Emergence Shapes the Structure of the Seed Microbiota
Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknow...
Saved in:
Published in | Applied and Environmental Microbiology Vol. 81; no. 4; pp. 1257 - 1266 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment of
gyrB
. Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention. |
---|---|
AbstractList | Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment of gyrB. Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention. Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment of gyrB. Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention.Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment of gyrB. Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention. Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment of gyrB . Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention. Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated to seeds has been mainly explored through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structure of the seed microbiota of different Brassicaceaeand its dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene and a species-specific bacterial marker based on a fragment of gyrB. Sequences analyses revealed important variation in microbial community composition between seed samples. Moreover we found that emergence strongly influences the structure of the microbiota with a marked reduction of bacterial and fungal diversity. This shift in microbial community composition is mostly due to an increase in relative abundance of some bacterial and fungal taxa possessing fast growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical application in developing new strategies of inoculation for disease prevention. |
Author | Bonneau, Sophie Préveaux, Anne Simoneau, Philippe Valière, Sophie Hunault, Gilles Jacques, Marie-Agnès Barret, Matthieu Bouchez, Olivier Briand, Martial |
Author_xml | – sequence: 1 givenname: Matthieu surname: Barret fullname: Barret, Matthieu organization: INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France – sequence: 2 givenname: Martial surname: Briand fullname: Briand, Martial organization: INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France – sequence: 3 givenname: Sophie surname: Bonneau fullname: Bonneau, Sophie organization: INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France – sequence: 4 givenname: Anne surname: Préveaux fullname: Préveaux, Anne organization: INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France – sequence: 5 givenname: Sophie surname: Valière fullname: Valière, Sophie organization: GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, France, INRA, UAR1209, Département de Génétique Animale, INRA Auzeville, Castanet Tolosan, France – sequence: 6 givenname: Olivier surname: Bouchez fullname: Bouchez, Olivier organization: GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, France, UMR INRA/INPT ENSAT/INPT ENVT, Génétique, Physiologie et Systèmes d'Élevage, INRA Auzeville, Castanet Tolosan, France – sequence: 7 givenname: Gilles surname: Hunault fullname: Hunault, Gilles organization: Université d'Angers, Laboratoire d'Hémodynamique, Interaction Fibrose et Invasivité Tumorale Hépatique, UPRES 3859, IFR 132, Angers, France – sequence: 8 givenname: Philippe surname: Simoneau fullname: Simoneau, Philippe organization: INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France – sequence: 9 givenname: Marie-Agnès surname: Jacques fullname: Jacques, Marie-Agnès organization: INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25501471$$D View this record in MEDLINE/PubMed https://hal.science/hal-01153480$$DView record in HAL |
BookMark | eNqNks9LIzEUx4O4aK3ePEvBi4KjLz8ncxGKVF2oeFDPIZNmbGQ6qUlG2P9-U1tlt-xhTwkvn_feN-99D9Bu5zuL0DGGS4yJvBpPHi6BloQUmO2gAYZKFpxSsYsGAFVVEMJgHx3E-AYADITcQ_uEc8CsxAPEJwsbXm1n7Ohprpc2jtI8X1PoTeqDHflmHbB2NnpwJvja-aQP0Y9Gt9Eebc4hermdPN_cF9PHu58342lhOOOpEIzUJdWMS4DckojaMMJntAbAYITkojJlVoRnWhgtjW5kI5i0DTc8ay_pEF2v6y77emFnxnYp6FYtg1vo8Et57dTfL52bq1f_oRiFSnwWOF8XmG-l3Y-nahUDjDllEj5wZs82zYJ_721MauGisW2rO-v7qLCQJaWsouw_UAFZgqQko6db6JvvQ5enlimOgRBeykyd_PnRb6lfi8rAxRrIK4gx2OYbwaBWPlDZB-rTBwqvBJIt3Likk_OrMbn230m_AdFLsOQ |
CODEN | AEMIDF |
CitedBy_id | crossref_primary_10_1094_PBIOMES_01_19_0009_R crossref_primary_10_3390_microorganisms9081561 crossref_primary_10_1093_femsec_fiae027 crossref_primary_10_17129_botsci_3125 crossref_primary_10_3389_fmicb_2022_984832 crossref_primary_10_1038_s41598_020_60591_5 crossref_primary_10_1094_PBIOMES_04_19_0022_R crossref_primary_10_1186_s12864_019_6334_5 crossref_primary_10_1002_mbo3_609 crossref_primary_10_1094_PBIOMES_10_22_0068_R crossref_primary_10_1093_femsec_fiaf004 crossref_primary_10_1128_msystems_00951_24 crossref_primary_10_3390_microorganisms12071348 crossref_primary_10_4274_MNM_2023_23152 crossref_primary_10_1111_1365_2435_12684 crossref_primary_10_1186_s40793_023_00466_0 crossref_primary_10_3389_fpls_2017_00763 crossref_primary_10_1186_s40793_022_00452_y crossref_primary_10_5897_AJAR2023_16549 crossref_primary_10_1007_s11104_017_3175_3 crossref_primary_10_1007_s11104_023_06074_8 crossref_primary_10_1016_j_jare_2019_03_004 crossref_primary_10_3390_microorganisms5040070 crossref_primary_10_1021_acs_jafc_3c07092 crossref_primary_10_11002_kjfp_2017_24_6_778 crossref_primary_10_1007_s11104_017_3368_9 crossref_primary_10_1111_1462_2920_14741 crossref_primary_10_1128_spectrum_02420_21 crossref_primary_10_1139_cjm_2017_0230 crossref_primary_10_1016_j_csbj_2020_01_004 crossref_primary_10_3389_fmicb_2019_01437 crossref_primary_10_1186_s12866_019_1546_z crossref_primary_10_3389_fmicb_2015_01311 crossref_primary_10_3390_d13090404 crossref_primary_10_3390_plants9030372 crossref_primary_10_3390_plants11070856 crossref_primary_10_1128_mbio_01648_22 crossref_primary_10_1016_j_fochms_2023_100185 crossref_primary_10_1186_s40168_020_00833_w crossref_primary_10_1111_1751_7915_13618 crossref_primary_10_1128_mSystems_00446_21 crossref_primary_10_3389_fmicb_2022_826521 crossref_primary_10_1007_s00284_025_04065_9 crossref_primary_10_1111_1365_2435_13783 crossref_primary_10_1080_00275514_2021_1952830 crossref_primary_10_3390_ijms19030672 crossref_primary_10_1007_s13313_018_0579_3 crossref_primary_10_1016_j_cropro_2024_106645 crossref_primary_10_1016_j_pmpp_2024_102421 crossref_primary_10_1007_s11104_017_3257_2 crossref_primary_10_1017_S0960258519000060 crossref_primary_10_1186_s40168_024_02014_5 crossref_primary_10_3390_agriculture14050769 crossref_primary_10_1038_s41598_019_54328_2 crossref_primary_10_1128_mra_00140_23 crossref_primary_10_1016_j_biocontrol_2016_12_001 crossref_primary_10_1007_s10811_022_02823_x crossref_primary_10_1094_PBIOMES_6_1 crossref_primary_10_1371_journal_pone_0279049 crossref_primary_10_1094_PDIS_05_24_1103_PDN crossref_primary_10_17352_ojeb_000046 crossref_primary_10_1094_PBIOMES_04_21_0030_R crossref_primary_10_1128_spectrum_00377_23 crossref_primary_10_1111_nph_17319 crossref_primary_10_1007_s11104_023_06364_1 crossref_primary_10_1094_MPMI_05_22_0116_TA crossref_primary_10_1093_femsec_fiac061 crossref_primary_10_1016_j_apsoil_2021_104191 crossref_primary_10_1094_PBIOMES_01_19_0007_R crossref_primary_10_1093_jxb_eraa111 crossref_primary_10_3389_fmicb_2020_566613 crossref_primary_10_3390_microorganisms9091842 crossref_primary_10_1371_journal_pone_0204629 crossref_primary_10_3390_life12091372 crossref_primary_10_1093_femsec_fiy112 crossref_primary_10_1007_s00203_024_04225_8 crossref_primary_10_1016_j_micres_2023_127318 crossref_primary_10_1371_journal_pone_0204195 crossref_primary_10_1371_journal_pone_0209091 crossref_primary_10_1038_s41598_023_47099_4 crossref_primary_10_1111_jpy_13329 crossref_primary_10_1007_s00253_017_8716_4 crossref_primary_10_1038_s41467_017_02051_9 crossref_primary_10_3389_fmicb_2022_814864 crossref_primary_10_3389_fmicb_2021_664271 crossref_primary_10_1016_j_pbi_2017_04_018 crossref_primary_10_1186_s40168_018_0445_0 crossref_primary_10_3389_fmicb_2023_1151052 crossref_primary_10_1094_PBIOMES_5_2 crossref_primary_10_1007_s11104_016_2927_9 crossref_primary_10_3390_microorganisms10040750 crossref_primary_10_1111_1462_2920_15197 crossref_primary_10_1007_s12223_022_00958_5 crossref_primary_10_1016_j_tim_2022_10_009 crossref_primary_10_1128_spectrum_00172_22 crossref_primary_10_1128_spectrum_00210_21 crossref_primary_10_1094_PBIOMES_08_20_0059_R crossref_primary_10_1016_j_micres_2021_126763 crossref_primary_10_1007_s10311_017_0628_0 crossref_primary_10_1007_s11104_017_3184_2 crossref_primary_10_1007_s11104_017_3451_2 crossref_primary_10_1002_jsfa_8058 crossref_primary_10_1074_jbc_RA118_001856 crossref_primary_10_24072_pcjournal_329 crossref_primary_10_1007_s00248_019_01440_5 crossref_primary_10_1021_acs_est_9b01093 crossref_primary_10_1016_j_scitotenv_2018_01_288 crossref_primary_10_1186_s40793_024_00657_3 crossref_primary_10_3390_horticulturae8060498 crossref_primary_10_1016_j_jaridenv_2021_104531 crossref_primary_10_1094_PBIOMES_4_1 crossref_primary_10_1094_PBIOMES_4_3 crossref_primary_10_1016_j_fm_2020_103547 crossref_primary_10_1016_j_micres_2023_127549 crossref_primary_10_1016_j_ijfoodmicro_2019_108374 crossref_primary_10_1016_j_fm_2020_103666 crossref_primary_10_1186_s12864_020_07126_4 crossref_primary_10_1139_cjm_2020_0306 crossref_primary_10_1186_s40793_021_00389_8 crossref_primary_10_3389_fmicb_2018_01645 crossref_primary_10_1094_PBIOMES_03_20_0026_R crossref_primary_10_1111_nph_18037 crossref_primary_10_1111_1751_7915_12382 crossref_primary_10_1007_s11104_020_04684_0 crossref_primary_10_1007_s11104_017_3289_7 crossref_primary_10_1080_17429145_2023_2227652 crossref_primary_10_3390_f15122178 crossref_primary_10_1007_s12602_017_9298_2 crossref_primary_10_1071_BT22109 crossref_primary_10_3390_ijms23169194 crossref_primary_10_1038_s42003_021_02467_6 crossref_primary_10_1111_jam_13017 crossref_primary_10_1038_s41598_019_42865_9 crossref_primary_10_1016_j_ijfoodmicro_2016_07_034 crossref_primary_10_3390_microorganisms7110518 crossref_primary_10_3389_fpls_2020_568924 crossref_primary_10_1186_s40168_025_02073_2 crossref_primary_10_1094_PBIOMES_3_3 crossref_primary_10_1094_PBIOMES_3_2 crossref_primary_10_1094_PBIOMES_3_4 crossref_primary_10_3389_fmicb_2021_635810 crossref_primary_10_1007_s11104_020_04743_6 crossref_primary_10_1016_j_scitotenv_2025_178538 crossref_primary_10_1007_s11104_021_04856_6 crossref_primary_10_1186_s12864_016_3053_z crossref_primary_10_1093_molbev_msad093 crossref_primary_10_3390_microorganisms12040779 crossref_primary_10_1186_s12866_016_0743_2 crossref_primary_10_1146_annurev_ecolsys_121415_032238 crossref_primary_10_1007_s00248_024_02409_9 crossref_primary_10_1111_mpp_12382 crossref_primary_10_1016_j_scitotenv_2022_159181 crossref_primary_10_1038_s43705_023_00330_9 crossref_primary_10_1093_gbe_evv234 crossref_primary_10_1094_PHYTO_10_23_0366_IA crossref_primary_10_3389_fpls_2020_01075 crossref_primary_10_1007_s11104_017_3182_4 crossref_primary_10_1094_PBIOMES_03_23_0019_MF crossref_primary_10_1016_j_biocontrol_2016_02_013 crossref_primary_10_3389_fimmu_2017_01114 crossref_primary_10_3389_fpls_2018_00902 crossref_primary_10_1186_s40168_017_0310_6 crossref_primary_10_5897_JPBCS2017_0700 crossref_primary_10_3389_fpls_2020_560869 crossref_primary_10_7717_peerj_1923 crossref_primary_10_1111_tpj_14170 crossref_primary_10_1007_s11104_022_05649_1 crossref_primary_10_1007_s11104_020_04820_w crossref_primary_10_3390_horticulturae7040075 crossref_primary_10_1080_03235408_2021_1909370 crossref_primary_10_3389_fmicb_2018_02708 crossref_primary_10_1146_annurev_phyto_080615_100147 crossref_primary_10_3389_fmicb_2022_877519 crossref_primary_10_1016_j_tplants_2017_09_003 crossref_primary_10_1094_MPMI_09_19_0248_R crossref_primary_10_1111_1462_2920_12977 crossref_primary_10_1111_nph_14323 crossref_primary_10_1128_mBio_02637_20 crossref_primary_10_3390_plants11162127 crossref_primary_10_1128_spectrum_03662_23 crossref_primary_10_1007_s11104_016_3113_9 crossref_primary_10_1007_s11104_018_3780_9 crossref_primary_10_21597_jist_1028429 crossref_primary_10_3390_microorganisms9040816 crossref_primary_10_3389_fpls_2023_1101818 crossref_primary_10_1038_s41467_019_11974_4 crossref_primary_10_1016_j_bios_2017_07_039 crossref_primary_10_1111_nph_70011 crossref_primary_10_1002_agg2_20038 crossref_primary_10_1016_j_funbio_2022_09_002 crossref_primary_10_1038_s41598_017_01126_3 crossref_primary_10_1007_s00253_018_9290_0 crossref_primary_10_1038_s41597_024_03332_x crossref_primary_10_1007_s11104_021_05226_y crossref_primary_10_1016_j_lwt_2021_112125 crossref_primary_10_3389_fmicb_2017_00011 crossref_primary_10_1094_PBIOMES_06_19_0031_R crossref_primary_10_3389_fmicb_2024_1353763 crossref_primary_10_1007_s11104_020_04608_y crossref_primary_10_1094_PBIOMES_11_22_0084_R crossref_primary_10_1007_s11104_022_05822_6 crossref_primary_10_1111_1758_2229_70000 crossref_primary_10_1093_plphys_kiae556 crossref_primary_10_3390_ijms22179252 crossref_primary_10_1093_femsec_fiac028 crossref_primary_10_3390_microorganisms8111708 crossref_primary_10_1016_j_apsoil_2024_105422 crossref_primary_10_35848_1882_0786_ab9712 crossref_primary_10_1007_s00374_021_01590_0 crossref_primary_10_1016_j_mib_2017_03_010 crossref_primary_10_1094_PBIOMES_04_19_0023_R crossref_primary_10_1128_JCM_00235_18 crossref_primary_10_1094_PHYTOFR_01_23_0002_R crossref_primary_10_1007_s12088_024_01225_6 crossref_primary_10_7717_peerj_16619 crossref_primary_10_1016_j_scitotenv_2023_164131 crossref_primary_10_1093_femsec_fiab060 crossref_primary_10_3390_microorganisms11082085 crossref_primary_10_13103_JFHS_2016_31_6_465 crossref_primary_10_1093_femsec_fiab166 crossref_primary_10_1111_1462_2920_15240 crossref_primary_10_1128_mSphere_01316_20 crossref_primary_10_3389_fpls_2018_00024 crossref_primary_10_4014_jmb_2303_03004 crossref_primary_10_1016_j_lwt_2020_109314 crossref_primary_10_3389_fmicb_2018_03169 crossref_primary_10_1038_s41396_018_0152_7 crossref_primary_10_1094_PBIOMES_08_22_0054_MF crossref_primary_10_1186_s40168_019_0723_5 crossref_primary_10_3389_fpls_2023_1260292 |
Cites_doi | 10.1371/journal.pone.0020396 10.1128/AEM.66.10.4372-4377.2000 10.1128/aem.61.3.1104-1109.1995 10.1128/AEM.02906-07 10.1111/j.1469-8137.2009.03160.x 10.18637/jss.v028.c01 10.1016/j.soilbio.2004.04.009 10.1111/2041-210X.12073 10.1111/nph.12693 10.1093/genetics/131.2.479 10.1007/s00253-009-2092-7 10.1139/w98-227 10.1146/annurev.phyto.42.121603.131041 10.1128/AEM.00062-07 10.1111/1574-6968.12225 10.1046/j.1365-2672.1997.00135.x 10.1186/1471-2105-12-385 10.1371/journal.pone.0030600 10.1186/1471-2164-12-38 10.1371/journal.pone.0095928 10.1093/nar/gkn879 10.1146/annurev-arplant-050312-120106 10.1128/AEM.00124-12 10.1038/nmeth.f.303 10.1146/annurev.py.04.090166.001523 10.1270/jsbbs.56.185 10.1093/nar/gkq291 10.1016/S0038-0717(00)00075-4 10.1007/s00248-011-9845-4 10.1128/AEM.01043-13 10.1038/nrmicro2910 10.1093/bioinformatics/btp616 10.1186/gb-2010-11-10-r106 10.1128/AEM.01098-10 10.1146/annurev.phyto.44.070505.143405 10.1111/1574-6968.12216 10.1093/molbev/mst010 10.1073/pnas.1000080107 10.1371/journal.pone.0040117 10.1093/nar/gkr1044 10.1371/journal.pcbi.1002687 10.1371/journal.pone.0049755 10.1093/nar/29.1.344 10.1038/nrmicro3109 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2 10.1007/s10658-005-4511-7 10.1371/journal.pone.0030438 10.1515/bot-2011-0086 10.1093/nar/gks808 10.18637/jss.v048.i04 10.5021/ad.2013.25.2.232 10.1128/AEM.01541-09 10.1371/journal.pcbi.1003531 10.1128/mBio.00682-13 10.1093/bioinformatics/btq461 10.1111/j.2517-6161.1995.tb02031.x 10.1073/pnas.1117018109 10.1105/tpc.9.7.1055 10.1093/bioinformatics/btr381 10.1016/S0038-0717(00)00126-7 10.1038/ismej.2007.33 10.1007/s11104-013-1647-7 10.1111/j.1469-8137.2009.03003.x 10.1371/journal.pone.0057923 10.1111/nph.12532 10.1371/journal.pone.0027310 10.1111/j.1462-2920.2011.02551.x 10.1128/mBio.00602-12 10.1093/nar/gkr771 10.2307/1942268 |
ContentType | Journal Article |
Copyright | Copyright American Society for Microbiology Feb 2015 Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
Copyright_xml | – notice: Copyright American Society for Microbiology Feb 2015 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 1XC 5PM |
DOI | 10.1128/AEM.03722-14 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database Virology and AIDS Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology Medicine Pharmacy, Therapeutics, & Pharmacology |
DocumentTitleAlternate | Dynamics of the Seed Microbiota |
EISSN | 1098-5336 1098-6596 |
EndPage | 1266 |
ExternalDocumentID | PMC4309697 oai_HAL_hal_01153480v1 3578663541 25501471 10_1128_AEM_03722_14 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -~X 0R~ 23M 2WC 39C 4.4 53G 5GY 5RE 5VS 6J9 85S AAGFI AAYXX AAZTW ABOGM ABPPZ ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH AENEX AFRAH AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CITATION CS3 D0L DIK E.- E3Z EBS EJD F5P GX1 H13 HYE HZ~ K-O KQ8 L7B O9- P2P PQQKQ RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UHB W8F WH7 WOQ X6Y ~02 ~KM .55 .GJ 3O- ABTAH AFFNX AGCDD AI. C1A CGR CUY CVF ECM EIF H~9 MVM NEJ NPM OHT VH1 WHG X7M XJT YV5 ZCG ZGI ZXP ZY4 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI FRP HH5 LSO OK1 W2D 7X8 1XC UMC 5PM |
ID | FETCH-LOGICAL-c545t-642b73a4580025526bc425d3b0010c68569c70681da6ca8caf8f648ef5c500973 |
ISSN | 0099-2240 1098-5336 |
IngestDate | Thu Aug 21 18:45:21 EDT 2025 Fri May 09 12:18:57 EDT 2025 Fri Jul 11 04:48:41 EDT 2025 Fri Jul 11 03:30:54 EDT 2025 Mon Jun 30 08:36:26 EDT 2025 Thu Apr 03 07:01:36 EDT 2025 Thu Apr 24 23:00:02 EDT 2025 Tue Jul 01 02:19:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | diversity database spermosphere transmission fungi colonization Chaetomium-globosum bacterial community phyllosphere differential expression analysis |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c545t-642b73a4580025526bc425d3b0010c68569c70681da6ca8caf8f648ef5c500973 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 PMCID: PMC4309697 Citation Barret M, Briand M, Bonneau S, Préveaux A, Valière S, Bouchez O, Hunault G, Simoneau P, Jacques M-A. 2015. Emergence shapes the structure of the seed microbiota. Appl Environ Microbiol 81:1257–1266. doi:10.1128/AEM.03722-14. |
ORCID | 0009-0000-3430-7164 0000-0002-7255-0058 0000-0002-7633-8476 0000-0002-1442-917X 0000-0002-3890-9848 0000-0002-5822-2824 |
OpenAccessLink | https://aem.asm.org/content/aem/81/4/1257.full.pdf |
PMID | 25501471 |
PQID | 1651022578 |
PQPubID | 42251 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4309697 hal_primary_oai_HAL_hal_01153480v1 proquest_miscellaneous_1687334934 proquest_miscellaneous_1660430832 proquest_journals_1651022578 pubmed_primary_25501471 crossref_primary_10_1128_AEM_03722_14 crossref_citationtrail_10_1128_AEM_03722_14 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-01 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Applied and Environmental Microbiology |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2015 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 e_1_3_3_71_2 Benjamini Y (e_1_3_3_48_2) 1995; 57 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_70_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_60_2 Maude RB (e_1_3_3_7_2) 1996 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1 20435676 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W7-13 7793912 - Appl Environ Microbiol. 1995 Mar;61(3):1104-9 23460914 - PLoS One. 2013;8(2):e57923 20979621 - Genome Biol. 2010;11(10):R106 21961884 - BMC Bioinformatics. 2011;12:385 24449749 - MBio. 2014;5(1):e00682-13 23443006 - MBio. 2013;4(2). pii: e00602-12. doi: 10.1128/mBio.00602-12 18326683 - Appl Environ Microbiol. 2008 May;74(9):2669-78 24788412 - PLoS One. 2014;9(5):e95928 21700674 - Bioinformatics. 2011 Aug 15;27(16):2194-200 11010885 - Appl Environ Microbiol. 2000 Oct;66(10):4372-7 23154261 - Nat Rev Microbiol. 2012 Dec;10(12):828-40 19568745 - Appl Microbiol Biotechnol. 2009 Aug;84(1):11-8 9134719 - J Appl Microbiol. 1997 Apr;82(4):448-54 23189159 - PLoS One. 2012;7(11):e49755 20534432 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 17061917 - Annu Rev Phytopathol. 2006;44:261-82 22933715 - Nucleic Acids Res. 2013 Jan 7;41(1):e1 22355318 - PLoS One. 2012;7(2):e30600 24056930 - Nat Rev Microbiol. 2013 Nov;11(11):789-99 22194640 - Nucleic Acids Res. 2012 Jan;40(Database issue):D115-22 24699258 - PLoS Comput Biol. 2014 Apr;10(4):e1003531 20729326 - Appl Environ Microbiol. 2010 Oct;76(20):6787-96 22389369 - Appl Environ Microbiol. 2012 May;78(10):3693-705 23717019 - Ann Dermatol. 2013 May;25(2):232-6 23793624 - Appl Environ Microbiol. 2013 Sep;79(17):5112-20 19703112 - New Phytol. 2009 Oct;184(2):449-56 21241472 - BMC Genomics. 2011;12:38 23329690 - Mol Biol Evol. 2013 Apr;30(4):772-80 23373698 - Annu Rev Plant Biol. 2013;64:807-38 22021376 - Nucleic Acids Res. 2012 Jan;40(1):e3 22808103 - PLoS One. 2012;7(7):e40117 21673982 - PLoS One. 2011;6(6):e20396 22194782 - PLoS One. 2011;6(12):e27310 23859062 - FEMS Microbiol Lett. 2013 Sep;346(2):146-54 20383131 - Nat Methods. 2010 May;7(5):335-6 12237375 - Plant Cell. 1997 Jul;9(7):1055-1066 11125132 - Nucleic Acids Res. 2001 Jan 1;29(1):344-5 20409185 - New Phytol. 2010 Apr;186(2):281-5 21424277 - Microb Ecol. 2011 Aug;62(2):257-64 21883798 - Environ Microbiol. 2011 Oct;13(10):2794-807 15283668 - Annu Rev Phytopathol. 2004;42:271-309 19004872 - Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5 17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7 24111803 - New Phytol. 2014 Jan;201(2):623-35 24444052 - New Phytol. 2014 Apr;202(2):542-53 19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40 23028285 - PLoS Comput Biol. 2012;8(9):e1002687 22363438 - PLoS One. 2012;7(2):e30438 23895412 - FEMS Microbiol Lett. 2013 Nov;348(1):1-10 1644282 - Genetics. 1992 Jun;131(2):479-91 18043640 - ISME J. 2007 Aug;1(4):291-9 |
References_xml | – ident: e_1_3_3_16_2 doi: 10.1371/journal.pone.0020396 – ident: e_1_3_3_64_2 doi: 10.1128/AEM.66.10.4372-4377.2000 – ident: e_1_3_3_27_2 doi: 10.1128/aem.61.3.1104-1109.1995 – ident: e_1_3_3_10_2 doi: 10.1128/AEM.02906-07 – ident: e_1_3_3_39_2 doi: 10.1111/j.1469-8137.2009.03160.x – ident: e_1_3_3_72_2 doi: 10.18637/jss.v028.c01 – ident: e_1_3_3_20_2 doi: 10.1016/j.soilbio.2004.04.009 – ident: e_1_3_3_36_2 doi: 10.1111/2041-210X.12073 – ident: e_1_3_3_19_2 doi: 10.1111/nph.12693 – ident: e_1_3_3_51_2 doi: 10.1093/genetics/131.2.479 – ident: e_1_3_3_21_2 doi: 10.1007/s00253-009-2092-7 – ident: e_1_3_3_13_2 doi: 10.1139/w98-227 – ident: e_1_3_3_6_2 doi: 10.1146/annurev.phyto.42.121603.131041 – ident: e_1_3_3_34_2 doi: 10.1128/AEM.00062-07 – ident: e_1_3_3_3_2 doi: 10.1111/1574-6968.12225 – ident: e_1_3_3_56_2 doi: 10.1046/j.1365-2672.1997.00135.x – ident: e_1_3_3_45_2 doi: 10.1186/1471-2105-12-385 – ident: e_1_3_3_60_2 doi: 10.1371/journal.pone.0030600 – ident: e_1_3_3_52_2 doi: 10.1186/1471-2164-12-38 – ident: e_1_3_3_69_2 doi: 10.1371/journal.pone.0095928 – ident: e_1_3_3_35_2 doi: 10.1093/nar/gkn879 – ident: e_1_3_3_61_2 doi: 10.1146/annurev-arplant-050312-120106 – ident: e_1_3_3_70_2 doi: 10.1128/AEM.00124-12 – ident: e_1_3_3_37_2 doi: 10.1038/nmeth.f.303 – ident: e_1_3_3_5_2 doi: 10.1146/annurev.py.04.090166.001523 – ident: e_1_3_3_15_2 doi: 10.1270/jsbbs.56.185 – ident: e_1_3_3_31_2 doi: 10.1093/nar/gkq291 – ident: e_1_3_3_55_2 doi: 10.1016/S0038-0717(00)00075-4 – ident: e_1_3_3_67_2 doi: 10.1007/s00248-011-9845-4 – ident: e_1_3_3_32_2 doi: 10.1128/AEM.01043-13 – ident: e_1_3_3_66_2 doi: 10.1038/nrmicro2910 – volume-title: Seedborne diseases and their control: principles and practice year: 1996 ident: e_1_3_3_7_2 – ident: e_1_3_3_46_2 doi: 10.1093/bioinformatics/btp616 – ident: e_1_3_3_47_2 doi: 10.1186/gb-2010-11-10-r106 – ident: e_1_3_3_9_2 doi: 10.1128/AEM.01098-10 – ident: e_1_3_3_11_2 doi: 10.1146/annurev.phyto.44.070505.143405 – ident: e_1_3_3_17_2 doi: 10.1111/1574-6968.12216 – ident: e_1_3_3_30_2 doi: 10.1093/molbev/mst010 – ident: e_1_3_3_23_2 doi: 10.1073/pnas.1000080107 – ident: e_1_3_3_53_2 doi: 10.1371/journal.pone.0040117 – ident: e_1_3_3_29_2 doi: 10.1093/nar/gkr1044 – ident: e_1_3_3_49_2 doi: 10.1371/journal.pcbi.1002687 – ident: e_1_3_3_59_2 doi: 10.1371/journal.pone.0049755 – ident: e_1_3_3_26_2 doi: 10.1093/nar/29.1.344 – ident: e_1_3_3_2_2 doi: 10.1038/nrmicro3109 – ident: e_1_3_3_71_2 doi: 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2 – ident: e_1_3_3_8_2 doi: 10.1007/s10658-005-4511-7 – ident: e_1_3_3_14_2 doi: 10.1371/journal.pone.0030438 – ident: e_1_3_3_54_2 doi: 10.1515/bot-2011-0086 – ident: e_1_3_3_58_2 doi: 10.1093/nar/gks808 – ident: e_1_3_3_50_2 doi: 10.18637/jss.v048.i04 – ident: e_1_3_3_57_2 doi: 10.5021/ad.2013.25.2.232 – ident: e_1_3_3_43_2 doi: 10.1128/AEM.01541-09 – ident: e_1_3_3_42_2 doi: 10.1371/journal.pcbi.1003531 – ident: e_1_3_3_65_2 doi: 10.1128/mBio.00682-13 – ident: e_1_3_3_38_2 doi: 10.1093/bioinformatics/btq461 – volume: 57 start-page: 289 year: 1995 ident: e_1_3_3_48_2 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_3_3_24_2 doi: 10.1073/pnas.1117018109 – ident: e_1_3_3_12_2 doi: 10.1105/tpc.9.7.1055 – ident: e_1_3_3_33_2 doi: 10.1093/bioinformatics/btr381 – ident: e_1_3_3_22_2 doi: 10.1016/S0038-0717(00)00126-7 – ident: e_1_3_3_68_2 doi: 10.1038/ismej.2007.33 – ident: e_1_3_3_63_2 doi: 10.1007/s11104-013-1647-7 – ident: e_1_3_3_28_2 doi: 10.1111/j.1469-8137.2009.03003.x – ident: e_1_3_3_25_2 doi: 10.1371/journal.pone.0057923 – ident: e_1_3_3_62_2 doi: 10.1111/nph.12532 – ident: e_1_3_3_40_2 doi: 10.1371/journal.pone.0027310 – ident: e_1_3_3_18_2 doi: 10.1111/j.1462-2920.2011.02551.x – ident: e_1_3_3_4_2 doi: 10.1128/mBio.00602-12 – ident: e_1_3_3_41_2 doi: 10.1093/nar/gkr771 – ident: e_1_3_3_44_2 doi: 10.2307/1942268 – reference: 11125132 - Nucleic Acids Res. 2001 Jan 1;29(1):344-5 – reference: 23373698 - Annu Rev Plant Biol. 2013;64:807-38 – reference: 19703112 - New Phytol. 2009 Oct;184(2):449-56 – reference: 17061917 - Annu Rev Phytopathol. 2006;44:261-82 – reference: 23443006 - MBio. 2013;4(2). pii: e00602-12. doi: 10.1128/mBio.00602-12 – reference: 22355318 - PLoS One. 2012;7(2):e30600 – reference: 23717019 - Ann Dermatol. 2013 May;25(2):232-6 – reference: 11010885 - Appl Environ Microbiol. 2000 Oct;66(10):4372-7 – reference: 24056930 - Nat Rev Microbiol. 2013 Nov;11(11):789-99 – reference: 21961884 - BMC Bioinformatics. 2011;12:385 – reference: 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1 – reference: 20534432 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 – reference: 18326683 - Appl Environ Microbiol. 2008 May;74(9):2669-78 – reference: 1644282 - Genetics. 1992 Jun;131(2):479-91 – reference: 9134719 - J Appl Microbiol. 1997 Apr;82(4):448-54 – reference: 22363438 - PLoS One. 2012;7(2):e30438 – reference: 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40 – reference: 22808103 - PLoS One. 2012;7(7):e40117 – reference: 24444052 - New Phytol. 2014 Apr;202(2):542-53 – reference: 24788412 - PLoS One. 2014;9(5):e95928 – reference: 20729326 - Appl Environ Microbiol. 2010 Oct;76(20):6787-96 – reference: 23189159 - PLoS One. 2012;7(11):e49755 – reference: 21883798 - Environ Microbiol. 2011 Oct;13(10):2794-807 – reference: 22194782 - PLoS One. 2011;6(12):e27310 – reference: 20979621 - Genome Biol. 2010;11(10):R106 – reference: 17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7 – reference: 22933715 - Nucleic Acids Res. 2013 Jan 7;41(1):e1 – reference: 12237375 - Plant Cell. 1997 Jul;9(7):1055-1066 – reference: 23895412 - FEMS Microbiol Lett. 2013 Nov;348(1):1-10 – reference: 19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41 – reference: 21241472 - BMC Genomics. 2011;12:38 – reference: 20435676 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W7-13 – reference: 21700674 - Bioinformatics. 2011 Aug 15;27(16):2194-200 – reference: 23028285 - PLoS Comput Biol. 2012;8(9):e1002687 – reference: 21673982 - PLoS One. 2011;6(6):e20396 – reference: 22021376 - Nucleic Acids Res. 2012 Jan;40(1):e3 – reference: 19568745 - Appl Microbiol Biotechnol. 2009 Aug;84(1):11-8 – reference: 18043640 - ISME J. 2007 Aug;1(4):291-9 – reference: 23154261 - Nat Rev Microbiol. 2012 Dec;10(12):828-40 – reference: 24699258 - PLoS Comput Biol. 2014 Apr;10(4):e1003531 – reference: 24449749 - MBio. 2014;5(1):e00682-13 – reference: 23460914 - PLoS One. 2013;8(2):e57923 – reference: 20383131 - Nat Methods. 2010 May;7(5):335-6 – reference: 20409185 - New Phytol. 2010 Apr;186(2):281-5 – reference: 7793912 - Appl Environ Microbiol. 1995 Mar;61(3):1104-9 – reference: 22389369 - Appl Environ Microbiol. 2012 May;78(10):3693-705 – reference: 19004872 - Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5 – reference: 24111803 - New Phytol. 2014 Jan;201(2):623-35 – reference: 23859062 - FEMS Microbiol Lett. 2013 Sep;346(2):146-54 – reference: 22194640 - Nucleic Acids Res. 2012 Jan;40(Database issue):D115-22 – reference: 23793624 - Appl Environ Microbiol. 2013 Sep;79(17):5112-20 – reference: 21424277 - Microb Ecol. 2011 Aug;62(2):257-64 – reference: 15283668 - Annu Rev Phytopathol. 2004;42:271-309 – reference: 23329690 - Mol Biol Evol. 2013 Apr;30(4):772-80 |
SSID | ssj0004068 ssj0006590 |
Score | 2.5755587 |
Snippet | Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of... |
SourceID | pubmedcentral hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1257 |
SubjectTerms | Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Biodiversity Brassicaceae Brassicaceae - growth & development Brassicaceae - microbiology Community composition Ecology, environment Flowers & plants Fungi Fungi - classification Fungi - genetics Fungi - isolation & purification Germination Life Sciences Microbial activity Microbiology Microbiota Plant growth Plant Microbiology Relative abundance Ribonucleic acid RNA Seedlings Seeds Seeds - growth & development Seeds - microbiology Symbiosis |
Title | Emergence Shapes the Structure of the Seed Microbiota |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25501471 https://www.proquest.com/docview/1651022578 https://www.proquest.com/docview/1660430832 https://www.proquest.com/docview/1687334934 https://hal.science/hal-01153480 https://pubmed.ncbi.nlm.nih.gov/PMC4309697 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_eiagPoutX9ZQq-rT03H4kTR9XWVnEEx_u4N5Kmk1o4fYDtnuof70zSZp29U7Ul1KStA2ZX5OZycwvhLzRoCYrrdNI5BMZZYWkEa8oiyrGi4oWgscmXezkC5ufZZ_O6Xl_ZqvJLmmrY_njyryS_5EqlIFcMUv2HyTrXwoFcA_yhStIGK5_JeOZy51U420tNkjWUCNhLDLC4r6A2_7fwgI1XjaWcakVQ3W000HRez5IecOMkqZnaOq9nRjWazN82rZu1K435hsXIGloCYQP23iPcTRiZ3ys603deBh9dVv0l1D7zUZWug1-54KIaRe1jCuInTaRlRQURzacV-1RLA4_2WCSBJ0qv3r2TjAjQajl8STNwUi26aUDQW6WRpJgBoFll8f9GuYjC7uqA3IzAcMh6fw3XabshPEu_SHh74afQlpo9_CejnJQY4Ts7-bHr1G0A7Xk9D655-yJcGrB8YDcUKsRuWVPGP0-Ire7xPPtiNwdcE8-JNSDJ7TgCQEroQdPuNa2AMAT9uB5RM4-zk4_zCN3hkYkQTduIzAvqzwVGeXGekxYJWGWXqTGGSAZp6yQOQxKvBBMCi6F5pplXGkqqaFyekwOV-uVekrCWCoh4myh4QbeWgipYsY1FyrW6YLygIy7USulI5jHc04uSmNoJryczk5KM9xgcAbkrW-9scQq17R7DQLwTZANfT79XGIZWjNpxieXcUCOOvmU7v_cljGj6M6AJSkgr3w1zJ64JSZWar3DNgxJ72BZ-1MbnqdpVqTQlydW5L47HWICku-BYa-_-zWrpjYs7vDZghX5s2vf-Zzc6X-2I3IIAFAvQANuq5cG1D8BKKKveQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+shapes+the+structure+of+the+seed+microbiota&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Barret%2C+Matthieu&rft.au=Briand%2C+Martial&rft.au=Bonneau%2C+Sophie&rft.au=Pr%C3%A9veaux%2C+Anne&rft.date=2015-02-01&rft.eissn=1098-5336&rft.volume=81&rft.issue=4&rft.spage=1257&rft_id=info:doi/10.1128%2Faem.03722-14&rft_id=info%3Apmid%2F25501471&rft.externalDocID=25501471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |