Artificial Intelligence in Hypertension Management: An Ace up Your Sleeve
Arterial hypertension (AH) is a progressive issue that grows in importance with the increased average age of the world population. The potential role of artificial intelligence (AI) in its prevention and treatment is firmly recognized. Indeed, AI application allows personalized medicine and tailored...
Saved in:
Published in | Journal of cardiovascular development and disease Vol. 10; no. 2; p. 74 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.02.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Arterial hypertension (AH) is a progressive issue that grows in importance with the increased average age of the world population. The potential role of artificial intelligence (AI) in its prevention and treatment is firmly recognized. Indeed, AI application allows personalized medicine and tailored treatment for each patient. Specifically, this article reviews the benefits of AI in AH management, pointing out diagnostic and therapeutic improvements without ignoring the limitations of this innovative scientific approach. Consequently, we conducted a detailed search on AI applications in AH: the articles (quantitative and qualitative) reviewed in this paper were obtained by searching journal databases such as PubMed and subject-specific professional websites, including Google Scholar. The search terms included artificial intelligence, artificial neural network, deep learning, machine learning, big data, arterial hypertension, blood pressure, blood pressure measurement, cardiovascular disease, and personalized medicine. Specifically, AI-based systems could help continuously monitor BP using wearable technologies; in particular, BP can be estimated from a photoplethysmograph (PPG) signal obtained from a smartphone or a smartwatch using DL. Furthermore, thanks to ML algorithms, it is possible to identify new hypertension genes for the early diagnosis of AH and the prevention of complications. Moreover, integrating AI with omics-based technologies will lead to the definition of the trajectory of the hypertensive patient and the use of the most appropriate drug. However, AI is not free from technical issues and biases, such as over/underfitting, the “black-box” nature of many ML algorithms, and patient data privacy. In conclusion, AI-based systems will change clinical practice for AH by identifying patient trajectories for new, personalized care plans and predicting patients’ risks and necessary therapy adjustments due to changes in disease progression and/or therapy response. |
---|---|
AbstractList | Arterial hypertension (AH) is a progressive issue that grows in importance with the increased average age of the world population. The potential role of artificial intelligence (AI) in its prevention and treatment is firmly recognized. Indeed, AI application allows personalized medicine and tailored treatment for each patient. Specifically, this article reviews the benefits of AI in AH management, pointing out diagnostic and therapeutic improvements without ignoring the limitations of this innovative scientific approach. Consequently, we conducted a detailed search on AI applications in AH: the articles (quantitative and qualitative) reviewed in this paper were obtained by searching journal databases such as PubMed and subject-specific professional websites, including Google Scholar. The search terms included artificial intelligence, artificial neural network, deep learning, machine learning, big data, arterial hypertension, blood pressure, blood pressure measurement, cardiovascular disease, and personalized medicine. Specifically, AI-based systems could help continuously monitor BP using wearable technologies; in particular, BP can be estimated from a photoplethysmograph (PPG) signal obtained from a smartphone or a smartwatch using DL. Furthermore, thanks to ML algorithms, it is possible to identify new hypertension genes for the early diagnosis of AH and the prevention of complications. Moreover, integrating AI with omics-based technologies will lead to the definition of the trajectory of the hypertensive patient and the use of the most appropriate drug. However, AI is not free from technical issues and biases, such as over/underfitting, the "black-box" nature of many ML algorithms, and patient data privacy. In conclusion, AI-based systems will change clinical practice for AH by identifying patient trajectories for new, personalized care plans and predicting patients' risks and necessary therapy adjustments due to changes in disease progression and/or therapy response. Arterial hypertension (AH) is a progressive issue that grows in importance with the increased average age of the world population. The potential role of artificial intelligence (AI) in its prevention and treatment is firmly recognized. Indeed, AI application allows personalized medicine and tailored treatment for each patient. Specifically, this article reviews the benefits of AI in AH management, pointing out diagnostic and therapeutic improvements without ignoring the limitations of this innovative scientific approach. Consequently, we conducted a detailed search on AI applications in AH: the articles (quantitative and qualitative) reviewed in this paper were obtained by searching journal databases such as PubMed and subject-specific professional websites, including Google Scholar. The search terms included artificial intelligence, artificial neural network, deep learning, machine learning, big data, arterial hypertension, blood pressure, blood pressure measurement, cardiovascular disease, and personalized medicine. Specifically, AI-based systems could help continuously monitor BP using wearable technologies; in particular, BP can be estimated from a photoplethysmograph (PPG) signal obtained from a smartphone or a smartwatch using DL. Furthermore, thanks to ML algorithms, it is possible to identify new hypertension genes for the early diagnosis of AH and the prevention of complications. Moreover, integrating AI with omics-based technologies will lead to the definition of the trajectory of the hypertensive patient and the use of the most appropriate drug. However, AI is not free from technical issues and biases, such as over/underfitting, the "black-box" nature of many ML algorithms, and patient data privacy. In conclusion, AI-based systems will change clinical practice for AH by identifying patient trajectories for new, personalized care plans and predicting patients' risks and necessary therapy adjustments due to changes in disease progression and/or therapy response.Arterial hypertension (AH) is a progressive issue that grows in importance with the increased average age of the world population. The potential role of artificial intelligence (AI) in its prevention and treatment is firmly recognized. Indeed, AI application allows personalized medicine and tailored treatment for each patient. Specifically, this article reviews the benefits of AI in AH management, pointing out diagnostic and therapeutic improvements without ignoring the limitations of this innovative scientific approach. Consequently, we conducted a detailed search on AI applications in AH: the articles (quantitative and qualitative) reviewed in this paper were obtained by searching journal databases such as PubMed and subject-specific professional websites, including Google Scholar. The search terms included artificial intelligence, artificial neural network, deep learning, machine learning, big data, arterial hypertension, blood pressure, blood pressure measurement, cardiovascular disease, and personalized medicine. Specifically, AI-based systems could help continuously monitor BP using wearable technologies; in particular, BP can be estimated from a photoplethysmograph (PPG) signal obtained from a smartphone or a smartwatch using DL. Furthermore, thanks to ML algorithms, it is possible to identify new hypertension genes for the early diagnosis of AH and the prevention of complications. Moreover, integrating AI with omics-based technologies will lead to the definition of the trajectory of the hypertensive patient and the use of the most appropriate drug. However, AI is not free from technical issues and biases, such as over/underfitting, the "black-box" nature of many ML algorithms, and patient data privacy. In conclusion, AI-based systems will change clinical practice for AH by identifying patient trajectories for new, personalized care plans and predicting patients' risks and necessary therapy adjustments due to changes in disease progression and/or therapy response. |
Audience | Academic |
Author | Galasso, Gennaro Rispoli, Antonella D’Angelo, Gianni Rusciano, Maria Rosaria Serio, Bianca Izzo, Carmine Tedeschi, Michele Virtuoso, Nicola Melfi, Americo Ciccarelli, Michele Vecchione, Carmine Gioia, Renato Carrizzo, Albino Visco, Valeria Giano, Angelo Di Pietro, Paola Bramanti, Alessia Mancusi, Costantino |
AuthorAffiliation | 3 Cardiology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy 4 Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy 1 Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy 5 Department of Computer Science, University of Salerno, 84084 Fisciano, Italy 6 Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy 2 Department of Advanced Biomedical Sciences, Federico II University of Naples, 80138 Naples, Italy |
AuthorAffiliation_xml | – name: 3 Cardiology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy – name: 6 Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy – name: 4 Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy – name: 1 Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy – name: 2 Department of Advanced Biomedical Sciences, Federico II University of Naples, 80138 Naples, Italy – name: 5 Department of Computer Science, University of Salerno, 84084 Fisciano, Italy |
Author_xml | – sequence: 1 givenname: Valeria orcidid: 0000-0002-2197-5355 surname: Visco fullname: Visco, Valeria – sequence: 2 givenname: Carmine orcidid: 0000-0001-8499-5428 surname: Izzo fullname: Izzo, Carmine – sequence: 3 givenname: Costantino orcidid: 0000-0001-6690-1408 surname: Mancusi fullname: Mancusi, Costantino – sequence: 4 givenname: Antonella surname: Rispoli fullname: Rispoli, Antonella – sequence: 5 givenname: Michele surname: Tedeschi fullname: Tedeschi, Michele – sequence: 6 givenname: Nicola surname: Virtuoso fullname: Virtuoso, Nicola – sequence: 7 givenname: Angelo surname: Giano fullname: Giano, Angelo – sequence: 8 givenname: Renato surname: Gioia fullname: Gioia, Renato – sequence: 9 givenname: Americo surname: Melfi fullname: Melfi, Americo – sequence: 10 givenname: Bianca surname: Serio fullname: Serio, Bianca – sequence: 11 givenname: Maria Rosaria orcidid: 0000-0002-7112-6503 surname: Rusciano fullname: Rusciano, Maria Rosaria – sequence: 12 givenname: Paola orcidid: 0000-0003-1327-1961 surname: Di Pietro fullname: Di Pietro, Paola – sequence: 13 givenname: Alessia surname: Bramanti fullname: Bramanti, Alessia – sequence: 14 givenname: Gennaro orcidid: 0000-0002-7265-7613 surname: Galasso fullname: Galasso, Gennaro – sequence: 15 givenname: Gianni orcidid: 0000-0001-7164-5736 surname: D’Angelo fullname: D’Angelo, Gianni – sequence: 16 givenname: Albino orcidid: 0000-0003-2689-0008 surname: Carrizzo fullname: Carrizzo, Albino – sequence: 17 givenname: Carmine surname: Vecchione fullname: Vecchione, Carmine – sequence: 18 givenname: Michele orcidid: 0000-0003-2379-1960 surname: Ciccarelli fullname: Ciccarelli, Michele |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36826570$$D View this record in MEDLINE/PubMed |
BookMark | eNptkklv1EAQhVsoiCzkxhlZ4sIhE8q9eOGAZEVARgriABw4tcrtsumRp3vwEin_nhomhJko6oPb5a-e65XeqTgKMZAQr1K4VKqEdyvXNCmABMj1M3EiFRQLpaU52rsfi_NxXAFAym-QyhfiWGWFzEwOJ2JZDZNvvfPYJ8swUd_7joKjxIfk-m5Dw0Rh9DEkXzBgR2sK0_ukCknFyLxJfsZ5SL71RLf0UjxvsR_p_P55Jn58-vj96npx8_Xz8qq6WTijzbTIpEZVZ7kxJQLx3E7XKRmDUDtAorysM2lIOWRr4ErukpkrMNVOQ0OozsRyp9tEXNnN4Nc43NmI3v4txKGzyJ5cT7ZpW2St1igErRXWupVQUtZo1bJ-xlofdlqbuV5T49jdgP2B6OGX4H_ZLt7assxUUQALvL0XGOLvmcbJrv3oeIsYKM6jlXnBFkEWhtE3j9AVLy_wqpjKS6NLWej_VIdswIc28n_dVtRWuUmLPM3T7dyXT1B8Glp7xxFpPdcPGl7vG31w-C8IDFzsADfEcRyofUBSsNuo2f2oMS4f4c5POHFQeBDfP930B8Tt1NQ |
CitedBy_id | crossref_primary_10_17827_aktd_1439689 crossref_primary_10_1038_s41440_024_01771_y crossref_primary_10_5662_wjm_v15_i1_98626 crossref_primary_10_3390_clinpract14040109 crossref_primary_10_55662_JST_2024_5405 crossref_primary_10_2478_jce_2023_0019 crossref_primary_10_3390_jcdd10050202 crossref_primary_10_3390_computation11070147 crossref_primary_10_3390_s24155033 crossref_primary_10_1080_10641963_2025_2449613 crossref_primary_10_1007_s12265_024_10589_5 crossref_primary_10_2478_prilozi_2024_0009 crossref_primary_10_1161_HYPERTENSIONAHA_124_22349 crossref_primary_10_3390_jcm12237226 crossref_primary_10_1038_s41371_024_00936_z crossref_primary_10_37285_ijpsn_2024_17_6_8 crossref_primary_10_1108_JHOM_06_2024_0241 crossref_primary_10_3390_electronics13183642 crossref_primary_10_1016_j_trac_2024_117889 crossref_primary_10_1161_HYPERTENSIONAHA_123_22347 crossref_primary_10_3390_life14050617 crossref_primary_10_3390_jcdd10080327 crossref_primary_10_1371_journal_pone_0289613 crossref_primary_10_3390_diagnostics14111103 crossref_primary_10_3390_diagnostics15030261 crossref_primary_10_15829_1560_4071_2024_5673 crossref_primary_10_3390_jcdd10080346 |
Cites_doi | 10.1038/s41746-019-0136-7 10.1007/s00701-022-05455-9 10.1016/j.jacc.2017.03.571 10.3390/s19112585 10.1038/s41371-018-0063-0 10.1007/s12170-021-00672-w 10.1097/CRD.0000000000000294 10.1093/ajh/hpaa102 10.3389/fcvm.2022.874433 10.1161/CIRCRESAHA.121.318106 10.1016/j.ijmedinf.2020.104122 10.1109/TBME.2016.2580904 10.3390/s150923653 10.1016/j.future.2022.10.019 10.1080/10618600.2014.907095 10.1016/j.cct.2019.04.008 10.1001/jamanetworkopen.2020.0255 10.3390/life11010060 10.1097/00004872-200311000-00002 10.1161/HYPERTENSIONAHA.119.13437 10.1007/s10664-011-9182-8 10.1145/2668332.2668378 10.1097/HJH.0000000000002453 10.1186/s12919-016-0020-2 10.3109/07420528.2015.1113804 10.1093/eurheartj/ehy339 10.1109/ACCESS.2020.2981903 10.1161/circ.136.suppl_1.21042 10.1093/eurheartj/ehab312 10.3390/proteomes4030028 10.1161/HYPERTENSIONAHA.111.179788 10.1093/eurheartj/ehz681 10.1007/s11906-018-0875-x 10.3390/cells10010167 10.1136/svn-2022-001606 10.1186/s12938-017-0317-z 10.1111/jch.13759 10.1016/j.jns.2017.08.3239 10.1155/2018/1548647 10.1038/ajh.2010.203 10.1161/HYPERTENSIONAHA.114.03614 10.1007/s00421-011-1983-3 10.1038/hr.2010.73 10.1038/nmeth.4551 10.1109/SSCI.2016.7849886 10.1161/HYPERTENSIONAHA.116.08573 10.1093/jamia/ocab173 10.3390/s19040848 10.1111/jch.13700 10.15585/mmwr.mm6735a4 10.3390/diagnostics9040178 10.1007/s11010-018-3470-1 10.2174/0929867328666201218122633 10.1161/CIRCOUTCOMES.118.005010 10.3390/s20113127 10.1016/j.compbiomed.2015.09.003 10.1371/journal.pone.0195344 10.1016/j.ebiom.2022.104276 10.1016/S0195-668X(03)00114-3 10.3389/fpubh.2021.658959 10.1016/S2589-7500(20)30249-1 10.1155/2014/637635 10.1038/s41551-018-0195-0 10.1007/s10916-016-0558-6 10.1001/jamainternmed.2016.0157 10.1016/j.jacc.2018.03.521 10.1002/prp2.396 10.1155/2013/342970 10.1093/ehjcr/ytaa205 10.1155/2022/5714454 10.7717/peerj.7702 10.1097/01.hjh.0000163132.84890.c4 10.3390/s21134273 10.3389/fcvm.2022.1011071 10.1161/HYPERTENSIONAHA.119.13404 10.1093/eurheartj/ehy915 10.1016/j.preteyeres.2018.07.004 10.1016/j.medengphy.2007.05.014 10.1088/1361-6579/ab030e 10.3389/fcvm.2020.570000 10.1016/j.artmed.2011.05.001 10.1016/j.jelectrocard.2010.11.019 10.1007/s00508-017-1275-y 10.1007/s12539-017-0271-2 10.1093/eurheartj/ehab369 10.2196/jmir.9268 10.3389/fphys.2018.00742 10.1186/s12859-017-1898-z 10.1093/eurheartj/eht534 10.3390/s19204539 10.1016/j.cjca.2021.09.004 10.15252/msb.20145399 10.1007/BF00865475 10.1038/s41598-022-17223-x |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/jcdd10020074 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central - New (Subscription) ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2308-3425 |
ExternalDocumentID | oai_doaj_org_article_dffa25ef53a0443ab4f209e6d43fcac6 PMC9963880 A751871716 36826570 10_3390_jcdd10020074 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Italian Ministry of Economic Development (MISE) |
GroupedDBID | 53G 5VS 7X7 8FI 8FJ AADQD AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR CCPQU CITATION EMOBN FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR ITC KQ8 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY RPM UKHRP NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c545t-624a3b67559a0e007c4b1e55a0bc0aee79b625e3cacdd0c9c5426c8a14c40dea3 |
IEDL.DBID | 7X7 |
ISSN | 2308-3425 |
IngestDate | Wed Aug 27 01:26:47 EDT 2025 Thu Aug 21 18:37:59 EDT 2025 Fri Jul 11 16:09:36 EDT 2025 Mon Jun 30 12:23:49 EDT 2025 Tue Jun 17 21:26:13 EDT 2025 Tue Jun 10 20:50:27 EDT 2025 Thu Jan 02 22:52:56 EST 2025 Tue Jul 01 01:48:15 EDT 2025 Thu Apr 24 22:55:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | blood pressure deep learning digital health photoplethysmograph wearable technology big data machine learning hypertension artificial intelligence deep neural networks |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c545t-624a3b67559a0e007c4b1e55a0bc0aee79b625e3cacdd0c9c5426c8a14c40dea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8499-5428 0000-0001-7164-5736 0000-0002-7265-7613 0000-0001-6690-1408 0000-0002-2197-5355 0000-0003-2689-0008 0000-0003-1327-1961 0000-0003-2379-1960 0000-0002-7112-6503 |
OpenAccessLink | https://www.proquest.com/docview/2779549284?pq-origsite=%requestingapplication% |
PMID | 36826570 |
PQID | 2779549284 |
PQPubID | 5046891 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dffa25ef53a0443ab4f209e6d43fcac6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9963880 proquest_miscellaneous_2780070285 proquest_journals_2779549284 gale_infotracmisc_A751871716 gale_infotracacademiconefile_A751871716 pubmed_primary_36826570 crossref_primary_10_3390_jcdd10020074 crossref_citationtrail_10_3390_jcdd10020074 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of cardiovascular development and disease |
PublicationTitleAlternate | J Cardiovasc Dev Dis |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Unger (ref_81) 2020; 38 Sabovcik (ref_86) 2022; 9 Miller (ref_96) 2020; 28 Pedrosa (ref_94) 2011; 58 Khalid (ref_51) 2018; 2018 Tison (ref_54) 2017; 136 Wu (ref_89) 2020; 75 Turhan (ref_30) 2012; 17 Huang (ref_59) 2010; 33 Fernandes (ref_65) 2019; 81 Ye (ref_77) 2020; 139 Kumar (ref_45) 2022; 12 ref_17 Tramontano (ref_11) 2021; 9 Sanchez (ref_22) 2019; 72 Matos (ref_6) 2019; 455 Monte (ref_80) 2012; S5 Petch (ref_100) 2022; 38 Zhong (ref_19) 2018; 9 Radha (ref_42) 2019; 40 Hermida (ref_69) 2015; 32 Wall (ref_7) 2018; 67 ref_20 Gesche (ref_33) 2012; 112 Zheng (ref_38) 2016; 40 Asmar (ref_8) 2005; 23 Leng (ref_18) 2017; 381 Elgendi (ref_37) 2019; 2 Diciolla (ref_67) 2015; 66 Crea (ref_84) 2021; 42 Dzau (ref_10) 2019; 74 Visco (ref_13) 2022; 9 Kachuee (ref_48) 2017; 64 Srivastava (ref_91) 2013; 2013 ref_79 ref_78 Johnson (ref_26) 2018; 71 Chaikijurajai (ref_24) 2020; 33 Zhang (ref_41) 2017; 16 Yan (ref_52) 2019; 2019 ref_83 ref_82 Rimoldi (ref_92) 2014; 35 Duan (ref_76) 2019; 12 Zhou (ref_16) 2022; 29 Khalid (ref_36) 2020; 8 Whitworth (ref_5) 2003; 21 Peng (ref_50) 2015; 15 Nour (ref_44) 2022; 2022 Chen (ref_97) 2021; 11596 Goldstein (ref_99) 2015; 24 Poplin (ref_72) 2018; 2 Campbell (ref_31) 1990; 143 Santhanam (ref_88) 2019; 21 McCormack (ref_66) 2019; 40 Visco (ref_12) 2018; 32 ref_55 Visco (ref_9) 2020; 7 Kanegae (ref_57) 2020; 22 Ye (ref_56) 2018; 20 Persell (ref_73) 2020; 3 Pastore (ref_98) 2023; 140 Reel (ref_95) 2022; 84 Pandian (ref_39) 2008; 30 Huan (ref_90) 2015; 11 Tat (ref_101) 2020; 2 ref_68 Bzdok (ref_27) 2018; 15 ref_64 ref_63 Mase (ref_46) 2011; 44 Conroy (ref_85) 2003; 24 Held (ref_60) 2016; 10 Ahuja (ref_29) 2019; 7 Pei (ref_62) 2018; 10 (ref_49) 2011; 53 Plante (ref_40) 2016; 176 Williams (ref_74) 2018; 39 ref_35 ref_34 Diller (ref_87) 2019; 40 ref_32 Krittanawong (ref_28) 2017; 69 Krittanawong (ref_102) 2018; 20 Bonderman (ref_23) 2017; 129 Padmanabhan (ref_21) 2021; 128 Visco (ref_14) 2020; 4 Rastegar (ref_53) 2019; 261 Hare (ref_43) 2021; 15 Asayama (ref_71) 2014; 64 Sadeghipour (ref_25) 2018; 67 ref_103 Park (ref_47) 2007; 2007 Li (ref_61) 2017; 69 Pierdomenico (ref_70) 2011; 24 Golino (ref_58) 2014; 2014 Arar (ref_93) 1994; 8 ref_1 ref_3 Visco (ref_2) 2017; 16 Koren (ref_75) 2018; 6 ref_4 Visco (ref_15) 2020; 28 |
References_xml | – volume: 2 start-page: 60 year: 2019 ident: ref_37 article-title: The use of photoplethysmography for assessing hypertension publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0136-7 – ident: ref_20 doi: 10.1007/s00701-022-05455-9 – volume: 69 start-page: 2657 year: 2017 ident: ref_28 article-title: Artificial Intelligence in Precision Cardiovascular Medicine publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2017.03.571 – ident: ref_103 doi: 10.3390/s19112585 – volume: 32 start-page: 467 year: 2018 ident: ref_12 article-title: Difficult-to-control hypertension: Identification of clinical predictors and use of ICT-based integrated care to facilitate blood pressure control publication-title: J. Hum. Hypertens. doi: 10.1038/s41371-018-0063-0 – volume: 15 start-page: 11 year: 2021 ident: ref_43 article-title: Novel Digital Technologies for Blood Pressure Monitoring and Hypertension Management publication-title: Curr. Cardiovasc. Risk Rep. doi: 10.1007/s12170-021-00672-w – volume: 28 start-page: 53 year: 2020 ident: ref_96 article-title: Machine Intelligence in Cardiovascular Medicine publication-title: Cardiol. Rev. doi: 10.1097/CRD.0000000000000294 – volume: 33 start-page: 967 year: 2020 ident: ref_24 article-title: Artificial Intelligence and Hypertension: Recent Advances and Future Outlook publication-title: Am. J. Hypertens. doi: 10.1093/ajh/hpaa102 – volume: 9 start-page: 874433 year: 2022 ident: ref_13 article-title: A Multistep Approach to Deal With Advanced Heart Failure: A Case Report on the Positive Effect of Cardiac Contractility Modulation Therapy on Pulmonary Pressure Measured by CardioMEMS publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2022.874433 – volume: 128 start-page: 1100 year: 2021 ident: ref_21 article-title: Artificial Intelligence in Hypertension: Seeing Through a Glass Darkly publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.121.318106 – volume: 139 start-page: 104122 year: 2020 ident: ref_77 article-title: Predicting Optimal Hypertension Treatment Pathways Using Recurrent Neural Networks publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2020.104122 – volume: 64 start-page: 859 year: 2017 ident: ref_48 article-title: Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2580904 – volume: 15 start-page: 23653 year: 2015 ident: ref_50 article-title: Cuffless and Continuous Blood Pressure Estimation from the Heart Sound Signals publication-title: Sensors doi: 10.3390/s150923653 – volume: 140 start-page: 138 year: 2023 ident: ref_98 article-title: Identifying patterns in multiple biomarkers to diagnose diabetic foot using an explainable genetic programming-based approach publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2022.10.019 – volume: 24 start-page: 44 year: 2015 ident: ref_99 article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.2014.907095 – volume: 81 start-page: 44 year: 2019 ident: ref_65 article-title: The new US and European guidelines in hypertension: A multi-dimensional analysis publication-title: Contemp. Clin. Trials doi: 10.1016/j.cct.2019.04.008 – volume: 3 start-page: e200255 year: 2020 ident: ref_73 article-title: Effect of Home Blood Pressure Monitoring via a Smartphone Hypertension Coaching Application or Tracking Application on Adults With Uncontrolled Hypertension: A Randomized Clinical Trial publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2020.0255 – ident: ref_4 doi: 10.3390/life11010060 – volume: 21 start-page: 1983 year: 2003 ident: ref_5 article-title: 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension publication-title: J. Hypertens. doi: 10.1097/00004872-200311000-00002 – volume: 74 start-page: 450 year: 2019 ident: ref_10 article-title: Future of Hypertension publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.119.13437 – volume: 17 start-page: 62 year: 2012 ident: ref_30 article-title: On the dataset shift problem in software engineering prediction models publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-011-9182-8 – ident: ref_55 doi: 10.1145/2668332.2668378 – volume: 38 start-page: 982 year: 2020 ident: ref_81 article-title: 2020 International Society of Hypertension global hypertension practice guidelines publication-title: J. Hypertens. doi: 10.1097/HJH.0000000000002453 – volume: 10 start-page: 141 year: 2016 ident: ref_60 article-title: Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data publication-title: BMC Proc. doi: 10.1186/s12919-016-0020-2 – volume: 32 start-page: 1329 year: 2015 ident: ref_69 article-title: Ambulatory Blood Pressure Monitoring (ABPM) as the reference standard for diagnosis of hypertension and assessment of vascular risk in adults publication-title: Chronobiol. Int. doi: 10.3109/07420528.2015.1113804 – ident: ref_3 – volume: 39 start-page: 3021 year: 2018 ident: ref_74 article-title: 2018 ESC/ESH Guidelines for the management of arterial hypertension publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehy339 – volume: 11596 start-page: 1159615 year: 2021 ident: ref_97 article-title: Adversarial Robustness Study of Convolutional Neural Network for Lumbar Disk Shape Reconstruction from MR images publication-title: SPIE Med. Imaging Image Process. – volume: 8 start-page: 58146 year: 2020 ident: ref_36 article-title: Cuffless Blood Pressure Estimation Using Single Channel Photoplethysmography: A Two-Step Method publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981903 – volume: 136 start-page: A21042 year: 2017 ident: ref_54 article-title: Abstract 21042: Cardiovascular Risk Stratification Using Off-the-Shelf Wearables and a Multi-Task Deep Learning Algorithm publication-title: Circulation doi: 10.1161/circ.136.suppl_1.21042 – ident: ref_83 doi: 10.1093/eurheartj/ehab312 – ident: ref_79 doi: 10.3390/proteomes4030028 – volume: 58 start-page: 811 year: 2011 ident: ref_94 article-title: Obstructive sleep apnea: The most common secondary cause of hypertension associated with resistant hypertension publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.111.179788 – volume: 40 start-page: 3456 year: 2019 ident: ref_66 article-title: The 2018 ESC/ESH hypertension guideline and the 2019 NICE hypertension guideline, how and why they differ publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehz681 – volume: 20 start-page: 75 year: 2018 ident: ref_102 article-title: Future Direction for Using Artificial Intelligence to Predict and Manage Hypertension publication-title: Curr. Hypertens. Rep. doi: 10.1007/s11906-018-0875-x – ident: ref_1 doi: 10.3390/cells10010167 – ident: ref_17 doi: 10.1136/svn-2022-001606 – volume: 16 start-page: 23 year: 2017 ident: ref_41 article-title: Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals publication-title: Biomed. Eng. Online doi: 10.1186/s12938-017-0317-z – volume: 22 start-page: 445 year: 2020 ident: ref_57 article-title: Highly precise risk prediction model for new-onset hypertension using artificial intelligence techniques publication-title: J. Clin. Hypertens. doi: 10.1111/jch.13759 – volume: 381 start-page: 150 year: 2017 ident: ref_18 article-title: Noninvasive fractional flow in intracranial atherosclerotic stenosis: Reproducibility, limitations, and perspectives publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2017.08.3239 – volume: 2018 start-page: 1548647 year: 2018 ident: ref_51 article-title: Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches publication-title: J. Healthc. Eng. doi: 10.1155/2018/1548647 – volume: 24 start-page: 52 year: 2011 ident: ref_70 article-title: Prognostic value of white-coat and masked hypertension diagnosed by ambulatory monitoring in initially untreated subjects: An updated meta analysis publication-title: Am. J. Hypertens. doi: 10.1038/ajh.2010.203 – volume: 64 start-page: 935 year: 2014 ident: ref_71 article-title: Setting thresholds to varying blood pressure monitoring intervals differentially affects risk estimates associated with white-coat and masked hypertension in the population publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.114.03614 – volume: 112 start-page: 309 year: 2012 ident: ref_33 article-title: Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-011-1983-3 – volume: 33 start-page: 722 year: 2010 ident: ref_59 article-title: Evaluating the risk of hypertension using an artificial neural network method in rural residents over the age of 35 years in a Chinese area publication-title: Hypertens. Res. doi: 10.1038/hr.2010.73 – volume: 15 start-page: 5 year: 2018 ident: ref_27 article-title: Machine learning: Supervised methods publication-title: Nat. Methods doi: 10.1038/nmeth.4551 – ident: ref_68 doi: 10.1109/SSCI.2016.7849886 – volume: 69 start-page: 349 year: 2017 ident: ref_61 article-title: Systematic Characterization and Prediction of Human Hypertension Genes publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.116.08573 – volume: 29 start-page: 335 year: 2022 ident: ref_16 article-title: Gender-specific clinical risk scores incorporating blood pressure variability for predicting incident dementia publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocab173 – volume: 72 start-page: 1065 year: 2019 ident: ref_22 article-title: Applications of Artificial Intelligence in Cardiology. The Future is Already Here publication-title: Rev. Esp. Cardiol. Engl. Ed. – ident: ref_34 doi: 10.3390/s19040848 – volume: 21 start-page: 1735 year: 2019 ident: ref_88 article-title: Machine learning and blood pressure publication-title: J. Clin. Hypertens. doi: 10.1111/jch.13700 – volume: 16 start-page: 17 year: 2017 ident: ref_2 article-title: Larger Blood Pressure Reduction by Fixed-Dose Compared to Free Dose Combination Therapy of ACE Inhibitor and Calcium Antagonist in Hypertensive Patients publication-title: Transl. Med. UniSa – volume: 67 start-page: 983 year: 2018 ident: ref_7 article-title: Vital Signs: Prevalence of Key Cardiovascular Disease Risk Factors for Million Hearts 2022—United States, 2011–2016 publication-title: MMWR Morb. Mortal Wkly. Rep. doi: 10.15585/mmwr.mm6735a4 – ident: ref_82 doi: 10.3390/diagnostics9040178 – volume: 455 start-page: 61 year: 2019 ident: ref_6 article-title: Hypertension and longevity: Role of genetic polymorphisms in renin-angiotensin-aldosterone system and endothelial nitric oxide synthase publication-title: Mol. Cell Biochem. doi: 10.1007/s11010-018-3470-1 – volume: 28 start-page: 6569 year: 2020 ident: ref_15 article-title: Artificial Intelligence as a Business Partner in Cardiovascular Precision Medicine: An Emerging Approach for Disease Detection and Treatment Optimization publication-title: Curr. Med. Chem. doi: 10.2174/0929867328666201218122633 – volume: 12 start-page: e005010 year: 2019 ident: ref_76 article-title: Clinical Value of Predicting Individual Treatment Effects for Intensive Blood Pressure Therapy publication-title: Circ. Cardiovasc. Qual. Outcomes doi: 10.1161/CIRCOUTCOMES.118.005010 – ident: ref_35 doi: 10.3390/s20113127 – volume: 66 start-page: 278 year: 2015 ident: ref_67 article-title: Patient classification and outcome prediction in IgA nephropathy publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.09.003 – ident: ref_64 doi: 10.1371/journal.pone.0195344 – volume: 84 start-page: 104276 year: 2022 ident: ref_95 article-title: Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study publication-title: EBioMedicine doi: 10.1016/j.ebiom.2022.104276 – volume: 24 start-page: 987 year: 2003 ident: ref_85 article-title: Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project publication-title: Eur. Heart J. doi: 10.1016/S0195-668X(03)00114-3 – volume: 9 start-page: 658959 year: 2021 ident: ref_11 article-title: “One Health” Approach for Health Innovation and Active Aging in Campania (Italy) publication-title: Front. Public Health doi: 10.3389/fpubh.2021.658959 – volume: 2 start-page: e635 year: 2020 ident: ref_101 article-title: Addressing bias: Artificial intelligence in cardiovascular medicine publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(20)30249-1 – volume: 143 start-page: 19 year: 1990 ident: ref_31 article-title: Accurate, reproducible measurement of blood pressure publication-title: CMAJ – volume: 2014 start-page: 637635 year: 2014 ident: ref_58 article-title: Predicting increased blood pressure using machine learning publication-title: J. Obes. doi: 10.1155/2014/637635 – volume: 2 start-page: 158 year: 2018 ident: ref_72 article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0195-0 – volume: 40 start-page: 195 year: 2016 ident: ref_38 article-title: Pulse Arrival Time Based Cuff-Less and 24-H Wearable Blood Pressure Monitoring and its Diagnostic Value in Hypertension publication-title: J. Med. Syst. doi: 10.1007/s10916-016-0558-6 – volume: 176 start-page: 700 year: 2016 ident: ref_40 article-title: Validation of the Instant Blood Pressure Smartphone App publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2016.0157 – volume: 71 start-page: 2668 year: 2018 ident: ref_26 article-title: Artificial Intelligence in Cardiology publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2018.03.521 – volume: 6 start-page: e00396 year: 2018 ident: ref_75 article-title: Machine learning of big data in gaining insight into successful treatment of hypertension publication-title: Pharmacol. Res. Perspect. doi: 10.1002/prp2.396 – volume: 2013 start-page: 342970 year: 2013 ident: ref_91 article-title: A Note on Hypertension Classification Scheme and Soft Computing Decision Making System publication-title: ISRN Biomath. doi: 10.1155/2013/342970 – volume: 4 start-page: 1 year: 2020 ident: ref_14 article-title: It is easy to see, but it is better to foresee: A case report on the favourable alliance between CardioMEMS and levosimendan publication-title: Eur. Heart J. Case Rep. doi: 10.1093/ehjcr/ytaa205 – volume: 2022 start-page: 5714454 year: 2022 ident: ref_44 article-title: Machine Learning and Electrocardiography Signal-Based Minimum Calculation Time Detection for Blood Pressure Detection publication-title: Comput. Math. Methods Med. doi: 10.1155/2022/5714454 – volume: 7 start-page: e7702 year: 2019 ident: ref_29 article-title: The impact of artificial intelligence in medicine on the future role of the physician publication-title: PeerJ doi: 10.7717/peerj.7702 – volume: 23 start-page: 697 year: 2005 ident: ref_8 article-title: Practice guidelines of the European Society of Hypertension for clinic, ambulatory and self blood pressure measurement publication-title: J. Hypertens. doi: 10.1097/01.hjh.0000163132.84890.c4 – volume: 261 start-page: 143 year: 2019 ident: ref_53 article-title: Estimating Systolic Blood Pressure Using Convolutional Neural Networks publication-title: Stud. Health Technol. Inform. – ident: ref_32 doi: 10.3390/s21134273 – volume: 9 start-page: 1011071 year: 2022 ident: ref_86 article-title: Improving predictive performance in incident heart failure using machine learning and multi-center data publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2022.1011071 – volume: 75 start-page: 1271 year: 2020 ident: ref_89 article-title: Value of a Machine Learning Approach for Predicting Clinical Outcomes in Young Patients With Hypertension publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.119.13404 – volume: 40 start-page: 1069 year: 2019 ident: ref_87 article-title: Machine learning algorithms estimating prognosis and guiding therapy in adult congenital heart disease: Data from a single tertiary centre including 10 019 patients publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehy915 – volume: 67 start-page: 1 year: 2018 ident: ref_25 article-title: Artificial intelligence in retina publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2018.07.004 – volume: 30 start-page: 466 year: 2008 ident: ref_39 article-title: Smart Vest: Wearable multi-parameter remote physiological monitoring system publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2007.05.014 – volume: 40 start-page: 025006 year: 2019 ident: ref_42 article-title: Estimating blood pressure trends and the nocturnal dip from photoplethysmography publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ab030e – volume: 2007 start-page: 3597 year: 2007 ident: ref_47 article-title: Cuffless and noninvasive measurement of systolic blood pressure, diastolic blood pressure, mean arterial pressure and pulse pressure using radial artery tonometry pressure sensor with concept of Korean traditional medicine publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. – volume: 7 start-page: 570000 year: 2020 ident: ref_9 article-title: Serum Uric Acid and Left Ventricular Mass in Essential Hypertension publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2020.570000 – volume: 53 start-page: 127 year: 2011 ident: ref_49 article-title: Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2011.05.001 – volume: S5 start-page: 001 year: 2012 ident: ref_80 article-title: Omics Screening for Pharmaceutical Efficacy and Safety in Clinical Practice publication-title: J. Pharm. Pharm. – volume: 44 start-page: 201 year: 2011 ident: ref_46 article-title: Feasibility of cuff-free measurement of systolic and diastolic arterial blood pressure publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2010.11.019 – volume: 129 start-page: 866 year: 2017 ident: ref_23 article-title: Artificial intelligence in cardiology publication-title: Wien. Klin. Wochenschr. doi: 10.1007/s00508-017-1275-y – volume: 10 start-page: 126 year: 2018 ident: ref_62 article-title: Risk-Predicting Model for Incident of Essential Hypertension Based on Environmental and Genetic Factors with Support Vector Machine publication-title: Interdiscip. Sci. doi: 10.1007/s12539-017-0271-2 – volume: 42 start-page: 2403 year: 2021 ident: ref_84 article-title: The new SCORE2 risk prediction algorithms and the growing challenge of risk factors not captured by traditional risk scores publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehab369 – volume: 20 start-page: e22 year: 2018 ident: ref_56 article-title: Prediction of Incident Hypertension Within the Next Year: Prospective Study Using Statewide Electronic Health Records and Machine Learning publication-title: J. Med. Internet Res. doi: 10.2196/jmir.9268 – volume: 9 start-page: 742 year: 2018 ident: ref_19 article-title: Application of Patient-Specific Computational Fluid Dynamics in Coronary and Intra-Cardiac Flow Simulations: Challenges and Opportunities publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00742 – ident: ref_63 doi: 10.1186/s12859-017-1898-z – volume: 35 start-page: 1245 year: 2014 ident: ref_92 article-title: Secondary arterial hypertension: When, who, and how to screen? publication-title: Eur. Heart J. doi: 10.1093/eurheartj/eht534 – ident: ref_78 doi: 10.3390/s19204539 – volume: 38 start-page: 204 year: 2022 ident: ref_100 article-title: Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology publication-title: Can. J. Cardiol. doi: 10.1016/j.cjca.2021.09.004 – volume: 11 start-page: 799 year: 2015 ident: ref_90 article-title: Integrative network analysis reveals molecular mechanisms of blood pressure regulation publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20145399 – volume: 8 start-page: 186 year: 1994 ident: ref_93 article-title: Etiology of sustained hypertension in children in the southwestern United States publication-title: Pediatr. Nephrol. doi: 10.1007/BF00865475 – volume: 12 start-page: 13059 year: 2022 ident: ref_45 article-title: Multiparametric cloth-based wearable, SimpleSense, estimates blood pressure publication-title: Sci. Rep. doi: 10.1038/s41598-022-17223-x – volume: 2019 start-page: 1917 year: 2019 ident: ref_52 article-title: Novel Deep Convolutional Neural Network for Cuff-less Blood Pressure Measurement Using ECG and PPG Signals publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. |
SSID | ssj0001342012 |
Score | 2.3843408 |
SecondaryResourceType | review_article |
Snippet | Arterial hypertension (AH) is a progressive issue that grows in importance with the increased average age of the world population. The potential role of... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 74 |
SubjectTerms | Accuracy Algorithms Arterial lines Artificial intelligence BCG BCG vaccines Big Data Blood pressure Care and treatment Clinical medicine Computational linguistics Datasets deep learning deep neural networks Development and progression Disease Electronic health records Health aspects Health risks Hypertension Language processing Machine learning Medical research Medicine, Experimental Natural language interfaces Neural networks Patients R&D Research & development Review |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5QD4gL4s2UgoIE4oBGzeY1GW4LotoilQtU6i3KwxFF1Wy17PL7sWemy4wQ4sJ17EixY8f2xPnC2CvrnAJtRZ2ta2tdFraOJdraBRtNicGEQBeFzz7b1bn-dGEuJk99UU_YAA88KO44lxKkgWJUEFqrEHWRogWbtSoppB5sG2PepJjq_64ojZFNDp3uCuv64-8pZ4IbpZg5i0E9VP-fG_IkIs27JSfh5-QeuzvmjXw5zPc-uwXdA3b7bDwZf8hOiTKgQfDTCcwmv-z4CmvNTd-pvu74736Xd3zZ8SWy7K45Ov2Gf7kC-AmP2PnJx68fVvX4TEKdMP3Z1lbqoCIm_qYNAlC-pOMCjAkiJhEAmjZikQMKtZWzSC2Okja5sNBJiwxBPWYH3bqDp4yX3GdMrW2d0VmmoBswTQHcBxZZxVyxtzeK82nEEKenLK481hKkZj9Vc8Ve77mvB-yMv_C9pzXY8xDidf8B7cCPduD_ZQcVe0Mr6MkvcUr4abhegIIRwpVf0vlSQ-BAFTuacaI_pTn5xgb86M8_vGwaOg_FWF6xl3syjaQetQ7WO-JxBJ4knanYk8Fk9iIpi2WcaUTFmpkxzWSeU7rLbz3ad0tbpBOH_0NJz9gdiUna0HV-xA62mx08x6RqG1_0_vMLKz8hGA priority: 102 providerName: Directory of Open Access Journals |
Title | Artificial Intelligence in Hypertension Management: An Ace up Your Sleeve |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36826570 https://www.proquest.com/docview/2779549284 https://www.proquest.com/docview/2780070285 https://pubmed.ncbi.nlm.nih.gov/PMC9963880 https://doaj.org/article/dffa25ef53a0443ab4f209e6d43fcac6 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFD5oC-KLeHdqXSIoPsjQ2cltxhfZSstWaBG1sG9DrlopM-t2t7_fc2ZmL4Poa3ICOcm5JidfAN6oouBBqCz1qihTEccqtdGqtDDKymiNNIYeCp9fqOml-DyTs_7A7aYvq1zbxNZQ-8bRGflRrjXdSKE1_Tj_ndKvUXS72n-hcRf2CbqMpFrP9PaMhQv0b3lX784xuz_65bwn0FHynANP1AL2_22Wd_zSsGZyxwmdPoQHffTIJt12P4I7oX4M9877-_EncEY9HSYEO9sB22RXNZtixrlo69Wbmm2rXj6wSc0mSLKaM1T9Bft2HcJteAqXpyffP03T_rOE1GEQtExVLgy3GP7L0mQB-XPCjoOUJrMuMyHo0mKqE7gzuASZK3FUrlxhxsKJzAfDn8Fe3dThBbDo27ipVGUhhc-dETpIHQNag7Hn1ifwfr1wleuRxOlDi-sKMwpa5mp3mRN4u6Gedwga_6A7pj3Y0BDuddvQLH5UvRpVPkaDXETJTSYEN1bEPCuD8oJH5Ewl8I52sCLtxClhU_fIABkjnKtqQrdMmiCCEjgcUKJWuWH3WgaqXqtvqq0MJvB6000jqVKtDs2KaAqCUMoLmcDzTmQ2LHGFyZzUWQJ6IEwDnoc99dXPFvO7JENZZAf_n9ZLuJ9jENZVlR_C3nKxCq8waFraUasZI9g_Prn48nXUHj38AcATGcU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgEviJtAASNR8YCieuMjCRJCy1Ht0m5faKV9S30Fiqrsst0F8af4jcwk2SNC8NZXexJ57PEc9vgbgBc6y0SQmsdeZ3ksy56ObWl1nBltVWmNMoYeCo-O9OBEfhqr8Rb8Xr6FobTKpU6sFbWfODoj30vSlG6kUJu-nX6PqWoU3a4uS2g0YnEQfv3EkO3izfADru9ukux_PH4_iNuqArFDb2Ee60QaYdFPVrnhAU2kk7YXlDLcOm5CSHOLMUEQzjjvucvxq0S7zPSkk9wHI_C_V-AqGl5OwV46TtdnOkKiPU2a_Hohcr73Df9BIKdkqTuWry4Q8LcZ2LCD3RzNDaO3fwtutt4q6zfidRu2QnUHro3a-_i7MKSeBoOCDTfAPdlZxQYY4c7q_PhJxdZZNq9Zv2J9JFlMGaqaGft8HsKPcA9OLmUa78N2NanCQ2Clr_20XOeZkj5xRqZBpWVA7dPzwvoIXi0nrnAtcjkV0DgvMIKhaS42pzmC3RX1tEHs-AfdO1qDFQ3hbNcNk9mXot22hS9Lg1yUShgupTBWlgnPg_ZSlMiZjuAlrWBB2gCHhE3NowZkjHC1ij7daqUESRTBTocSd7Hrdi9loGi1yEWxlvkInq-66UvKjKvCZEE0GUE2JZmK4EEjMiuWhMbgUaU8grQjTB2euz3V2dcaYzwnxZzxR_8f1jO4PjgeHRaHw6ODx3AjQQewyWjfge35bBGeoMM2t0_rXcLg9LK35R-Qm1UR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVKp4QdwYCiwSFQ_IiuM9bCMhlNJGCaVRBVTqm9nLUFQ5IU1A_DV-HTO2c1gI3vrqHVue3Tl3Z78BeK7SlHuhotCpNAtF0VOhKYwKU62MLIyWWtNF4eOxGp6Kd2fybAt-L-_CUFnl0iZWhtpNLO2Rd-MkoRMptKbdoimLODkYvJl-D6mDFJ20Lttp1CJy5H_9xPTt8vXoANd6L44Hh5_eDsOmw0BoMXKYhyoWmhuMmWWmI4_u0grT81LqyNhIe59kBvMDz622zkU2w7diZVPdE1ZEzmuO370G2wllRR3Y3j8cn3xY7_Bwgd41rqvtOc-i7jf8CkGekt9u-cGqXcDfTmHDK7YrNjdc4OAm3GhiV9avhe0WbPnyNuwcN6fzd2BEIzUiBRttQH2y85INMd-dVdXyk5Kta25esX7J-kiymDI0PDP28cL7H_4unF7JRN6DTjkp_QNghauitkxlqRQutlokXiaFR1vUc9y4AF4uJy63DY45tdO4yDGfoWnON6c5gL0V9bTG7_gH3T6twYqGULerB5PZl7xR4twVhUYuCsl1JATXRhRxlHnlBC-QMxXAC1rBnGwD_hI-qq84IGOEspX36YwrIYCiAHZblKjTtj28lIG8sSmX-VoDAni2GqY3qU6u9JMF0aQE4BSnMoD7tcisWOIKU0mZRAEkLWFq8dweKc-_VojjGZnpNHr4_996Cjuokvn70fjoEVyPMRqsy9t3oTOfLfxjjN7m5kmjJgw-X7Vm_gEpolqs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+in+Hypertension+Management%3A+An+Ace+up+Your+Sleeve&rft.jtitle=Journal+of+cardiovascular+development+and+disease&rft.au=Visco%2C+Valeria&rft.au=Izzo%2C+Carmine&rft.au=Mancusi%2C+Costantino&rft.au=Rispoli%2C+Antonella&rft.date=2023-02-01&rft.issn=2308-3425&rft.eissn=2308-3425&rft.volume=10&rft.issue=2&rft.spage=74&rft_id=info:doi/10.3390%2Fjcdd10020074&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jcdd10020074 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2308-3425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2308-3425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2308-3425&client=summon |