Discovery and construction of surface kagome electronic states induced by p-d electronic hybridization in Co3Sn2S2
Kagome-lattice materials possess attractive properties for quantum computing applications, but their synthesis remains challenging. Herein, based on the compelling identification of the two cleavable surfaces of Co 3 Sn 2 S 2 , we show surface kagome electronic states (SKESs) on a Sn-terminated tria...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 5230 - 8 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
26.08.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-023-40942-2 |
Cover
Loading…
Abstract | Kagome-lattice materials possess attractive properties for quantum computing applications, but their synthesis remains challenging. Herein, based on the compelling identification of the two cleavable surfaces of Co
3
Sn
2
S
2
, we show surface kagome electronic states (SKESs) on a Sn-terminated triangular Co
3
Sn
2
S
2
surface. Such SKESs are imprinted by vertical
p-d
electronic hybridization between the surface Sn (subsurface S) atoms and the buried Co kagome-lattice network in the Co
3
Sn layer under the surface. Owing to the subsequent lateral hybridization of the Sn and S atoms in a corner-sharing manner, the kagome symmetry and topological electronic properties of the Co
3
Sn layer is proximate to the Sn surface. The SKESs and both hybridizations were verified via qPlus non-contact atomic force microscopy (nc-AFM) and density functional theory calculations. The construction of SKESs with tunable properties can be achieved by the atomic substitution of surface Sn (subsurface S) with other group III-V elements (Se or Te), which was demonstrated theoretically. This work exhibits the powerful capacity of nc-AFM in characterizing localized topological states and reveals the strategy for synthesis of large-area transition-metal-based kagome-lattice materials using conventional surface deposition techniques.
Kagome materials host 2D planes which give rise to kagome physics, but these are typically embedded in the bulk. Huang et al. demonstrate a strategy for generating surface kagome electronic states by vertical
p-d
electronic hybridization between surface atoms and the buried Co kagome network in Co
3
Sn
2
S
2
. |
---|---|
AbstractList | Kagome-lattice materials possess attractive properties for quantum computing applications, but their synthesis remains challenging. Herein, based on the compelling identification of the two cleavable surfaces of Co
3
Sn
2
S
2
, we show surface kagome electronic states (SKESs) on a Sn-terminated triangular Co
3
Sn
2
S
2
surface. Such SKESs are imprinted by vertical
p-d
electronic hybridization between the surface Sn (subsurface S) atoms and the buried Co kagome-lattice network in the Co
3
Sn layer under the surface. Owing to the subsequent lateral hybridization of the Sn and S atoms in a corner-sharing manner, the kagome symmetry and topological electronic properties of the Co
3
Sn layer is proximate to the Sn surface. The SKESs and both hybridizations were verified via qPlus non-contact atomic force microscopy (nc-AFM) and density functional theory calculations. The construction of SKESs with tunable properties can be achieved by the atomic substitution of surface Sn (subsurface S) with other group III-V elements (Se or Te), which was demonstrated theoretically. This work exhibits the powerful capacity of nc-AFM in characterizing localized topological states and reveals the strategy for synthesis of large-area transition-metal-based kagome-lattice materials using conventional surface deposition techniques.
Kagome materials host 2D planes which give rise to kagome physics, but these are typically embedded in the bulk. Huang et al. demonstrate a strategy for generating surface kagome electronic states by vertical
p-d
electronic hybridization between surface atoms and the buried Co kagome network in Co
3
Sn
2
S
2
. Kagome-lattice materials possess attractive properties for quantum computing applications, but their synthesis remains challenging. Herein, based on the compelling identification of the two cleavable surfaces of Co 3 Sn 2 S 2 , we show surface kagome electronic states (SKESs) on a Sn-terminated triangular Co 3 Sn 2 S 2 surface. Such SKESs are imprinted by vertical p-d electronic hybridization between the surface Sn (subsurface S) atoms and the buried Co kagome-lattice network in the Co 3 Sn layer under the surface. Owing to the subsequent lateral hybridization of the Sn and S atoms in a corner-sharing manner, the kagome symmetry and topological electronic properties of the Co 3 Sn layer is proximate to the Sn surface. The SKESs and both hybridizations were verified via qPlus non-contact atomic force microscopy (nc-AFM) and density functional theory calculations. The construction of SKESs with tunable properties can be achieved by the atomic substitution of surface Sn (subsurface S) with other group III-V elements (Se or Te), which was demonstrated theoretically. This work exhibits the powerful capacity of nc-AFM in characterizing localized topological states and reveals the strategy for synthesis of large-area transition-metal-based kagome-lattice materials using conventional surface deposition techniques. Kagome-lattice materials possess attractive properties for quantum computing applications, but their synthesis remains challenging. Herein, based on the compelling identification of the two cleavable surfaces of Co3Sn2S2, we show surface kagome electronic states (SKESs) on a Sn-terminated triangular Co3Sn2S2 surface. Such SKESs are imprinted by vertical p-d electronic hybridization between the surface Sn (subsurface S) atoms and the buried Co kagome-lattice network in the Co3Sn layer under the surface. Owing to the subsequent lateral hybridization of the Sn and S atoms in a corner-sharing manner, the kagome symmetry and topological electronic properties of the Co3Sn layer is proximate to the Sn surface. The SKESs and both hybridizations were verified via qPlus non-contact atomic force microscopy (nc-AFM) and density functional theory calculations. The construction of SKESs with tunable properties can be achieved by the atomic substitution of surface Sn (subsurface S) with other group III-V elements (Se or Te), which was demonstrated theoretically. This work exhibits the powerful capacity of nc-AFM in characterizing localized topological states and reveals the strategy for synthesis of large-area transition-metal-based kagome-lattice materials using conventional surface deposition techniques. Kagome-lattice materials possess attractive properties for quantum computing applications, but their synthesis remains challenging. Herein, based on the compelling identification of the two cleavable surfaces of Co3Sn2S2, we show surface kagome electronic states (SKESs) on a Sn-terminated triangular Co3Sn2S2 surface. Such SKESs are imprinted by vertical p-d electronic hybridization between the surface Sn (subsurface S) atoms and the buried Co kagome-lattice network in the Co3Sn layer under the surface. Owing to the subsequent lateral hybridization of the Sn and S atoms in a corner-sharing manner, the kagome symmetry and topological electronic properties of the Co3Sn layer is proximate to the Sn surface. The SKESs and both hybridizations were verified via qPlus non-contact atomic force microscopy (nc-AFM) and density functional theory calculations. The construction of SKESs with tunable properties can be achieved by the atomic substitution of surface Sn (subsurface S) with other group III-V elements (Se or Te), which was demonstrated theoretically. This work exhibits the powerful capacity of nc-AFM in characterizing localized topological states and reveals the strategy for synthesis of large-area transition-metal-based kagome-lattice materials using conventional surface deposition techniques.Kagome-lattice materials possess attractive properties for quantum computing applications, but their synthesis remains challenging. Herein, based on the compelling identification of the two cleavable surfaces of Co3Sn2S2, we show surface kagome electronic states (SKESs) on a Sn-terminated triangular Co3Sn2S2 surface. Such SKESs are imprinted by vertical p-d electronic hybridization between the surface Sn (subsurface S) atoms and the buried Co kagome-lattice network in the Co3Sn layer under the surface. Owing to the subsequent lateral hybridization of the Sn and S atoms in a corner-sharing manner, the kagome symmetry and topological electronic properties of the Co3Sn layer is proximate to the Sn surface. The SKESs and both hybridizations were verified via qPlus non-contact atomic force microscopy (nc-AFM) and density functional theory calculations. The construction of SKESs with tunable properties can be achieved by the atomic substitution of surface Sn (subsurface S) with other group III-V elements (Se or Te), which was demonstrated theoretically. This work exhibits the powerful capacity of nc-AFM in characterizing localized topological states and reveals the strategy for synthesis of large-area transition-metal-based kagome-lattice materials using conventional surface deposition techniques. Kagome-lattice materials possess attractive properties for quantum computing applications, but their synthesis remains challenging. Herein, based on the compelling identification of the two cleavable surfaces of Co3Sn2S2, we show surface kagome electronic states (SKESs) on a Sn-terminated triangular Co3Sn2S2 surface. Such SKESs are imprinted by vertical p-d electronic hybridization between the surface Sn (subsurface S) atoms and the buried Co kagome-lattice network in the Co3Sn layer under the surface. Owing to the subsequent lateral hybridization of the Sn and S atoms in a corner-sharing manner, the kagome symmetry and topological electronic properties of the Co3Sn layer is proximate to the Sn surface. The SKESs and both hybridizations were verified via qPlus non-contact atomic force microscopy (nc-AFM) and density functional theory calculations. The construction of SKESs with tunable properties can be achieved by the atomic substitution of surface Sn (subsurface S) with other group III-V elements (Se or Te), which was demonstrated theoretically. This work exhibits the powerful capacity of nc-AFM in characterizing localized topological states and reveals the strategy for synthesis of large-area transition-metal-based kagome-lattice materials using conventional surface deposition techniques.Kagome materials host 2D planes which give rise to kagome physics, but these are typically embedded in the bulk. Huang et al. demonstrate a strategy for generating surface kagome electronic states by vertical p-d electronic hybridization between surface atoms and the buried Co kagome network in Co3Sn2S2. Abstract Kagome-lattice materials possess attractive properties for quantum computing applications, but their synthesis remains challenging. Herein, based on the compelling identification of the two cleavable surfaces of Co3Sn2S2, we show surface kagome electronic states (SKESs) on a Sn-terminated triangular Co3Sn2S2 surface. Such SKESs are imprinted by vertical p-d electronic hybridization between the surface Sn (subsurface S) atoms and the buried Co kagome-lattice network in the Co3Sn layer under the surface. Owing to the subsequent lateral hybridization of the Sn and S atoms in a corner-sharing manner, the kagome symmetry and topological electronic properties of the Co3Sn layer is proximate to the Sn surface. The SKESs and both hybridizations were verified via qPlus non-contact atomic force microscopy (nc-AFM) and density functional theory calculations. The construction of SKESs with tunable properties can be achieved by the atomic substitution of surface Sn (subsurface S) with other group III-V elements (Se or Te), which was demonstrated theoretically. This work exhibits the powerful capacity of nc-AFM in characterizing localized topological states and reveals the strategy for synthesis of large-area transition-metal-based kagome-lattice materials using conventional surface deposition techniques. |
ArticleNumber | 5230 |
Author | Zhang, Yu-Yang Cheng, Zhihai Huang, Li Wang, Ziqiang Gao, Hong-Jun Cheng, Haixia Yang, Haitao Lei, Hechang Hu, Zhixin Zhu, Shiyu Qiu, Xianggang Zheng, Qi Liu, Enke Chen, Hui Kong, Xianghua Li, Yan Qiao, Jingsi Ji, Wei Xing, Yuqing Lin, Xiao |
Author_xml | – sequence: 1 givenname: Li orcidid: 0000-0002-5964-7090 surname: Huang fullname: Huang, Li organization: Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: Xianghua orcidid: 0000-0003-4381-4955 surname: Kong fullname: Kong, Xianghua organization: College of Physics and Optoelectronic Engineering, Shenzhen University, Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Centre for the Physics of Materials and Department of Physics, McGill University – sequence: 3 givenname: Qi orcidid: 0000-0002-8946-536X surname: Zheng fullname: Zheng, Qi organization: Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences – sequence: 4 givenname: Yuqing surname: Xing fullname: Xing, Yuqing organization: Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences – sequence: 5 givenname: Hui orcidid: 0000-0002-3369-8113 surname: Chen fullname: Chen, Hui organization: Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences – sequence: 6 givenname: Yan surname: Li fullname: Li, Yan organization: Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences – sequence: 7 givenname: Zhixin orcidid: 0000-0002-3253-6964 surname: Hu fullname: Hu, Zhixin organization: Center for Joint Quantum Studies and Department of Physics, Institute of Science, Tianjin University – sequence: 8 givenname: Shiyu orcidid: 0000-0002-8771-5273 surname: Zhu fullname: Zhu, Shiyu organization: Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences – sequence: 9 givenname: Jingsi orcidid: 0000-0001-6464-5500 surname: Qiao fullname: Qiao, Jingsi organization: Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology – sequence: 10 givenname: Yu-Yang orcidid: 0000-0002-9548-0021 surname: Zhang fullname: Zhang, Yu-Yang organization: School of Physical Sciences, University of Chinese Academy of Sciences – sequence: 11 givenname: Haixia surname: Cheng fullname: Cheng, Haixia organization: Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China – sequence: 12 givenname: Zhihai orcidid: 0000-0003-4938-4490 surname: Cheng fullname: Cheng, Zhihai organization: Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China – sequence: 13 givenname: Xianggang surname: Qiu fullname: Qiu, Xianggang organization: Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences – sequence: 14 givenname: Enke orcidid: 0000-0002-5498-993X surname: Liu fullname: Liu, Enke organization: Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences – sequence: 15 givenname: Hechang orcidid: 0000-0003-0850-8514 surname: Lei fullname: Lei, Hechang organization: Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China – sequence: 16 givenname: Xiao surname: Lin fullname: Lin, Xiao organization: School of Physical Sciences, University of Chinese Academy of Sciences – sequence: 17 givenname: Ziqiang surname: Wang fullname: Wang, Ziqiang organization: Department of Physics, Boston College – sequence: 18 givenname: Haitao orcidid: 0000-0003-4304-9835 surname: Yang fullname: Yang, Haitao email: htyang@iphy.ac.cn organization: Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences – sequence: 19 givenname: Wei orcidid: 0000-0001-5249-6624 surname: Ji fullname: Ji, Wei email: wji@ruc.edu.cn organization: Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China – sequence: 20 givenname: Hong-Jun orcidid: 0000-0001-9323-1307 surname: Gao fullname: Gao, Hong-Jun email: hjgao@iphy.ac.cn organization: Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences, Hefei National Laboratory |
BackLink | https://www.osti.gov/biblio/1996870$$D View this record in Osti.gov |
BookMark | eNp9Ustu1DAUjVARLaU_wMqCDZuAn3GyQmjKo1IlFoW15dg3Mx4y9mA7lYavx5MU0XZRb2xdn3Pu67ysTnzwUFWvCX5PMGs_JE54I2tMWc1xx2lNn1VnFHNSE0nZyb33aXWR0haXwzrScv6iOmWyYRxzdlbFS5dMuIV4QNpbZIJPOU4mu-BRGFCa4qANoF96HXaAYASTY_DOoJR1hoSct5MBi_oD2tf2PmBz6KOz7o-etZxHq8BuPL2hr6rngx4TXNzd59XPL59_rL7V19-_Xq0-XddGcJFrga0wWhMmjMUE2kY3IESLtdR9T-hgie441oPh0BjTUd60tiFSMG5B9KJl59XVomuD3qp9dDsdDypop-ZAiGulY3ZmBCU4GyShvCPQcGaGTmDWA7OYWiuFxkXr46K1n_odWAM-Rz0-EH34491GrcOtIpg3mMmuKLxZFELKTiXjMphNGbcvA1Ok65pWHtO8u0sTw-8JUla7sh4YR-0hTEnRVsiWN1weu3v7CLoNU_RloDOKt7zsuKDaBWViSCnCoErieSOlSjeW8tTRTWpxkypuUrObFC1U-oj6r9snSWwhpQL2a4j_q3qC9RdSkN0e |
CitedBy_id | crossref_primary_10_1002_advs_202403865 crossref_primary_10_1021_acsnano_4c13750 crossref_primary_10_1016_j_physb_2025_417170 crossref_primary_10_1002_adom_202402108 crossref_primary_10_7498_aps_73_20231711 crossref_primary_10_1021_acs_nanolett_4c01368 crossref_primary_10_1007_s44214_024_00066_0 crossref_primary_10_1021_acs_nanolett_4c01526 crossref_primary_10_1002_pssb_202400520 crossref_primary_10_1016_j_physb_2025_416894 crossref_primary_10_1038_s41467_024_48973_z crossref_primary_10_1016_j_apsusc_2024_160190 crossref_primary_10_1002_adfm_202416508 |
Cites_doi | 10.1038/nchem.2506 10.1038/s41598-020-71077-9 10.1038/ncomms5261 10.1038/s41567-021-01404-y 10.1038/s41467-018-06088-2 10.1038/s41567-019-0426-7 10.1126/science.1176210 10.1088/0953-8984/22/2/022201 10.1063/1.122948 10.1103/PhysRevLett.127.266401 10.1103/PhysRevLett.124.096001 10.1038/nature15723 10.1038/nature25987 10.1038/s41467-020-19440-2 10.1038/nnano.2016.305 10.1126/science.aav2873 10.1126/science.aay3444 10.1038/s41586-020-2482-7 10.1038/s41467-020-18111-6 10.1038/s41563-019-0531-0 10.1038/s41567-018-0234-5 10.1126/science.1225621 10.1126/science.aav2334 10.1103/PhysRevB.80.113102 10.1126/science.aay1914 10.1103/PhysRevB.54.11169 10.1103/PhysRevB.99.245158 10.1063/1.1667267 10.1103/PhysRevLett.121.096401 10.1038/s41586-021-03983-5 10.1126/science.aad3569 10.1103/PhysRevB.83.195131 10.1038/s41586-021-03946-w 10.1103/PhysRevB.78.125104 10.1126/science.aaa5329 10.1021/jacs.0c00192 10.1016/0927-0256(96)00008-0 10.1038/nmat4987 10.1103/PhysRevLett.107.086101 10.1038/s41565-018-0104-4 10.1103/PhysRevB.50.17953 10.1038/s41535-024-00623-9 10.1103/PhysRevLett.130.266402 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
CorporateAuthor | Boston College, Chestnut Hill, MA (United States) |
CorporateAuthor_xml | – name: Boston College, Chestnut Hill, MA (United States) |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OTOTI 5PM DOA |
DOI | 10.1038/s41467-023-40942-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection Proquest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_543f712491e643cf9503be3d02dd75a0 PMC10460379 1996870 10_1038_s41467_023_40942_2 |
GrantInformation_xml | – fundername: Chinese Academy of Sciences (CAS) grantid: XDB30000000; YSBR-003; XDB30000000; YSBR-003; YSBR-003 funderid: https://doi.org/10.13039/501100002367 – fundername: Ministry of Science and Technology of the People’s Republic of China (Chinese Ministry of Science and Technology) – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 61888102; 12104313; 61761166009; 11974422 funderid: https://doi.org/10.13039/501100001809 – fundername: the Fundamental Research Funds for the Central Universities of China and the Research Funds of Renmin University of China (22XNKJ30) – fundername: Ministry of Science and Technology of the People’s Republic of China (Chinese Ministry of Science and Technology) grantid: 2019YFA0308500; 2018YFA0305800; 2018YFA0305800; 2018YFE0202700 funderid: https://doi.org/10.13039/501100002855 – fundername: Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province) grantid: 2021QN02L820 funderid: https://doi.org/10.13039/501100007162 – fundername: DOE | SC | Basic Energy Sciences (BES) grantid: DE-FG02-99ER45747 funderid: https://doi.org/10.13039/100006151 – fundername: the Shenzhen Natural Science Fund (the Stable Support Plan Program 20220810161616001) – fundername: ; – fundername: ; grantid: XDB30000000; YSBR-003; XDB30000000; YSBR-003; YSBR-003 – fundername: ; grantid: 61888102; 12104313; 61761166009; 11974422 – fundername: ; grantid: 2019YFA0308500; 2018YFA0305800; 2018YFA0305800; 2018YFE0202700 – fundername: ; grantid: DE-FG02-99ER45747 – fundername: ; grantid: 2021QN02L820 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 OTOTI 5PM PUEGO |
ID | FETCH-LOGICAL-c545t-50d5caa135cd01e86a6e5580a7abb12fd1a940afc4e6cc92468d617534de5b583 |
IEDL.DBID | 8FG |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:24:36 EDT 2025 Thu Aug 21 18:36:30 EDT 2025 Mon Mar 24 04:17:51 EDT 2025 Thu Jul 10 20:44:37 EDT 2025 Wed Aug 13 01:46:54 EDT 2025 Tue Jul 01 02:10:32 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Fri Feb 21 02:39:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c545t-50d5caa135cd01e86a6e5580a7abb12fd1a940afc4e6cc92468d617534de5b583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE USDOE Office of Science (SC), Basic Energy Sciences (BES) FG02-99ER45747 |
ORCID | 0000-0003-4938-4490 0000-0002-5964-7090 0000-0003-4304-9835 0000-0002-8946-536X 0000-0002-3253-6964 0000-0003-4381-4955 0000-0001-9323-1307 0000-0002-8771-5273 0000-0002-3369-8113 0000-0001-5249-6624 0000-0001-6464-5500 0000-0003-0850-8514 0000-0002-5498-993X 0000-0002-9548-0021 0000000343049835 0000000349384490 0000000308508514 0000000152496624 0000000193231307 0000000233698113 0000000164645500 0000000343814955 0000000259647090 0000000287715273 000000028946536X 000000025498993X 0000000295480021 0000000232536964 |
OpenAccessLink | https://www.proquest.com/docview/2857484763?pq-origsite=%requestingapplication% |
PMID | 37634043 |
PQID | 2857484763 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_543f712491e643cf9503be3d02dd75a0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10460379 osti_scitechconnect_1996870 proquest_miscellaneous_2857846478 proquest_journals_2857484763 crossref_citationtrail_10_1038_s41467_023_40942_2 crossref_primary_10_1038_s41467_023_40942_2 springer_journals_10_1038_s41467_023_40942_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-26 |
PublicationDateYYYYMMDD | 2023-08-26 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Blochl (CR38) 1994; 50 Guo, Franz (CR2) 2009; 80 Mazin (CR3) 2014; 5 CR19 Klimeš, Bowler, Michaelides (CR42) 2009; 22 Sader, Jarvis (CR45) 2004; 84 Nakatsuji, Kiyohara, Higo (CR4) 2015; 527 Wang (CR8) 2018; 9 Chen (CR14) 2021; 599 Yin (CR17) 2019; 15 CR36 CR35 Lin (CR7) 2018; 121 Gross, Mohn, Moll, Liljeroth, Meyer (CR22) 2009; 325 Liu (CR9) 2018; 14 Peng (CR34) 2021; 127 Berwanger, Polesya, Mankovsky, Ebert, Giessibl (CR29) 2020; 124 Klimeš, Bowler, Michaelides (CR41) 2011; 83 Morali (CR10) 2019; 365 Yin (CR20) 2020; 11 Bergman, Wu, Balents (CR1) 2008; 78 Kuroda (CR5) 2017; 16 Gross (CR23) 2012; 337 Giessibl (CR37) 1998; 73 Riss (CR25) 2016; 8 Liebig, Hapala, Weymouth, Giessibl (CR32) 2020; 10 Hutter, Wootton, Loss (CR16) 2015; 5 Kaiser (CR28) 2019; 365 Xing (CR21) 2020; 11 Ye (CR6) 2018; 555 Pavliček (CR27) 2017; 12 Kresse, Furthmüller (CR40) 1996; 54 Qi (CR30) 2020; 142 Huber (CR31) 2019; 366 Zhao (CR33) 2021; 599 Liu (CR11) 2019; 365 Kawai (CR26) 2016; 351 Jiao (CR18) 2019; 99 Gross (CR43) 2011; 107 Neupert, Denner, Yin, Thomale, Hasan (CR15) 2022; 18 Kang (CR12) 2020; 19 Kresse, Furthmuller (CR39) 1996; 6 Mönig (CR44) 2018; 13 Yin (CR13) 2020; 583 Emmrich (CR24) 2015; 348 FJ Giessibl (40942_CR37) 1998; 73 L Gross (40942_CR43) 2011; 107 40942_CR36 40942_CR35 40942_CR19 S Peng (40942_CR34) 2021; 127 S Kawai (40942_CR26) 2016; 351 A Liebig (40942_CR32) 2020; 10 N Pavliček (40942_CR27) 2017; 12 HM Guo (40942_CR2) 2009; 80 Z Lin (40942_CR7) 2018; 121 J-X Yin (40942_CR17) 2019; 15 K Kaiser (40942_CR28) 2019; 365 H Chen (40942_CR14) 2021; 599 M Kang (40942_CR12) 2020; 19 II Mazin (40942_CR3) 2014; 5 M Emmrich (40942_CR24) 2015; 348 DF Liu (40942_CR11) 2019; 365 E Liu (40942_CR9) 2018; 14 PE Blochl (40942_CR38) 1994; 50 Q Wang (40942_CR8) 2018; 9 J Klimeš (40942_CR41) 2011; 83 L Ye (40942_CR6) 2018; 555 J-X Yin (40942_CR13) 2020; 583 A Hutter (40942_CR16) 2015; 5 F Huber (40942_CR31) 2019; 366 G Kresse (40942_CR39) 1996; 6 A Riss (40942_CR25) 2016; 8 J Qi (40942_CR30) 2020; 142 Y Xing (40942_CR21) 2020; 11 L Gross (40942_CR23) 2012; 337 T Neupert (40942_CR15) 2022; 18 L Gross (40942_CR22) 2009; 325 J Berwanger (40942_CR29) 2020; 124 JE Sader (40942_CR45) 2004; 84 H Zhao (40942_CR33) 2021; 599 K Kuroda (40942_CR5) 2017; 16 G Kresse (40942_CR40) 1996; 54 J-X Yin (40942_CR20) 2020; 11 J Klimeš (40942_CR42) 2009; 22 DL Bergman (40942_CR1) 2008; 78 L Jiao (40942_CR18) 2019; 99 H Mönig (40942_CR44) 2018; 13 S Nakatsuji (40942_CR4) 2015; 527 N Morali (40942_CR10) 2019; 365 |
References_xml | – volume: 8 start-page: 678 year: 2016 end-page: 683 ident: CR25 article-title: Imaging single-molecule reaction intermediates stabilized by surface dissipation and entropy publication-title: Nat. Chem. doi: 10.1038/nchem.2506 – volume: 10 year: 2020 ident: CR32 article-title: Quantifying the evolution of atomic interaction of a complex surface with a functionalized atomic force microscopy tip publication-title: Sci. Rep. doi: 10.1038/s41598-020-71077-9 – volume: 5 year: 2014 ident: CR3 article-title: Theoretical prediction of a strongly correlated Dirac metal publication-title: Nat. Commun. doi: 10.1038/ncomms5261 – volume: 18 start-page: 137 year: 2022 end-page: 143 ident: CR15 article-title: Charge order and superconductivity in kagome materials publication-title: Nat. Phys. doi: 10.1038/s41567-021-01404-y – volume: 9 year: 2018 ident: CR8 article-title: Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co Sn S with magnetic Weyl fermions publication-title: Nat. Commun. doi: 10.1038/s41467-018-06088-2 – volume: 15 start-page: 443 year: 2019 end-page: 448 ident: CR17 article-title: Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet publication-title: Nat. Phys. doi: 10.1038/s41567-019-0426-7 – volume: 325 start-page: 1110 year: 2009 end-page: 1114 ident: CR22 article-title: The chemical structure of a molecule resolved by atomic force microscopy publication-title: Science doi: 10.1126/science.1176210 – volume: 22 start-page: 022201 year: 2009 ident: CR42 article-title: Chemical accuracy for the van der Waals density functional publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/22/2/022201 – volume: 73 start-page: 3956 year: 1998 end-page: 3958 ident: CR37 article-title: High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork publication-title: Appl. Phys. Lett. doi: 10.1063/1.122948 – volume: 127 start-page: 266401 year: 2021 ident: CR34 article-title: Realizing kagome band structure in two-dimensional kagome surface states of RV Sn (R=Gd, Ho) publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.266401 – volume: 124 start-page: 096001 year: 2020 ident: CR29 article-title: Atomically resolved chemical reactivity of small Fe clusters publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.096001 – ident: CR35 – volume: 527 start-page: 212 year: 2015 end-page: 215 ident: CR4 article-title: Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature publication-title: Nature doi: 10.1038/nature15723 – volume: 555 start-page: 638 year: 2018 end-page: 642 ident: CR6 article-title: Massive Dirac fermions in a ferromagnetic kagome metal publication-title: Nature doi: 10.1038/nature25987 – volume: 11 year: 2020 ident: CR21 article-title: Localized spin-orbit polaron in magnetic Weyl semimetal Co Sn S publication-title: Nat. Commun. doi: 10.1038/s41467-020-19440-2 – volume: 12 start-page: 308 year: 2017 end-page: 311 ident: CR27 article-title: Synthesis and characterization of triangulene publication-title: Nat. Nano doi: 10.1038/nnano.2016.305 – volume: 365 start-page: 1282 year: 2019 end-page: 1285 ident: CR11 article-title: Magnetic Weyl semimetal phase in a kagome crystal publication-title: Science doi: 10.1126/science.aav2873 – volume: 366 start-page: 235 year: 2019 end-page: 238 ident: CR31 article-title: Chemical bond formation showing a transition from physisorption to chemisorption publication-title: Science doi: 10.1126/science.aay3444 – volume: 583 start-page: 533 year: 2020 end-page: 536 ident: CR13 article-title: Quantum-limit Chern topological magnetism in TbMn Sn publication-title: Nature doi: 10.1038/s41586-020-2482-7 – volume: 11 year: 2020 ident: CR20 article-title: Spin-orbit quantum impurity in a topological magnet publication-title: Nat. Commun. doi: 10.1038/s41467-020-18111-6 – volume: 19 start-page: 163 year: 2020 end-page: 169 ident: CR12 article-title: Dirac fermions and flat bands in the ideal kagome metal FeSn publication-title: Nat. Mater. doi: 10.1038/s41563-019-0531-0 – volume: 14 start-page: 1125 year: 2018 end-page: 1131 ident: CR9 article-title: Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal publication-title: Nat. Phys. doi: 10.1038/s41567-018-0234-5 – ident: CR19 – volume: 337 start-page: 1326 year: 2012 end-page: 1329 ident: CR23 article-title: Bond-order discrimination by atomic force microscopy publication-title: Science doi: 10.1126/science.1225621 – volume: 365 start-page: 1286 year: 2019 end-page: 1291 ident: CR10 article-title: Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co Sn S publication-title: Science doi: 10.1126/science.aav2334 – volume: 80 start-page: 113102 year: 2009 ident: CR2 article-title: Topological insulator on the kagome lattice publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.113102 – volume: 365 start-page: 1299 year: 2019 end-page: 1301 ident: CR28 article-title: An sp-hybridized molecular carbon allotrope, cyclo 18 carbon publication-title: Science doi: 10.1126/science.aay1914 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR40 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 99 start-page: 245158 year: 2019 ident: CR18 article-title: Signatures for half-metallicity and nontrivial surface states in the kagome lattice Weyl semimetal Co Sn S publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.245158 – volume: 84 start-page: 1801 year: 2004 end-page: 1803 ident: CR45 article-title: Accurate formulas for interaction force and energy in frequency modulation force spectroscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.1667267 – volume: 121 start-page: 096401 year: 2018 ident: CR7 article-title: Flatbands and emergent ferromagnetic ordering in Fe Sn kagome lattices publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.096401 – volume: 599 start-page: 222 year: 2021 end-page: 228 ident: CR14 article-title: Roton pair density wave in a strong-coupling kagome superconductor publication-title: Nature doi: 10.1038/s41586-021-03983-5 – volume: 351 start-page: 957 year: 2016 end-page: 961 ident: CR26 article-title: Superlubricity of graphene nanoribbons on gold surfaces publication-title: Science doi: 10.1126/science.aad3569 – volume: 83 start-page: 195131 year: 2011 ident: CR41 article-title: Van der Waals density functionals applied to solids publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195131 – ident: CR36 – volume: 599 start-page: 216 year: 2021 end-page: 221 ident: CR33 article-title: Cascade of correlated electron states in the kagome superconductor CsV Sb publication-title: Nature doi: 10.1038/s41586-021-03946-w – volume: 78 start-page: 125104 year: 2008 ident: CR1 article-title: Band touching from real-space topology in frustrated hopping models publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.125104 – volume: 348 start-page: 308 year: 2015 end-page: 311 ident: CR24 article-title: Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters publication-title: Science doi: 10.1126/science.aaa5329 – volume: 142 start-page: 10673 year: 2020 end-page: 10680 ident: CR30 article-title: Force-activated isomerization of a single molecule publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00192 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR39 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 16 start-page: 1090 year: 2017 end-page: 1095 ident: CR5 article-title: Evidence for magnetic Weyl fermions in a correlated metal publication-title: Nat. Mater. doi: 10.1038/nmat4987 – volume: 107 start-page: 086101 year: 2011 ident: CR43 article-title: High-resolution molecular orbital imaging using a -Wave STM tip publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.086101 – volume: 5 start-page: 041040 year: 2015 ident: CR16 article-title: Parafermions in a kagome lattice of qubits for topological quantum computation publication-title: Phys. Rev. X – volume: 13 start-page: 371 year: 2018 end-page: 375 ident: CR44 article-title: Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips publication-title: Nat. Nanotech. doi: 10.1038/s41565-018-0104-4 – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR38 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 351 start-page: 957 year: 2016 ident: 40942_CR26 publication-title: Science doi: 10.1126/science.aad3569 – volume: 325 start-page: 1110 year: 2009 ident: 40942_CR22 publication-title: Science doi: 10.1126/science.1176210 – volume: 599 start-page: 222 year: 2021 ident: 40942_CR14 publication-title: Nature doi: 10.1038/s41586-021-03983-5 – volume: 11 year: 2020 ident: 40942_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18111-6 – volume: 124 start-page: 096001 year: 2020 ident: 40942_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.096001 – volume: 18 start-page: 137 year: 2022 ident: 40942_CR15 publication-title: Nat. Phys. doi: 10.1038/s41567-021-01404-y – volume: 5 start-page: 041040 year: 2015 ident: 40942_CR16 publication-title: Phys. Rev. X – volume: 15 start-page: 443 year: 2019 ident: 40942_CR17 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0426-7 – volume: 83 start-page: 195131 year: 2011 ident: 40942_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195131 – volume: 13 start-page: 371 year: 2018 ident: 40942_CR44 publication-title: Nat. Nanotech. doi: 10.1038/s41565-018-0104-4 – volume: 365 start-page: 1282 year: 2019 ident: 40942_CR11 publication-title: Science doi: 10.1126/science.aav2873 – volume: 22 start-page: 022201 year: 2009 ident: 40942_CR42 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/22/2/022201 – volume: 99 start-page: 245158 year: 2019 ident: 40942_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.245158 – volume: 337 start-page: 1326 year: 2012 ident: 40942_CR23 publication-title: Science doi: 10.1126/science.1225621 – volume: 527 start-page: 212 year: 2015 ident: 40942_CR4 publication-title: Nature doi: 10.1038/nature15723 – volume: 14 start-page: 1125 year: 2018 ident: 40942_CR9 publication-title: Nat. Phys. doi: 10.1038/s41567-018-0234-5 – volume: 16 start-page: 1090 year: 2017 ident: 40942_CR5 publication-title: Nat. Mater. doi: 10.1038/nmat4987 – volume: 10 year: 2020 ident: 40942_CR32 publication-title: Sci. Rep. doi: 10.1038/s41598-020-71077-9 – volume: 365 start-page: 1299 year: 2019 ident: 40942_CR28 publication-title: Science doi: 10.1126/science.aay1914 – volume: 142 start-page: 10673 year: 2020 ident: 40942_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00192 – volume: 555 start-page: 638 year: 2018 ident: 40942_CR6 publication-title: Nature doi: 10.1038/nature25987 – volume: 121 start-page: 096401 year: 2018 ident: 40942_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.096401 – ident: 40942_CR36 doi: 10.1038/s41535-024-00623-9 – volume: 8 start-page: 678 year: 2016 ident: 40942_CR25 publication-title: Nat. Chem. doi: 10.1038/nchem.2506 – volume: 348 start-page: 308 year: 2015 ident: 40942_CR24 publication-title: Science doi: 10.1126/science.aaa5329 – volume: 50 start-page: 17953 year: 1994 ident: 40942_CR38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 107 start-page: 086101 year: 2011 ident: 40942_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.086101 – volume: 366 start-page: 235 year: 2019 ident: 40942_CR31 publication-title: Science doi: 10.1126/science.aay3444 – volume: 12 start-page: 308 year: 2017 ident: 40942_CR27 publication-title: Nat. Nano doi: 10.1038/nnano.2016.305 – volume: 84 start-page: 1801 year: 2004 ident: 40942_CR45 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1667267 – volume: 19 start-page: 163 year: 2020 ident: 40942_CR12 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0531-0 – ident: 40942_CR35 doi: 10.1103/PhysRevLett.130.266402 – volume: 78 start-page: 125104 year: 2008 ident: 40942_CR1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.125104 – volume: 127 start-page: 266401 year: 2021 ident: 40942_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.266401 – volume: 6 start-page: 15 year: 1996 ident: 40942_CR39 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 54 start-page: 11169 year: 1996 ident: 40942_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 583 start-page: 533 year: 2020 ident: 40942_CR13 publication-title: Nature doi: 10.1038/s41586-020-2482-7 – ident: 40942_CR19 – volume: 80 start-page: 113102 year: 2009 ident: 40942_CR2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.113102 – volume: 365 start-page: 1286 year: 2019 ident: 40942_CR10 publication-title: Science doi: 10.1126/science.aav2334 – volume: 5 year: 2014 ident: 40942_CR3 publication-title: Nat. Commun. doi: 10.1038/ncomms5261 – volume: 73 start-page: 3956 year: 1998 ident: 40942_CR37 publication-title: Appl. Phys. Lett. doi: 10.1063/1.122948 – volume: 599 start-page: 216 year: 2021 ident: 40942_CR33 publication-title: Nature doi: 10.1038/s41586-021-03946-w – volume: 9 year: 2018 ident: 40942_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06088-2 – volume: 11 year: 2020 ident: 40942_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19440-2 |
SSID | ssj0000391844 |
Score | 2.529958 |
Snippet | Kagome-lattice materials possess attractive properties for quantum computing applications, but their synthesis remains challenging. Herein, based on the... Abstract Kagome-lattice materials possess attractive properties for quantum computing applications, but their synthesis remains challenging. Herein, based on... |
SourceID | doaj pubmedcentral osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5230 |
SubjectTerms | 147/138 147/3 639/301/119/544 639/301/119/995 Atomic force microscopy Atomic properties CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Density functional theory Electron states electronic properties and materials Humanities and Social Sciences Hybridization multidisciplinary Quantum computing Science Science (multidisciplinary) surfaces, interfaces and thin films Synthesis Topology Transition metals |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3La9ZAEB-kIHgRWxVja1nBmy5N9pXNUWtLEfRSC70t-4otalKar4fvv3d2k--RgvXiKZBMHuy8M7O_AXjXsraufOAUhUdR4RXqnKsdDYpZhT7By_y_4-s3dXYhvlzKy61RX6knbIQHHhfuSAqOT8MkoYroPH3byJK7yEPJQqilzdk6-rytZCrbYN5g6iKmXTIl10eDyDYBXRRNKQ2jbOaJMmA_HnpUrFmweb9V8l69NLuh02fwdIofycfxu3fhUez24PE4UXL5HG4_Xw8-dWUuie0C8f0GIJb0LRnublvrI_lpf_S_I9nMwCF5Y9FAMENHXgfiluSGhm2Cq2Xa2zXt2kQ6ctzz846dsxdwcXry_fiMTmMVqMdwaUFlGaS3tuLSh7KKWlkVpdSlra1zFWtDZRtR2taLqLzH_EzpoBKgpwhROqn5S9jp-i6-AtJwWeGNGKP5XFrW3AWLlBJZxWrVFlCtltj4CXM8jb74ZXLtm2szssUgW0xmi2EFvF_fczMibjxI_Slxbk2Z0LLzCZQhM8mQ-ZcMFbCf-G4w6EjIuT61GPmFSQ3aaM4KOFiJg5kUfDBMy4TCita5gLfry6iaqd5iu9jfjTQY3olaF6BnYjT73PmV7voqg3yn2nvJ66aADyuJ27z97-vx-n-sxz48YUlRSjSi6gB2UFDjG4y9Fu4wq9kfOEgn8Q priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9KRfBF_MTYKiv4ptFkv7J5KKLVUoT6Ug_6tmx2N22xJvVyBfPfd3aT3JlS-xS4zJJl5_tm5zcAb2taF7l1LEXhkSm3EnWuKqrUSWok-gQr4v8dRz_k4YJ_PxEnWzCNOxoPsLs1tQvzpBbLiw9___SfUOH3hpZx9bHjUd3R-6QhW6EpmuR76JmKMMrhaAz3o2VmJSY0fOyduX3pzD9FGH98tKhusxD05gXKG1XU6JwOHsHDMaoknwcxeAxbvnkC94c5k_1TWH4972y4q9kT0zhi2w1sLGlr0l0ta2M9-WVO29-ebCbjkNhu1BHM21ECHKl6cpm6fwnO-tDxNfZyIh3Zb9lxQ4_pM1gcfPu5f5iOwxZSi0HUKhWZE9aYnAnrstwraaQXQmWmMFWV09rlpuSZqS330lrM2qRyMsB8cudFJRR7DttN2_gXQEomclyIkZuNBWfFKmeQUmD0QwtZJ5BPR6ztiEQeBmJc6FgRZ0oPbNHIFh3ZomkC79ZrLgccjjupvwTOrSkDhnb8oV2e6lElteAM5RTTz9zjxmxdioxVnrmMOlcIkyWwE_iuMRQJeLo2XDyyKx2ubaORS2B3Egc9Sa2mSgRsVrTZCbxZv0aFDVUY0_j2aqDBoI8XKgE1E6PZdudvmvOzCP0dKvIZK8oE3k8St_n6_8_j5d2b3YEHNKhAhkZT7sI2iqB_hbHWqnodFegasmcjWw priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VRUhcEE8RWpCRuIGF41e8x3ahqpDgUir1Zjm201ZAUm22h_33jJ1kl1SAxClSMlYsz8Njz8w3AG8b3lSlD4Ki8GgqvUadq6uaBs2dxj3Bq3zf8eWrPj2Xny_UxR7wqRYmJ-1nSMtspqfssA-9zCqNOwxNJxJO0ezeS9DtKY1vqZfbe5WEeG6kHOtjmDB_GDrbgzJUPz46VKmZm3k3SfJOpDRvQCeP4OHoOZKjYa6PYS-2T-D-0Ety8xRWH697n_IxN8S1gfhuBw1Luob0t6vG-Ui-u8vuZyS77jcklxT1BM_myOVA6g25oeF3gqtNquoa6zWRjiw7cdbyM_4Mzk8-fVue0rGhAvXoKK2pYkF550qhfGBlNNrpqJRhrnJ1XfImlG4hmWu8jNp7PJlpE3SC8pQhqloZ8Rz2266NL4AshCpxIHpnPgeVjaiDQ0qFHg6vdFNAOS2x9SPaeGp68cPmqLcwdmCLRbbYzBbLC3i3HXMzYG38k_o4cW5LmXCy84tudWlHubFKCpRFPGKWESfmm4Vioo4iMB5CpRwr4CDx3aK7kTBzfUou8mubUrPRkBVwOImDHVW7t9yohL-KdrmAN9vPqJQp0uLa2N0ONOjYycoUYGZiNJvu_Et7fZXhvVPUnYlqUcD7SeJ2f__7erz8P_IDeMCTSjA0lPoQ9lEk4yv0r9b166xQvwC3Jh3p priority: 102 providerName: Springer Nature |
Title | Discovery and construction of surface kagome electronic states induced by p-d electronic hybridization in Co3Sn2S2 |
URI | https://link.springer.com/article/10.1038/s41467-023-40942-2 https://www.proquest.com/docview/2857484763 https://www.proquest.com/docview/2857846478 https://www.osti.gov/biblio/1996870 https://pubmed.ncbi.nlm.nih.gov/PMC10460379 https://doaj.org/article/543f712491e643cf9503be3d02dd75a0 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_WlsFexroP5rULGuxtM7X1ZeVppGmzEmgZywp5E7Ikt2WbncXpQ_77nRQnWQrrSwz2mQjfp-5OvwP4WNGqyK1jKQqPTLmVqHNlUaZOUiPRJ1gR8x2XV_Limo-nYtol3NqurXJtE6Ohdo0NOfITqkSAvUR1-DL7k4apUaG62o3Q2IODHD1NkHA1-rrJsQT0c8V5d1YmY-qk5dEyoKNKw8aGpnTHH0XYfrw0qF47IefDhskHVdPojEYv4HkXRZLBiu2H8MTXL-Hpaq7k8hXMz-5aG3ozl8TUjthmCxNLmoq09_PKWE9-mpvmtyfbSTgkHi9qCe7TkeOOlEsyS92_BLfLcMKrO7uJdGTYsElNJ_Q1XI_Ofwwv0m64QmoxaFqkInPCGpMzYV2WeyWN9EKozBSmLHNaudz0eWYqy720FndpUjkZYD2586IUir2B_bqp_VsgfSZyfBEjNRsLzIqVziClwGiHFrJKIF9_Ym075PEwAOOXjhVwpvSKLRrZoiNbNE3g0-ad2Qp341Hq08C5DWXAzI43mvmN7lRQC85QLnG7mXtcmK36ImOlZy6jzhXCZAkcBb5rDD0Cfq4NjUZ2oUObNhq1BI7X4qA7NW_1VigT-LB5jAoaqi6m9s39igaDPF6oBNSOGO0sd_dJfXcbob5DBT5jRT-Bz2uJ2_77_7_Hu8cXewTPaFCBDI2kPIZ9FEH_HmOrRdmDvWJa9KIa9eBgMBhPxng9Pb_69h3vDuWwF7MW-HvJ1V9YDCb2 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQQviE-RbYCR4AmiOXbspA8IwcbUsY-XbVLfjGM7WwVLStMJ9Z_ib-TsJC2dxN72VKm5tJbv07673wG8LVmZJcbyGIVHxqmRqHNFVsRWMi3RJxgR7juOjuXwLP02EqM1-NP3wviyyt4mBkNta-PvyLdZLjzsJarDp8mv2E-N8tnVfoRGKxYHbv4bj2zNx_1d5O87xva-nu4M426qQGwwWpjFglphtE64MJYmLpdaOiFyqjNdFAkrbaIHKdWlSZ00Bo8nMrfS41mm1olC5Bx_9w7cRcdLfQlhNsoWdzoebT1P0643h_J8u0mDJULHGPuDFIvZiv8LYwLwo0Z1XglxrxdoXsvSBue39wgedlEr-dyK2WNYc9UTuNfOsZw_henuuDG-FnROdGWJqZewtKQuSXM1LbVx5Ic-ry8dWU7eIaGdqSHjyqKEWVLMySS2_xJczH1HWdcrinRkp-YnFTthz-DsVrb9OaxXdeVeABlwkeCLuP8mJLRzXliNlAKjK5bJMoKk32JlOqRzP3DjpwoZd56rli0K2aICWxSL4P3inUmL83Ej9RfPuQWlx-gOX9TTc9WpvBIpRz3A423icGGmHAjKC8ctZdZmQtMINj3fFYY6Hq_X-MImM1O-LByNaARbvTiozqw0aqkEEbxZPEaD4LM8unL1VUuDQWWa5RHkK2K0stzVJ9X4IkCL-4w_5dkggg-9xC3__f_7sXHzYl_D_eHp0aE63D8-2IQHzKsDRQMtt2AdxdG9xLhuVrwKykTg-21r7193lV2E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRAviE8RNsBI8ARREzt23AeEYKXaGExIY1LfjGM7WwUkpemE-q_x13F2kpZOYm97qtRcWst3v7uz7wvgRUnLPDWWxSg8Is6MQMwVeRFbQbVAm2B4uO_4fCT2T7KPEz7Zgj99LYxPq-x1YlDUtjb-jnxAJfdtLxEOg7JLi_gyGr-d_Yr9BCkfae3HabQicuiWv_H41rw5GCGvX1I6_vB1bz_uJgzEBj2HRcwTy43WKePGJqmTQgvHuUx0rosipaVN9TBLdGkyJ4zBo4qQVvjelpl1vOCS4e9eg-s5Q7OJWMon-ep-x3del1nW1ekkTA6aLGglNJKxP1TRmG7YwjAyAD9qhPaGu3sxWfNCxDYYwvEduN15sORdK3J3YctV9-BGO9NyeR_mo2ljfF7okujKElOvW9SSuiTN-bzUxpHv-rT-6ch6Cg8JpU0NmVYWpc2SYklmsf2X4Gzpq8u6ulGkI3s1O67oMX0AJ1ey7Q9hu6or9wjIELceX0Qv0YTgtmSF1UjJ0dOiuSgjSPstVqbreu6Hb_xQIfrOpGrZopAtKrBF0Qherd6ZtT0_LqV-7zm3ovT9usMX9fxUdfBXPGOICTzqpg4XZsohT1jhmE2otTnXSQQ7nu8K3R7fu9f4JCezUD5FHBVqBLu9OKhOxTRqDYgInq8eo3LwER9dufq8pUEHM8tlBHJDjDaWu_mkmp6FNuM--p-wfBjB617i1v_-__14fPlin8FNxK36dHB0uAO3qEdDgrpa7MI2SqN7gi7eongasETg21WD9y_fl2G6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovery+and+construction+of+surface+kagome+electronic+states+induced+by+p-d+electronic+hybridization+in+Co3Sn2S2&rft.jtitle=Nature+communications&rft.au=Huang%2C+Li&rft.au=Kong%2C+Xianghua&rft.au=Zheng%2C+Qi&rft.au=Xing%2C+Yuqing&rft.date=2023-08-26&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=5230&rft_id=info:doi/10.1038%2Fs41467-023-40942-2&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |