Iterative multi-atlas-based multi-image segmentation with tree-based registration

In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based segmentation algorithms consider concurrently complementary information from multiple atlases to produce optimal segmentation outcomes. Howeve...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 59; no. 1; pp. 422 - 430
Main Authors Jia, Hongjun, Yap, Pew-Thian, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 02.01.2012
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based segmentation algorithms consider concurrently complementary information from multiple atlases to produce optimal segmentation outcomes. However, the accuracy of these algorithms relies heavily on the precise alignment of the atlases with the target image. In particular, the commonly used pairwise registration may result in inaccurate alignment especially between images with large shape differences. Additionally, when segmenting a group of target images, most current methods consider these images independently with disregard of their correlation, thus resulting in inconsistent segmentations of the same structures across different target images. We propose two novel strategies to address these limitations: 1) a novel tree-based groupwise registration method for concurrent alignment of both the atlases and the target images, and 2) an iterative groupwise segmentation method for simultaneous consideration of segmentation information propagated from all available images, including the atlases and other newly segmented target images. Evaluation based on various datasets indicates that the proposed multi-atlas-based multi-image segmentation (MABMIS) framework yields substantial improvements in terms of consistency and accuracy over methods that do not consider the group of target images holistically. ► A groupwise framework is proposed for multi-atlas-based multi-image segmentation. ► The labeling results on the target image group are iteratively updated. ► The segmentation accuracy and consistency can be greatly improved.
AbstractList In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based segmentation algorithms consider concurrently complementary information from multiple atlases to produce optimal segmentation outcomes. However, the accuracy of these algorithms relies heavily on the precise alignment of the atlases with the target image. In particular, the commonly used pairwise registration may result in inaccurate alignment especially between images with large shape differences. Additionally, when segmenting a group of target images, most current methods consider these images independently with disregard of their correlation, thus resulting in inconsistent segmentations of the same structures across different target images. We propose two novel strategies to address these limitations: 1) a novel tree-based groupwise registration method for concurrent alignment of both the atlases and the target images, and 2) an iterative groupwise segmentation method for simultaneous consideration of segmentation information propagated from all available images, including the atlases and other newly segmented target images. Evaluation based on various datasets indicates that the proposed multi-atlas-based multi-image segmentation (MABMIS) framework yields substantial improvements in terms of consistency and accuracy over methods that do not consider the group of target images holistically.
In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based segmentation algorithms consider concurrently complementary information from multiple atlases to produce optimal segmentation outcomes. However, the accuracy of these algorithms relies heavily on the precise alignment of the atlases with the target image. In particular, the commonly used pairwise registration may result in inaccurate alignment especially between images with large shape differences. Additionally, when segmenting a group of target images, most current methods consider these images independently with disregard of their correlation, thus resulting in inconsistent segmentations of the same structures across different target images. We propose two novel strategies to address these limitations: 1) a novel tree-based groupwise registration method for concurrent alignment of both the atlases and the target images, and 2) an iterative groupwise segmentation method for simultaneous consideration of segmentation information propagated from all available images, including the atlases and other newly segmented target images. Evaluation based on various datasets indicates that the proposed multi-atlas-based multi-image segmentation (MABMIS) framework yields substantial improvements in terms of consistency and accuracy over methods that do not consider the group of target images holistically.In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based segmentation algorithms consider concurrently complementary information from multiple atlases to produce optimal segmentation outcomes. However, the accuracy of these algorithms relies heavily on the precise alignment of the atlases with the target image. In particular, the commonly used pairwise registration may result in inaccurate alignment especially between images with large shape differences. Additionally, when segmenting a group of target images, most current methods consider these images independently with disregard of their correlation, thus resulting in inconsistent segmentations of the same structures across different target images. We propose two novel strategies to address these limitations: 1) a novel tree-based groupwise registration method for concurrent alignment of both the atlases and the target images, and 2) an iterative groupwise segmentation method for simultaneous consideration of segmentation information propagated from all available images, including the atlases and other newly segmented target images. Evaluation based on various datasets indicates that the proposed multi-atlas-based multi-image segmentation (MABMIS) framework yields substantial improvements in terms of consistency and accuracy over methods that do not consider the group of target images holistically.
In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based segmentation algorithms consider concurrently complementary information from multiple atlases to produce optimal segmentation outcomes. However, the accuracy of these algorithms relies heavily on the precise alignment of the atlases with the target image. In particular, the commonly used pairwise registration may result in inaccurate alignment especially between images with large shape differences. Additionally, when segmenting a group of target images, most current methods consider these images independently with disregard of their correlation, thus resulting in inconsistent segmentations of the same structures across different target images. We propose two novel strategies to address these limitations: 1) a novel tree-based groupwise registration method for concurrent alignment of both the atlases and the target images, and 2) an iterative groupwise segmentation method for simultaneous consideration of segmentation information propagated from all available images, including the atlases and other newly segmented target images. Evaluation based on various datasets indicates that the proposed multi-atlas-based multi-image segmentation (MABMIS) framework yields substantial improvements in terms of consistency and accuracy over methods that do not consider the group of target images holistically. ► A groupwise framework is proposed for multi-atlas-based multi-image segmentation. ► The labeling results on the target image group are iteratively updated. ► The segmentation accuracy and consistency can be greatly improved.
Author Yap, Pew-Thian
Jia, Hongjun
Shen, Dinggang
Author_xml – sequence: 1
  givenname: Hongjun
  surname: Jia
  fullname: Jia, Hongjun
  email: jiahj@med.unc.edu
– sequence: 2
  givenname: Pew-Thian
  surname: Yap
  fullname: Yap, Pew-Thian
  email: ptyap@med.unc.edu
– sequence: 3
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21807102$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1vFCEUhompse3qXzCTeOHVjAeYD7gx2saPJk2MiV4Thjm7ZZ2BCsya_nvZ7rrV3rhXEHh4eHPOOScnzjskpKBQUaDtm3XlcA7eTnqFFQNKK-gq4O0TckZBNqVsOnay3Te8FJTKU3Ie4xoAJK3FM3LKqICOAjsjX68SBp3sBotpHpMtdRp1LHsdcdif3P9SRFxN6FJGvSt-2XRTpIC4BwOubEzh_vI5ebrUY8QX-3VBvn_88O3yc3n95dPV5fvr0jR1k8q614Kj7GUNy1b3nA2Ut0wve24MY9xA0wvQRrcGOgDWi7rdcn1PJcIga74gb3fe27mfcDA5XNCjug05b7hTXlv1742zN2rlN4pT2UgmsuD1XhD8zxljUpONBsdRO_RzVBJYTsSZ_C8ppBA1lRwy-eoRufZzcLkOijbQsbqFrFyQl39HP2T-05YMiB1ggo8x4PKAUFDbCVBr9TABajsBCjqVJ-ChLIenxu66lotgx2MEFzsB5uZtLAYVjUVncLABTVKDt8dI3j2SmNE6a_T4A--OU_wG-gXrWw
CitedBy_id crossref_primary_10_1007_s11042_019_08320_7
crossref_primary_10_1016_j_neucom_2015_05_056
crossref_primary_10_1109_TMI_2014_2321281
crossref_primary_10_1016_j_media_2015_08_010
crossref_primary_10_1109_TNNLS_2019_2935184
crossref_primary_10_1371_journal_pone_0109113
crossref_primary_10_1016_j_bspc_2024_106458
crossref_primary_10_1002_ima_22773
crossref_primary_10_1016_j_media_2015_06_002
crossref_primary_10_1118_1_4941011
crossref_primary_10_1016_j_neuroimage_2013_03_029
crossref_primary_10_1109_TIP_2018_2884563
crossref_primary_10_1016_j_compmedimag_2016_03_005
crossref_primary_10_1016_j_media_2024_103182
crossref_primary_10_1002_mp_14609
crossref_primary_10_1002_mp_12591
crossref_primary_10_1016_j_ijdevneu_2013_11_006
crossref_primary_10_1016_j_compmedimag_2016_04_005
crossref_primary_10_1109_JBHI_2019_2891526
crossref_primary_10_1002_hbm_22359
crossref_primary_10_1109_JBHI_2022_3153559
crossref_primary_10_1109_TMI_2024_3363190
crossref_primary_10_1118_1_4929974
crossref_primary_10_1016_j_ijleo_2013_07_123
crossref_primary_10_1109_TNNLS_2021_3055772
crossref_primary_10_1016_j_media_2020_101953
crossref_primary_10_1049_iet_ipr_2018_6073
crossref_primary_10_1016_j_media_2020_101910
crossref_primary_10_1109_JBHI_2022_3218652
crossref_primary_10_1016_j_media_2015_06_012
crossref_primary_10_1016_j_neuroimage_2013_09_011
crossref_primary_10_1109_TMI_2018_2824243
crossref_primary_10_1007_s10334_015_0518_z
crossref_primary_10_1016_j_neuroimage_2014_07_001
crossref_primary_10_1002_mp_12578
crossref_primary_10_1016_j_neunet_2024_106426
crossref_primary_10_1016_j_nicl_2016_09_008
crossref_primary_10_1109_TMI_2015_2418298
crossref_primary_10_1109_TMI_2023_3273029
crossref_primary_10_3233_JIFS_179615
crossref_primary_10_1007_s11042_016_4018_6
crossref_primary_10_1177_0972753121990175
crossref_primary_10_1016_j_media_2024_103137
crossref_primary_10_1016_j_media_2025_103551
crossref_primary_10_3389_fnins_2017_00578
crossref_primary_10_1109_TMI_2024_3468404
crossref_primary_10_1016_j_media_2021_102116
crossref_primary_10_1109_JBHI_2023_3310492
crossref_primary_10_1002_hbm_25575
crossref_primary_10_1016_j_media_2014_10_007
crossref_primary_10_1109_JBHI_2017_2704614
crossref_primary_10_1016_j_media_2013_04_013
crossref_primary_10_1109_TNNLS_2023_3282961
crossref_primary_10_1117_1_JMI_6_2_026002
crossref_primary_10_1177_10998004221140608
crossref_primary_10_1016_j_wneu_2021_07_099
crossref_primary_10_1177_1094342013519483
crossref_primary_10_1016_j_media_2018_10_012
crossref_primary_10_1109_JBHI_2021_3097721
crossref_primary_10_1016_j_media_2023_103045
crossref_primary_10_1111_cns_12415
crossref_primary_10_1016_j_neucom_2014_05_002
crossref_primary_10_1016_j_artmed_2016_09_001
crossref_primary_10_1016_j_patcog_2023_109555
crossref_primary_10_1016_j_media_2017_11_004
crossref_primary_10_1002_hbm_23583
crossref_primary_10_1109_TMI_2024_3486086
crossref_primary_10_1109_TMI_2023_3288001
crossref_primary_10_1016_j_ijdevneu_2013_06_004
crossref_primary_10_1088_1742_6596_705_1_012026
crossref_primary_10_1109_TMI_2022_3225667
crossref_primary_10_1118_1_4961121
crossref_primary_10_1016_j_nicl_2015_01_008
crossref_primary_10_1109_TMI_2022_3170701
crossref_primary_10_1016_j_cmpb_2018_04_024
crossref_primary_10_1016_j_displa_2022_102223
crossref_primary_10_1016_j_media_2015_10_001
crossref_primary_10_1002_mp_15308
crossref_primary_10_1016_j_neuroimage_2018_04_039
crossref_primary_10_1016_j_neuroimage_2015_10_042
crossref_primary_10_1016_j_neuroimage_2017_02_069
crossref_primary_10_1016_j_media_2014_09_005
crossref_primary_10_1016_j_neucom_2016_05_082
crossref_primary_10_1049_iet_ipr_2017_1108
crossref_primary_10_1109_TMI_2021_3087857
crossref_primary_10_1016_j_media_2017_05_004
crossref_primary_10_1155_2014_974038
crossref_primary_10_1016_j_media_2014_01_003
Cites_doi 10.1016/j.neuroimage.2011.01.078
10.1016/j.neuroimage.2009.10.026
10.1109/TMI.2009.2014372
10.1109/TMI.2008.2011480
10.1016/j.neuroimage.2008.12.037
10.1109/42.932742
10.1016/j.media.2010.06.001
10.1090/S0002-9939-1956-0078686-7
10.1109/TMI.2010.2050897
10.1016/S1361-8415(02)00054-3
10.1016/j.neuroimage.2006.07.050
10.1016/j.neuroimage.2003.11.010
10.1109/TMI.2002.803111
10.1016/j.neuroimage.2007.09.031
10.1109/42.668698
10.1016/j.neuroimage.2008.10.040
10.1016/j.neuroimage.2007.07.030
10.1109/42.906424
10.1109/TMI.2010.2057442
10.1016/j.neuroimage.2004.07.051
10.1016/j.neuroimage.2009.02.018
10.2307/1932409
10.1016/j.neuroimage.2010.02.025
10.1016/j.neuroimage.2010.09.019
10.1016/j.neuroimage.2009.02.043
10.1016/j.neuroimage.2010.04.193
10.1002/hbm.10062
10.1118/1.2842076
10.1007/BF01386390
10.1016/j.neuroimage.2010.03.010
10.1016/j.neuroimage.2009.09.062
10.1016/j.neuroimage.2004.07.068
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright © 2011 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jan 2, 2012
2010 Elsevier Inc. All rights reserved. 2010
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jan 2, 2012
– notice: 2010 Elsevier Inc. All rights reserved. 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2011.07.036
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Proquest Health and Medical Complete
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Engineering Research Database
ProQuest One Psychology
MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 430
ExternalDocumentID PMC3195928
3246196551
21807102
10_1016_j_neuroimage_2011_07_036
S1053811911008135
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: MH088520
– fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NIBIB NIH HHS
  grantid: R01 EB009634
– fundername: NIBIB NIH HHS
  grantid: EB009634
– fundername: NIBIB NIH HHS
  grantid: EB006733
– fundername: NIBIB NIH HHS
  grantid: EB008760
– fundername: NIBIB NIH HHS
  grantid: EB008374
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
– fundername: NIMH NIH HHS
  grantid: RC1 MH088520
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R01 EB009634-01A1 || EB
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R01 EB006733-01A2 || EB
– fundername: National Institute of Mental Health : NIMH
  grantid: RC1 MH088520-01 || MH
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R01 EB008374-01A2 || EB
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
5PM
ID FETCH-LOGICAL-c545t-4ba83e9b940f6ab32d1362afb3cc223c05b80aca6c07002b846f6abbb19e0d943
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 13:52:53 EDT 2025
Fri Jul 11 12:13:50 EDT 2025
Mon Jul 21 10:01:44 EDT 2025
Wed Aug 13 03:34:01 EDT 2025
Sat May 31 02:06:31 EDT 2025
Tue Jul 01 02:14:43 EDT 2025
Thu Apr 24 22:57:48 EDT 2025
Fri Feb 23 02:20:30 EST 2024
Tue Aug 26 16:33:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multiple atlases
Groupwise segmentation
Intermediate template
Groupwise registration
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-4ba83e9b940f6ab32d1362afb3cc223c05b80aca6c07002b846f6abbb19e0d943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 21807102
PQID 1507246062
PQPubID 2031077
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3195928
proquest_miscellaneous_902362329
proquest_miscellaneous_898841930
proquest_journals_1507246062
pubmed_primary_21807102
crossref_primary_10_1016_j_neuroimage_2011_07_036
crossref_citationtrail_10_1016_j_neuroimage_2011_07_036
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2011_07_036
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2011_07_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-02
PublicationDateYYYYMMDD 2012-01-02
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2012
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Jia, Wu, Wang, Shen (bb0085) 2010; 51
Langerak, Heide, Kotte, Viergever, Vulpen, Pluim (bb0125) 2010; 29
Aljabar, Heckemann, Hammers, Hajnal, Rueckert (bb0010) 2009; 46
Lötjönen, Wolz, Koikkalainen, Thurfjell, Waldemar, Soininen, Rueckert (bb0130) 2010; 49
Shen, Davatzikos (bb0165) 2002; 21
Zhang, Brady, Smith (bb0215) 2001; 20
Avants, Yushkevich, Pluta, Minkoff, Korczykowski, Detre, Gee (bb0020) 2010; 49
Xue, Srinivasan, Jiang, Rutherford, Edwards, Rueckert, Hajnal (bb0210) 2007; 38
Beucher, Meyer (bb0035) 1992
Balci, Golland, Shenton, Wells (bb0025) 2007
Dijkstra (bb0060) 1959; 1
Rohlfing, Brandt, Menzel, Maurer (bb0140) 2004; 21
Wu, Rosano, Lopez-Garcia, Carter, Aizenstein (bb0200) 2007; 34
Dalal, Shi, Shen, Wang (bb0050) 2010
Balci, Golland, Wells (bb0030) 2007
Sled, Zijdenbos, Evans (bb0175) 1998; 17
Kruskal (bb0120) 1956; 7
Hamm, Davatzikos, Verma (bb0065) 2009
Tang, Fan, Shen (bb0190) 2009; 47
Hamm, Ye, Verma, Davatzikos (bb0070) 2010; 14
Collins, Pruessner (bb0045) 2010; 52
Dice (bb0055) 1945; 26
Munsell, Temlyakov, Wang (bb0135) 2009
Vercauteren, Pennec, Perchant, Ayache (bb0195) 2009; 45
Klein, Andersson, Ardekani, Ashburner, Avants, Chiang, Christensen, Collins, Gee, Hellier, Song, Jenkinson, Lepage, Rueckert, Thompson, Vercauteren, Woods, Mann, Parsey (bb0115) 2009; 46
Wu, Wang, Jia, Shen (bb0205) 2011
Khan, Cherbuin, Wen, Anstey, Sachdev, Beg (bb0100) 2011; 56
Kim, Wu, Yap, Shen (bb0105) 2010
Shattuck, Leahy (bb0155) 2002; 8
Shi, Yap, Fan, Gilmore, Lin, Shen (bb0170) 2010; 51
Shattuck, Mirza, Adisetiyo, Hojatkashani, Salamon, Narr, Poldrack, Bilder, Toga (bb0160) 2008; 39
Smith (bb0180) 2002; 17
Sethian (bb0150) 1999
Christensen, Johnson (bb0040) 2001; 20
Isgum, Staring, Rutten, Prokop, Viergever, Ginneken (bb0075) 2009; 28
Sabuncu, Yeo, Leemput, Fischl, Golland (bb0145) 2010; 29
Jia, Yap, Wu, Wang, Shen (bb0090) 2011; 54
Klein, Heide, Lips, Vulpen, Staring, Pluim (bb0110) 2008; 35
Artaechevarria, Muñoz-Barrutia, Ortiz-de-Solórzano (bb0015) 2009; 28
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, Stefano, Brady, Matthews (bb0185) 2004; 23
Jacobs, Finkelstein, Salesin (bb0080) 1995
Joshi, Davis, Jomier, Gerig (bb0095) 2004; 23
ADNI (bb0005) 2004
Jia (10.1016/j.neuroimage.2011.07.036_bb0090) 2011; 54
Christensen (10.1016/j.neuroimage.2011.07.036_bb0040) 2001; 20
Smith (10.1016/j.neuroimage.2011.07.036_bb0185) 2004; 23
Wu (10.1016/j.neuroimage.2011.07.036_bb0205) 2011
Beucher (10.1016/j.neuroimage.2011.07.036_bb0035) 1992
Vercauteren (10.1016/j.neuroimage.2011.07.036_bb0195) 2009; 45
Avants (10.1016/j.neuroimage.2011.07.036_bb0020) 2010; 49
Collins (10.1016/j.neuroimage.2011.07.036_bb0045) 2010; 52
Shattuck (10.1016/j.neuroimage.2011.07.036_bb0155) 2002; 8
Dijkstra (10.1016/j.neuroimage.2011.07.036_bb0060) 1959; 1
Jacobs (10.1016/j.neuroimage.2011.07.036_bb0080) 1995
Artaechevarria (10.1016/j.neuroimage.2011.07.036_bb0015) 2009; 28
Dalal (10.1016/j.neuroimage.2011.07.036_bb0050) 2010
Smith (10.1016/j.neuroimage.2011.07.036_bb0180) 2002; 17
Hamm (10.1016/j.neuroimage.2011.07.036_bb0070) 2010; 14
Shattuck (10.1016/j.neuroimage.2011.07.036_bb0160) 2008; 39
Joshi (10.1016/j.neuroimage.2011.07.036_bb0095) 2004; 23
Khan (10.1016/j.neuroimage.2011.07.036_bb0100) 2011; 56
Shi (10.1016/j.neuroimage.2011.07.036_bb0170) 2010; 51
Sled (10.1016/j.neuroimage.2011.07.036_bb0175) 1998; 17
Dice (10.1016/j.neuroimage.2011.07.036_bb0055) 1945; 26
Wu (10.1016/j.neuroimage.2011.07.036_bb0200) 2007; 34
Sethian (10.1016/j.neuroimage.2011.07.036_bb0150) 1999
Aljabar (10.1016/j.neuroimage.2011.07.036_bb0010) 2009; 46
Xue (10.1016/j.neuroimage.2011.07.036_bb0210) 2007; 38
Zhang (10.1016/j.neuroimage.2011.07.036_bb0215) 2001; 20
Kruskal (10.1016/j.neuroimage.2011.07.036_bb0120) 1956; 7
Balci (10.1016/j.neuroimage.2011.07.036_bb0025) 2007
Hamm (10.1016/j.neuroimage.2011.07.036_bb0065) 2009
Langerak (10.1016/j.neuroimage.2011.07.036_bb0125) 2010; 29
Sabuncu (10.1016/j.neuroimage.2011.07.036_bb0145) 2010; 29
ADNI (10.1016/j.neuroimage.2011.07.036_bb0005)
Klein (10.1016/j.neuroimage.2011.07.036_bb0115) 2009; 46
Rohlfing (10.1016/j.neuroimage.2011.07.036_bb0140) 2004; 21
Munsell (10.1016/j.neuroimage.2011.07.036_bb0135) 2009
Tang (10.1016/j.neuroimage.2011.07.036_bb0190) 2009; 47
Jia (10.1016/j.neuroimage.2011.07.036_bb0085) 2010; 51
Isgum (10.1016/j.neuroimage.2011.07.036_bb0075) 2009; 28
Kim (10.1016/j.neuroimage.2011.07.036_bb0105) 2010
Shen (10.1016/j.neuroimage.2011.07.036_bb0165) 2002; 21
Balci (10.1016/j.neuroimage.2011.07.036_bb0030) 2007
Klein (10.1016/j.neuroimage.2011.07.036_bb0110) 2008; 35
Lötjönen (10.1016/j.neuroimage.2011.07.036_bb0130) 2010; 49
References_xml – volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: bb0055
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 49
  start-page: 2352
  year: 2010
  end-page: 2365
  ident: bb0130
  article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images
  publication-title: NeuroImage
– volume: 56
  start-page: 126
  year: 2011
  end-page: 139
  ident: bb0100
  article-title: Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): validation on hippocampus segmentation
  publication-title: NeuroImage
– volume: 45
  start-page: S61
  year: 2009
  end-page: 72
  ident: bb0195
  article-title: Diffeomorphic demons: efficient non-parametric image registration
  publication-title: NeuroImage
– volume: 23
  start-page: S151
  year: 2004
  end-page: S160
  ident: bb0095
  article-title: Unbiased diffeomorphic atlas construction for computational anatomy
  publication-title: NeuroImage
– start-page: 105
  year: 2007
  end-page: 121
  ident: bb0030
  article-title: Non-rigid groupwise registration using B-spline deformation model
  publication-title: Open Source and Open Data for MICCAI
– volume: 47
  start-page: 1277
  year: 2009
  end-page: 1287
  ident: bb0190
  article-title: RABBIT: rapid alignment of brains by building intermediate templates
  publication-title: NeuroImage
– year: 2004
  ident: bb0005
– volume: 7
  start-page: 48
  year: 1956
  end-page: 50
  ident: bb0120
  article-title: On the shortest spanning subtree of a graph and the traveling salesman problem
  publication-title: Proceedings of the American Mathematical Society
– volume: 28
  start-page: 1266
  year: 2009
  end-page: 1277
  ident: bb0015
  article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data
  publication-title: IEEE Transactions on Medical Imaging
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: bb0180
  article-title: Fast robust automated brain extraction
  publication-title: Human Brain Mapping
– volume: 20
  start-page: 568
  year: 2001
  end-page: 582
  ident: bb0040
  article-title: Consistent Image Registration
  publication-title: IEEE Transactions on Medical Imaging
– volume: 46
  start-page: 726
  year: 2009
  end-page: 738
  ident: bb0010
  article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy
  publication-title: NeuroImage
– start-page: 349
  year: 2010
  end-page: 356
  ident: bb0050
  article-title: Multiple cortical surface correspondence using pairwise shape similarity
  publication-title: MICCAI 2010, Beijing, China
– volume: 51
  start-page: 1057
  year: 2010
  end-page: 1070
  ident: bb0085
  article-title: ABSORB: atlas building by self-organized registration and bundling
  publication-title: NeuroImage
– volume: 39
  start-page: 1064
  year: 2008
  end-page: 1080
  ident: bb0160
  article-title: Construction of a 3D probabilistic atlas of human cortical structures
  publication-title: NeuroImage
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: bb0215
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm
  publication-title: IEEE Trans. on Medical Imaging
– volume: 28
  start-page: 1000
  year: 2009
  end-page: 1010
  ident: bb0075
  article-title: Multi-atlas-based segmentation with local decision fusion — application to cardiac and aortic segmentation in CT scans
  publication-title: IEEE Transactions on Medical Imaging
– volume: 8
  start-page: 129
  year: 2002
  end-page: 142
  ident: bb0155
  article-title: BrainSuite: an automated cortical surface identification tool
  publication-title: Medical Image Analysis
– volume: 49
  start-page: 2457
  year: 2010
  end-page: 2466
  ident: bb0020
  article-title: The optimal template effect in hippocampus studies of diseased populations
  publication-title: NeuroImage
– volume: 51
  start-page: 684
  year: 2010
  end-page: 693
  ident: bb0170
  article-title: Construction of multi-region–multi-reference atlases for neonatal brain MRI segmentation
  publication-title: NeuroImage
– volume: 35
  start-page: 1407
  year: 2008
  end-page: 1417
  ident: bb0110
  article-title: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information
  publication-title: Medical Physics
– volume: 1
  start-page: 269
  year: 1959
  end-page: 271
  ident: bb0060
  article-title: A note on two problems in connexion with graphs
  publication-title: Numerische Mathematik
– volume: 54
  start-page: 928
  year: 2011
  end-page: 939
  ident: bb0090
  article-title: Intermediate templates guided groupwise registration of diffusion tensor images
  publication-title: NeuroImage
– start-page: 277
  year: 1995
  end-page: 286
  ident: bb0080
  article-title: Fast multi-resolution image querying
  publication-title: SIGGRAPH
– volume: 21
  start-page: 1428
  year: 2004
  end-page: 1442
  ident: bb0140
  article-title: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains
  publication-title: NeuroImage
– volume: 34
  start-page: 1612
  year: 2007
  end-page: 1618
  ident: bb0200
  article-title: Optimum template selection for atlas-based segmentation
  publication-title: NeuroImage
– start-page: 23
  year: 2007
  end-page: 30
  ident: bb0025
  article-title: Free-form B-spline deformation model for groupwise registration
  publication-title: MICCAI 2007
– volume: 29
  start-page: 2000
  year: 2010
  end-page: 2008
  ident: bb0125
  article-title: Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE)
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 306
  year: 2010
  end-page: 314
  ident: bb0105
  article-title: A generalized learning based framework for fast brain image registration
  publication-title: MICCAI 2010, Beijing, China
– volume: 23
  start-page: 208
  year: 2004
  end-page: 219
  ident: bb0185
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
– year: 2011
  ident: bb0205
  article-title: Feature-based groupwise registration by hierarchical anatomical correspondence detection
  publication-title: Human Brain Mapping
– year: 1999
  ident: bb0150
  article-title: Level Set Methods and Fast Marching Methods
– volume: 21
  start-page: 1421
  year: 2002
  end-page: 1439
  ident: bb0165
  article-title: HAMMER: hierarchical attribute matching mechanism for elastic registration
  publication-title: IEEE Trans. on Medical Imaging
– volume: 46
  start-page: 786
  year: 2009
  end-page: 802
  ident: bb0115
  article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
  publication-title: NeuroImage
– volume: 14
  start-page: 633
  year: 2010
  end-page: 642
  ident: bb0070
  article-title: GRAM: a framework for geodesic registration on anatomical manifolds
  publication-title: Medical Image Analysis
– volume: 29
  start-page: 1714
  year: 2010
  end-page: 1729
  ident: bb0145
  article-title: A generative model for image segmentation based on label fusion
  publication-title: IEEE Transactions on Medical Imaging
– year: 1992
  ident: bb0035
  article-title: The morphological approach to segmentation: the watershed transformation
  publication-title: Mathematical Morphology in Image Processing
– start-page: 840
  year: 2009
  end-page: 847
  ident: bb0135
  article-title: Fast multiple shape correspondence by pre-organizing shape instances
  publication-title: IEEE Conference on CVPR
– volume: 52
  start-page: 1355
  year: 2010
  end-page: 1366
  ident: bb0045
  article-title: Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion
  publication-title: NeuroImage
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  ident: bb0175
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 680
  year: 2009
  end-page: 687
  ident: bb0065
  article-title: Efficient large deformation registration via geodesics on a learned manifold of images
  publication-title: MICCAI 2009, London, UK
– volume: 38
  start-page: 461
  year: 2007
  end-page: 477
  ident: bb0210
  article-title: Automatic segmentation and reconstruction of the cortex from neonatal MRI
  publication-title: NeuroImage
– volume: 56
  start-page: 126
  year: 2011
  ident: 10.1016/j.neuroimage.2011.07.036_bb0100
  article-title: Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): validation on hippocampus segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.078
– volume: 49
  start-page: 2352
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.036_bb0130
  article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.026
– volume: 28
  start-page: 1266
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.036_bb0015
  article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2009.2014372
– volume: 28
  start-page: 1000
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.036_bb0075
  article-title: Multi-atlas-based segmentation with local decision fusion — application to cardiac and aortic segmentation in CT scans
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2008.2011480
– volume: 46
  start-page: 786
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.036_bb0115
  article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.12.037
– year: 1999
  ident: 10.1016/j.neuroimage.2011.07.036_bb0150
– volume: 20
  start-page: 568
  year: 2001
  ident: 10.1016/j.neuroimage.2011.07.036_bb0040
  article-title: Consistent Image Registration
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.932742
– start-page: 23
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.036_bb0025
  article-title: Free-form B-spline deformation model for groupwise registration
– start-page: 840
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.036_bb0135
  article-title: Fast multiple shape correspondence by pre-organizing shape instances
  publication-title: IEEE Conference on CVPR
– start-page: 680
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.036_bb0065
  article-title: Efficient large deformation registration via geodesics on a learned manifold of images
– ident: 10.1016/j.neuroimage.2011.07.036_bb0005
– volume: 14
  start-page: 633
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.036_bb0070
  article-title: GRAM: a framework for geodesic registration on anatomical manifolds
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2010.06.001
– volume: 7
  start-page: 48
  year: 1956
  ident: 10.1016/j.neuroimage.2011.07.036_bb0120
  article-title: On the shortest spanning subtree of a graph and the traveling salesman problem
  publication-title: Proceedings of the American Mathematical Society
  doi: 10.1090/S0002-9939-1956-0078686-7
– volume: 29
  start-page: 1714
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.036_bb0145
  article-title: A generative model for image segmentation based on label fusion
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2010.2050897
– start-page: 349
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.036_bb0050
  article-title: Multiple cortical surface correspondence using pairwise shape similarity
– volume: 8
  start-page: 129
  year: 2002
  ident: 10.1016/j.neuroimage.2011.07.036_bb0155
  article-title: BrainSuite: an automated cortical surface identification tool
  publication-title: Medical Image Analysis
  doi: 10.1016/S1361-8415(02)00054-3
– volume: 34
  start-page: 1612
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.036_bb0200
  article-title: Optimum template selection for atlas-based segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.07.050
– volume: 21
  start-page: 1428
  year: 2004
  ident: 10.1016/j.neuroimage.2011.07.036_bb0140
  article-title: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.11.010
– volume: 21
  start-page: 1421
  year: 2002
  ident: 10.1016/j.neuroimage.2011.07.036_bb0165
  article-title: HAMMER: hierarchical attribute matching mechanism for elastic registration
  publication-title: IEEE Trans. on Medical Imaging
  doi: 10.1109/TMI.2002.803111
– volume: 39
  start-page: 1064
  year: 2008
  ident: 10.1016/j.neuroimage.2011.07.036_bb0160
  article-title: Construction of a 3D probabilistic atlas of human cortical structures
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.09.031
– volume: 17
  start-page: 87
  year: 1998
  ident: 10.1016/j.neuroimage.2011.07.036_bb0175
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.668698
– start-page: 105
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.036_bb0030
  article-title: Non-rigid groupwise registration using B-spline deformation model
– volume: 45
  start-page: S61
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.036_bb0195
  article-title: Diffeomorphic demons: efficient non-parametric image registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.040
– volume: 38
  start-page: 461
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.036_bb0210
  article-title: Automatic segmentation and reconstruction of the cortex from neonatal MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.07.030
– volume: 20
  start-page: 45
  year: 2001
  ident: 10.1016/j.neuroimage.2011.07.036_bb0215
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm
  publication-title: IEEE Trans. on Medical Imaging
  doi: 10.1109/42.906424
– volume: 29
  start-page: 2000
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.036_bb0125
  article-title: Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE)
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2010.2057442
– volume: 23
  start-page: 208
  year: 2004
  ident: 10.1016/j.neuroimage.2011.07.036_bb0185
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 46
  start-page: 726
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.036_bb0010
  article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.018
– volume: 26
  start-page: 297
  year: 1945
  ident: 10.1016/j.neuroimage.2011.07.036_bb0055
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 51
  start-page: 684
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.036_bb0170
  article-title: Construction of multi-region–multi-reference atlases for neonatal brain MRI segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.02.025
– volume: 54
  start-page: 928
  year: 2011
  ident: 10.1016/j.neuroimage.2011.07.036_bb0090
  article-title: Intermediate templates guided groupwise registration of diffusion tensor images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.019
– volume: 47
  start-page: 1277
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.036_bb0190
  article-title: RABBIT: rapid alignment of brains by building intermediate templates
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.043
– year: 1992
  ident: 10.1016/j.neuroimage.2011.07.036_bb0035
  article-title: The morphological approach to segmentation: the watershed transformation
– volume: 52
  start-page: 1355
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.036_bb0045
  article-title: Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.04.193
– volume: 17
  start-page: 143
  year: 2002
  ident: 10.1016/j.neuroimage.2011.07.036_bb0180
  article-title: Fast robust automated brain extraction
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.10062
– volume: 35
  start-page: 1407
  year: 2008
  ident: 10.1016/j.neuroimage.2011.07.036_bb0110
  article-title: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information
  publication-title: Medical Physics
  doi: 10.1118/1.2842076
– start-page: 277
  year: 1995
  ident: 10.1016/j.neuroimage.2011.07.036_bb0080
  article-title: Fast multi-resolution image querying
  publication-title: SIGGRAPH
– start-page: 306
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.036_bb0105
  article-title: A generalized learning based framework for fast brain image registration
– volume: 1
  start-page: 269
  year: 1959
  ident: 10.1016/j.neuroimage.2011.07.036_bb0060
  article-title: A note on two problems in connexion with graphs
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01386390
– volume: 51
  start-page: 1057
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.036_bb0085
  article-title: ABSORB: atlas building by self-organized registration and bundling
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.010
– volume: 49
  start-page: 2457
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.036_bb0020
  article-title: The optimal template effect in hippocampus studies of diseased populations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.09.062
– volume: 23
  start-page: S151
  year: 2004
  ident: 10.1016/j.neuroimage.2011.07.036_bb0095
  article-title: Unbiased diffeomorphic atlas construction for computational anatomy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.068
– year: 2011
  ident: 10.1016/j.neuroimage.2011.07.036_bb0205
  article-title: Feature-based groupwise registration by hierarchical anatomical correspondence detection
  publication-title: Human Brain Mapping
SSID ssj0009148
Score 2.4242578
Snippet In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 422
SubjectTerms Accuracy
Algorithms
Brain - anatomy & histology
Brain Mapping - methods
Computer graphics
Groupwise registration
Groupwise segmentation
Humans
Image Interpretation, Computer-Assisted - methods
Intermediate template
Labeling
Methods
Multiple atlases
Pattern Recognition, Automated - methods
Software
SummonAdditionalLinks – databaseName: Proquest Health and Medical Complete
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBddC2Mvpe2-0qbDD3tVK8uyZNGHUkZDNmhhsEDehCTbW8bqZEvy__dOlp1l60ZerTuwz_fxQzr9jpD3nueQAWRNteeCCqsctUJaqgqpZC1KaQOV0t29HE_Ep2k-jRtuy9hW2eXEkKjLucc98ksELlwA3ObXi58Up0bh6WocofGMHCB1GXq1mqoN6W4q2qtweUYLEIidPG1_V-CLnD1A1EYiT3XBAlHzk-Xpb_j5Zxflb2VpdEQOI55MbloHOCZ7VXNCnt_FE_OX5PPHQJsMOS0JvYPUrgAvUyxeZXwS3i5ZVl8f4j2kJsHd2QTPq6Mgjm_oCHZfkcno9suHMY1jFKgHeLSiwtkiq7TTgtXSuoyXKVQtW7vMewAHnuWuYNZb6SH8GXeASFDOuVRXrNQie032m3lTvSUJxztaoAmB64TKpa4Fr1nquFY-z3w6IKqznvGRYxxHXfwwXTPZd7Oxu0G7G6YM2H1A0l5z0fJs7KCjux9kunukkPkMFIMddK963Yg1Wgyxo_aw8wcTY35pNh46IEm_DNGKRzC2qebrpSl0UQjAzOzfIho5_QHn6gF50zpYbxCAYwERgpm3XK8XQK7w7ZVm9i1whmcYHrw4_f-Ln5EX8JU8bDHxIdlf_VpX5wC6Vu5diKxHceUuqA
  priority: 102
  providerName: ProQuest
Title Iterative multi-atlas-based multi-image segmentation with tree-based registration
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811911008135
https://dx.doi.org/10.1016/j.neuroimage.2011.07.036
https://www.ncbi.nlm.nih.gov/pubmed/21807102
https://www.proquest.com/docview/1507246062
https://www.proquest.com/docview/898841930
https://www.proquest.com/docview/902362329
https://pubmed.ncbi.nlm.nih.gov/PMC3195928
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcQSGgvE_tg6wYoD3s1dRzHjrUnVoHKNio-pb5ZtptA0QiIllf-du4cJ6zbkCrtpVGTOym93scv8d3PhHzxPIcMICuqPRdUWOWoFdJSVUglKzGRNlApHY3k8EJ8H-fjFTJoZ2GwrTLm_ianh2wdz_SjNft302n_DJABlBt43kB-mjTDQXMhFHr57uNzm4dORTMOl2cUpWM3T9PjFTgjpzcQuZHMU-2yQNb8zxL1NwT9s5Pyt9J0sEFeR0yZ7DW3_YaslPVbsn4UV83fkZPDQJ0MeS0J_YPUzgEzUyxgk3gm3F0yKy9v4ixSneAb2gTXrKMgbuHQkuy-JxcH--eDIY1bKVAPEGlOhbNFVmqnBaukdRmfpFC5bOUy7wEgeJa7gllvpYcUwLgDVIJyzqW6ZBMtsk2yWt_W5UeScJzTAk0IXidULnUleMVSx7XyeebTHlGt9YyPPOO43cUv0zaUXZtnuxu0u2HKgN17JO007xqujSV0dPsHmXaWFLKfgYKwhO7XTnfB55bU3mr9wcS4nxmE11zAQyHvkaS7DBGLyzC2Lm8fZqbQRSEAN7OXRTTy-gPW1T3yoXGwziAAyQIqBDMvuF4ngHzhi1fq6VXgDc-QSIgXn_7rZ38mr-AbD2-h-BZZnd8_lNuAy-ZuJwQefKqx2iFre4PTn8d4PPwxHMHx2_7o-PQJr9o_tA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgEXxGdZKJADHA2O49ixEEIIqHZptxJSK-3N2E4CRTRb2K0Qf4rfyNixs5Qv7aXXjSfKTuw3L_bMG4BHjpWIAKIlyjFOuJGWGC4MkZWQouW1MEFKabovxof87aycbcCPVAvj0yoTJgagrufO75E_9cSFcaTb7MXJF-K7RvnT1dRCo58Wu833b_jJtng-eY3v9zFjO28OXo1J7CpAHLKFJeHWVEWjrOK0FcYWrM4RxE1rC-cwVjpa2ooaZ4TD1UCZxQDtx1mbq4bWihd43wtwEQMv9R97ciZXIr8570vvyoJUea5i5lCfTxb0KY-OESWicKh8QoMw9F_D4Z909_eszV_C4M41uBr5a_ayn3DXYaPpbsClaTyhvwnvJkGmGTE0C7mKxCyRnxMfLOv4S3i6bNF8OI51T13md4Mzfz4eB_p2EUnQ9xYcnouDb8NmN--aO5AxXxOGlggUlstSqJazluaWKenKwuUjkMl72kVNc99a47NOyWuf9Mrv2vtdU6nR7yPIB8uTXtdjDRuVXpBOdauItBqDzxq2zwbbyG16zrKm9XaaDzpizEKvVsQIsuEyooM_8jFdMz9d6EpVFUeOTv89RPkeAsir1Qi2-gk2OATpX2Cg6OYzU28Y4LXJz17pjj4GjfLCixax6u7_H_whXB4fTPf03mR_9x5cwX_MwvYW24bN5dfT5j4SvqV9EFZZBu_Pe1n_BPnTbBk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQby7pUAOcDR1HMeOhRAC2lWX0lVBVOrN2E4CRW22sFsh_hq_jrHjZCkv7aXXjSfKTubxxZ75BuCRYzlGAFET5Rgn3EhLDBeGyEJIUfNSmECltD8Ru4f89VF-tAI_ul4YX1bZxcQQqMup83vkWx64MI5wm23VsSziYHv0_OwL8ROk_ElrN06jNZG96vs3_HybPRtv47t-zNho5_2rXRInDBCHyGFOuDVFVimrOK2FsRkrUwzopraZc5g3Hc1tQY0zwqFnUGYxWft11qaqoqXiGd73CqxK_1U0gNWXO5ODdwvK35S3jXh5Roo0VbGOqK0uC2yVx6cYMyKNqHxCA030X5Pjn-D39xrOX5Li6Dpci2g2edGa3w1YqZqbsLYfz-tvwdtxIG3GiJqEykVi5ojWiU-dZfwlPF0yqz6exi6oJvF7w4k_LY8L_fCIjt73NhxeiorvwKCZNtU6JMx3iKEkhg3LZS5UzVlNU8uUdHnm0iHITnvaRYZzP2jjRHelbJ_1Qu_a611TqVHvQ0h7ybOW5WMJGdW9IN11sWLc1ZiKlpB92stGpNMimCWlNzt70DHizPTCP4aQ9JcxVvgDINNU0_OZLlRRcETs9N9LlJ8ogChbDeFua2C9QhAMBjyKar5gev0Cz1R-8Upz_CkwlmeewogVG_9_8Iewhi6t34wne_fgKv5hFva62CYM5l_Pq_uI_ub2QXSzBD5ctmf_BPPIcbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+multi-atlas-based+multi-image+segmentation+with+tree-based+registration&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Jia%2C+Hongjun&rft.au=Yap%2C+Pew-Thian&rft.au=Shen%2C+Dinggang&rft.date=2012-01-02&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=59&rft.issue=1&rft.spage=422&rft.epage=430&rft_id=info:doi/10.1016%2Fj.neuroimage.2011.07.036&rft.externalDocID=S1053811911008135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon