrate respiration publication-title: Nucleic Acids Res – volume: 77 start-page: 4390 year: 2005 end-page: 4397 ident: b0350 article-title: Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy publication-title: Anal Chem – volume: 76 start-page: 1784 year: 2013 end-page: 1789 ident: b0125 article-title: Biofilm formation of publication-title: J Food Prot – volume: 35 start-page: 169 year: 2022 end-page: 185 ident: b0200 article-title: Multiple surface interaction mechanisms direct the anchoring, co-aggregation and formation of dual-species biofilm between publication-title: J Adv Res – volume: 77 start-page: 6852 year: 2011 end-page: 6857 ident: b0065 article-title: Inhibition of publication-title: Appl Environ Microbiol – volume: 317 start-page: 160 year: 2011 end-page: 171 ident: b0070 article-title: Characterization of swarming motility in publication-title: FEMS Microbiol Lett – volume: 4 year: 2023 ident: b0110 article-title: Regulation of biofilm formation by non-coding RNA in prokaryotes publication-title: Curr Res Pharmacol Drug Discov – volume: 10 start-page: e0135351 year: 2015 ident: b0160 article-title: Characterization of novel factors involved in swimming and swarming motility in publication-title: PLoS One – volume: 12 start-page: 6235 year: 2023 ident: b0105 article-title: Coordination of fungal biofilm development by extracellular vesicle cargo publication-title: Nat Commun – volume: 15 start-page: 1841 year: 2013 ident: b0360 article-title: Probing the cellular damage in bacteria induced by GaN nanoparticles using confocal laser Raman spectroscopy publication-title: J Nanopart Res – volume: 110 year: 2020 ident: b0100 article-title: Novel sRNA and regulatory genes repressing the adhesion of publication-title: Food Control – volume: 184 start-page: 5740 year: 2021 end-page: 5758 ident: b0215 article-title: Z-form extracellular DNA is a structural component of the bacterial biofilm matrix publication-title: Cell – volume: 7 start-page: eabi8228 year: 2021 ident: b0255 article-title: The impact of Hfq-mediated sRNA-mRNA interactome on the virulence of enteropathogenic publication-title: Sci Adv – volume: 393 start-page: 197 year: 2009 end-page: 206 ident: b0355 article-title: Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy publication-title: Anal Bioanal Chem – volume: 20 start-page: 608 year: 2022 end-page: 620 ident: b0025 article-title: The biofilm life cycle: expanding the conceptual model of biofilm formation publication-title: Nat Rev Microbiol – volume: 6 start-page: 191 year: 2015 end-page: 210 ident: b0010 article-title: Stress adaptation in foodborne pathogens publication-title: Annu Rev Food Sci T – volume: 193 start-page: 2587 year: 2011 end-page: 2597 ident: b0150 article-title: Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis publication-title: J Bacteriol – volume: 9 start-page: e89243 year: 2014 ident: b0235 article-title: Visualization of extracellular matrix components within sectioned publication-title: PLoS One – volume: 167 start-page: 293 year: 2013 end-page: 302 ident: b0320 article-title: In situ characterization and analysis of publication-title: Int J Food Microbiol – volume: 183 start-page: 244 year: 2022 end-page: 257 e16 ident: b0140 article-title: Structure and function of stator units of the bacterial flagellar motor publication-title: Cell – volume: 15 start-page: 1319 year: 2018 end-page: 1335 ident: b0265 article-title: The small RNA, SdsR, acts as a novel type of toxin in publication-title: RNA Biol – volume: 184 start-page: 1767 year: 2002 end-page: 1771 ident: b0295 article-title: Analyses of the roles of the three publication-title: J Bacteriol – volume: 22 start-page: 566 year: 2014 end-page: 572 ident: b0145 article-title: Building a flagellum outside the bacterial cell publication-title: Trends Microbiol – volume: 50 start-page: 11858 year: 2022 end-page: 11875 ident: b0035 article-title: The stationary phase-specific sRNA FimR2 is a multifunctional regulator of bacterial motility, biofilm formation and virulence publication-title: Nucleic Acids Res – volume: 362(17):fnv135 year: 2015 ident: b0155 article-title: Motility modulation by the small non-coding RNA SroC in publication-title: FEMS Microbiol Lett – volume: 8 start-page: 634 year: 2010 end-page: 644 ident: b0120 article-title: A field guide to bacterial swarming motility publication-title: Nat Rev Microbiol – volume: 92 start-page: 633 year: 2013 end-page: 638 ident: b0335 article-title: Functional groups characteristics of EPS in biofilm growing on different carriers publication-title: Chemosphere – volume: 21 start-page: 39 year: 2013 end-page: 49 ident: b0030 article-title: Small RNAs and their role in biofilm formation publication-title: Trends Microbiol – volume: 16 start-page: e1007721 year: 2020 ident: b0205 article-title: A systematic pipeline for classifying bacterial operons reveals the evolutionary landscape of biofilm machineries publication-title: PLoS Comput Biol – volume: 36 start-page: 0121 year: 2022 end-page: 0128 ident: b0240 article-title: Effect of sRNA SaaS on adhesion response and extracellular metabolites of publication-title: J Nucl Agric Sci – volume: 56 start-page: 2247 year: 2017 end-page: 2250 ident: b0225 article-title: Defining molecular details of the chemistry of biofilm formation by Raman microspectroscopy publication-title: Biochemistry – volume: 188 start-page: 3073 year: 2006 end-page: 3087 ident: b0305 article-title: A CsgD-independent pathway for cellulose production and biofilm formation in publication-title: J Bacteriol – volume: 121 year: 2021 ident: b0040 article-title: DsrA confers resistance to oxidative stress in publication-title: Food Control – volume: 30 year: 2022 ident: b0250 article-title: Key players in regulatory RNA realm of bacteria publication-title: Biochem Biophys Rep – volume: 7 start-page: 47 year: 1996 end-page: 53 ident: b0135 article-title: Microbial adhesion to solvents: A novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells publication-title: Colloids Surf B – volume: 10 start-page: e01034 year: 2019 end-page: e10119 ident: b0290 article-title: Paul Babitzke publication-title: Tony Romeo mBio – volume: 91 start-page: 397 year: 2018 end-page: 403 ident: b0075 article-title: Biofilm formation by meat-borne publication-title: Food Control – volume: 50 start-page: 1718 year: 2022 end-page: 1733 ident: b0245 article-title: Multiple publication-title: Nucleic Acids Res – volume: 20 start-page: 11357 year: 2015 end-page: 11372 ident: b0185 article-title: Individual constituents from essential oils inhibit biofilm mass production by multi-drug resistant publication-title: Molecules – volume: 11 start-page: e0293822 year: 2023 ident: b0050 article-title: A small RNA, SaaS, promotes publication-title: Microbiol Spectr – volume: 66 start-page: 860 year: 2000 end-page: 863 ident: b0115 article-title: Effect of flagella on initial attachment of publication-title: Appl Environ Microbiol – volume: 75 start-page: 5390 year: 2009 end-page: 5395 ident: b0220 article-title: Evaluation of different methods for extracting extracellular DNA from the biofilm matrix publication-title: Appl Environ Microbiol – volume: 104 start-page: 1552 year: 2007 end-page: 1561 ident: b0180 article-title: Influence of temperature on biofilm formation by publication-title: J Appl Microbiol – reference: . – volume: 39 start-page: 649 year: 2015 end-page: 669 ident: b0210 article-title: Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes publication-title: FEMS Microbiol Rev – volume: 6 start-page: e01064 year: 2015 ident: b0285 article-title: CsrA regulates ToxR levels in response to amino acids and is essential for virulence publication-title: MBio – volume: 8 start-page: e01434 year: 2019 end-page: e10518 ident: b0090 article-title: Complete genome sequence of publication-title: Microbiol Resour Announc – volume: 12 year: 2022 ident: b0020 article-title: Formation, development, and cross-species interactions in biofilms publication-title: Front Microbiol – year: 2024 ident: b0060 article-title: Swimming towards each other: the role of chemotaxis in bacterial interactions publication-title: Trends Microbiol – volume: 17 start-page: e1009630 year: 2021 ident: b0260 article-title: An incoherent feedforward loop formed by SirA/BarA, HilE and HilD is involved in controlling the growth cost of virulence factor expression by publication-title: PLoS Pathog – volume: 18 start-page: 661 year: 1995 end-page: 670 ident: b0315 article-title: Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in publication-title: Mol Microbiol – volume: 84 start-page: 17 year: 2012 end-page: 35 ident: b0055 article-title: A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in publication-title: Mol Microbiol – volume: 6 start-page: 478 year: 2013 end-page: 483 ident: b0175 article-title: Ability of publication-title: Foodborne Pathog Dis – volume: 406 start-page: 29 year: 2011 end-page: 43 ident: b0275 article-title: RNase III participates in GadY-dependent cleavage of the publication-title: J Mol Biol – volume: 39 start-page: 1452 year: 2001 end-page: 1463 ident: b0310 article-title: The multicellular morphotypes of publication-title: Mol Microbiol – volume: 24 start-page: 415 year: 2022 end-page: 423 ident: b0095 article-title: Exploring the expanding universe of small RNAs publication-title: Nat Cell Biol – volume: 21 start-page: 39 issue: 1 year: 2013 ident: 10.1016/j.jare.2024.06.008_b0030 article-title: Small RNAs and their role in biofilm formation publication-title: Trends Microbiol doi: 10.1016/j.tim.2012.10.008 – volume: 22 start-page: 566 issue: 10 year: 2014 ident: 10.1016/j.jare.2024.06.008_b0145 article-title: Building a flagellum outside the bacterial cell publication-title: Trends Microbiol doi: 10.1016/j.tim.2014.05.009 – volume: 75 start-page: 5390 issue: 16 year: 2009 ident: 10.1016/j.jare.2024.06.008_b0220 article-title: Evaluation of different methods for extracting extracellular DNA from the biofilm matrix publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00400-09 – volume: 184 start-page: 1767 issue: 6 year: 2002 ident: 10.1016/j.jare.2024.06.008_b0295 article-title: Analyses of the roles of the three cheA homologs in chemotaxis of Vibrio cholerae publication-title: J Bacteriol doi: 10.1128/JB.184.6.1767-1771.2002 – volume: 4 year: 2023 ident: 10.1016/j.jare.2024.06.008_b0110 article-title: Regulation of biofilm formation by non-coding RNA in prokaryotes publication-title: Curr Res Pharmacol Drug Discov doi: 10.1016/j.crphar.2022.100151 – volume: 81 start-page: 1 year: 2017 ident: 10.1016/j.jare.2024.06.008_b0015 article-title: Biofilm as risk factor for Salmonella contamination in various stages of poultry production. Europ publication-title: Poult Sci – volume: 184 start-page: 5740 issue: 23 year: 2021 ident: 10.1016/j.jare.2024.06.008_b0215 article-title: Z-form extracellular DNA is a structural component of the bacterial biofilm matrix publication-title: Cell doi: 10.1016/j.cell.2021.10.010 – volume: 8 start-page: DC18-c20 issue: 11 year: 2014 ident: 10.1016/j.jare.2024.06.008_b0190 article-title: Comparison of various methods used to detect biofilm production of Candida species publication-title: J Clin Diagn Res – volume: 117 start-page: 59 year: 2014 ident: 10.1016/j.jare.2024.06.008_b0085 article-title: Composition of EPS fractions from suspended sludge and biofilm and their roles in microbial cell aggregation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.05.070 – volume: 393 start-page: 197 issue: 1 year: 2009 ident: 10.1016/j.jare.2024.06.008_b0355 article-title: Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy publication-title: Anal Bioanal Chem doi: 10.1007/s00216-008-2470-5 – volume: 7 start-page: eabi8228 issue: 44 year: 2021 ident: 10.1016/j.jare.2024.06.008_b0255 article-title: The impact of Hfq-mediated sRNA-mRNA interactome on the virulence of enteropathogenic Escherichia coli publication-title: Sci Adv doi: 10.1126/sciadv.abi8228 – volume: 88 start-page: 40 year: 2018 ident: 10.1016/j.jare.2024.06.008_b0080 article-title: Aeromonas salmonicida Isolates: Attachment ability and sensitivity to four disinfectants publication-title: Food Control doi: 10.1016/j.foodcont.2017.12.027 – volume: 188 start-page: 3073 year: 2006 ident: 10.1016/j.jare.2024.06.008_b0305 article-title: A CsgD-independent pathway for cellulose production and biofilm formation in Escherichia coli publication-title: J Bacteriol doi: 10.1128/JB.188.8.3073-3087.2006 – volume: 167 start-page: 293 issue: 3 year: 2013 ident: 10.1016/j.jare.2024.06.008_b0320 article-title: In situ characterization and analysis of Salmonella biofilm formation under meat processing environments using a combined microscopic and spectroscopic approach publication-title: Int J Food Microbiol doi: 10.1016/j.ijfoodmicro.2013.10.005 – volume: 20 start-page: 11357 issue: 6 year: 2015 ident: 10.1016/j.jare.2024.06.008_b0185 article-title: Individual constituents from essential oils inhibit biofilm mass production by multi-drug resistant Staphylococcus aureus publication-title: Molecules doi: 10.3390/molecules200611357 – volume: 6 start-page: e01064 issue: 4 year: 2015 ident: 10.1016/j.jare.2024.06.008_b0285 article-title: Vibrio cholerae CsrA regulates ToxR levels in response to amino acids and is essential for virulence publication-title: MBio doi: 10.1128/mBio.01064-15 – volume: 81 start-page: 8564 issue: 20 year: 2009 ident: 10.1016/j.jare.2024.06.008_b0345 article-title: Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy publication-title: Anal Chem doi: 10.1021/ac9015424 – volume: 50 start-page: 930 year: 2014 ident: 10.1016/j.jare.2024.06.008_b0130 article-title: Biofilm formation by Staphylococcus Aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity publication-title: Food Control doi: 10.1016/j.foodcont.2014.10.048 – volume: 56 start-page: 2247 issue: 17 year: 2017 ident: 10.1016/j.jare.2024.06.008_b0225 article-title: Defining molecular details of the chemistry of biofilm formation by Raman microspectroscopy publication-title: Biochemistry doi: 10.1021/acs.biochem.7b00116 – volume: 50 start-page: 11858 issue: 20 year: 2022 ident: 10.1016/j.jare.2024.06.008_b0035 article-title: The stationary phase-specific sRNA FimR2 is a multifunctional regulator of bacterial motility, biofilm formation and virulence publication-title: Nucleic Acids Res doi: 10.1093/nar/gkac1025 – volume: 18 start-page: 4089 issue: 12 year: 2018 ident: 10.1016/j.jare.2024.06.008_b0340 article-title: Monitoring Candida parapsilosis and Staphylococcus epidermidis biofilms by a combination of scanning electron microscopy and Raman spectroscopy publication-title: Sensors doi: 10.3390/s18124089 – volume: 77 start-page: 4390 issue: 14 year: 2005 ident: 10.1016/j.jare.2024.06.008_b0350 article-title: Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy publication-title: Anal Chem doi: 10.1021/ac0504971 – volume: 121 year: 2021 ident: 10.1016/j.jare.2024.06.008_b0040 article-title: DsrA confers resistance to oxidative stress in Salmonella enterica serovar typhimurium publication-title: Food Control doi: 10.1016/j.foodcont.2020.107571 – volume: 77 start-page: 6852 issue: 19 year: 2011 ident: 10.1016/j.jare.2024.06.008_b0065 article-title: Inhibition of Escherichia coli CFT073 fliC expression and motility by cranberry materials publication-title: Appl Environ Microbiol doi: 10.1128/AEM.05561-11 – volume: 91 start-page: 397 year: 2018 ident: 10.1016/j.jare.2024.06.008_b0075 article-title: Biofilm formation by meat-borne Pseudomonas Fluorescens on stainless steel and its resistance to disinfectants publication-title: Food Control doi: 10.1016/j.foodcont.2018.04.035 – volume: 205 start-page: e0033322 issue: 1 year: 2023 ident: 10.1016/j.jare.2024.06.008_b0270 article-title: Small RNAs activate Salmonella pathogenicity island 1 by modulating mRNA stability through the hilD mRNA 3' untranslated region publication-title: J Bacteriol doi: 10.1128/jb.00333-22 – volume: 48 start-page: 2126 issue: 4 year: 2020 ident: 10.1016/j.jare.2024.06.008_b0045 article-title: The conserved 3' UTR-derived small RNA NarS mediates mRNA crossregulation during nitrate respiration publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz1168 – volume: 8 start-page: e01434 issue: 2 year: 2019 ident: 10.1016/j.jare.2024.06.008_b0090 article-title: Complete genome sequence of Salmonella enterica serovar Enteritidis NCM 61, with high potential for biofilm formation, isolated from meat-related sources publication-title: Microbiol Resour Announc doi: 10.1128/MRA.01434-18 – volume: 20 start-page: 608 issue: 10 year: 2022 ident: 10.1016/j.jare.2024.06.008_b0025 article-title: The biofilm life cycle: expanding the conceptual model of biofilm formation publication-title: Nat Rev Microbiol doi: 10.1038/s41579-022-00767-0 – volume: 362(17):fnv135 year: 2015 ident: 10.1016/j.jare.2024.06.008_b0155 article-title: Motility modulation by the small non-coding RNA SroC in Salmonella Typhimurium publication-title: FEMS Microbiol Lett – volume: 9 start-page: e89243 issue: 2 year: 2014 ident: 10.1016/j.jare.2024.06.008_b0235 article-title: Visualization of extracellular matrix components within sectioned Salmonella biofilms on the surface of human gallstones publication-title: PLoS One doi: 10.1371/journal.pone.0089243 – volume: 317 start-page: 160 issue: 2 year: 2011 ident: 10.1016/j.jare.2024.06.008_b0070 article-title: Characterization of swarming motility in Citrobacter freundii publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2011.02225.x – volume: 39 start-page: 649 issue: 5 year: 2015 ident: 10.1016/j.jare.2024.06.008_b0210 article-title: Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fuv015 – volume: 8 start-page: 623 issue: 9 year: 2010 ident: 10.1016/j.jare.2024.06.008_b0195 article-title: The biofilm matrix publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2415 – volume: 12 year: 2022 ident: 10.1016/j.jare.2024.06.008_b0020 article-title: Formation, development, and cross-species interactions in biofilms publication-title: Front Microbiol doi: 10.3389/fmicb.2021.757327 – volume: 24 start-page: 415 issue: 4 year: 2022 ident: 10.1016/j.jare.2024.06.008_b0095 article-title: Exploring the expanding universe of small RNAs publication-title: Nat Cell Biol doi: 10.1038/s41556-022-00880-5 – volume: 84 start-page: 17 issue: 1 year: 2012 ident: 10.1016/j.jare.2024.06.008_b0055 article-title: A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2012.07965.x – volume: 18 start-page: e1010953 issue: 11 year: 2022 ident: 10.1016/j.jare.2024.06.008_b0300 article-title: Polar localization of CheO under hypoxia promotes Campylobacter jejuni chemotactic behavior within host publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1010953 – volume: 15 start-page: 1841 issue: 8 year: 2013 ident: 10.1016/j.jare.2024.06.008_b0360 article-title: Probing the cellular damage in bacteria induced by GaN nanoparticles using confocal laser Raman spectroscopy publication-title: J Nanopart Res doi: 10.1007/s11051-013-1841-9 – volume: 35 start-page: 169 year: 2022 ident: 10.1016/j.jare.2024.06.008_b0200 article-title: Multiple surface interaction mechanisms direct the anchoring, co-aggregation and formation of dual-species biofilm between Candida albicans and Helicobacter pylori publication-title: J Adv Res doi: 10.1016/j.jare.2021.03.013 – volume: 16 start-page: e1007721 issue: 4 year: 2020 ident: 10.1016/j.jare.2024.06.008_b0205 article-title: A systematic pipeline for classifying bacterial operons reveals the evolutionary landscape of biofilm machineries publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007721 – volume: 406 start-page: 29 issue: 1 year: 2011 ident: 10.1016/j.jare.2024.06.008_b0275 article-title: RNase III participates in GadY-dependent cleavage of the gadX-gadW mRNA publication-title: J Mol Biol doi: 10.1016/j.jmb.2010.12.009 – volume: 15 start-page: 1319 issue: 10 year: 2018 ident: 10.1016/j.jare.2024.06.008_b0265 article-title: The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli publication-title: RNA Biol doi: 10.1080/15476286.2018.1532252 – volume: 50 start-page: 1718 issue: 3 year: 2022 ident: 10.1016/j.jare.2024.06.008_b0245 article-title: Multiple in vivo roles for the C-terminal domain of the RNA chaperone Hfq publication-title: Nucleic Acids Res doi: 10.1093/nar/gkac017 – volume: 21 start-page: 70 issue: 2 year: 2022 ident: 10.1016/j.jare.2024.06.008_b0165 article-title: The biofilm matrix: multitasking in a shared space publication-title: Nat Rev Microbiol doi: 10.1038/s41579-022-00791-0 – volume: 183 start-page: 244 issue: 1 year: 2022 ident: 10.1016/j.jare.2024.06.008_b0140 article-title: Structure and function of stator units of the bacterial flagellar motor publication-title: Cell doi: 10.1016/j.cell.2020.08.016 – volume: 66 start-page: 860 issue: 2 year: 2000 ident: 10.1016/j.jare.2024.06.008_b0115 article-title: Effect of flagella on initial attachment of Listeria monocytogenes to stainless steel publication-title: Appl Environ Microbiol doi: 10.1128/AEM.66.2.860-863.2000 – volume: 10 start-page: e01034 issue: 4 year: 2019 ident: 10.1016/j.jare.2024.06.008_b0290 article-title: Paul Babitzke publication-title: Tony Romeo mBio – volume: 11 start-page: e0293822 issue: 1 year: 2023 ident: 10.1016/j.jare.2024.06.008_b0050 article-title: A small RNA, SaaS, promotes Salmonella pathogenicity by regulating invasion, intracellular growth, and virulence factors publication-title: Microbiol Spectr doi: 10.1128/spectrum.02938-22 – volume: 193 start-page: 2587 issue: 10 year: 2011 ident: 10.1016/j.jare.2024.06.008_b0150 article-title: Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis publication-title: J Bacteriol doi: 10.1128/JB.01468-10 – volume: 10 start-page: e0135351 issue: 8 year: 2015 ident: 10.1016/j.jare.2024.06.008_b0160 article-title: Characterization of novel factors involved in swimming and swarming motility in Salmonella enterica serovar typhimurium publication-title: PLoS One doi: 10.1371/journal.pone.0135351 – volume: 104 start-page: 1552 issue: 6 year: 2007 ident: 10.1016/j.jare.2024.06.008_b0180 article-title: Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2007.03688.x – volume: 83 start-page: 1171 issue: 6 year: 2009 ident: 10.1016/j.jare.2024.06.008_b0330 article-title: Pink Quantification of water and biomass in small colony variant PAO1 biofilms by confocal Raman microspectroscopy publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2072-y – volume: 8 start-page: 634 issue: 9 year: 2010 ident: 10.1016/j.jare.2024.06.008_b0120 article-title: A field guide to bacterial swarming motility publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2405 – volume: 36 start-page: 0121 issue: 1 year: 2022 ident: 10.1016/j.jare.2024.06.008_b0240 article-title: Effect of sRNA SaaS on adhesion response and extracellular metabolites of Salmonella publication-title: J Nucl Agric Sci – volume: 6 start-page: 478 issue: 11 year: 2013 ident: 10.1016/j.jare.2024.06.008_b0175 article-title: Ability of Salmonella spp. to produce biofilm is dependent on temperature and surface material publication-title: Foodborne Pathog Dis – volume: 18 start-page: 661 issue: 4 year: 1995 ident: 10.1016/j.jare.2024.06.008_b0315 article-title: Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K-12 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.1995.mmi_18040661.x – volume: 30 year: 2022 ident: 10.1016/j.jare.2024.06.008_b0250 article-title: Key players in regulatory RNA realm of bacteria publication-title: Biochem Biophys Rep – volume: 39 start-page: 1452 issue: 6 year: 2001 ident: 10.1016/j.jare.2024.06.008_b0310 article-title: The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2001.02337.x – year: 2024 ident: 10.1016/j.jare.2024.06.008_b0060 article-title: Swimming towards each other: the role of chemotaxis in bacterial interactions publication-title: Trends Microbiol doi: 10.1016/j.tim.2023.12.008 – volume: 19 start-page: 488 issue: 4 year: 2023 ident: 10.1016/j.jare.2024.06.008_b0230 article-title: De novo engineering of a bacterial lifestyle program publication-title: Nat Chem Biol doi: 10.1038/s41589-022-01194-1 – volume: 7 start-page: 47 issue: 1–2 year: 1996 ident: 10.1016/j.jare.2024.06.008_b0135 article-title: Microbial adhesion to solvents: A novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells publication-title: Colloids Surf B doi: 10.1016/0927-7765(96)01272-6 – volume: 103 start-page: 1808 issue: 5 year: 2007 ident: 10.1016/j.jare.2024.06.008_b0325 article-title: Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2007.03413.x – ident: 10.1016/j.jare.2024.06.008_b0005 doi: 10.2903/j.efsa.2021.6971 – volume: 76 start-page: 1784 issue: 10 year: 2013 ident: 10.1016/j.jare.2024.06.008_b0125 article-title: Biofilm formation of Salmonella serotypes in simulated meat processing environments and its relationship to cell characteristics publication-title: J Food Prot doi: 10.4315/0362-028X.JFP-13-093 – volume: 49 start-page: 6820 issue: 19 year: 2014 ident: 10.1016/j.jare.2024.06.008_b0170 article-title: Biofilm formation on different materials for tooth restoration: Analysis of surface characteristics publication-title: J Mater Sci doi: 10.1007/s10853-014-8384-z – volume: 92 start-page: 633 issue: 6 year: 2013 ident: 10.1016/j.jare.2024.06.008_b0335 article-title: Functional groups characteristics of EPS in biofilm growing on different carriers publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.01.059 – volume: 6 start-page: 191 year: 2015 ident: 10.1016/j.jare.2024.06.008_b0010 article-title: Stress adaptation in foodborne pathogens publication-title: Annu Rev Food Sci T doi: 10.1146/annurev-food-030713-092350 – volume: 12 start-page: 6235 issue: 1 year: 2023 ident: 10.1016/j.jare.2024.06.008_b0105 article-title: Coordination of fungal biofilm development by extracellular vesicle cargo publication-title: Nat Commun doi: 10.1038/s41467-021-26525-z – volume: 17 start-page: e1009630 issue: 5 year: 2021 ident: 10.1016/j.jare.2024.06.008_b0260 article-title: An incoherent feedforward loop formed by SirA/BarA, HilE and HilD is involved in controlling the growth cost of virulence factor expression by Salmonella Typhimurium publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1009630 – volume: 184 start-page: 290 issue: 1 year: 2002 ident: 10.1016/j.jare.2024.06.008_b0280 article-title: Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli publication-title: J Bacteriol doi: 10.1128/JB.184.1.290-301.2002 – volume: 110 year: 2020 ident: 10.1016/j.jare.2024.06.008_b0100 article-title: Novel sRNA and regulatory genes repressing the adhesion of Salmonella Enteritidis exposed to meat-related environment publication-title: Food Control |
SSID | ssj0000388911 |
Score | 2.3516576 |
Snippet | [Display omitted]
•sRNA SaaS inhibits biofilm formation by interacting with target mRNA (hilD, cheA, and csgA).•The space morphological structure of biofilm in... Salmonella Enteritidis has brought great harm to public health, animal production and food safety worldwide. The biofilm formed by Salmonella Enteritidis plays... • sRNA SaaS inhibits biofilm formation by interacting with target mRNA ( hilD , cheA, and csgA ). • The space morphological structure of biofilm in polystyrene... Introduction: Salmonella Enteritidis has brought great harm to public health, animal production and food safety worldwide. The biofilm formed by Salmonella... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 127 |
SubjectTerms | Agricultural Science Bacterial Proteins - genetics Bacterial Proteins - metabolism Biofilm Biofilms - growth & development EPS Flagellar Gene Expression Regulation, Bacterial RNA, Bacterial - genetics RNA, Small Untranslated - genetics RNA, Small Untranslated - metabolism Salmonella Enteritidis Salmonella enteritidis - genetics Salmonella enteritidis - physiology sRNA Target mRNAs |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELainHqpmj7pS67UQ6uWLovfx03aKOohh24j7c2ysdl1lEK0kP9fj4FVaKUeejIyGAwztj_gm28Qem89lUYIlteMmTxuV7lZ1kVecuJcwWsZ52VgW1zyiyv6fcM2R-hsioUBWuU49w9zepqtx5rF-DQXtyEs1mWhEiAAFmQsIKKcUJmC-Danh-8soHaiUhpeOD6HBmPszEDzujZ7UMssaZLxhCyT99anJOM_W6b-hqF_sinvLU_nj9DDEVfi1dD1E3Tkm8foZBy5Hf4wykt_fIL8CvewQOUQ0tBscffjcoXXxqzxwAqHul24-foZR3uusGkcrrptbNTi0OyCDT22ARJ9_8KHyEfc1nj9BSeGQeiDC91TdHX-7efZRT4mW8irCKJ6CAGwXhAZBzVxtqY14dSUxBnDDWwKSEBIQRuGUWtiqUSlSmeZqysVQSR5ho6btvEvEK4IMYWyylkZX9dEKUEOwihfFNYzQeoMfZoesb4dNDX0RDa71mAQDQbRiXEnM3QKVjgcCXrYqaLdb_XoENrTpfC0cLJWlioTe2Y8484Whlc83lKG2GRDPXOveKrwz4u_mwyu47iDnymm8e1dpwlgNYAAIkPPBwc4dDG6HIOsXxmSM9eY3cN8TxN2Sdt7GaEEF8Xy5X92-BV6UEKG4kTJfI2O-_2dfxNhU2_fpnHxGyiHE2g priority: 102 providerName: Elsevier |
Title | A trans-acting sRNA SaaS targeting hilD, cheA and csgA to inhibit biofilm formation of S. Enteritidis |
URI | https://dx.doi.org/10.1016/j.jare.2024.06.008 https://www.ncbi.nlm.nih.gov/pubmed/38852803 https://www.proquest.com/docview/3066334137 https://pubmed.ncbi.nlm.nih.gov/PMC12126701 https://doaj.org/article/e417e40d8f9b49ac92ae56db0a6c6040 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQLa_wkpE4gCCQjd_HLVAVDj2wVNqbZcdO11XJoib9_51xsqtdkODCJbHivOwZe74on78h5LWPXDulRNkK4UooN6WbtVVZSxZCJVsN8zKyLc7k6Tn_thTLnVRfyAkb5YHHjvsY-UxFXgXdGs-Na0ztopDBV042EjwQZ1-IeTsfU3kOZlqbnHwXKpF-wOppxcxI7rp016iRWfMs3om5JXeiUhbv3wtOf4LP3zmUO0Hp5D65N6FJOh9bcUjuxO6IHE7jtadvJlHptw9InNMBw1KJCxm6C9p_P5vThXMLOnLB8dgqXX1-T8GKc-q6QJv-Ai5a09Stkk8D9QnTe_-k2_WOdN3SxQeaeQVpSCH1D8n5yZcfn07LKcVC2QB0GpD476NiGjqSBd_ylknuahackw6LCtMOclSEEdw72BsFFghehLYxAB3ZI3LQrbv4hNCGMVcZb4LX8JGmao0iEM7EqvJRKNYW5N2mi-2vUUnDbihmlxYNYtEgNvPsdEGO0QrbM1EFOx8A37CTb9h_-UZBxMaGdgIUI1CAW6W_PvzVxuAWRhv-QnFdXN_0liFCw8CvCvJ4dIDtK4LLCcz1VRC95xp7bdiv6dIqK3rPAEBIVc2e_o9WPyN3a0xSnFmZz8nBcH0TXwByGvzLPEhg-3V5fAtvMxSP |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKOcAFUT5TvozEAQRhs7Edx8dtodpC2QPbSnuz7NjZdUWTapP-fzxOsmpA4sApkRMndmZsvyRv3iD0TluaK85ZXDKmYr9fxGpaJnGaEWOSrMz9vAxsi0U2v6DfVmy1h46HWBigVfZzfzenh9m6L5n0T3Ny7dxkmSYiAAJgQfoNv4PuejTAIX_D6epo96EF5E5EyMMLFWKo0QfPdDyvS7UFucyUBh1PSDN5a4EKOv6jdepvHPonnfLW-nTyED3ogSWedW0_QHu2eoQO-qHb4Pe9vvSHx8jOcAsrVAwxDdUaNz8XM7xUaok7WjiUbdyvL5-wN-gMq8rgoln7SjV21cZp12LtINP3Fd6FPuK6xMvPOFAMXOuMa56gi5Ov58fzuM-2EBceRbUQA6AtJ7kf1cTokpYkoyolRqlMwS6HDIQUxGEY1cpvBS9EajQzZSE8iiRP0X5VV_Y5wgUhKhFaGJ379zWe5qAHoYRNEm0ZJ2WEPg6PWF53ohpyYJtdSjCIBIPIQLnLI3QEVtidCYLYoaDermXvEdLSKbc0MXkpNBXKt0xZlhmdqKzIfJcixAYbypF_-Uu5f9787WBw6Qce_E1Rla1vGkkArAEG4BF61jnArone5Rik_YpQPnKNUR_GRyq3CeLeU48lvBNPD_-zwW_Qvfn5jzN5drr4_gLdTyFdceBnvkT77fbGvvIYqtWvwxj5Df5xFoc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+trans-acting+sRNA+SaaS+targeting+hilD%2C+cheA+and+csgA+to+inhibit+biofilm+formation+of+S.+Enteritidis&rft.jtitle=Journal+of+advanced+research&rft.au=Lyu%2C+Chongyang&rft.au=Hu%2C+Haijing&rft.au=Cai%2C+Linlin&rft.au=He%2C+Shuwen&rft.date=2025-05-01&rft.issn=2090-1224&rft.eissn=2090-1224&rft_id=info:doi/10.1016%2Fj.jare.2024.06.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-1232&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-1232&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-1232&client=summon |