Artificial Intelligence in Hypertension Management: An Ace up Your Sleeve

Arterial hypertension (AH) is a progressive issue that grows in importance with the increased average age of the world population. The potential role of artificial intelligence (AI) in its prevention and treatment is firmly recognized. Indeed, AI application allows personalized medicine and tailored...

Full description

Saved in:
Bibliographic Details
Published inJournal of cardiovascular development and disease Vol. 10; no. 2; p. 74
Main Authors Visco, Valeria, Izzo, Carmine, Mancusi, Costantino, Rispoli, Antonella, Tedeschi, Michele, Virtuoso, Nicola, Giano, Angelo, Gioia, Renato, Melfi, Americo, Serio, Bianca, Rusciano, Maria Rosaria, Di Pietro, Paola, Bramanti, Alessia, Galasso, Gennaro, D’Angelo, Gianni, Carrizzo, Albino, Vecchione, Carmine, Ciccarelli, Michele
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.02.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Arterial hypertension (AH) is a progressive issue that grows in importance with the increased average age of the world population. The potential role of artificial intelligence (AI) in its prevention and treatment is firmly recognized. Indeed, AI application allows personalized medicine and tailored treatment for each patient. Specifically, this article reviews the benefits of AI in AH management, pointing out diagnostic and therapeutic improvements without ignoring the limitations of this innovative scientific approach. Consequently, we conducted a detailed search on AI applications in AH: the articles (quantitative and qualitative) reviewed in this paper were obtained by searching journal databases such as PubMed and subject-specific professional websites, including Google Scholar. The search terms included artificial intelligence, artificial neural network, deep learning, machine learning, big data, arterial hypertension, blood pressure, blood pressure measurement, cardiovascular disease, and personalized medicine. Specifically, AI-based systems could help continuously monitor BP using wearable technologies; in particular, BP can be estimated from a photoplethysmograph (PPG) signal obtained from a smartphone or a smartwatch using DL. Furthermore, thanks to ML algorithms, it is possible to identify new hypertension genes for the early diagnosis of AH and the prevention of complications. Moreover, integrating AI with omics-based technologies will lead to the definition of the trajectory of the hypertensive patient and the use of the most appropriate drug. However, AI is not free from technical issues and biases, such as over/underfitting, the “black-box” nature of many ML algorithms, and patient data privacy. In conclusion, AI-based systems will change clinical practice for AH by identifying patient trajectories for new, personalized care plans and predicting patients’ risks and necessary therapy adjustments due to changes in disease progression and/or therapy response.
AbstractList Arterial hypertension (AH) is a progressive issue that grows in importance with the increased average age of the world population. The potential role of artificial intelligence (AI) in its prevention and treatment is firmly recognized. Indeed, AI application allows personalized medicine and tailored treatment for each patient. Specifically, this article reviews the benefits of AI in AH management, pointing out diagnostic and therapeutic improvements without ignoring the limitations of this innovative scientific approach. Consequently, we conducted a detailed search on AI applications in AH: the articles (quantitative and qualitative) reviewed in this paper were obtained by searching journal databases such as PubMed and subject-specific professional websites, including Google Scholar. The search terms included artificial intelligence, artificial neural network, deep learning, machine learning, big data, arterial hypertension, blood pressure, blood pressure measurement, cardiovascular disease, and personalized medicine. Specifically, AI-based systems could help continuously monitor BP using wearable technologies; in particular, BP can be estimated from a photoplethysmograph (PPG) signal obtained from a smartphone or a smartwatch using DL. Furthermore, thanks to ML algorithms, it is possible to identify new hypertension genes for the early diagnosis of AH and the prevention of complications. Moreover, integrating AI with omics-based technologies will lead to the definition of the trajectory of the hypertensive patient and the use of the most appropriate drug. However, AI is not free from technical issues and biases, such as over/underfitting, the "black-box" nature of many ML algorithms, and patient data privacy. In conclusion, AI-based systems will change clinical practice for AH by identifying patient trajectories for new, personalized care plans and predicting patients' risks and necessary therapy adjustments due to changes in disease progression and/or therapy response.
Arterial hypertension (AH) is a progressive issue that grows in importance with the increased average age of the world population. The potential role of artificial intelligence (AI) in its prevention and treatment is firmly recognized. Indeed, AI application allows personalized medicine and tailored treatment for each patient. Specifically, this article reviews the benefits of AI in AH management, pointing out diagnostic and therapeutic improvements without ignoring the limitations of this innovative scientific approach. Consequently, we conducted a detailed search on AI applications in AH: the articles (quantitative and qualitative) reviewed in this paper were obtained by searching journal databases such as PubMed and subject-specific professional websites, including Google Scholar. The search terms included artificial intelligence, artificial neural network, deep learning, machine learning, big data, arterial hypertension, blood pressure, blood pressure measurement, cardiovascular disease, and personalized medicine. Specifically, AI-based systems could help continuously monitor BP using wearable technologies; in particular, BP can be estimated from a photoplethysmograph (PPG) signal obtained from a smartphone or a smartwatch using DL. Furthermore, thanks to ML algorithms, it is possible to identify new hypertension genes for the early diagnosis of AH and the prevention of complications. Moreover, integrating AI with omics-based technologies will lead to the definition of the trajectory of the hypertensive patient and the use of the most appropriate drug. However, AI is not free from technical issues and biases, such as over/underfitting, the "black-box" nature of many ML algorithms, and patient data privacy. In conclusion, AI-based systems will change clinical practice for AH by identifying patient trajectories for new, personalized care plans and predicting patients' risks and necessary therapy adjustments due to changes in disease progression and/or therapy response.Arterial hypertension (AH) is a progressive issue that grows in importance with the increased average age of the world population. The potential role of artificial intelligence (AI) in its prevention and treatment is firmly recognized. Indeed, AI application allows personalized medicine and tailored treatment for each patient. Specifically, this article reviews the benefits of AI in AH management, pointing out diagnostic and therapeutic improvements without ignoring the limitations of this innovative scientific approach. Consequently, we conducted a detailed search on AI applications in AH: the articles (quantitative and qualitative) reviewed in this paper were obtained by searching journal databases such as PubMed and subject-specific professional websites, including Google Scholar. The search terms included artificial intelligence, artificial neural network, deep learning, machine learning, big data, arterial hypertension, blood pressure, blood pressure measurement, cardiovascular disease, and personalized medicine. Specifically, AI-based systems could help continuously monitor BP using wearable technologies; in particular, BP can be estimated from a photoplethysmograph (PPG) signal obtained from a smartphone or a smartwatch using DL. Furthermore, thanks to ML algorithms, it is possible to identify new hypertension genes for the early diagnosis of AH and the prevention of complications. Moreover, integrating AI with omics-based technologies will lead to the definition of the trajectory of the hypertensive patient and the use of the most appropriate drug. However, AI is not free from technical issues and biases, such as over/underfitting, the "black-box" nature of many ML algorithms, and patient data privacy. In conclusion, AI-based systems will change clinical practice for AH by identifying patient trajectories for new, personalized care plans and predicting patients' risks and necessary therapy adjustments due to changes in disease progression and/or therapy response.
Audience Academic
Author Galasso, Gennaro
Rispoli, Antonella
D’Angelo, Gianni
Rusciano, Maria Rosaria
Serio, Bianca
Izzo, Carmine
Tedeschi, Michele
Virtuoso, Nicola
Melfi, Americo
Ciccarelli, Michele
Vecchione, Carmine
Gioia, Renato
Carrizzo, Albino
Visco, Valeria
Giano, Angelo
Di Pietro, Paola
Bramanti, Alessia
Mancusi, Costantino
AuthorAffiliation 3 Cardiology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
4 Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
1 Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
5 Department of Computer Science, University of Salerno, 84084 Fisciano, Italy
6 Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
2 Department of Advanced Biomedical Sciences, Federico II University of Naples, 80138 Naples, Italy
AuthorAffiliation_xml – name: 3 Cardiology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
– name: 6 Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
– name: 4 Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
– name: 1 Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
– name: 2 Department of Advanced Biomedical Sciences, Federico II University of Naples, 80138 Naples, Italy
– name: 5 Department of Computer Science, University of Salerno, 84084 Fisciano, Italy
Author_xml – sequence: 1
  givenname: Valeria
  orcidid: 0000-0002-2197-5355
  surname: Visco
  fullname: Visco, Valeria
– sequence: 2
  givenname: Carmine
  orcidid: 0000-0001-8499-5428
  surname: Izzo
  fullname: Izzo, Carmine
– sequence: 3
  givenname: Costantino
  orcidid: 0000-0001-6690-1408
  surname: Mancusi
  fullname: Mancusi, Costantino
– sequence: 4
  givenname: Antonella
  surname: Rispoli
  fullname: Rispoli, Antonella
– sequence: 5
  givenname: Michele
  surname: Tedeschi
  fullname: Tedeschi, Michele
– sequence: 6
  givenname: Nicola
  surname: Virtuoso
  fullname: Virtuoso, Nicola
– sequence: 7
  givenname: Angelo
  surname: Giano
  fullname: Giano, Angelo
– sequence: 8
  givenname: Renato
  surname: Gioia
  fullname: Gioia, Renato
– sequence: 9
  givenname: Americo
  surname: Melfi
  fullname: Melfi, Americo
– sequence: 10
  givenname: Bianca
  surname: Serio
  fullname: Serio, Bianca
– sequence: 11
  givenname: Maria Rosaria
  orcidid: 0000-0002-7112-6503
  surname: Rusciano
  fullname: Rusciano, Maria Rosaria
– sequence: 12
  givenname: Paola
  orcidid: 0000-0003-1327-1961
  surname: Di Pietro
  fullname: Di Pietro, Paola
– sequence: 13
  givenname: Alessia
  surname: Bramanti
  fullname: Bramanti, Alessia
– sequence: 14
  givenname: Gennaro
  orcidid: 0000-0002-7265-7613
  surname: Galasso
  fullname: Galasso, Gennaro
– sequence: 15
  givenname: Gianni
  orcidid: 0000-0001-7164-5736
  surname: D’Angelo
  fullname: D’Angelo, Gianni
– sequence: 16
  givenname: Albino
  orcidid: 0000-0003-2689-0008
  surname: Carrizzo
  fullname: Carrizzo, Albino
– sequence: 17
  givenname: Carmine
  surname: Vecchione
  fullname: Vecchione, Carmine
– sequence: 18
  givenname: Michele
  orcidid: 0000-0003-2379-1960
  surname: Ciccarelli
  fullname: Ciccarelli, Michele
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36826570$$D View this record in MEDLINE/PubMed
BookMark eNptkklv1EAQhVsoiCzkxhlZ4sIhE8q9eOGAZEVARgriABw4tcrtsumRp3vwEin_nhomhJko6oPb5a-e65XeqTgKMZAQr1K4VKqEdyvXNCmABMj1M3EiFRQLpaU52rsfi_NxXAFAym-QyhfiWGWFzEwOJ2JZDZNvvfPYJ8swUd_7joKjxIfk-m5Dw0Rh9DEkXzBgR2sK0_ukCknFyLxJfsZ5SL71RLf0UjxvsR_p_P55Jn58-vj96npx8_Xz8qq6WTijzbTIpEZVZ7kxJQLx3E7XKRmDUDtAorysM2lIOWRr4ErukpkrMNVOQ0OozsRyp9tEXNnN4Nc43NmI3v4txKGzyJ5cT7ZpW2St1igErRXWupVQUtZo1bJ-xlofdlqbuV5T49jdgP2B6OGX4H_ZLt7assxUUQALvL0XGOLvmcbJrv3oeIsYKM6jlXnBFkEWhtE3j9AVLy_wqpjKS6NLWej_VIdswIc28n_dVtRWuUmLPM3T7dyXT1B8Glp7xxFpPdcPGl7vG31w-C8IDFzsADfEcRyofUBSsNuo2f2oMS4f4c5POHFQeBDfP930B8Tt1NQ
CitedBy_id crossref_primary_10_17827_aktd_1439689
crossref_primary_10_1038_s41440_024_01771_y
crossref_primary_10_5662_wjm_v15_i1_98626
crossref_primary_10_3390_clinpract14040109
crossref_primary_10_55662_JST_2024_5405
crossref_primary_10_2478_jce_2023_0019
crossref_primary_10_3390_jcdd10050202
crossref_primary_10_3390_computation11070147
crossref_primary_10_3390_s24155033
crossref_primary_10_1080_10641963_2025_2449613
crossref_primary_10_1007_s12265_024_10589_5
crossref_primary_10_2478_prilozi_2024_0009
crossref_primary_10_1161_HYPERTENSIONAHA_124_22349
crossref_primary_10_3390_jcm12237226
crossref_primary_10_1038_s41371_024_00936_z
crossref_primary_10_37285_ijpsn_2024_17_6_8
crossref_primary_10_1108_JHOM_06_2024_0241
crossref_primary_10_3390_electronics13183642
crossref_primary_10_1016_j_trac_2024_117889
crossref_primary_10_1161_HYPERTENSIONAHA_123_22347
crossref_primary_10_3390_life14050617
crossref_primary_10_3390_jcdd10080327
crossref_primary_10_1371_journal_pone_0289613
crossref_primary_10_3390_diagnostics14111103
crossref_primary_10_3390_diagnostics15030261
crossref_primary_10_15829_1560_4071_2024_5673
crossref_primary_10_3390_jcdd10080346
Cites_doi 10.1038/s41746-019-0136-7
10.1007/s00701-022-05455-9
10.1016/j.jacc.2017.03.571
10.3390/s19112585
10.1038/s41371-018-0063-0
10.1007/s12170-021-00672-w
10.1097/CRD.0000000000000294
10.1093/ajh/hpaa102
10.3389/fcvm.2022.874433
10.1161/CIRCRESAHA.121.318106
10.1016/j.ijmedinf.2020.104122
10.1109/TBME.2016.2580904
10.3390/s150923653
10.1016/j.future.2022.10.019
10.1080/10618600.2014.907095
10.1016/j.cct.2019.04.008
10.1001/jamanetworkopen.2020.0255
10.3390/life11010060
10.1097/00004872-200311000-00002
10.1161/HYPERTENSIONAHA.119.13437
10.1007/s10664-011-9182-8
10.1145/2668332.2668378
10.1097/HJH.0000000000002453
10.1186/s12919-016-0020-2
10.3109/07420528.2015.1113804
10.1093/eurheartj/ehy339
10.1109/ACCESS.2020.2981903
10.1161/circ.136.suppl_1.21042
10.1093/eurheartj/ehab312
10.3390/proteomes4030028
10.1161/HYPERTENSIONAHA.111.179788
10.1093/eurheartj/ehz681
10.1007/s11906-018-0875-x
10.3390/cells10010167
10.1136/svn-2022-001606
10.1186/s12938-017-0317-z
10.1111/jch.13759
10.1016/j.jns.2017.08.3239
10.1155/2018/1548647
10.1038/ajh.2010.203
10.1161/HYPERTENSIONAHA.114.03614
10.1007/s00421-011-1983-3
10.1038/hr.2010.73
10.1038/nmeth.4551
10.1109/SSCI.2016.7849886
10.1161/HYPERTENSIONAHA.116.08573
10.1093/jamia/ocab173
10.3390/s19040848
10.1111/jch.13700
10.15585/mmwr.mm6735a4
10.3390/diagnostics9040178
10.1007/s11010-018-3470-1
10.2174/0929867328666201218122633
10.1161/CIRCOUTCOMES.118.005010
10.3390/s20113127
10.1016/j.compbiomed.2015.09.003
10.1371/journal.pone.0195344
10.1016/j.ebiom.2022.104276
10.1016/S0195-668X(03)00114-3
10.3389/fpubh.2021.658959
10.1016/S2589-7500(20)30249-1
10.1155/2014/637635
10.1038/s41551-018-0195-0
10.1007/s10916-016-0558-6
10.1001/jamainternmed.2016.0157
10.1016/j.jacc.2018.03.521
10.1002/prp2.396
10.1155/2013/342970
10.1093/ehjcr/ytaa205
10.1155/2022/5714454
10.7717/peerj.7702
10.1097/01.hjh.0000163132.84890.c4
10.3390/s21134273
10.3389/fcvm.2022.1011071
10.1161/HYPERTENSIONAHA.119.13404
10.1093/eurheartj/ehy915
10.1016/j.preteyeres.2018.07.004
10.1016/j.medengphy.2007.05.014
10.1088/1361-6579/ab030e
10.3389/fcvm.2020.570000
10.1016/j.artmed.2011.05.001
10.1016/j.jelectrocard.2010.11.019
10.1007/s00508-017-1275-y
10.1007/s12539-017-0271-2
10.1093/eurheartj/ehab369
10.2196/jmir.9268
10.3389/fphys.2018.00742
10.1186/s12859-017-1898-z
10.1093/eurheartj/eht534
10.3390/s19204539
10.1016/j.cjca.2021.09.004
10.15252/msb.20145399
10.1007/BF00865475
10.1038/s41598-022-17223-x
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/jcdd10020074
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central - New (Subscription)
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Publicly Available Content Database
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2308-3425
ExternalDocumentID oai_doaj_org_article_dffa25ef53a0443ab4f209e6d43fcac6
PMC9963880
A751871716
36826570
10_3390_jcdd10020074
Genre Journal Article
Review
GrantInformation_xml – fundername: Italian Ministry of Economic Development (MISE)
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AADQD
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
CCPQU
CITATION
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
ITC
KQ8
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c545t-624a3b67559a0e007c4b1e55a0bc0aee79b625e3cacdd0c9c5426c8a14c40dea3
IEDL.DBID 7X7
ISSN 2308-3425
IngestDate Wed Aug 27 01:26:47 EDT 2025
Thu Aug 21 18:37:59 EDT 2025
Fri Jul 11 16:09:36 EDT 2025
Mon Jun 30 12:23:49 EDT 2025
Tue Jun 17 21:26:13 EDT 2025
Tue Jun 10 20:50:27 EDT 2025
Thu Jan 02 22:52:56 EST 2025
Tue Jul 01 01:48:15 EDT 2025
Thu Apr 24 22:55:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords blood pressure
deep learning
digital health
photoplethysmograph
wearable technology
big data
machine learning
hypertension
artificial intelligence
deep neural networks
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-624a3b67559a0e007c4b1e55a0bc0aee79b625e3cacdd0c9c5426c8a14c40dea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8499-5428
0000-0001-7164-5736
0000-0002-7265-7613
0000-0001-6690-1408
0000-0002-2197-5355
0000-0003-2689-0008
0000-0003-1327-1961
0000-0003-2379-1960
0000-0002-7112-6503
OpenAccessLink https://www.proquest.com/docview/2779549284?pq-origsite=%requestingapplication%
PMID 36826570
PQID 2779549284
PQPubID 5046891
ParticipantIDs doaj_primary_oai_doaj_org_article_dffa25ef53a0443ab4f209e6d43fcac6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9963880
proquest_miscellaneous_2780070285
proquest_journals_2779549284
gale_infotracmisc_A751871716
gale_infotracacademiconefile_A751871716
pubmed_primary_36826570
crossref_primary_10_3390_jcdd10020074
crossref_citationtrail_10_3390_jcdd10020074
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of cardiovascular development and disease
PublicationTitleAlternate J Cardiovasc Dev Dis
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Unger (ref_81) 2020; 38
Sabovcik (ref_86) 2022; 9
Miller (ref_96) 2020; 28
Pedrosa (ref_94) 2011; 58
Khalid (ref_51) 2018; 2018
Tison (ref_54) 2017; 136
Wu (ref_89) 2020; 75
Turhan (ref_30) 2012; 17
Huang (ref_59) 2010; 33
Fernandes (ref_65) 2019; 81
Ye (ref_77) 2020; 139
Kumar (ref_45) 2022; 12
ref_17
Tramontano (ref_11) 2021; 9
Sanchez (ref_22) 2019; 72
Matos (ref_6) 2019; 455
Monte (ref_80) 2012; S5
Petch (ref_100) 2022; 38
Zhong (ref_19) 2018; 9
Radha (ref_42) 2019; 40
Hermida (ref_69) 2015; 32
Wall (ref_7) 2018; 67
ref_20
Gesche (ref_33) 2012; 112
Zheng (ref_38) 2016; 40
Asmar (ref_8) 2005; 23
Leng (ref_18) 2017; 381
Elgendi (ref_37) 2019; 2
Diciolla (ref_67) 2015; 66
Crea (ref_84) 2021; 42
Dzau (ref_10) 2019; 74
Visco (ref_13) 2022; 9
Kachuee (ref_48) 2017; 64
Srivastava (ref_91) 2013; 2013
ref_79
ref_78
Johnson (ref_26) 2018; 71
Chaikijurajai (ref_24) 2020; 33
Zhang (ref_41) 2017; 16
Yan (ref_52) 2019; 2019
ref_83
ref_82
Rimoldi (ref_92) 2014; 35
Duan (ref_76) 2019; 12
Zhou (ref_16) 2022; 29
Khalid (ref_36) 2020; 8
Whitworth (ref_5) 2003; 21
Peng (ref_50) 2015; 15
Nour (ref_44) 2022; 2022
Chen (ref_97) 2021; 11596
Goldstein (ref_99) 2015; 24
Poplin (ref_72) 2018; 2
Campbell (ref_31) 1990; 143
Santhanam (ref_88) 2019; 21
McCormack (ref_66) 2019; 40
Visco (ref_12) 2018; 32
ref_55
Visco (ref_9) 2020; 7
Kanegae (ref_57) 2020; 22
Ye (ref_56) 2018; 20
Persell (ref_73) 2020; 3
Pastore (ref_98) 2023; 140
Reel (ref_95) 2022; 84
Pandian (ref_39) 2008; 30
Huan (ref_90) 2015; 11
Tat (ref_101) 2020; 2
ref_68
Bzdok (ref_27) 2018; 15
ref_64
ref_63
Mase (ref_46) 2011; 44
Conroy (ref_85) 2003; 24
Held (ref_60) 2016; 10
Ahuja (ref_29) 2019; 7
Pei (ref_62) 2018; 10
(ref_49) 2011; 53
Plante (ref_40) 2016; 176
Williams (ref_74) 2018; 39
ref_35
ref_34
Diller (ref_87) 2019; 40
ref_32
Krittanawong (ref_28) 2017; 69
Krittanawong (ref_102) 2018; 20
Bonderman (ref_23) 2017; 129
Padmanabhan (ref_21) 2021; 128
Visco (ref_14) 2020; 4
Rastegar (ref_53) 2019; 261
Hare (ref_43) 2021; 15
Asayama (ref_71) 2014; 64
Sadeghipour (ref_25) 2018; 67
ref_103
Park (ref_47) 2007; 2007
Li (ref_61) 2017; 69
Pierdomenico (ref_70) 2011; 24
Golino (ref_58) 2014; 2014
Arar (ref_93) 1994; 8
ref_1
ref_3
Visco (ref_2) 2017; 16
Koren (ref_75) 2018; 6
ref_4
Visco (ref_15) 2020; 28
References_xml – volume: 2
  start-page: 60
  year: 2019
  ident: ref_37
  article-title: The use of photoplethysmography for assessing hypertension
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0136-7
– ident: ref_20
  doi: 10.1007/s00701-022-05455-9
– volume: 69
  start-page: 2657
  year: 2017
  ident: ref_28
  article-title: Artificial Intelligence in Precision Cardiovascular Medicine
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2017.03.571
– ident: ref_103
  doi: 10.3390/s19112585
– volume: 32
  start-page: 467
  year: 2018
  ident: ref_12
  article-title: Difficult-to-control hypertension: Identification of clinical predictors and use of ICT-based integrated care to facilitate blood pressure control
  publication-title: J. Hum. Hypertens.
  doi: 10.1038/s41371-018-0063-0
– volume: 15
  start-page: 11
  year: 2021
  ident: ref_43
  article-title: Novel Digital Technologies for Blood Pressure Monitoring and Hypertension Management
  publication-title: Curr. Cardiovasc. Risk Rep.
  doi: 10.1007/s12170-021-00672-w
– volume: 28
  start-page: 53
  year: 2020
  ident: ref_96
  article-title: Machine Intelligence in Cardiovascular Medicine
  publication-title: Cardiol. Rev.
  doi: 10.1097/CRD.0000000000000294
– volume: 33
  start-page: 967
  year: 2020
  ident: ref_24
  article-title: Artificial Intelligence and Hypertension: Recent Advances and Future Outlook
  publication-title: Am. J. Hypertens.
  doi: 10.1093/ajh/hpaa102
– volume: 9
  start-page: 874433
  year: 2022
  ident: ref_13
  article-title: A Multistep Approach to Deal With Advanced Heart Failure: A Case Report on the Positive Effect of Cardiac Contractility Modulation Therapy on Pulmonary Pressure Measured by CardioMEMS
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2022.874433
– volume: 128
  start-page: 1100
  year: 2021
  ident: ref_21
  article-title: Artificial Intelligence in Hypertension: Seeing Through a Glass Darkly
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.121.318106
– volume: 139
  start-page: 104122
  year: 2020
  ident: ref_77
  article-title: Predicting Optimal Hypertension Treatment Pathways Using Recurrent Neural Networks
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2020.104122
– volume: 64
  start-page: 859
  year: 2017
  ident: ref_48
  article-title: Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2580904
– volume: 15
  start-page: 23653
  year: 2015
  ident: ref_50
  article-title: Cuffless and Continuous Blood Pressure Estimation from the Heart Sound Signals
  publication-title: Sensors
  doi: 10.3390/s150923653
– volume: 140
  start-page: 138
  year: 2023
  ident: ref_98
  article-title: Identifying patterns in multiple biomarkers to diagnose diabetic foot using an explainable genetic programming-based approach
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2022.10.019
– volume: 24
  start-page: 44
  year: 2015
  ident: ref_99
  article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2014.907095
– volume: 81
  start-page: 44
  year: 2019
  ident: ref_65
  article-title: The new US and European guidelines in hypertension: A multi-dimensional analysis
  publication-title: Contemp. Clin. Trials
  doi: 10.1016/j.cct.2019.04.008
– volume: 3
  start-page: e200255
  year: 2020
  ident: ref_73
  article-title: Effect of Home Blood Pressure Monitoring via a Smartphone Hypertension Coaching Application or Tracking Application on Adults With Uncontrolled Hypertension: A Randomized Clinical Trial
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2020.0255
– ident: ref_4
  doi: 10.3390/life11010060
– volume: 21
  start-page: 1983
  year: 2003
  ident: ref_5
  article-title: 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension
  publication-title: J. Hypertens.
  doi: 10.1097/00004872-200311000-00002
– volume: 74
  start-page: 450
  year: 2019
  ident: ref_10
  article-title: Future of Hypertension
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.119.13437
– volume: 17
  start-page: 62
  year: 2012
  ident: ref_30
  article-title: On the dataset shift problem in software engineering prediction models
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-011-9182-8
– ident: ref_55
  doi: 10.1145/2668332.2668378
– volume: 38
  start-page: 982
  year: 2020
  ident: ref_81
  article-title: 2020 International Society of Hypertension global hypertension practice guidelines
  publication-title: J. Hypertens.
  doi: 10.1097/HJH.0000000000002453
– volume: 10
  start-page: 141
  year: 2016
  ident: ref_60
  article-title: Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data
  publication-title: BMC Proc.
  doi: 10.1186/s12919-016-0020-2
– volume: 32
  start-page: 1329
  year: 2015
  ident: ref_69
  article-title: Ambulatory Blood Pressure Monitoring (ABPM) as the reference standard for diagnosis of hypertension and assessment of vascular risk in adults
  publication-title: Chronobiol. Int.
  doi: 10.3109/07420528.2015.1113804
– ident: ref_3
– volume: 39
  start-page: 3021
  year: 2018
  ident: ref_74
  article-title: 2018 ESC/ESH Guidelines for the management of arterial hypertension
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehy339
– volume: 11596
  start-page: 1159615
  year: 2021
  ident: ref_97
  article-title: Adversarial Robustness Study of Convolutional Neural Network for Lumbar Disk Shape Reconstruction from MR images
  publication-title: SPIE Med. Imaging Image Process.
– volume: 8
  start-page: 58146
  year: 2020
  ident: ref_36
  article-title: Cuffless Blood Pressure Estimation Using Single Channel Photoplethysmography: A Two-Step Method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981903
– volume: 136
  start-page: A21042
  year: 2017
  ident: ref_54
  article-title: Abstract 21042: Cardiovascular Risk Stratification Using Off-the-Shelf Wearables and a Multi-Task Deep Learning Algorithm
  publication-title: Circulation
  doi: 10.1161/circ.136.suppl_1.21042
– ident: ref_83
  doi: 10.1093/eurheartj/ehab312
– ident: ref_79
  doi: 10.3390/proteomes4030028
– volume: 58
  start-page: 811
  year: 2011
  ident: ref_94
  article-title: Obstructive sleep apnea: The most common secondary cause of hypertension associated with resistant hypertension
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.111.179788
– volume: 40
  start-page: 3456
  year: 2019
  ident: ref_66
  article-title: The 2018 ESC/ESH hypertension guideline and the 2019 NICE hypertension guideline, how and why they differ
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehz681
– volume: 20
  start-page: 75
  year: 2018
  ident: ref_102
  article-title: Future Direction for Using Artificial Intelligence to Predict and Manage Hypertension
  publication-title: Curr. Hypertens. Rep.
  doi: 10.1007/s11906-018-0875-x
– ident: ref_1
  doi: 10.3390/cells10010167
– ident: ref_17
  doi: 10.1136/svn-2022-001606
– volume: 16
  start-page: 23
  year: 2017
  ident: ref_41
  article-title: Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-017-0317-z
– volume: 22
  start-page: 445
  year: 2020
  ident: ref_57
  article-title: Highly precise risk prediction model for new-onset hypertension using artificial intelligence techniques
  publication-title: J. Clin. Hypertens.
  doi: 10.1111/jch.13759
– volume: 381
  start-page: 150
  year: 2017
  ident: ref_18
  article-title: Noninvasive fractional flow in intracranial atherosclerotic stenosis: Reproducibility, limitations, and perspectives
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2017.08.3239
– volume: 2018
  start-page: 1548647
  year: 2018
  ident: ref_51
  article-title: Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2018/1548647
– volume: 24
  start-page: 52
  year: 2011
  ident: ref_70
  article-title: Prognostic value of white-coat and masked hypertension diagnosed by ambulatory monitoring in initially untreated subjects: An updated meta analysis
  publication-title: Am. J. Hypertens.
  doi: 10.1038/ajh.2010.203
– volume: 64
  start-page: 935
  year: 2014
  ident: ref_71
  article-title: Setting thresholds to varying blood pressure monitoring intervals differentially affects risk estimates associated with white-coat and masked hypertension in the population
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.114.03614
– volume: 112
  start-page: 309
  year: 2012
  ident: ref_33
  article-title: Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-011-1983-3
– volume: 33
  start-page: 722
  year: 2010
  ident: ref_59
  article-title: Evaluating the risk of hypertension using an artificial neural network method in rural residents over the age of 35 years in a Chinese area
  publication-title: Hypertens. Res.
  doi: 10.1038/hr.2010.73
– volume: 15
  start-page: 5
  year: 2018
  ident: ref_27
  article-title: Machine learning: Supervised methods
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4551
– ident: ref_68
  doi: 10.1109/SSCI.2016.7849886
– volume: 69
  start-page: 349
  year: 2017
  ident: ref_61
  article-title: Systematic Characterization and Prediction of Human Hypertension Genes
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.116.08573
– volume: 29
  start-page: 335
  year: 2022
  ident: ref_16
  article-title: Gender-specific clinical risk scores incorporating blood pressure variability for predicting incident dementia
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocab173
– volume: 72
  start-page: 1065
  year: 2019
  ident: ref_22
  article-title: Applications of Artificial Intelligence in Cardiology. The Future is Already Here
  publication-title: Rev. Esp. Cardiol. Engl. Ed.
– ident: ref_34
  doi: 10.3390/s19040848
– volume: 21
  start-page: 1735
  year: 2019
  ident: ref_88
  article-title: Machine learning and blood pressure
  publication-title: J. Clin. Hypertens.
  doi: 10.1111/jch.13700
– volume: 16
  start-page: 17
  year: 2017
  ident: ref_2
  article-title: Larger Blood Pressure Reduction by Fixed-Dose Compared to Free Dose Combination Therapy of ACE Inhibitor and Calcium Antagonist in Hypertensive Patients
  publication-title: Transl. Med. UniSa
– volume: 67
  start-page: 983
  year: 2018
  ident: ref_7
  article-title: Vital Signs: Prevalence of Key Cardiovascular Disease Risk Factors for Million Hearts 2022—United States, 2011–2016
  publication-title: MMWR Morb. Mortal Wkly. Rep.
  doi: 10.15585/mmwr.mm6735a4
– ident: ref_82
  doi: 10.3390/diagnostics9040178
– volume: 455
  start-page: 61
  year: 2019
  ident: ref_6
  article-title: Hypertension and longevity: Role of genetic polymorphisms in renin-angiotensin-aldosterone system and endothelial nitric oxide synthase
  publication-title: Mol. Cell Biochem.
  doi: 10.1007/s11010-018-3470-1
– volume: 28
  start-page: 6569
  year: 2020
  ident: ref_15
  article-title: Artificial Intelligence as a Business Partner in Cardiovascular Precision Medicine: An Emerging Approach for Disease Detection and Treatment Optimization
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867328666201218122633
– volume: 12
  start-page: e005010
  year: 2019
  ident: ref_76
  article-title: Clinical Value of Predicting Individual Treatment Effects for Intensive Blood Pressure Therapy
  publication-title: Circ. Cardiovasc. Qual. Outcomes
  doi: 10.1161/CIRCOUTCOMES.118.005010
– ident: ref_35
  doi: 10.3390/s20113127
– volume: 66
  start-page: 278
  year: 2015
  ident: ref_67
  article-title: Patient classification and outcome prediction in IgA nephropathy
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.09.003
– ident: ref_64
  doi: 10.1371/journal.pone.0195344
– volume: 84
  start-page: 104276
  year: 2022
  ident: ref_95
  article-title: Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2022.104276
– volume: 24
  start-page: 987
  year: 2003
  ident: ref_85
  article-title: Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project
  publication-title: Eur. Heart J.
  doi: 10.1016/S0195-668X(03)00114-3
– volume: 9
  start-page: 658959
  year: 2021
  ident: ref_11
  article-title: “One Health” Approach for Health Innovation and Active Aging in Campania (Italy)
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2021.658959
– volume: 2
  start-page: e635
  year: 2020
  ident: ref_101
  article-title: Addressing bias: Artificial intelligence in cardiovascular medicine
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(20)30249-1
– volume: 143
  start-page: 19
  year: 1990
  ident: ref_31
  article-title: Accurate, reproducible measurement of blood pressure
  publication-title: CMAJ
– volume: 2014
  start-page: 637635
  year: 2014
  ident: ref_58
  article-title: Predicting increased blood pressure using machine learning
  publication-title: J. Obes.
  doi: 10.1155/2014/637635
– volume: 2
  start-page: 158
  year: 2018
  ident: ref_72
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0195-0
– volume: 40
  start-page: 195
  year: 2016
  ident: ref_38
  article-title: Pulse Arrival Time Based Cuff-Less and 24-H Wearable Blood Pressure Monitoring and its Diagnostic Value in Hypertension
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-016-0558-6
– volume: 176
  start-page: 700
  year: 2016
  ident: ref_40
  article-title: Validation of the Instant Blood Pressure Smartphone App
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2016.0157
– volume: 71
  start-page: 2668
  year: 2018
  ident: ref_26
  article-title: Artificial Intelligence in Cardiology
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2018.03.521
– volume: 6
  start-page: e00396
  year: 2018
  ident: ref_75
  article-title: Machine learning of big data in gaining insight into successful treatment of hypertension
  publication-title: Pharmacol. Res. Perspect.
  doi: 10.1002/prp2.396
– volume: 2013
  start-page: 342970
  year: 2013
  ident: ref_91
  article-title: A Note on Hypertension Classification Scheme and Soft Computing Decision Making System
  publication-title: ISRN Biomath.
  doi: 10.1155/2013/342970
– volume: 4
  start-page: 1
  year: 2020
  ident: ref_14
  article-title: It is easy to see, but it is better to foresee: A case report on the favourable alliance between CardioMEMS and levosimendan
  publication-title: Eur. Heart J. Case Rep.
  doi: 10.1093/ehjcr/ytaa205
– volume: 2022
  start-page: 5714454
  year: 2022
  ident: ref_44
  article-title: Machine Learning and Electrocardiography Signal-Based Minimum Calculation Time Detection for Blood Pressure Detection
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2022/5714454
– volume: 7
  start-page: e7702
  year: 2019
  ident: ref_29
  article-title: The impact of artificial intelligence in medicine on the future role of the physician
  publication-title: PeerJ
  doi: 10.7717/peerj.7702
– volume: 23
  start-page: 697
  year: 2005
  ident: ref_8
  article-title: Practice guidelines of the European Society of Hypertension for clinic, ambulatory and self blood pressure measurement
  publication-title: J. Hypertens.
  doi: 10.1097/01.hjh.0000163132.84890.c4
– volume: 261
  start-page: 143
  year: 2019
  ident: ref_53
  article-title: Estimating Systolic Blood Pressure Using Convolutional Neural Networks
  publication-title: Stud. Health Technol. Inform.
– ident: ref_32
  doi: 10.3390/s21134273
– volume: 9
  start-page: 1011071
  year: 2022
  ident: ref_86
  article-title: Improving predictive performance in incident heart failure using machine learning and multi-center data
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2022.1011071
– volume: 75
  start-page: 1271
  year: 2020
  ident: ref_89
  article-title: Value of a Machine Learning Approach for Predicting Clinical Outcomes in Young Patients With Hypertension
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.119.13404
– volume: 40
  start-page: 1069
  year: 2019
  ident: ref_87
  article-title: Machine learning algorithms estimating prognosis and guiding therapy in adult congenital heart disease: Data from a single tertiary centre including 10 019 patients
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehy915
– volume: 67
  start-page: 1
  year: 2018
  ident: ref_25
  article-title: Artificial intelligence in retina
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2018.07.004
– volume: 30
  start-page: 466
  year: 2008
  ident: ref_39
  article-title: Smart Vest: Wearable multi-parameter remote physiological monitoring system
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2007.05.014
– volume: 40
  start-page: 025006
  year: 2019
  ident: ref_42
  article-title: Estimating blood pressure trends and the nocturnal dip from photoplethysmography
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab030e
– volume: 2007
  start-page: 3597
  year: 2007
  ident: ref_47
  article-title: Cuffless and noninvasive measurement of systolic blood pressure, diastolic blood pressure, mean arterial pressure and pulse pressure using radial artery tonometry pressure sensor with concept of Korean traditional medicine
  publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
– volume: 7
  start-page: 570000
  year: 2020
  ident: ref_9
  article-title: Serum Uric Acid and Left Ventricular Mass in Essential Hypertension
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2020.570000
– volume: 53
  start-page: 127
  year: 2011
  ident: ref_49
  article-title: Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2011.05.001
– volume: S5
  start-page: 001
  year: 2012
  ident: ref_80
  article-title: Omics Screening for Pharmaceutical Efficacy and Safety in Clinical Practice
  publication-title: J. Pharm. Pharm.
– volume: 44
  start-page: 201
  year: 2011
  ident: ref_46
  article-title: Feasibility of cuff-free measurement of systolic and diastolic arterial blood pressure
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2010.11.019
– volume: 129
  start-page: 866
  year: 2017
  ident: ref_23
  article-title: Artificial intelligence in cardiology
  publication-title: Wien. Klin. Wochenschr.
  doi: 10.1007/s00508-017-1275-y
– volume: 10
  start-page: 126
  year: 2018
  ident: ref_62
  article-title: Risk-Predicting Model for Incident of Essential Hypertension Based on Environmental and Genetic Factors with Support Vector Machine
  publication-title: Interdiscip. Sci.
  doi: 10.1007/s12539-017-0271-2
– volume: 42
  start-page: 2403
  year: 2021
  ident: ref_84
  article-title: The new SCORE2 risk prediction algorithms and the growing challenge of risk factors not captured by traditional risk scores
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehab369
– volume: 20
  start-page: e22
  year: 2018
  ident: ref_56
  article-title: Prediction of Incident Hypertension Within the Next Year: Prospective Study Using Statewide Electronic Health Records and Machine Learning
  publication-title: J. Med. Internet Res.
  doi: 10.2196/jmir.9268
– volume: 9
  start-page: 742
  year: 2018
  ident: ref_19
  article-title: Application of Patient-Specific Computational Fluid Dynamics in Coronary and Intra-Cardiac Flow Simulations: Challenges and Opportunities
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00742
– ident: ref_63
  doi: 10.1186/s12859-017-1898-z
– volume: 35
  start-page: 1245
  year: 2014
  ident: ref_92
  article-title: Secondary arterial hypertension: When, who, and how to screen?
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/eht534
– ident: ref_78
  doi: 10.3390/s19204539
– volume: 38
  start-page: 204
  year: 2022
  ident: ref_100
  article-title: Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology
  publication-title: Can. J. Cardiol.
  doi: 10.1016/j.cjca.2021.09.004
– volume: 11
  start-page: 799
  year: 2015
  ident: ref_90
  article-title: Integrative network analysis reveals molecular mechanisms of blood pressure regulation
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20145399
– volume: 8
  start-page: 186
  year: 1994
  ident: ref_93
  article-title: Etiology of sustained hypertension in children in the southwestern United States
  publication-title: Pediatr. Nephrol.
  doi: 10.1007/BF00865475
– volume: 12
  start-page: 13059
  year: 2022
  ident: ref_45
  article-title: Multiparametric cloth-based wearable, SimpleSense, estimates blood pressure
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-17223-x
– volume: 2019
  start-page: 1917
  year: 2019
  ident: ref_52
  article-title: Novel Deep Convolutional Neural Network for Cuff-less Blood Pressure Measurement Using ECG and PPG Signals
  publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
SSID ssj0001342012
Score 2.3843408
SecondaryResourceType review_article
Snippet Arterial hypertension (AH) is a progressive issue that grows in importance with the increased average age of the world population. The potential role of...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 74
SubjectTerms Accuracy
Algorithms
Arterial lines
Artificial intelligence
BCG
BCG vaccines
Big Data
Blood pressure
Care and treatment
Clinical medicine
Computational linguistics
Datasets
deep learning
deep neural networks
Development and progression
Disease
Electronic health records
Health aspects
Health risks
Hypertension
Language processing
Machine learning
Medical research
Medicine, Experimental
Natural language interfaces
Neural networks
Patients
R&D
Research & development
Review
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5QD4gL4s2UgoIE4oBGzeY1GW4LotoilQtU6i3KwxFF1Wy17PL7sWemy4wQ4sJ17EixY8f2xPnC2CvrnAJtRZ2ta2tdFraOJdraBRtNicGEQBeFzz7b1bn-dGEuJk99UU_YAA88KO44lxKkgWJUEFqrEHWRogWbtSoppB5sG2PepJjq_64ojZFNDp3uCuv64-8pZ4IbpZg5i0E9VP-fG_IkIs27JSfh5-QeuzvmjXw5zPc-uwXdA3b7bDwZf8hOiTKgQfDTCcwmv-z4CmvNTd-pvu74736Xd3zZ8SWy7K45Ov2Gf7kC-AmP2PnJx68fVvX4TEKdMP3Z1lbqoCIm_qYNAlC-pOMCjAkiJhEAmjZikQMKtZWzSC2Okja5sNBJiwxBPWYH3bqDp4yX3GdMrW2d0VmmoBswTQHcBxZZxVyxtzeK82nEEKenLK481hKkZj9Vc8Ve77mvB-yMv_C9pzXY8xDidf8B7cCPduD_ZQcVe0Mr6MkvcUr4abhegIIRwpVf0vlSQ-BAFTuacaI_pTn5xgb86M8_vGwaOg_FWF6xl3syjaQetQ7WO-JxBJ4knanYk8Fk9iIpi2WcaUTFmpkxzWSeU7rLbz3ad0tbpBOH_0NJz9gdiUna0HV-xA62mx08x6RqG1_0_vMLKz8hGA
  priority: 102
  providerName: Directory of Open Access Journals
Title Artificial Intelligence in Hypertension Management: An Ace up Your Sleeve
URI https://www.ncbi.nlm.nih.gov/pubmed/36826570
https://www.proquest.com/docview/2779549284
https://www.proquest.com/docview/2780070285
https://pubmed.ncbi.nlm.nih.gov/PMC9963880
https://doaj.org/article/dffa25ef53a0443ab4f209e6d43fcac6
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFD5oC-KLeHdqXSIoPsjQ2cltxhfZSstWaBG1sG9DrlopM-t2t7_fc2ZmL4Poa3ICOcm5JidfAN6oouBBqCz1qihTEccqtdGqtDDKymiNNIYeCp9fqOml-DyTs_7A7aYvq1zbxNZQ-8bRGflRrjXdSKE1_Tj_ndKvUXS72n-hcRf2CbqMpFrP9PaMhQv0b3lX784xuz_65bwn0FHynANP1AL2_22Wd_zSsGZyxwmdPoQHffTIJt12P4I7oX4M9877-_EncEY9HSYEO9sB22RXNZtixrlo69Wbmm2rXj6wSc0mSLKaM1T9Bft2HcJteAqXpyffP03T_rOE1GEQtExVLgy3GP7L0mQB-XPCjoOUJrMuMyHo0mKqE7gzuASZK3FUrlxhxsKJzAfDn8Fe3dThBbDo27ipVGUhhc-dETpIHQNag7Hn1ifwfr1wleuRxOlDi-sKMwpa5mp3mRN4u6Gedwga_6A7pj3Y0BDuddvQLH5UvRpVPkaDXETJTSYEN1bEPCuD8oJH5Ewl8I52sCLtxClhU_fIABkjnKtqQrdMmiCCEjgcUKJWuWH3WgaqXqtvqq0MJvB6000jqVKtDs2KaAqCUMoLmcDzTmQ2LHGFyZzUWQJ6IEwDnoc99dXPFvO7JENZZAf_n9ZLuJ9jENZVlR_C3nKxCq8waFraUasZI9g_Prn48nXUHj38AcATGcU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgEviJtAASNR8YCieuMjCRJCy1Ht0m5faKV9S30Fiqrsst0F8af4jcwk2SNC8NZXexJ57PEc9vgbgBc6y0SQmsdeZ3ksy56ObWl1nBltVWmNMoYeCo-O9OBEfhqr8Rb8Xr6FobTKpU6sFbWfODoj30vSlG6kUJu-nX6PqWoU3a4uS2g0YnEQfv3EkO3izfADru9ukux_PH4_iNuqArFDb2Ee60QaYdFPVrnhAU2kk7YXlDLcOm5CSHOLMUEQzjjvucvxq0S7zPSkk9wHI_C_V-AqGl5OwV46TtdnOkKiPU2a_Hohcr73Df9BIKdkqTuWry4Q8LcZ2LCD3RzNDaO3fwtutt4q6zfidRu2QnUHro3a-_i7MKSeBoOCDTfAPdlZxQYY4c7q_PhJxdZZNq9Zv2J9JFlMGaqaGft8HsKPcA9OLmUa78N2NanCQ2Clr_20XOeZkj5xRqZBpWVA7dPzwvoIXi0nrnAtcjkV0DgvMIKhaS42pzmC3RX1tEHs-AfdO1qDFQ3hbNcNk9mXot22hS9Lg1yUShgupTBWlgnPg_ZSlMiZjuAlrWBB2gCHhE3NowZkjHC1ij7daqUESRTBTocSd7Hrdi9loGi1yEWxlvkInq-66UvKjKvCZEE0GUE2JZmK4EEjMiuWhMbgUaU8grQjTB2euz3V2dcaYzwnxZzxR_8f1jO4PjgeHRaHw6ODx3AjQQewyWjfge35bBGeoMM2t0_rXcLg9LK35R-Qm1UR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVKp4QdwYCiwSFQ_IiuM9bCMhlNJGCaVRBVTqm9nLUFQ5IU1A_DV-HTO2c1gI3vrqHVue3Tl3Z78BeK7SlHuhotCpNAtF0VOhKYwKU62MLIyWWtNF4eOxGp6Kd2fybAt-L-_CUFnl0iZWhtpNLO2Rd-MkoRMptKbdoimLODkYvJl-D6mDFJ20Lttp1CJy5H_9xPTt8vXoANd6L44Hh5_eDsOmw0BoMXKYhyoWmhuMmWWmI4_u0grT81LqyNhIe59kBvMDz622zkU2w7diZVPdE1ZEzmuO370G2wllRR3Y3j8cn3xY7_Bwgd41rqvtOc-i7jf8CkGekt9u-cGqXcDfTmHDK7YrNjdc4OAm3GhiV9avhe0WbPnyNuwcN6fzd2BEIzUiBRttQH2y85INMd-dVdXyk5Kta25esX7J-kiymDI0PDP28cL7H_4unF7JRN6DTjkp_QNghauitkxlqRQutlokXiaFR1vUc9y4AF4uJy63DY45tdO4yDGfoWnON6c5gL0V9bTG7_gH3T6twYqGULerB5PZl7xR4twVhUYuCsl1JATXRhRxlHnlBC-QMxXAC1rBnGwD_hI-qq84IGOEspX36YwrIYCiAHZblKjTtj28lIG8sSmX-VoDAni2GqY3qU6u9JMF0aQE4BSnMoD7tcisWOIKU0mZRAEkLWFq8dweKc-_VojjGZnpNHr4_996Cjuokvn70fjoEVyPMRqsy9t3oTOfLfxjjN7m5kmjJgw-X7Vm_gEpolqs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+in+Hypertension+Management%3A+An+Ace+up+Your+Sleeve&rft.jtitle=Journal+of+cardiovascular+development+and+disease&rft.au=Visco%2C+Valeria&rft.au=Izzo%2C+Carmine&rft.au=Mancusi%2C+Costantino&rft.au=Rispoli%2C+Antonella&rft.date=2023-02-01&rft.issn=2308-3425&rft.eissn=2308-3425&rft.volume=10&rft.issue=2&rft.spage=74&rft_id=info:doi/10.3390%2Fjcdd10020074&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jcdd10020074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2308-3425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2308-3425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2308-3425&client=summon