Cover

Loading…
Abstract Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment of gyrB . Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention.
AbstractList Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment of gyrB. Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention.
Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment of gyrB. Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention.Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment of gyrB. Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention.
Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment of gyrB . Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention.
Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated to seeds has been mainly explored through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structure of the seed microbiota of different Brassicaceaeand its dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene and a species-specific bacterial marker based on a fragment of gyrB. Sequences analyses revealed important variation in microbial community composition between seed samples. Moreover we found that emergence strongly influences the structure of the microbiota with a marked reduction of bacterial and fungal diversity. This shift in microbial community composition is mostly due to an increase in relative abundance of some bacterial and fungal taxa possessing fast growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical application in developing new strategies of inoculation for disease prevention.
Author Bonneau, Sophie
Préveaux, Anne
Simoneau, Philippe
Valière, Sophie
Hunault, Gilles
Jacques, Marie-Agnès
Barret, Matthieu
Bouchez, Olivier
Briand, Martial
Author_xml – sequence: 1
  givenname: Matthieu
  surname: Barret
  fullname: Barret, Matthieu
  organization: INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
– sequence: 2
  givenname: Martial
  surname: Briand
  fullname: Briand, Martial
  organization: INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
– sequence: 3
  givenname: Sophie
  surname: Bonneau
  fullname: Bonneau, Sophie
  organization: INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
– sequence: 4
  givenname: Anne
  surname: Préveaux
  fullname: Préveaux, Anne
  organization: INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
– sequence: 5
  givenname: Sophie
  surname: Valière
  fullname: Valière, Sophie
  organization: GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, France, INRA, UAR1209, Département de Génétique Animale, INRA Auzeville, Castanet Tolosan, France
– sequence: 6
  givenname: Olivier
  surname: Bouchez
  fullname: Bouchez, Olivier
  organization: GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, France, UMR INRA/INPT ENSAT/INPT ENVT, Génétique, Physiologie et Systèmes d'Élevage, INRA Auzeville, Castanet Tolosan, France
– sequence: 7
  givenname: Gilles
  surname: Hunault
  fullname: Hunault, Gilles
  organization: Université d'Angers, Laboratoire d'Hémodynamique, Interaction Fibrose et Invasivité Tumorale Hépatique, UPRES 3859, IFR 132, Angers, France
– sequence: 8
  givenname: Philippe
  surname: Simoneau
  fullname: Simoneau, Philippe
  organization: INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
– sequence: 9
  givenname: Marie-Agnès
  surname: Jacques
  fullname: Jacques, Marie-Agnès
  organization: INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France, Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25501471$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01153480$$DView record in HAL
BookMark eNqNks9LIzEUx4O4aK3ePEvBi4KjLz8ncxGKVF2oeFDPIZNmbGQ6qUlG2P9-U1tlt-xhTwkvn_feN-99D9Bu5zuL0DGGS4yJvBpPHi6BloQUmO2gAYZKFpxSsYsGAFVVEMJgHx3E-AYADITcQ_uEc8CsxAPEJwsbXm1n7Ohprpc2jtI8X1PoTeqDHflmHbB2NnpwJvja-aQP0Y9Gt9Eebc4hermdPN_cF9PHu58342lhOOOpEIzUJdWMS4DckojaMMJntAbAYITkojJlVoRnWhgtjW5kI5i0DTc8ay_pEF2v6y77emFnxnYp6FYtg1vo8Et57dTfL52bq1f_oRiFSnwWOF8XmG-l3Y-nahUDjDllEj5wZs82zYJ_721MauGisW2rO-v7qLCQJaWsouw_UAFZgqQko6db6JvvQ5enlimOgRBeykyd_PnRb6lfi8rAxRrIK4gx2OYbwaBWPlDZB-rTBwqvBJIt3Likk_OrMbn230m_AdFLsOQ
CODEN AEMIDF
CitedBy_id crossref_primary_10_1094_PBIOMES_01_19_0009_R
crossref_primary_10_3390_microorganisms9081561
crossref_primary_10_1093_femsec_fiae027
crossref_primary_10_17129_botsci_3125
crossref_primary_10_3389_fmicb_2022_984832
crossref_primary_10_1038_s41598_020_60591_5
crossref_primary_10_1094_PBIOMES_04_19_0022_R
crossref_primary_10_1186_s12864_019_6334_5
crossref_primary_10_1002_mbo3_609
crossref_primary_10_1094_PBIOMES_10_22_0068_R
crossref_primary_10_1093_femsec_fiaf004
crossref_primary_10_1128_msystems_00951_24
crossref_primary_10_3390_microorganisms12071348
crossref_primary_10_4274_MNM_2023_23152
crossref_primary_10_1111_1365_2435_12684
crossref_primary_10_1186_s40793_023_00466_0
crossref_primary_10_3389_fpls_2017_00763
crossref_primary_10_1186_s40793_022_00452_y
crossref_primary_10_5897_AJAR2023_16549
crossref_primary_10_1007_s11104_017_3175_3
crossref_primary_10_1007_s11104_023_06074_8
crossref_primary_10_1016_j_jare_2019_03_004
crossref_primary_10_3390_microorganisms5040070
crossref_primary_10_1021_acs_jafc_3c07092
crossref_primary_10_11002_kjfp_2017_24_6_778
crossref_primary_10_1007_s11104_017_3368_9
crossref_primary_10_1111_1462_2920_14741
crossref_primary_10_1128_spectrum_02420_21
crossref_primary_10_1139_cjm_2017_0230
crossref_primary_10_1016_j_csbj_2020_01_004
crossref_primary_10_3389_fmicb_2019_01437
crossref_primary_10_1186_s12866_019_1546_z
crossref_primary_10_3389_fmicb_2015_01311
crossref_primary_10_3390_d13090404
crossref_primary_10_3390_plants9030372
crossref_primary_10_3390_plants11070856
crossref_primary_10_1128_mbio_01648_22
crossref_primary_10_1016_j_fochms_2023_100185
crossref_primary_10_1186_s40168_020_00833_w
crossref_primary_10_1111_1751_7915_13618
crossref_primary_10_1128_mSystems_00446_21
crossref_primary_10_3389_fmicb_2022_826521
crossref_primary_10_1007_s00284_025_04065_9
crossref_primary_10_1111_1365_2435_13783
crossref_primary_10_1080_00275514_2021_1952830
crossref_primary_10_3390_ijms19030672
crossref_primary_10_1007_s13313_018_0579_3
crossref_primary_10_1016_j_cropro_2024_106645
crossref_primary_10_1016_j_pmpp_2024_102421
crossref_primary_10_1007_s11104_017_3257_2
crossref_primary_10_1017_S0960258519000060
crossref_primary_10_1186_s40168_024_02014_5
crossref_primary_10_3390_agriculture14050769
crossref_primary_10_1038_s41598_019_54328_2
crossref_primary_10_1128_mra_00140_23
crossref_primary_10_1016_j_biocontrol_2016_12_001
crossref_primary_10_1007_s10811_022_02823_x
crossref_primary_10_1094_PBIOMES_6_1
crossref_primary_10_1371_journal_pone_0279049
crossref_primary_10_1094_PDIS_05_24_1103_PDN
crossref_primary_10_17352_ojeb_000046
crossref_primary_10_1094_PBIOMES_04_21_0030_R
crossref_primary_10_1128_spectrum_00377_23
crossref_primary_10_1111_nph_17319
crossref_primary_10_1007_s11104_023_06364_1
crossref_primary_10_1094_MPMI_05_22_0116_TA
crossref_primary_10_1093_femsec_fiac061
crossref_primary_10_1016_j_apsoil_2021_104191
crossref_primary_10_1094_PBIOMES_01_19_0007_R
crossref_primary_10_1093_jxb_eraa111
crossref_primary_10_3389_fmicb_2020_566613
crossref_primary_10_3390_microorganisms9091842
crossref_primary_10_1371_journal_pone_0204629
crossref_primary_10_3390_life12091372
crossref_primary_10_1093_femsec_fiy112
crossref_primary_10_1007_s00203_024_04225_8
crossref_primary_10_1016_j_micres_2023_127318
crossref_primary_10_1371_journal_pone_0204195
crossref_primary_10_1371_journal_pone_0209091
crossref_primary_10_1038_s41598_023_47099_4
crossref_primary_10_1111_jpy_13329
crossref_primary_10_1007_s00253_017_8716_4
crossref_primary_10_1038_s41467_017_02051_9
crossref_primary_10_3389_fmicb_2022_814864
crossref_primary_10_3389_fmicb_2021_664271
crossref_primary_10_1016_j_pbi_2017_04_018
crossref_primary_10_1186_s40168_018_0445_0
crossref_primary_10_3389_fmicb_2023_1151052
crossref_primary_10_1094_PBIOMES_5_2
crossref_primary_10_1007_s11104_016_2927_9
crossref_primary_10_3390_microorganisms10040750
crossref_primary_10_1111_1462_2920_15197
crossref_primary_10_1007_s12223_022_00958_5
crossref_primary_10_1016_j_tim_2022_10_009
crossref_primary_10_1128_spectrum_00172_22
crossref_primary_10_1128_spectrum_00210_21
crossref_primary_10_1094_PBIOMES_08_20_0059_R
crossref_primary_10_1016_j_micres_2021_126763
crossref_primary_10_1007_s10311_017_0628_0
crossref_primary_10_1007_s11104_017_3184_2
crossref_primary_10_1007_s11104_017_3451_2
crossref_primary_10_1002_jsfa_8058
crossref_primary_10_1074_jbc_RA118_001856
crossref_primary_10_24072_pcjournal_329
crossref_primary_10_1007_s00248_019_01440_5
crossref_primary_10_1021_acs_est_9b01093
crossref_primary_10_1016_j_scitotenv_2018_01_288
crossref_primary_10_1186_s40793_024_00657_3
crossref_primary_10_3390_horticulturae8060498
crossref_primary_10_1016_j_jaridenv_2021_104531
crossref_primary_10_1094_PBIOMES_4_1
crossref_primary_10_1094_PBIOMES_4_3
crossref_primary_10_1016_j_fm_2020_103547
crossref_primary_10_1016_j_micres_2023_127549
crossref_primary_10_1016_j_ijfoodmicro_2019_108374
crossref_primary_10_1016_j_fm_2020_103666
crossref_primary_10_1186_s12864_020_07126_4
crossref_primary_10_1139_cjm_2020_0306
crossref_primary_10_1186_s40793_021_00389_8
crossref_primary_10_3389_fmicb_2018_01645
crossref_primary_10_1094_PBIOMES_03_20_0026_R
crossref_primary_10_1111_nph_18037
crossref_primary_10_1111_1751_7915_12382
crossref_primary_10_1007_s11104_020_04684_0
crossref_primary_10_1007_s11104_017_3289_7
crossref_primary_10_1080_17429145_2023_2227652
crossref_primary_10_3390_f15122178
crossref_primary_10_1007_s12602_017_9298_2
crossref_primary_10_1071_BT22109
crossref_primary_10_3390_ijms23169194
crossref_primary_10_1038_s42003_021_02467_6
crossref_primary_10_1111_jam_13017
crossref_primary_10_1038_s41598_019_42865_9
crossref_primary_10_1016_j_ijfoodmicro_2016_07_034
crossref_primary_10_3390_microorganisms7110518
crossref_primary_10_3389_fpls_2020_568924
crossref_primary_10_1186_s40168_025_02073_2
crossref_primary_10_1094_PBIOMES_3_3
crossref_primary_10_1094_PBIOMES_3_2
crossref_primary_10_1094_PBIOMES_3_4
crossref_primary_10_3389_fmicb_2021_635810
crossref_primary_10_1007_s11104_020_04743_6
crossref_primary_10_1016_j_scitotenv_2025_178538
crossref_primary_10_1007_s11104_021_04856_6
crossref_primary_10_1186_s12864_016_3053_z
crossref_primary_10_1093_molbev_msad093
crossref_primary_10_3390_microorganisms12040779
crossref_primary_10_1186_s12866_016_0743_2
crossref_primary_10_1146_annurev_ecolsys_121415_032238
crossref_primary_10_1007_s00248_024_02409_9
crossref_primary_10_1111_mpp_12382
crossref_primary_10_1016_j_scitotenv_2022_159181
crossref_primary_10_1038_s43705_023_00330_9
crossref_primary_10_1093_gbe_evv234
crossref_primary_10_1094_PHYTO_10_23_0366_IA
crossref_primary_10_3389_fpls_2020_01075
crossref_primary_10_1007_s11104_017_3182_4
crossref_primary_10_1094_PBIOMES_03_23_0019_MF
crossref_primary_10_1016_j_biocontrol_2016_02_013
crossref_primary_10_3389_fimmu_2017_01114
crossref_primary_10_3389_fpls_2018_00902
crossref_primary_10_1186_s40168_017_0310_6
crossref_primary_10_5897_JPBCS2017_0700
crossref_primary_10_3389_fpls_2020_560869
crossref_primary_10_7717_peerj_1923
crossref_primary_10_1111_tpj_14170
crossref_primary_10_1007_s11104_022_05649_1
crossref_primary_10_1007_s11104_020_04820_w
crossref_primary_10_3390_horticulturae7040075
crossref_primary_10_1080_03235408_2021_1909370
crossref_primary_10_3389_fmicb_2018_02708
crossref_primary_10_1146_annurev_phyto_080615_100147
crossref_primary_10_3389_fmicb_2022_877519
crossref_primary_10_1016_j_tplants_2017_09_003
crossref_primary_10_1094_MPMI_09_19_0248_R
crossref_primary_10_1111_1462_2920_12977
crossref_primary_10_1111_nph_14323
crossref_primary_10_1128_mBio_02637_20
crossref_primary_10_3390_plants11162127
crossref_primary_10_1128_spectrum_03662_23
crossref_primary_10_1007_s11104_016_3113_9
crossref_primary_10_1007_s11104_018_3780_9
crossref_primary_10_21597_jist_1028429
crossref_primary_10_3390_microorganisms9040816
crossref_primary_10_3389_fpls_2023_1101818
crossref_primary_10_1038_s41467_019_11974_4
crossref_primary_10_1016_j_bios_2017_07_039
crossref_primary_10_1111_nph_70011
crossref_primary_10_1002_agg2_20038
crossref_primary_10_1016_j_funbio_2022_09_002
crossref_primary_10_1038_s41598_017_01126_3
crossref_primary_10_1007_s00253_018_9290_0
crossref_primary_10_1038_s41597_024_03332_x
crossref_primary_10_1007_s11104_021_05226_y
crossref_primary_10_1016_j_lwt_2021_112125
crossref_primary_10_3389_fmicb_2017_00011
crossref_primary_10_1094_PBIOMES_06_19_0031_R
crossref_primary_10_3389_fmicb_2024_1353763
crossref_primary_10_1007_s11104_020_04608_y
crossref_primary_10_1094_PBIOMES_11_22_0084_R
crossref_primary_10_1007_s11104_022_05822_6
crossref_primary_10_1111_1758_2229_70000
crossref_primary_10_1093_plphys_kiae556
crossref_primary_10_3390_ijms22179252
crossref_primary_10_1093_femsec_fiac028
crossref_primary_10_3390_microorganisms8111708
crossref_primary_10_1016_j_apsoil_2024_105422
crossref_primary_10_35848_1882_0786_ab9712
crossref_primary_10_1007_s00374_021_01590_0
crossref_primary_10_1016_j_mib_2017_03_010
crossref_primary_10_1094_PBIOMES_04_19_0023_R
crossref_primary_10_1128_JCM_00235_18
crossref_primary_10_1094_PHYTOFR_01_23_0002_R
crossref_primary_10_1007_s12088_024_01225_6
crossref_primary_10_7717_peerj_16619
crossref_primary_10_1016_j_scitotenv_2023_164131
crossref_primary_10_1093_femsec_fiab060
crossref_primary_10_3390_microorganisms11082085
crossref_primary_10_13103_JFHS_2016_31_6_465
crossref_primary_10_1093_femsec_fiab166
crossref_primary_10_1111_1462_2920_15240
crossref_primary_10_1128_mSphere_01316_20
crossref_primary_10_3389_fpls_2018_00024
crossref_primary_10_4014_jmb_2303_03004
crossref_primary_10_1016_j_lwt_2020_109314
crossref_primary_10_3389_fmicb_2018_03169
crossref_primary_10_1038_s41396_018_0152_7
crossref_primary_10_1094_PBIOMES_08_22_0054_MF
crossref_primary_10_1186_s40168_019_0723_5
crossref_primary_10_3389_fpls_2023_1260292
Cites_doi 10.1371/journal.pone.0020396
10.1128/AEM.66.10.4372-4377.2000
10.1128/aem.61.3.1104-1109.1995
10.1128/AEM.02906-07
10.1111/j.1469-8137.2009.03160.x
10.18637/jss.v028.c01
10.1016/j.soilbio.2004.04.009
10.1111/2041-210X.12073
10.1111/nph.12693
10.1093/genetics/131.2.479
10.1007/s00253-009-2092-7
10.1139/w98-227
10.1146/annurev.phyto.42.121603.131041
10.1128/AEM.00062-07
10.1111/1574-6968.12225
10.1046/j.1365-2672.1997.00135.x
10.1186/1471-2105-12-385
10.1371/journal.pone.0030600
10.1186/1471-2164-12-38
10.1371/journal.pone.0095928
10.1093/nar/gkn879
10.1146/annurev-arplant-050312-120106
10.1128/AEM.00124-12
10.1038/nmeth.f.303
10.1146/annurev.py.04.090166.001523
10.1270/jsbbs.56.185
10.1093/nar/gkq291
10.1016/S0038-0717(00)00075-4
10.1007/s00248-011-9845-4
10.1128/AEM.01043-13
10.1038/nrmicro2910
10.1093/bioinformatics/btp616
10.1186/gb-2010-11-10-r106
10.1128/AEM.01098-10
10.1146/annurev.phyto.44.070505.143405
10.1111/1574-6968.12216
10.1093/molbev/mst010
10.1073/pnas.1000080107
10.1371/journal.pone.0040117
10.1093/nar/gkr1044
10.1371/journal.pcbi.1002687
10.1371/journal.pone.0049755
10.1093/nar/29.1.344
10.1038/nrmicro3109
10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2
10.1007/s10658-005-4511-7
10.1371/journal.pone.0030438
10.1515/bot-2011-0086
10.1093/nar/gks808
10.18637/jss.v048.i04
10.5021/ad.2013.25.2.232
10.1128/AEM.01541-09
10.1371/journal.pcbi.1003531
10.1128/mBio.00682-13
10.1093/bioinformatics/btq461
10.1111/j.2517-6161.1995.tb02031.x
10.1073/pnas.1117018109
10.1105/tpc.9.7.1055
10.1093/bioinformatics/btr381
10.1016/S0038-0717(00)00126-7
10.1038/ismej.2007.33
10.1007/s11104-013-1647-7
10.1111/j.1469-8137.2009.03003.x
10.1371/journal.pone.0057923
10.1111/nph.12532
10.1371/journal.pone.0027310
10.1111/j.1462-2920.2011.02551.x
10.1128/mBio.00602-12
10.1093/nar/gkr771
10.2307/1942268
ContentType Journal Article
Copyright Copyright American Society for Microbiology Feb 2015
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
Copyright_xml – notice: Copyright American Society for Microbiology Feb 2015
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
1XC
5PM
DOI 10.1128/AEM.03722-14
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
Virology and AIDS Abstracts
MEDLINE - Academic

MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
Medicine
Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Dynamics of the Seed Microbiota
EISSN 1098-5336
1098-6596
EndPage 1266
ExternalDocumentID PMC4309697
oai_HAL_hal_01153480v1
3578663541
25501471
10_1128_AEM_03722_14
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-~X
0R~
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
6J9
85S
AAGFI
AAYXX
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CS3
D0L
DIK
E.-
E3Z
EBS
EJD
F5P
GX1
H13
HYE
HZ~
K-O
KQ8
L7B
O9-
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UHB
W8F
WH7
WOQ
X6Y
~02
~KM
.55
.GJ
3O-
ABTAH
AFFNX
AGCDD
AI.
C1A
CGR
CUY
CVF
ECM
EIF
H~9
MVM
NEJ
NPM
OHT
VH1
WHG
X7M
XJT
YV5
ZCG
ZGI
ZXP
ZY4
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
FRP
HH5
LSO
OK1
W2D
7X8
1XC
UMC
5PM
ID FETCH-LOGICAL-c545t-642b73a4580025526bc425d3b0010c68569c70681da6ca8caf8f648ef5c500973
ISSN 0099-2240
1098-5336
IngestDate Thu Aug 21 18:45:21 EDT 2025
Fri May 09 12:18:57 EDT 2025
Fri Jul 11 04:48:41 EDT 2025
Fri Jul 11 03:30:54 EDT 2025
Mon Jun 30 08:36:26 EDT 2025
Thu Apr 03 07:01:36 EDT 2025
Thu Apr 24 23:00:02 EDT 2025
Tue Jul 01 02:19:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords diversity
database
spermosphere
transmission
fungi
colonization
Chaetomium-globosum
bacterial community
phyllosphere
differential expression analysis
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c545t-642b73a4580025526bc425d3b0010c68569c70681da6ca8caf8f648ef5c500973
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMCID: PMC4309697
Citation Barret M, Briand M, Bonneau S, Préveaux A, Valière S, Bouchez O, Hunault G, Simoneau P, Jacques M-A. 2015. Emergence shapes the structure of the seed microbiota. Appl Environ Microbiol 81:1257–1266. doi:10.1128/AEM.03722-14.
ORCID 0009-0000-3430-7164
0000-0002-7255-0058
0000-0002-7633-8476
0000-0002-1442-917X
0000-0002-3890-9848
0000-0002-5822-2824
OpenAccessLink https://aem.asm.org/content/aem/81/4/1257.full.pdf
PMID 25501471
PQID 1651022578
PQPubID 42251
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4309697
hal_primary_oai_HAL_hal_01153480v1
proquest_miscellaneous_1687334934
proquest_miscellaneous_1660430832
proquest_journals_1651022578
pubmed_primary_25501471
crossref_primary_10_1128_AEM_03722_14
crossref_citationtrail_10_1128_AEM_03722_14
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Applied and Environmental Microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2015
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_71_2
Benjamini Y (e_1_3_3_48_2) 1995; 57
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_70_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
Maude RB (e_1_3_3_7_2) 1996
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1
20435676 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W7-13
7793912 - Appl Environ Microbiol. 1995 Mar;61(3):1104-9
23460914 - PLoS One. 2013;8(2):e57923
20979621 - Genome Biol. 2010;11(10):R106
21961884 - BMC Bioinformatics. 2011;12:385
24449749 - MBio. 2014;5(1):e00682-13
23443006 - MBio. 2013;4(2). pii: e00602-12. doi: 10.1128/mBio.00602-12
18326683 - Appl Environ Microbiol. 2008 May;74(9):2669-78
24788412 - PLoS One. 2014;9(5):e95928
21700674 - Bioinformatics. 2011 Aug 15;27(16):2194-200
11010885 - Appl Environ Microbiol. 2000 Oct;66(10):4372-7
23154261 - Nat Rev Microbiol. 2012 Dec;10(12):828-40
19568745 - Appl Microbiol Biotechnol. 2009 Aug;84(1):11-8
9134719 - J Appl Microbiol. 1997 Apr;82(4):448-54
23189159 - PLoS One. 2012;7(11):e49755
20534432 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22
17061917 - Annu Rev Phytopathol. 2006;44:261-82
22933715 - Nucleic Acids Res. 2013 Jan 7;41(1):e1
22355318 - PLoS One. 2012;7(2):e30600
24056930 - Nat Rev Microbiol. 2013 Nov;11(11):789-99
22194640 - Nucleic Acids Res. 2012 Jan;40(Database issue):D115-22
24699258 - PLoS Comput Biol. 2014 Apr;10(4):e1003531
20729326 - Appl Environ Microbiol. 2010 Oct;76(20):6787-96
22389369 - Appl Environ Microbiol. 2012 May;78(10):3693-705
23717019 - Ann Dermatol. 2013 May;25(2):232-6
23793624 - Appl Environ Microbiol. 2013 Sep;79(17):5112-20
19703112 - New Phytol. 2009 Oct;184(2):449-56
21241472 - BMC Genomics. 2011;12:38
23329690 - Mol Biol Evol. 2013 Apr;30(4):772-80
23373698 - Annu Rev Plant Biol. 2013;64:807-38
22021376 - Nucleic Acids Res. 2012 Jan;40(1):e3
22808103 - PLoS One. 2012;7(7):e40117
21673982 - PLoS One. 2011;6(6):e20396
22194782 - PLoS One. 2011;6(12):e27310
23859062 - FEMS Microbiol Lett. 2013 Sep;346(2):146-54
20383131 - Nat Methods. 2010 May;7(5):335-6
12237375 - Plant Cell. 1997 Jul;9(7):1055-1066
11125132 - Nucleic Acids Res. 2001 Jan 1;29(1):344-5
20409185 - New Phytol. 2010 Apr;186(2):281-5
21424277 - Microb Ecol. 2011 Aug;62(2):257-64
21883798 - Environ Microbiol. 2011 Oct;13(10):2794-807
15283668 - Annu Rev Phytopathol. 2004;42:271-309
19004872 - Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5
17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7
24111803 - New Phytol. 2014 Jan;201(2):623-35
24444052 - New Phytol. 2014 Apr;202(2):542-53
19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41
19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40
23028285 - PLoS Comput Biol. 2012;8(9):e1002687
22363438 - PLoS One. 2012;7(2):e30438
23895412 - FEMS Microbiol Lett. 2013 Nov;348(1):1-10
1644282 - Genetics. 1992 Jun;131(2):479-91
18043640 - ISME J. 2007 Aug;1(4):291-9
References_xml – ident: e_1_3_3_16_2
  doi: 10.1371/journal.pone.0020396
– ident: e_1_3_3_64_2
  doi: 10.1128/AEM.66.10.4372-4377.2000
– ident: e_1_3_3_27_2
  doi: 10.1128/aem.61.3.1104-1109.1995
– ident: e_1_3_3_10_2
  doi: 10.1128/AEM.02906-07
– ident: e_1_3_3_39_2
  doi: 10.1111/j.1469-8137.2009.03160.x
– ident: e_1_3_3_72_2
  doi: 10.18637/jss.v028.c01
– ident: e_1_3_3_20_2
  doi: 10.1016/j.soilbio.2004.04.009
– ident: e_1_3_3_36_2
  doi: 10.1111/2041-210X.12073
– ident: e_1_3_3_19_2
  doi: 10.1111/nph.12693
– ident: e_1_3_3_51_2
  doi: 10.1093/genetics/131.2.479
– ident: e_1_3_3_21_2
  doi: 10.1007/s00253-009-2092-7
– ident: e_1_3_3_13_2
  doi: 10.1139/w98-227
– ident: e_1_3_3_6_2
  doi: 10.1146/annurev.phyto.42.121603.131041
– ident: e_1_3_3_34_2
  doi: 10.1128/AEM.00062-07
– ident: e_1_3_3_3_2
  doi: 10.1111/1574-6968.12225
– ident: e_1_3_3_56_2
  doi: 10.1046/j.1365-2672.1997.00135.x
– ident: e_1_3_3_45_2
  doi: 10.1186/1471-2105-12-385
– ident: e_1_3_3_60_2
  doi: 10.1371/journal.pone.0030600
– ident: e_1_3_3_52_2
  doi: 10.1186/1471-2164-12-38
– ident: e_1_3_3_69_2
  doi: 10.1371/journal.pone.0095928
– ident: e_1_3_3_35_2
  doi: 10.1093/nar/gkn879
– ident: e_1_3_3_61_2
  doi: 10.1146/annurev-arplant-050312-120106
– ident: e_1_3_3_70_2
  doi: 10.1128/AEM.00124-12
– ident: e_1_3_3_37_2
  doi: 10.1038/nmeth.f.303
– ident: e_1_3_3_5_2
  doi: 10.1146/annurev.py.04.090166.001523
– ident: e_1_3_3_15_2
  doi: 10.1270/jsbbs.56.185
– ident: e_1_3_3_31_2
  doi: 10.1093/nar/gkq291
– ident: e_1_3_3_55_2
  doi: 10.1016/S0038-0717(00)00075-4
– ident: e_1_3_3_67_2
  doi: 10.1007/s00248-011-9845-4
– ident: e_1_3_3_32_2
  doi: 10.1128/AEM.01043-13
– ident: e_1_3_3_66_2
  doi: 10.1038/nrmicro2910
– volume-title: Seedborne diseases and their control: principles and practice
  year: 1996
  ident: e_1_3_3_7_2
– ident: e_1_3_3_46_2
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_3_3_47_2
  doi: 10.1186/gb-2010-11-10-r106
– ident: e_1_3_3_9_2
  doi: 10.1128/AEM.01098-10
– ident: e_1_3_3_11_2
  doi: 10.1146/annurev.phyto.44.070505.143405
– ident: e_1_3_3_17_2
  doi: 10.1111/1574-6968.12216
– ident: e_1_3_3_30_2
  doi: 10.1093/molbev/mst010
– ident: e_1_3_3_23_2
  doi: 10.1073/pnas.1000080107
– ident: e_1_3_3_53_2
  doi: 10.1371/journal.pone.0040117
– ident: e_1_3_3_29_2
  doi: 10.1093/nar/gkr1044
– ident: e_1_3_3_49_2
  doi: 10.1371/journal.pcbi.1002687
– ident: e_1_3_3_59_2
  doi: 10.1371/journal.pone.0049755
– ident: e_1_3_3_26_2
  doi: 10.1093/nar/29.1.344
– ident: e_1_3_3_2_2
  doi: 10.1038/nrmicro3109
– ident: e_1_3_3_71_2
  doi: 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2
– ident: e_1_3_3_8_2
  doi: 10.1007/s10658-005-4511-7
– ident: e_1_3_3_14_2
  doi: 10.1371/journal.pone.0030438
– ident: e_1_3_3_54_2
  doi: 10.1515/bot-2011-0086
– ident: e_1_3_3_58_2
  doi: 10.1093/nar/gks808
– ident: e_1_3_3_50_2
  doi: 10.18637/jss.v048.i04
– ident: e_1_3_3_57_2
  doi: 10.5021/ad.2013.25.2.232
– ident: e_1_3_3_43_2
  doi: 10.1128/AEM.01541-09
– ident: e_1_3_3_42_2
  doi: 10.1371/journal.pcbi.1003531
– ident: e_1_3_3_65_2
  doi: 10.1128/mBio.00682-13
– ident: e_1_3_3_38_2
  doi: 10.1093/bioinformatics/btq461
– volume: 57
  start-page: 289
  year: 1995
  ident: e_1_3_3_48_2
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_3_3_24_2
  doi: 10.1073/pnas.1117018109
– ident: e_1_3_3_12_2
  doi: 10.1105/tpc.9.7.1055
– ident: e_1_3_3_33_2
  doi: 10.1093/bioinformatics/btr381
– ident: e_1_3_3_22_2
  doi: 10.1016/S0038-0717(00)00126-7
– ident: e_1_3_3_68_2
  doi: 10.1038/ismej.2007.33
– ident: e_1_3_3_63_2
  doi: 10.1007/s11104-013-1647-7
– ident: e_1_3_3_28_2
  doi: 10.1111/j.1469-8137.2009.03003.x
– ident: e_1_3_3_25_2
  doi: 10.1371/journal.pone.0057923
– ident: e_1_3_3_62_2
  doi: 10.1111/nph.12532
– ident: e_1_3_3_40_2
  doi: 10.1371/journal.pone.0027310
– ident: e_1_3_3_18_2
  doi: 10.1111/j.1462-2920.2011.02551.x
– ident: e_1_3_3_4_2
  doi: 10.1128/mBio.00602-12
– ident: e_1_3_3_41_2
  doi: 10.1093/nar/gkr771
– ident: e_1_3_3_44_2
  doi: 10.2307/1942268
– reference: 11125132 - Nucleic Acids Res. 2001 Jan 1;29(1):344-5
– reference: 23373698 - Annu Rev Plant Biol. 2013;64:807-38
– reference: 19703112 - New Phytol. 2009 Oct;184(2):449-56
– reference: 17061917 - Annu Rev Phytopathol. 2006;44:261-82
– reference: 23443006 - MBio. 2013;4(2). pii: e00602-12. doi: 10.1128/mBio.00602-12
– reference: 22355318 - PLoS One. 2012;7(2):e30600
– reference: 23717019 - Ann Dermatol. 2013 May;25(2):232-6
– reference: 11010885 - Appl Environ Microbiol. 2000 Oct;66(10):4372-7
– reference: 24056930 - Nat Rev Microbiol. 2013 Nov;11(11):789-99
– reference: 21961884 - BMC Bioinformatics. 2011;12:385
– reference: 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1
– reference: 20534432 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22
– reference: 18326683 - Appl Environ Microbiol. 2008 May;74(9):2669-78
– reference: 1644282 - Genetics. 1992 Jun;131(2):479-91
– reference: 9134719 - J Appl Microbiol. 1997 Apr;82(4):448-54
– reference: 22363438 - PLoS One. 2012;7(2):e30438
– reference: 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40
– reference: 22808103 - PLoS One. 2012;7(7):e40117
– reference: 24444052 - New Phytol. 2014 Apr;202(2):542-53
– reference: 24788412 - PLoS One. 2014;9(5):e95928
– reference: 20729326 - Appl Environ Microbiol. 2010 Oct;76(20):6787-96
– reference: 23189159 - PLoS One. 2012;7(11):e49755
– reference: 21883798 - Environ Microbiol. 2011 Oct;13(10):2794-807
– reference: 22194782 - PLoS One. 2011;6(12):e27310
– reference: 20979621 - Genome Biol. 2010;11(10):R106
– reference: 17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7
– reference: 22933715 - Nucleic Acids Res. 2013 Jan 7;41(1):e1
– reference: 12237375 - Plant Cell. 1997 Jul;9(7):1055-1066
– reference: 23895412 - FEMS Microbiol Lett. 2013 Nov;348(1):1-10
– reference: 19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41
– reference: 21241472 - BMC Genomics. 2011;12:38
– reference: 20435676 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W7-13
– reference: 21700674 - Bioinformatics. 2011 Aug 15;27(16):2194-200
– reference: 23028285 - PLoS Comput Biol. 2012;8(9):e1002687
– reference: 21673982 - PLoS One. 2011;6(6):e20396
– reference: 22021376 - Nucleic Acids Res. 2012 Jan;40(1):e3
– reference: 19568745 - Appl Microbiol Biotechnol. 2009 Aug;84(1):11-8
– reference: 18043640 - ISME J. 2007 Aug;1(4):291-9
– reference: 23154261 - Nat Rev Microbiol. 2012 Dec;10(12):828-40
– reference: 24699258 - PLoS Comput Biol. 2014 Apr;10(4):e1003531
– reference: 24449749 - MBio. 2014;5(1):e00682-13
– reference: 23460914 - PLoS One. 2013;8(2):e57923
– reference: 20383131 - Nat Methods. 2010 May;7(5):335-6
– reference: 20409185 - New Phytol. 2010 Apr;186(2):281-5
– reference: 7793912 - Appl Environ Microbiol. 1995 Mar;61(3):1104-9
– reference: 22389369 - Appl Environ Microbiol. 2012 May;78(10):3693-705
– reference: 19004872 - Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5
– reference: 24111803 - New Phytol. 2014 Jan;201(2):623-35
– reference: 23859062 - FEMS Microbiol Lett. 2013 Sep;346(2):146-54
– reference: 22194640 - Nucleic Acids Res. 2012 Jan;40(Database issue):D115-22
– reference: 23793624 - Appl Environ Microbiol. 2013 Sep;79(17):5112-20
– reference: 21424277 - Microb Ecol. 2011 Aug;62(2):257-64
– reference: 15283668 - Annu Rev Phytopathol. 2004;42:271-309
– reference: 23329690 - Mol Biol Evol. 2013 Apr;30(4):772-80
SSID ssj0004068
ssj0006590
Score 2.5755587
Snippet Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1257
SubjectTerms Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
Biodiversity
Brassicaceae
Brassicaceae - growth & development
Brassicaceae - microbiology
Community composition
Ecology, environment
Flowers & plants
Fungi
Fungi - classification
Fungi - genetics
Fungi - isolation & purification
Germination
Life Sciences
Microbial activity
Microbiology
Microbiota
Plant growth
Plant Microbiology
Relative abundance
Ribonucleic acid
RNA
Seedlings
Seeds
Seeds - growth & development
Seeds - microbiology
Symbiosis
Title Emergence Shapes the Structure of the Seed Microbiota
URI https://www.ncbi.nlm.nih.gov/pubmed/25501471
https://www.proquest.com/docview/1651022578
https://www.proquest.com/docview/1660430832
https://www.proquest.com/docview/1687334934
https://hal.science/hal-01153480
https://pubmed.ncbi.nlm.nih.gov/PMC4309697
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_eiagPoutX9ZQq-rT03H4kTR9XWVnEEx_u4N5Kmk1o4fYDtnuof70zSZp29U7Ul1KStA2ZX5OZycwvhLzRoCYrrdNI5BMZZYWkEa8oiyrGi4oWgscmXezkC5ufZZ_O6Xl_ZqvJLmmrY_njyryS_5EqlIFcMUv2HyTrXwoFcA_yhStIGK5_JeOZy51U420tNkjWUCNhLDLC4r6A2_7fwgI1XjaWcakVQ3W000HRez5IecOMkqZnaOq9nRjWazN82rZu1K435hsXIGloCYQP23iPcTRiZ3ys603deBh9dVv0l1D7zUZWug1-54KIaRe1jCuInTaRlRQURzacV-1RLA4_2WCSBJ0qv3r2TjAjQajl8STNwUi26aUDQW6WRpJgBoFll8f9GuYjC7uqA3IzAcMh6fw3XabshPEu_SHh74afQlpo9_CejnJQY4Ts7-bHr1G0A7Xk9D655-yJcGrB8YDcUKsRuWVPGP0-Ire7xPPtiNwdcE8-JNSDJ7TgCQEroQdPuNa2AMAT9uB5RM4-zk4_zCN3hkYkQTduIzAvqzwVGeXGekxYJWGWXqTGGSAZp6yQOQxKvBBMCi6F5pplXGkqqaFyekwOV-uVekrCWCoh4myh4QbeWgipYsY1FyrW6YLygIy7USulI5jHc04uSmNoJryczk5KM9xgcAbkrW-9scQq17R7DQLwTZANfT79XGIZWjNpxieXcUCOOvmU7v_cljGj6M6AJSkgr3w1zJ64JSZWar3DNgxJ72BZ-1MbnqdpVqTQlydW5L47HWICku-BYa-_-zWrpjYs7vDZghX5s2vf-Zzc6X-2I3IIAFAvQANuq5cG1D8BKKKveQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+shapes+the+structure+of+the+seed+microbiota&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Barret%2C+Matthieu&rft.au=Briand%2C+Martial&rft.au=Bonneau%2C+Sophie&rft.au=Pr%C3%A9veaux%2C+Anne&rft.date=2015-02-01&rft.eissn=1098-5336&rft.volume=81&rft.issue=4&rft.spage=1257&rft_id=info:doi/10.1128%2Faem.03722-14&rft_id=info%3Apmid%2F25501471&rft.externalDocID=25501471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon