Treatment of organic pollution in industrial saline wastewater: A literature review

Many industrial sectors are likely to generate highly saline wastewater: these include the agro-food, petroleum and leather industries. The discharge of such wastewater containing at the same time high salinity and high organic content without prior treatment is known to adversely affect the aquatic...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 40; no. 20; pp. 3671 - 3682
Main Authors Lefebvre, Olivier, Moletta, René
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.12.2006
Elsevier Science
IWA Publishing/Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Many industrial sectors are likely to generate highly saline wastewater: these include the agro-food, petroleum and leather industries. The discharge of such wastewater containing at the same time high salinity and high organic content without prior treatment is known to adversely affect the aquatic life, water potability and agriculture. Thus, legislation is becoming more stringent and the treatment of saline wastewater, both for organic matter and salt removal, is nowadays compulsory in many countries. Saline effluents are conventionally treated through physico-chemical means, as biological treatment is strongly inhibited by salts (mainly NaCl). However, the costs of physico-chemical treatments being particularly high, alternative systems for the treatment of organic matter are nowadays increasingly the focus of research. Most of such systems involve anaerobic or aerobic biological treatment. Even though biological treatment of carbonaceous, nitrogenous and phosphorous pollution has proved to be feasible at high salt concentrations, the performance obtained depends on a proper adaptation of the biomass or the use of halophilic organisms. Another major limit is related to the turbidity problems inherent in saline effluents. For this reason, the major need for research in the future will be the combination of physico-chemical/biological treatment of saline industrial effluents, with regard to the global treatment chain, in order to meet the regulations.
Bibliography:http://dx.doi.org/10.1016/j.watres.2006.08.027
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2006.08.027