Iterative multi-atlas-based multi-image segmentation with tree-based registration
In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based segmentation algorithms consider concurrently complementary information from multiple atlases to produce optimal segmentation outcomes. Howeve...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 59; no. 1; pp. 422 - 430 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
02.01.2012
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based segmentation algorithms consider concurrently complementary information from multiple atlases to produce optimal segmentation outcomes. However, the accuracy of these algorithms relies heavily on the precise alignment of the atlases with the target image. In particular, the commonly used pairwise registration may result in inaccurate alignment especially between images with large shape differences. Additionally, when segmenting a group of target images, most current methods consider these images independently with disregard of their correlation, thus resulting in inconsistent segmentations of the same structures across different target images. We propose two novel strategies to address these limitations: 1) a novel tree-based groupwise registration method for concurrent alignment of both the atlases and the target images, and 2) an iterative groupwise segmentation method for simultaneous consideration of segmentation information propagated from all available images, including the atlases and other newly segmented target images. Evaluation based on various datasets indicates that the proposed multi-atlas-based multi-image segmentation (MABMIS) framework yields substantial improvements in terms of consistency and accuracy over methods that do not consider the group of target images holistically.
► A groupwise framework is proposed for multi-atlas-based multi-image segmentation. ► The labeling results on the target image group are iteratively updated. ► The segmentation accuracy and consistency can be greatly improved. |
---|---|
AbstractList | In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based segmentation algorithms consider concurrently complementary information from multiple atlases to produce optimal segmentation outcomes. However, the accuracy of these algorithms relies heavily on the precise alignment of the atlases with the target image. In particular, the commonly used pairwise registration may result in inaccurate alignment especially between images with large shape differences. Additionally, when segmenting a group of target images, most current methods consider these images independently with disregard of their correlation, thus resulting in inconsistent segmentations of the same structures across different target images. We propose two novel strategies to address these limitations: 1) a novel tree-based groupwise registration method for concurrent alignment of both the atlases and the target images, and 2) an iterative groupwise segmentation method for simultaneous consideration of segmentation information propagated from all available images, including the atlases and other newly segmented target images. Evaluation based on various datasets indicates that the proposed multi-atlas-based multi-image segmentation (MABMIS) framework yields substantial improvements in terms of consistency and accuracy over methods that do not consider the group of target images holistically. In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based segmentation algorithms consider concurrently complementary information from multiple atlases to produce optimal segmentation outcomes. However, the accuracy of these algorithms relies heavily on the precise alignment of the atlases with the target image. In particular, the commonly used pairwise registration may result in inaccurate alignment especially between images with large shape differences. Additionally, when segmenting a group of target images, most current methods consider these images independently with disregard of their correlation, thus resulting in inconsistent segmentations of the same structures across different target images. We propose two novel strategies to address these limitations: 1) a novel tree-based groupwise registration method for concurrent alignment of both the atlases and the target images, and 2) an iterative groupwise segmentation method for simultaneous consideration of segmentation information propagated from all available images, including the atlases and other newly segmented target images. Evaluation based on various datasets indicates that the proposed multi-atlas-based multi-image segmentation (MABMIS) framework yields substantial improvements in terms of consistency and accuracy over methods that do not consider the group of target images holistically.In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based segmentation algorithms consider concurrently complementary information from multiple atlases to produce optimal segmentation outcomes. However, the accuracy of these algorithms relies heavily on the precise alignment of the atlases with the target image. In particular, the commonly used pairwise registration may result in inaccurate alignment especially between images with large shape differences. Additionally, when segmenting a group of target images, most current methods consider these images independently with disregard of their correlation, thus resulting in inconsistent segmentations of the same structures across different target images. We propose two novel strategies to address these limitations: 1) a novel tree-based groupwise registration method for concurrent alignment of both the atlases and the target images, and 2) an iterative groupwise segmentation method for simultaneous consideration of segmentation information propagated from all available images, including the atlases and other newly segmented target images. Evaluation based on various datasets indicates that the proposed multi-atlas-based multi-image segmentation (MABMIS) framework yields substantial improvements in terms of consistency and accuracy over methods that do not consider the group of target images holistically. In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based segmentation algorithms consider concurrently complementary information from multiple atlases to produce optimal segmentation outcomes. However, the accuracy of these algorithms relies heavily on the precise alignment of the atlases with the target image. In particular, the commonly used pairwise registration may result in inaccurate alignment especially between images with large shape differences. Additionally, when segmenting a group of target images, most current methods consider these images independently with disregard of their correlation, thus resulting in inconsistent segmentations of the same structures across different target images. We propose two novel strategies to address these limitations: 1) a novel tree-based groupwise registration method for concurrent alignment of both the atlases and the target images, and 2) an iterative groupwise segmentation method for simultaneous consideration of segmentation information propagated from all available images, including the atlases and other newly segmented target images. Evaluation based on various datasets indicates that the proposed multi-atlas-based multi-image segmentation (MABMIS) framework yields substantial improvements in terms of consistency and accuracy over methods that do not consider the group of target images holistically. ► A groupwise framework is proposed for multi-atlas-based multi-image segmentation. ► The labeling results on the target image group are iteratively updated. ► The segmentation accuracy and consistency can be greatly improved. |
Author | Yap, Pew-Thian Jia, Hongjun Shen, Dinggang |
Author_xml | – sequence: 1 givenname: Hongjun surname: Jia fullname: Jia, Hongjun email: jiahj@med.unc.edu – sequence: 2 givenname: Pew-Thian surname: Yap fullname: Yap, Pew-Thian email: ptyap@med.unc.edu – sequence: 3 givenname: Dinggang surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21807102$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1vFCEUhompse3qXzCTeOHVjAeYD7gx2saPJk2MiV4Thjm7ZZ2BCsya_nvZ7rrV3rhXEHh4eHPOOScnzjskpKBQUaDtm3XlcA7eTnqFFQNKK-gq4O0TckZBNqVsOnay3Te8FJTKU3Ie4xoAJK3FM3LKqICOAjsjX68SBp3sBotpHpMtdRp1LHsdcdif3P9SRFxN6FJGvSt-2XRTpIC4BwOubEzh_vI5ebrUY8QX-3VBvn_88O3yc3n95dPV5fvr0jR1k8q614Kj7GUNy1b3nA2Ut0wve24MY9xA0wvQRrcGOgDWi7rdcn1PJcIga74gb3fe27mfcDA5XNCjug05b7hTXlv1742zN2rlN4pT2UgmsuD1XhD8zxljUpONBsdRO_RzVBJYTsSZ_C8ppBA1lRwy-eoRufZzcLkOijbQsbqFrFyQl39HP2T-05YMiB1ggo8x4PKAUFDbCVBr9TABajsBCjqVJ-ChLIenxu66lotgx2MEFzsB5uZtLAYVjUVncLABTVKDt8dI3j2SmNE6a_T4A--OU_wG-gXrWw |
CitedBy_id | crossref_primary_10_1007_s11042_019_08320_7 crossref_primary_10_1016_j_neucom_2015_05_056 crossref_primary_10_1109_TMI_2014_2321281 crossref_primary_10_1016_j_media_2015_08_010 crossref_primary_10_1109_TNNLS_2019_2935184 crossref_primary_10_1371_journal_pone_0109113 crossref_primary_10_1016_j_bspc_2024_106458 crossref_primary_10_1002_ima_22773 crossref_primary_10_1016_j_media_2015_06_002 crossref_primary_10_1118_1_4941011 crossref_primary_10_1016_j_neuroimage_2013_03_029 crossref_primary_10_1109_TIP_2018_2884563 crossref_primary_10_1016_j_compmedimag_2016_03_005 crossref_primary_10_1016_j_media_2024_103182 crossref_primary_10_1002_mp_14609 crossref_primary_10_1002_mp_12591 crossref_primary_10_1016_j_ijdevneu_2013_11_006 crossref_primary_10_1016_j_compmedimag_2016_04_005 crossref_primary_10_1109_JBHI_2019_2891526 crossref_primary_10_1002_hbm_22359 crossref_primary_10_1109_JBHI_2022_3153559 crossref_primary_10_1109_TMI_2024_3363190 crossref_primary_10_1118_1_4929974 crossref_primary_10_1016_j_ijleo_2013_07_123 crossref_primary_10_1109_TNNLS_2021_3055772 crossref_primary_10_1016_j_media_2020_101953 crossref_primary_10_1049_iet_ipr_2018_6073 crossref_primary_10_1016_j_media_2020_101910 crossref_primary_10_1109_JBHI_2022_3218652 crossref_primary_10_1016_j_media_2015_06_012 crossref_primary_10_1016_j_neuroimage_2013_09_011 crossref_primary_10_1109_TMI_2018_2824243 crossref_primary_10_1007_s10334_015_0518_z crossref_primary_10_1016_j_neuroimage_2014_07_001 crossref_primary_10_1002_mp_12578 crossref_primary_10_1016_j_neunet_2024_106426 crossref_primary_10_1016_j_nicl_2016_09_008 crossref_primary_10_1109_TMI_2015_2418298 crossref_primary_10_1109_TMI_2023_3273029 crossref_primary_10_3233_JIFS_179615 crossref_primary_10_1007_s11042_016_4018_6 crossref_primary_10_1177_0972753121990175 crossref_primary_10_1016_j_media_2024_103137 crossref_primary_10_1016_j_media_2025_103551 crossref_primary_10_3389_fnins_2017_00578 crossref_primary_10_1109_TMI_2024_3468404 crossref_primary_10_1016_j_media_2021_102116 crossref_primary_10_1109_JBHI_2023_3310492 crossref_primary_10_1002_hbm_25575 crossref_primary_10_1016_j_media_2014_10_007 crossref_primary_10_1109_JBHI_2017_2704614 crossref_primary_10_1016_j_media_2013_04_013 crossref_primary_10_1109_TNNLS_2023_3282961 crossref_primary_10_1117_1_JMI_6_2_026002 crossref_primary_10_1177_10998004221140608 crossref_primary_10_1016_j_wneu_2021_07_099 crossref_primary_10_1177_1094342013519483 crossref_primary_10_1016_j_media_2018_10_012 crossref_primary_10_1109_JBHI_2021_3097721 crossref_primary_10_1016_j_media_2023_103045 crossref_primary_10_1111_cns_12415 crossref_primary_10_1016_j_neucom_2014_05_002 crossref_primary_10_1016_j_artmed_2016_09_001 crossref_primary_10_1016_j_patcog_2023_109555 crossref_primary_10_1016_j_media_2017_11_004 crossref_primary_10_1002_hbm_23583 crossref_primary_10_1109_TMI_2024_3486086 crossref_primary_10_1109_TMI_2023_3288001 crossref_primary_10_1016_j_ijdevneu_2013_06_004 crossref_primary_10_1088_1742_6596_705_1_012026 crossref_primary_10_1109_TMI_2022_3225667 crossref_primary_10_1118_1_4961121 crossref_primary_10_1016_j_nicl_2015_01_008 crossref_primary_10_1109_TMI_2022_3170701 crossref_primary_10_1016_j_cmpb_2018_04_024 crossref_primary_10_1016_j_displa_2022_102223 crossref_primary_10_1016_j_media_2015_10_001 crossref_primary_10_1002_mp_15308 crossref_primary_10_1016_j_neuroimage_2018_04_039 crossref_primary_10_1016_j_neuroimage_2015_10_042 crossref_primary_10_1016_j_neuroimage_2017_02_069 crossref_primary_10_1016_j_media_2014_09_005 crossref_primary_10_1016_j_neucom_2016_05_082 crossref_primary_10_1049_iet_ipr_2017_1108 crossref_primary_10_1109_TMI_2021_3087857 crossref_primary_10_1016_j_media_2017_05_004 crossref_primary_10_1155_2014_974038 crossref_primary_10_1016_j_media_2014_01_003 |
Cites_doi | 10.1016/j.neuroimage.2011.01.078 10.1016/j.neuroimage.2009.10.026 10.1109/TMI.2009.2014372 10.1109/TMI.2008.2011480 10.1016/j.neuroimage.2008.12.037 10.1109/42.932742 10.1016/j.media.2010.06.001 10.1090/S0002-9939-1956-0078686-7 10.1109/TMI.2010.2050897 10.1016/S1361-8415(02)00054-3 10.1016/j.neuroimage.2006.07.050 10.1016/j.neuroimage.2003.11.010 10.1109/TMI.2002.803111 10.1016/j.neuroimage.2007.09.031 10.1109/42.668698 10.1016/j.neuroimage.2008.10.040 10.1016/j.neuroimage.2007.07.030 10.1109/42.906424 10.1109/TMI.2010.2057442 10.1016/j.neuroimage.2004.07.051 10.1016/j.neuroimage.2009.02.018 10.2307/1932409 10.1016/j.neuroimage.2010.02.025 10.1016/j.neuroimage.2010.09.019 10.1016/j.neuroimage.2009.02.043 10.1016/j.neuroimage.2010.04.193 10.1002/hbm.10062 10.1118/1.2842076 10.1007/BF01386390 10.1016/j.neuroimage.2010.03.010 10.1016/j.neuroimage.2009.09.062 10.1016/j.neuroimage.2004.07.068 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Inc. Copyright © 2011 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jan 2, 2012 2010 Elsevier Inc. All rights reserved. 2010 |
Copyright_xml | – notice: 2011 Elsevier Inc. – notice: Copyright © 2011 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jan 2, 2012 – notice: 2010 Elsevier Inc. All rights reserved. 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
DOI | 10.1016/j.neuroimage.2011.07.036 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Proquest Health and Medical Complete ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Engineering Research Database ProQuest One Psychology MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 430 |
ExternalDocumentID | PMC3195928 3246196551 21807102 10_1016_j_neuroimage_2011_07_036 S1053811911008135 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: MH088520 – fundername: NIBIB NIH HHS grantid: R01 EB006733 – fundername: NIBIB NIH HHS grantid: R01 EB009634 – fundername: NIBIB NIH HHS grantid: EB009634 – fundername: NIBIB NIH HHS grantid: EB006733 – fundername: NIBIB NIH HHS grantid: EB008760 – fundername: NIBIB NIH HHS grantid: EB008374 – fundername: NIBIB NIH HHS grantid: R01 EB008374 – fundername: NIMH NIH HHS grantid: RC1 MH088520 – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R01 EB009634-01A1 || EB – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R01 EB006733-01A2 || EB – fundername: National Institute of Mental Health : NIMH grantid: RC1 MH088520-01 || MH – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R01 EB008374-01A2 || EB |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM PMFND 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c545t-4ba83e9b940f6ab32d1362afb3cc223c05b80aca6c07002b846f6abbb19e0d943 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 13:52:53 EDT 2025 Fri Jul 11 12:13:50 EDT 2025 Mon Jul 21 10:01:44 EDT 2025 Wed Aug 13 03:34:01 EDT 2025 Sat May 31 02:06:31 EDT 2025 Tue Jul 01 02:14:43 EDT 2025 Thu Apr 24 22:57:48 EDT 2025 Fri Feb 23 02:20:30 EST 2024 Tue Aug 26 16:33:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Multiple atlases Groupwise segmentation Intermediate template Groupwise registration |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c545t-4ba83e9b940f6ab32d1362afb3cc223c05b80aca6c07002b846f6abbb19e0d943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 21807102 |
PQID | 1507246062 |
PQPubID | 2031077 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3195928 proquest_miscellaneous_902362329 proquest_miscellaneous_898841930 proquest_journals_1507246062 pubmed_primary_21807102 crossref_primary_10_1016_j_neuroimage_2011_07_036 crossref_citationtrail_10_1016_j_neuroimage_2011_07_036 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2011_07_036 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2011_07_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-02 |
PublicationDateYYYYMMDD | 2012-01-02 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Jia, Wu, Wang, Shen (bb0085) 2010; 51 Langerak, Heide, Kotte, Viergever, Vulpen, Pluim (bb0125) 2010; 29 Aljabar, Heckemann, Hammers, Hajnal, Rueckert (bb0010) 2009; 46 Lötjönen, Wolz, Koikkalainen, Thurfjell, Waldemar, Soininen, Rueckert (bb0130) 2010; 49 Shen, Davatzikos (bb0165) 2002; 21 Zhang, Brady, Smith (bb0215) 2001; 20 Avants, Yushkevich, Pluta, Minkoff, Korczykowski, Detre, Gee (bb0020) 2010; 49 Xue, Srinivasan, Jiang, Rutherford, Edwards, Rueckert, Hajnal (bb0210) 2007; 38 Beucher, Meyer (bb0035) 1992 Balci, Golland, Shenton, Wells (bb0025) 2007 Dijkstra (bb0060) 1959; 1 Rohlfing, Brandt, Menzel, Maurer (bb0140) 2004; 21 Wu, Rosano, Lopez-Garcia, Carter, Aizenstein (bb0200) 2007; 34 Dalal, Shi, Shen, Wang (bb0050) 2010 Balci, Golland, Wells (bb0030) 2007 Sled, Zijdenbos, Evans (bb0175) 1998; 17 Kruskal (bb0120) 1956; 7 Hamm, Davatzikos, Verma (bb0065) 2009 Tang, Fan, Shen (bb0190) 2009; 47 Hamm, Ye, Verma, Davatzikos (bb0070) 2010; 14 Collins, Pruessner (bb0045) 2010; 52 Dice (bb0055) 1945; 26 Munsell, Temlyakov, Wang (bb0135) 2009 Vercauteren, Pennec, Perchant, Ayache (bb0195) 2009; 45 Klein, Andersson, Ardekani, Ashburner, Avants, Chiang, Christensen, Collins, Gee, Hellier, Song, Jenkinson, Lepage, Rueckert, Thompson, Vercauteren, Woods, Mann, Parsey (bb0115) 2009; 46 Wu, Wang, Jia, Shen (bb0205) 2011 Khan, Cherbuin, Wen, Anstey, Sachdev, Beg (bb0100) 2011; 56 Kim, Wu, Yap, Shen (bb0105) 2010 Shattuck, Leahy (bb0155) 2002; 8 Shi, Yap, Fan, Gilmore, Lin, Shen (bb0170) 2010; 51 Shattuck, Mirza, Adisetiyo, Hojatkashani, Salamon, Narr, Poldrack, Bilder, Toga (bb0160) 2008; 39 Smith (bb0180) 2002; 17 Sethian (bb0150) 1999 Christensen, Johnson (bb0040) 2001; 20 Isgum, Staring, Rutten, Prokop, Viergever, Ginneken (bb0075) 2009; 28 Sabuncu, Yeo, Leemput, Fischl, Golland (bb0145) 2010; 29 Jia, Yap, Wu, Wang, Shen (bb0090) 2011; 54 Klein, Heide, Lips, Vulpen, Staring, Pluim (bb0110) 2008; 35 Artaechevarria, Muñoz-Barrutia, Ortiz-de-Solórzano (bb0015) 2009; 28 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, Stefano, Brady, Matthews (bb0185) 2004; 23 Jacobs, Finkelstein, Salesin (bb0080) 1995 Joshi, Davis, Jomier, Gerig (bb0095) 2004; 23 ADNI (bb0005) 2004 Jia (10.1016/j.neuroimage.2011.07.036_bb0090) 2011; 54 Christensen (10.1016/j.neuroimage.2011.07.036_bb0040) 2001; 20 Smith (10.1016/j.neuroimage.2011.07.036_bb0185) 2004; 23 Wu (10.1016/j.neuroimage.2011.07.036_bb0205) 2011 Beucher (10.1016/j.neuroimage.2011.07.036_bb0035) 1992 Vercauteren (10.1016/j.neuroimage.2011.07.036_bb0195) 2009; 45 Avants (10.1016/j.neuroimage.2011.07.036_bb0020) 2010; 49 Collins (10.1016/j.neuroimage.2011.07.036_bb0045) 2010; 52 Shattuck (10.1016/j.neuroimage.2011.07.036_bb0155) 2002; 8 Dijkstra (10.1016/j.neuroimage.2011.07.036_bb0060) 1959; 1 Jacobs (10.1016/j.neuroimage.2011.07.036_bb0080) 1995 Artaechevarria (10.1016/j.neuroimage.2011.07.036_bb0015) 2009; 28 Dalal (10.1016/j.neuroimage.2011.07.036_bb0050) 2010 Smith (10.1016/j.neuroimage.2011.07.036_bb0180) 2002; 17 Hamm (10.1016/j.neuroimage.2011.07.036_bb0070) 2010; 14 Shattuck (10.1016/j.neuroimage.2011.07.036_bb0160) 2008; 39 Joshi (10.1016/j.neuroimage.2011.07.036_bb0095) 2004; 23 Khan (10.1016/j.neuroimage.2011.07.036_bb0100) 2011; 56 Shi (10.1016/j.neuroimage.2011.07.036_bb0170) 2010; 51 Sled (10.1016/j.neuroimage.2011.07.036_bb0175) 1998; 17 Dice (10.1016/j.neuroimage.2011.07.036_bb0055) 1945; 26 Wu (10.1016/j.neuroimage.2011.07.036_bb0200) 2007; 34 Sethian (10.1016/j.neuroimage.2011.07.036_bb0150) 1999 Aljabar (10.1016/j.neuroimage.2011.07.036_bb0010) 2009; 46 Xue (10.1016/j.neuroimage.2011.07.036_bb0210) 2007; 38 Zhang (10.1016/j.neuroimage.2011.07.036_bb0215) 2001; 20 Kruskal (10.1016/j.neuroimage.2011.07.036_bb0120) 1956; 7 Balci (10.1016/j.neuroimage.2011.07.036_bb0025) 2007 Hamm (10.1016/j.neuroimage.2011.07.036_bb0065) 2009 Langerak (10.1016/j.neuroimage.2011.07.036_bb0125) 2010; 29 Sabuncu (10.1016/j.neuroimage.2011.07.036_bb0145) 2010; 29 ADNI (10.1016/j.neuroimage.2011.07.036_bb0005) Klein (10.1016/j.neuroimage.2011.07.036_bb0115) 2009; 46 Rohlfing (10.1016/j.neuroimage.2011.07.036_bb0140) 2004; 21 Munsell (10.1016/j.neuroimage.2011.07.036_bb0135) 2009 Tang (10.1016/j.neuroimage.2011.07.036_bb0190) 2009; 47 Jia (10.1016/j.neuroimage.2011.07.036_bb0085) 2010; 51 Isgum (10.1016/j.neuroimage.2011.07.036_bb0075) 2009; 28 Kim (10.1016/j.neuroimage.2011.07.036_bb0105) 2010 Shen (10.1016/j.neuroimage.2011.07.036_bb0165) 2002; 21 Balci (10.1016/j.neuroimage.2011.07.036_bb0030) 2007 Klein (10.1016/j.neuroimage.2011.07.036_bb0110) 2008; 35 Lötjönen (10.1016/j.neuroimage.2011.07.036_bb0130) 2010; 49 |
References_xml | – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: bb0055 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 49 start-page: 2352 year: 2010 end-page: 2365 ident: bb0130 article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images publication-title: NeuroImage – volume: 56 start-page: 126 year: 2011 end-page: 139 ident: bb0100 article-title: Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): validation on hippocampus segmentation publication-title: NeuroImage – volume: 45 start-page: S61 year: 2009 end-page: 72 ident: bb0195 article-title: Diffeomorphic demons: efficient non-parametric image registration publication-title: NeuroImage – volume: 23 start-page: S151 year: 2004 end-page: S160 ident: bb0095 article-title: Unbiased diffeomorphic atlas construction for computational anatomy publication-title: NeuroImage – start-page: 105 year: 2007 end-page: 121 ident: bb0030 article-title: Non-rigid groupwise registration using B-spline deformation model publication-title: Open Source and Open Data for MICCAI – volume: 47 start-page: 1277 year: 2009 end-page: 1287 ident: bb0190 article-title: RABBIT: rapid alignment of brains by building intermediate templates publication-title: NeuroImage – year: 2004 ident: bb0005 – volume: 7 start-page: 48 year: 1956 end-page: 50 ident: bb0120 article-title: On the shortest spanning subtree of a graph and the traveling salesman problem publication-title: Proceedings of the American Mathematical Society – volume: 28 start-page: 1266 year: 2009 end-page: 1277 ident: bb0015 article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data publication-title: IEEE Transactions on Medical Imaging – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: bb0180 article-title: Fast robust automated brain extraction publication-title: Human Brain Mapping – volume: 20 start-page: 568 year: 2001 end-page: 582 ident: bb0040 article-title: Consistent Image Registration publication-title: IEEE Transactions on Medical Imaging – volume: 46 start-page: 726 year: 2009 end-page: 738 ident: bb0010 article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy publication-title: NeuroImage – start-page: 349 year: 2010 end-page: 356 ident: bb0050 article-title: Multiple cortical surface correspondence using pairwise shape similarity publication-title: MICCAI 2010, Beijing, China – volume: 51 start-page: 1057 year: 2010 end-page: 1070 ident: bb0085 article-title: ABSORB: atlas building by self-organized registration and bundling publication-title: NeuroImage – volume: 39 start-page: 1064 year: 2008 end-page: 1080 ident: bb0160 article-title: Construction of a 3D probabilistic atlas of human cortical structures publication-title: NeuroImage – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: bb0215 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm publication-title: IEEE Trans. on Medical Imaging – volume: 28 start-page: 1000 year: 2009 end-page: 1010 ident: bb0075 article-title: Multi-atlas-based segmentation with local decision fusion — application to cardiac and aortic segmentation in CT scans publication-title: IEEE Transactions on Medical Imaging – volume: 8 start-page: 129 year: 2002 end-page: 142 ident: bb0155 article-title: BrainSuite: an automated cortical surface identification tool publication-title: Medical Image Analysis – volume: 49 start-page: 2457 year: 2010 end-page: 2466 ident: bb0020 article-title: The optimal template effect in hippocampus studies of diseased populations publication-title: NeuroImage – volume: 51 start-page: 684 year: 2010 end-page: 693 ident: bb0170 article-title: Construction of multi-region–multi-reference atlases for neonatal brain MRI segmentation publication-title: NeuroImage – volume: 35 start-page: 1407 year: 2008 end-page: 1417 ident: bb0110 article-title: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information publication-title: Medical Physics – volume: 1 start-page: 269 year: 1959 end-page: 271 ident: bb0060 article-title: A note on two problems in connexion with graphs publication-title: Numerische Mathematik – volume: 54 start-page: 928 year: 2011 end-page: 939 ident: bb0090 article-title: Intermediate templates guided groupwise registration of diffusion tensor images publication-title: NeuroImage – start-page: 277 year: 1995 end-page: 286 ident: bb0080 article-title: Fast multi-resolution image querying publication-title: SIGGRAPH – volume: 21 start-page: 1428 year: 2004 end-page: 1442 ident: bb0140 article-title: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains publication-title: NeuroImage – volume: 34 start-page: 1612 year: 2007 end-page: 1618 ident: bb0200 article-title: Optimum template selection for atlas-based segmentation publication-title: NeuroImage – start-page: 23 year: 2007 end-page: 30 ident: bb0025 article-title: Free-form B-spline deformation model for groupwise registration publication-title: MICCAI 2007 – volume: 29 start-page: 2000 year: 2010 end-page: 2008 ident: bb0125 article-title: Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE) publication-title: IEEE Transactions on Medical Imaging – start-page: 306 year: 2010 end-page: 314 ident: bb0105 article-title: A generalized learning based framework for fast brain image registration publication-title: MICCAI 2010, Beijing, China – volume: 23 start-page: 208 year: 2004 end-page: 219 ident: bb0185 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage – year: 2011 ident: bb0205 article-title: Feature-based groupwise registration by hierarchical anatomical correspondence detection publication-title: Human Brain Mapping – year: 1999 ident: bb0150 article-title: Level Set Methods and Fast Marching Methods – volume: 21 start-page: 1421 year: 2002 end-page: 1439 ident: bb0165 article-title: HAMMER: hierarchical attribute matching mechanism for elastic registration publication-title: IEEE Trans. on Medical Imaging – volume: 46 start-page: 786 year: 2009 end-page: 802 ident: bb0115 article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration publication-title: NeuroImage – volume: 14 start-page: 633 year: 2010 end-page: 642 ident: bb0070 article-title: GRAM: a framework for geodesic registration on anatomical manifolds publication-title: Medical Image Analysis – volume: 29 start-page: 1714 year: 2010 end-page: 1729 ident: bb0145 article-title: A generative model for image segmentation based on label fusion publication-title: IEEE Transactions on Medical Imaging – year: 1992 ident: bb0035 article-title: The morphological approach to segmentation: the watershed transformation publication-title: Mathematical Morphology in Image Processing – start-page: 840 year: 2009 end-page: 847 ident: bb0135 article-title: Fast multiple shape correspondence by pre-organizing shape instances publication-title: IEEE Conference on CVPR – volume: 52 start-page: 1355 year: 2010 end-page: 1366 ident: bb0045 article-title: Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion publication-title: NeuroImage – volume: 17 start-page: 87 year: 1998 end-page: 97 ident: bb0175 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Transactions on Medical Imaging – start-page: 680 year: 2009 end-page: 687 ident: bb0065 article-title: Efficient large deformation registration via geodesics on a learned manifold of images publication-title: MICCAI 2009, London, UK – volume: 38 start-page: 461 year: 2007 end-page: 477 ident: bb0210 article-title: Automatic segmentation and reconstruction of the cortex from neonatal MRI publication-title: NeuroImage – volume: 56 start-page: 126 year: 2011 ident: 10.1016/j.neuroimage.2011.07.036_bb0100 article-title: Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): validation on hippocampus segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.078 – volume: 49 start-page: 2352 year: 2010 ident: 10.1016/j.neuroimage.2011.07.036_bb0130 article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.026 – volume: 28 start-page: 1266 year: 2009 ident: 10.1016/j.neuroimage.2011.07.036_bb0015 article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2009.2014372 – volume: 28 start-page: 1000 year: 2009 ident: 10.1016/j.neuroimage.2011.07.036_bb0075 article-title: Multi-atlas-based segmentation with local decision fusion — application to cardiac and aortic segmentation in CT scans publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2008.2011480 – volume: 46 start-page: 786 year: 2009 ident: 10.1016/j.neuroimage.2011.07.036_bb0115 article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.12.037 – year: 1999 ident: 10.1016/j.neuroimage.2011.07.036_bb0150 – volume: 20 start-page: 568 year: 2001 ident: 10.1016/j.neuroimage.2011.07.036_bb0040 article-title: Consistent Image Registration publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.932742 – start-page: 23 year: 2007 ident: 10.1016/j.neuroimage.2011.07.036_bb0025 article-title: Free-form B-spline deformation model for groupwise registration – start-page: 840 year: 2009 ident: 10.1016/j.neuroimage.2011.07.036_bb0135 article-title: Fast multiple shape correspondence by pre-organizing shape instances publication-title: IEEE Conference on CVPR – start-page: 680 year: 2009 ident: 10.1016/j.neuroimage.2011.07.036_bb0065 article-title: Efficient large deformation registration via geodesics on a learned manifold of images – ident: 10.1016/j.neuroimage.2011.07.036_bb0005 – volume: 14 start-page: 633 year: 2010 ident: 10.1016/j.neuroimage.2011.07.036_bb0070 article-title: GRAM: a framework for geodesic registration on anatomical manifolds publication-title: Medical Image Analysis doi: 10.1016/j.media.2010.06.001 – volume: 7 start-page: 48 year: 1956 ident: 10.1016/j.neuroimage.2011.07.036_bb0120 article-title: On the shortest spanning subtree of a graph and the traveling salesman problem publication-title: Proceedings of the American Mathematical Society doi: 10.1090/S0002-9939-1956-0078686-7 – volume: 29 start-page: 1714 year: 2010 ident: 10.1016/j.neuroimage.2011.07.036_bb0145 article-title: A generative model for image segmentation based on label fusion publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2010.2050897 – start-page: 349 year: 2010 ident: 10.1016/j.neuroimage.2011.07.036_bb0050 article-title: Multiple cortical surface correspondence using pairwise shape similarity – volume: 8 start-page: 129 year: 2002 ident: 10.1016/j.neuroimage.2011.07.036_bb0155 article-title: BrainSuite: an automated cortical surface identification tool publication-title: Medical Image Analysis doi: 10.1016/S1361-8415(02)00054-3 – volume: 34 start-page: 1612 year: 2007 ident: 10.1016/j.neuroimage.2011.07.036_bb0200 article-title: Optimum template selection for atlas-based segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.07.050 – volume: 21 start-page: 1428 year: 2004 ident: 10.1016/j.neuroimage.2011.07.036_bb0140 article-title: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.11.010 – volume: 21 start-page: 1421 year: 2002 ident: 10.1016/j.neuroimage.2011.07.036_bb0165 article-title: HAMMER: hierarchical attribute matching mechanism for elastic registration publication-title: IEEE Trans. on Medical Imaging doi: 10.1109/TMI.2002.803111 – volume: 39 start-page: 1064 year: 2008 ident: 10.1016/j.neuroimage.2011.07.036_bb0160 article-title: Construction of a 3D probabilistic atlas of human cortical structures publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.09.031 – volume: 17 start-page: 87 year: 1998 ident: 10.1016/j.neuroimage.2011.07.036_bb0175 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.668698 – start-page: 105 year: 2007 ident: 10.1016/j.neuroimage.2011.07.036_bb0030 article-title: Non-rigid groupwise registration using B-spline deformation model – volume: 45 start-page: S61 year: 2009 ident: 10.1016/j.neuroimage.2011.07.036_bb0195 article-title: Diffeomorphic demons: efficient non-parametric image registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.040 – volume: 38 start-page: 461 year: 2007 ident: 10.1016/j.neuroimage.2011.07.036_bb0210 article-title: Automatic segmentation and reconstruction of the cortex from neonatal MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.07.030 – volume: 20 start-page: 45 year: 2001 ident: 10.1016/j.neuroimage.2011.07.036_bb0215 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm publication-title: IEEE Trans. on Medical Imaging doi: 10.1109/42.906424 – volume: 29 start-page: 2000 year: 2010 ident: 10.1016/j.neuroimage.2011.07.036_bb0125 article-title: Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE) publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2010.2057442 – volume: 23 start-page: 208 year: 2004 ident: 10.1016/j.neuroimage.2011.07.036_bb0185 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 46 start-page: 726 year: 2009 ident: 10.1016/j.neuroimage.2011.07.036_bb0010 article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.02.018 – volume: 26 start-page: 297 year: 1945 ident: 10.1016/j.neuroimage.2011.07.036_bb0055 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – volume: 51 start-page: 684 year: 2010 ident: 10.1016/j.neuroimage.2011.07.036_bb0170 article-title: Construction of multi-region–multi-reference atlases for neonatal brain MRI segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.02.025 – volume: 54 start-page: 928 year: 2011 ident: 10.1016/j.neuroimage.2011.07.036_bb0090 article-title: Intermediate templates guided groupwise registration of diffusion tensor images publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.019 – volume: 47 start-page: 1277 year: 2009 ident: 10.1016/j.neuroimage.2011.07.036_bb0190 article-title: RABBIT: rapid alignment of brains by building intermediate templates publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.02.043 – year: 1992 ident: 10.1016/j.neuroimage.2011.07.036_bb0035 article-title: The morphological approach to segmentation: the watershed transformation – volume: 52 start-page: 1355 year: 2010 ident: 10.1016/j.neuroimage.2011.07.036_bb0045 article-title: Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.04.193 – volume: 17 start-page: 143 year: 2002 ident: 10.1016/j.neuroimage.2011.07.036_bb0180 article-title: Fast robust automated brain extraction publication-title: Human Brain Mapping doi: 10.1002/hbm.10062 – volume: 35 start-page: 1407 year: 2008 ident: 10.1016/j.neuroimage.2011.07.036_bb0110 article-title: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information publication-title: Medical Physics doi: 10.1118/1.2842076 – start-page: 277 year: 1995 ident: 10.1016/j.neuroimage.2011.07.036_bb0080 article-title: Fast multi-resolution image querying publication-title: SIGGRAPH – start-page: 306 year: 2010 ident: 10.1016/j.neuroimage.2011.07.036_bb0105 article-title: A generalized learning based framework for fast brain image registration – volume: 1 start-page: 269 year: 1959 ident: 10.1016/j.neuroimage.2011.07.036_bb0060 article-title: A note on two problems in connexion with graphs publication-title: Numerische Mathematik doi: 10.1007/BF01386390 – volume: 51 start-page: 1057 year: 2010 ident: 10.1016/j.neuroimage.2011.07.036_bb0085 article-title: ABSORB: atlas building by self-organized registration and bundling publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.010 – volume: 49 start-page: 2457 year: 2010 ident: 10.1016/j.neuroimage.2011.07.036_bb0020 article-title: The optimal template effect in hippocampus studies of diseased populations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.09.062 – volume: 23 start-page: S151 year: 2004 ident: 10.1016/j.neuroimage.2011.07.036_bb0095 article-title: Unbiased diffeomorphic atlas construction for computational anatomy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.068 – year: 2011 ident: 10.1016/j.neuroimage.2011.07.036_bb0205 article-title: Feature-based groupwise registration by hierarchical anatomical correspondence detection publication-title: Human Brain Mapping |
SSID | ssj0009148 |
Score | 2.4242578 |
Snippet | In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 422 |
SubjectTerms | Accuracy Algorithms Brain - anatomy & histology Brain Mapping - methods Computer graphics Groupwise registration Groupwise segmentation Humans Image Interpretation, Computer-Assisted - methods Intermediate template Labeling Methods Multiple atlases Pattern Recognition, Automated - methods Software |
SummonAdditionalLinks | – databaseName: Proquest Health and Medical Complete dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBddC2Mvpe2-0qbDD3tVK8uyZNGHUkZDNmhhsEDehCTbW8bqZEvy__dOlp1l60ZerTuwz_fxQzr9jpD3nueQAWRNteeCCqsctUJaqgqpZC1KaQOV0t29HE_Ep2k-jRtuy9hW2eXEkKjLucc98ksELlwA3ObXi58Up0bh6WocofGMHCB1GXq1mqoN6W4q2qtweUYLEIidPG1_V-CLnD1A1EYiT3XBAlHzk-Xpb_j5Zxflb2VpdEQOI55MbloHOCZ7VXNCnt_FE_OX5PPHQJsMOS0JvYPUrgAvUyxeZXwS3i5ZVl8f4j2kJsHd2QTPq6Mgjm_oCHZfkcno9suHMY1jFKgHeLSiwtkiq7TTgtXSuoyXKVQtW7vMewAHnuWuYNZb6SH8GXeASFDOuVRXrNQie032m3lTvSUJxztaoAmB64TKpa4Fr1nquFY-z3w6IKqznvGRYxxHXfwwXTPZd7Oxu0G7G6YM2H1A0l5z0fJs7KCjux9kunukkPkMFIMddK963Yg1Wgyxo_aw8wcTY35pNh46IEm_DNGKRzC2qebrpSl0UQjAzOzfIho5_QHn6gF50zpYbxCAYwERgpm3XK8XQK7w7ZVm9i1whmcYHrw4_f-Ln5EX8JU8bDHxIdlf_VpX5wC6Vu5diKxHceUuqA priority: 102 providerName: ProQuest |
Title | Iterative multi-atlas-based multi-image segmentation with tree-based registration |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811911008135 https://dx.doi.org/10.1016/j.neuroimage.2011.07.036 https://www.ncbi.nlm.nih.gov/pubmed/21807102 https://www.proquest.com/docview/1507246062 https://www.proquest.com/docview/898841930 https://www.proquest.com/docview/902362329 https://pubmed.ncbi.nlm.nih.gov/PMC3195928 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcQSGgvE_tg6wYoD3s1dRzHjrUnVoHKNio-pb5ZtptA0QiIllf-du4cJ6zbkCrtpVGTOym93scv8d3PhHzxPIcMICuqPRdUWOWoFdJSVUglKzGRNlApHY3k8EJ8H-fjFTJoZ2GwrTLm_ianh2wdz_SjNft302n_DJABlBt43kB-mjTDQXMhFHr57uNzm4dORTMOl2cUpWM3T9PjFTgjpzcQuZHMU-2yQNb8zxL1NwT9s5Pyt9J0sEFeR0yZ7DW3_YaslPVbsn4UV83fkZPDQJ0MeS0J_YPUzgEzUyxgk3gm3F0yKy9v4ixSneAb2gTXrKMgbuHQkuy-JxcH--eDIY1bKVAPEGlOhbNFVmqnBaukdRmfpFC5bOUy7wEgeJa7gllvpYcUwLgDVIJyzqW6ZBMtsk2yWt_W5UeScJzTAk0IXidULnUleMVSx7XyeebTHlGt9YyPPOO43cUv0zaUXZtnuxu0u2HKgN17JO007xqujSV0dPsHmXaWFLKfgYKwhO7XTnfB55bU3mr9wcS4nxmE11zAQyHvkaS7DBGLyzC2Lm8fZqbQRSEAN7OXRTTy-gPW1T3yoXGwziAAyQIqBDMvuF4ngHzhi1fq6VXgDc-QSIgXn_7rZ38mr-AbD2-h-BZZnd8_lNuAy-ZuJwQefKqx2iFre4PTn8d4PPwxHMHx2_7o-PQJr9o_tA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgEXxGdZKJADHA2O49ixEEIIqHZptxJSK-3N2E4CRTRb2K0Qf4rfyNixs5Qv7aXXjSfKTuw3L_bMG4BHjpWIAKIlyjFOuJGWGC4MkZWQouW1MEFKabovxof87aycbcCPVAvj0yoTJgagrufO75E_9cSFcaTb7MXJF-K7RvnT1dRCo58Wu833b_jJtng-eY3v9zFjO28OXo1J7CpAHLKFJeHWVEWjrOK0FcYWrM4RxE1rC-cwVjpa2ooaZ4TD1UCZxQDtx1mbq4bWihd43wtwEQMv9R97ciZXIr8570vvyoJUea5i5lCfTxb0KY-OESWicKh8QoMw9F_D4Z909_eszV_C4M41uBr5a_ayn3DXYaPpbsClaTyhvwnvJkGmGTE0C7mKxCyRnxMfLOv4S3i6bNF8OI51T13md4Mzfz4eB_p2EUnQ9xYcnouDb8NmN--aO5AxXxOGlggUlstSqJazluaWKenKwuUjkMl72kVNc99a47NOyWuf9Mrv2vtdU6nR7yPIB8uTXtdjDRuVXpBOdauItBqDzxq2zwbbyG16zrKm9XaaDzpizEKvVsQIsuEyooM_8jFdMz9d6EpVFUeOTv89RPkeAsir1Qi2-gk2OATpX2Cg6OYzU28Y4LXJz17pjj4GjfLCixax6u7_H_whXB4fTPf03mR_9x5cwX_MwvYW24bN5dfT5j4SvqV9EFZZBu_Pe1n_BPnTbBk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQby7pUAOcDR1HMeOhRAC2lWX0lVBVOrN2E4CRW22sFsh_hq_jrHjZCkv7aXXjSfKTubxxZ75BuCRYzlGAFET5Rgn3EhLDBeGyEJIUfNSmECltD8Ru4f89VF-tAI_ul4YX1bZxcQQqMup83vkWx64MI5wm23VsSziYHv0_OwL8ROk_ElrN06jNZG96vs3_HybPRtv47t-zNho5_2rXRInDBCHyGFOuDVFVimrOK2FsRkrUwzopraZc5g3Hc1tQY0zwqFnUGYxWft11qaqoqXiGd73CqxK_1U0gNWXO5ODdwvK35S3jXh5Roo0VbGOqK0uC2yVx6cYMyKNqHxCA030X5Pjn-D39xrOX5Li6Dpci2g2edGa3w1YqZqbsLYfz-tvwdtxIG3GiJqEykVi5ojWiU-dZfwlPF0yqz6exi6oJvF7w4k_LY8L_fCIjt73NhxeiorvwKCZNtU6JMx3iKEkhg3LZS5UzVlNU8uUdHnm0iHITnvaRYZzP2jjRHelbJ_1Qu_a611TqVHvQ0h7ybOW5WMJGdW9IN11sWLc1ZiKlpB92stGpNMimCWlNzt70DHizPTCP4aQ9JcxVvgDINNU0_OZLlRRcETs9N9LlJ8ogChbDeFua2C9QhAMBjyKar5gev0Cz1R-8Upz_CkwlmeewogVG_9_8Iewhi6t34wne_fgKv5hFva62CYM5l_Pq_uI_ub2QXSzBD5ctmf_BPPIcbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+multi-atlas-based+multi-image+segmentation+with+tree-based+registration&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Jia%2C+Hongjun&rft.au=Yap%2C+Pew-Thian&rft.au=Shen%2C+Dinggang&rft.date=2012-01-02&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=59&rft.issue=1&rft.spage=422&rft.epage=430&rft_id=info:doi/10.1016%2Fj.neuroimage.2011.07.036&rft.externalDocID=S1053811911008135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |