Call for Participation: Collaborative Benchmarking of Functional-Structural Root Architecture Models. The Case of Root Water Uptake
Three-dimensional models of root growth, architecture and function are becoming important tools that aid the design of agricultural management schemes and the selection of beneficial root traits. However, while benchmarking is common in many disciplines that use numerical models, such as natural and...
Saved in:
Published in | Frontiers in plant science Vol. 11; p. 316 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers
31.03.2020
Frontiers Research Foundation Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Three-dimensional models of root growth, architecture and function are becoming important tools that aid the design of agricultural management schemes and the selection of beneficial root traits. However, while benchmarking is common in many disciplines that use numerical models, such as natural and engineering sciences, functional-structural root architecture models have never been systematically compared. The following reasons might induce disagreement between the simulation results of different models: different representation of root growth, sink term of root water and solute uptake and representation of the rhizosphere. Presently, the extent of discrepancies is unknown, and a framework for quantitatively comparing functional-structural root architecture models is required. We propose, in a first step, to define benchmarking scenarios that test individual components of complex models: root architecture, water flow in soil and water flow in roots. While the latter two will focus mainly on comparing numerical aspects, the root architectural models have to be compared at a conceptual level as they generally differ in process representation. Therefore, defining common inputs that allow recreating reference root systems in all models will be a key challenge. In a second step, benchmarking scenarios for the coupled problems are defined. We expect that the results of step 1 will enable us to better interpret differences found in step 2. This benchmarking will result in a better understanding of the different models and contribute toward improving them. Improved models will allow us to simulate various scenarios with greater confidence and avoid bugs, numerical errors or conceptual misunderstandings. This work will set a standard for future model development. |
---|---|
AbstractList | Three-dimensional models of root growth, architecture and function are becoming important tools that aid the design of agricultural management schemes and the selection of beneficial root traits. However, while benchmarking is common in many disciplines that use numerical models, such as natural and engineering sciences, functional-structural root architecture models have never been systematically compared. The following reasons might induce disagreement between the simulation results of different models: different representation of root growth, sink term of root water and solute uptake and representation of the rhizosphere. Presently, the extent of discrepancies is unknown, and a framework for quantitatively comparing functional-structural root architecture models is required. We propose, in a first step, to define benchmarking scenarios that test individual components of complex models: root architecture, water flow in soil and water flow in roots. While the latter two will focus mainly on comparing numerical aspects, the root architectural models have to be compared at a conceptual level as they generally differ in process representation. Therefore, defining common inputs that allow recreating reference root systems in all models will be a key challenge. In a second step, benchmarking scenarios for the coupled problems are defined. We expect that the results of step 1 will enable us to better interpret differences found in step 2. This benchmarking will result in a better understanding of the different models and contribute toward improving them. Improved models will allow us to simulate various scenarios with greater confidence and avoid bugs, numerical errors or conceptual misunderstandings. This work will set a standard for future model development. Three-dimensional models of root growth, architecture and function are becoming important tools that aid the design of agricultural management schemes and the selection of beneficial root traits. However, while benchmarking is common in many disciplines that use numerical models, such as natural and engineering sciences, functional-structural root architecture models have never been systematically compared. The following reasons might induce disagreement between the simulation results of different models: different representation of root growth, sink term of root water and solute uptake and representation of the rhizosphere. Presently, the extent of discrepancies is unknown, and a framework for quantitatively comparing functional-structural root architecture models is required. We propose, in a first step, to define benchmarking scenarios that test individual components of complex models: root architecture, water flow in soil and water flow in roots. While the latter two will focus mainly on comparing numerical aspects, the root architectural models have to be compared at a conceptual level as they generally differ in process representation. Therefore, defining common inputs that allow recreating reference root systems in all models will be a key challenge. In a second step, benchmarking scenarios for the coupled problems are defined. We expect that the results of step 1 will enable us to better interpret differences found in step 2. This benchmarking will result in a better understanding of the different models and contribute toward improving them. Improved models will allow us to simulate various scenarios with greater confidence and avoid bugs, numerical errors or conceptual misunderstandings. This work will set a standard for future model development.Three-dimensional models of root growth, architecture and function are becoming important tools that aid the design of agricultural management schemes and the selection of beneficial root traits. However, while benchmarking is common in many disciplines that use numerical models, such as natural and engineering sciences, functional-structural root architecture models have never been systematically compared. The following reasons might induce disagreement between the simulation results of different models: different representation of root growth, sink term of root water and solute uptake and representation of the rhizosphere. Presently, the extent of discrepancies is unknown, and a framework for quantitatively comparing functional-structural root architecture models is required. We propose, in a first step, to define benchmarking scenarios that test individual components of complex models: root architecture, water flow in soil and water flow in roots. While the latter two will focus mainly on comparing numerical aspects, the root architectural models have to be compared at a conceptual level as they generally differ in process representation. Therefore, defining common inputs that allow recreating reference root systems in all models will be a key challenge. In a second step, benchmarking scenarios for the coupled problems are defined. We expect that the results of step 1 will enable us to better interpret differences found in step 2. This benchmarking will result in a better understanding of the different models and contribute toward improving them. Improved models will allow us to simulate various scenarios with greater confidence and avoid bugs, numerical errors or conceptual misunderstandings. This work will set a standard for future model development. |
Author | Doussan, Claude Lobet, Guillaume Javaux, Mathieu Black, Christopher K. Schnepf, Andrea Vereecken, Harry Schmidt, Volker Koch, Axelle Leitner, Daniel Weber, Matthias Delory, Benjamin M. Landl, Magdalena Postma, Johannes A. Priesack, Eckart Koch, Timo Meunier, Félicien Mai, Trung Hieu Couvreur, Valentin Vanderborght, Jan Petrich, Lukas |
AuthorAffiliation | 6 INRAE, Avignon Université, EMMAH , Avignon , France 4 Earth and Life Institute, Agronomy, Université Catholique de Louvain , Louvain-la-Neuve , Belgium 1 Institut für Bio- und Geowissenschaften: Agrosphäre (IBG-3), Forschungszentrum Jülich GmbH , Jülich , Germany 11 Department of Earth and Environment, Boston University , Boston, MA , United States 3 Department of Plant Science, The Pennsylvania State University , University Park, PA , United States 10 CAVElab–Computational and Applied Vegetation Ecology, Ghent University , Ghent , Belgium 2 International Soil Modelling Consortium ISMC , Jülich , Germany 12 Institute of Stochastics, Ulm University , Ulm , Germany 7 Earth and Life Institute, Environmental Sciences, Université Catholique de Louvain , Louvain-la-Neuve , Belgium 13 Institut für Bio- und Geowissenschaften: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH , Jülich , Germany 8 Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart , Stuttgart , Germa |
AuthorAffiliation_xml | – name: 12 Institute of Stochastics, Ulm University , Ulm , Germany – name: 14 Institute of Biochemical Plant Pathology, Helmholtz Zentrum München , Neuherberg , Germany – name: 1 Institut für Bio- und Geowissenschaften: Agrosphäre (IBG-3), Forschungszentrum Jülich GmbH , Jülich , Germany – name: 9 Simulationswerkstatt , Leonding , Austria – name: 7 Earth and Life Institute, Environmental Sciences, Université Catholique de Louvain , Louvain-la-Neuve , Belgium – name: 2 International Soil Modelling Consortium ISMC , Jülich , Germany – name: 5 Institute of Ecology, Leuphana University Lüneburg , Lüneburg , Germany – name: 10 CAVElab–Computational and Applied Vegetation Ecology, Ghent University , Ghent , Belgium – name: 4 Earth and Life Institute, Agronomy, Université Catholique de Louvain , Louvain-la-Neuve , Belgium – name: 3 Department of Plant Science, The Pennsylvania State University , University Park, PA , United States – name: 11 Department of Earth and Environment, Boston University , Boston, MA , United States – name: 13 Institut für Bio- und Geowissenschaften: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH , Jülich , Germany – name: 6 INRAE, Avignon Université, EMMAH , Avignon , France – name: 8 Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart , Stuttgart , Germany |
Author_xml | – sequence: 1 givenname: Andrea surname: Schnepf fullname: Schnepf, Andrea – sequence: 2 givenname: Christopher K. surname: Black fullname: Black, Christopher K. – sequence: 3 givenname: Valentin surname: Couvreur fullname: Couvreur, Valentin – sequence: 4 givenname: Benjamin M. surname: Delory fullname: Delory, Benjamin M. – sequence: 5 givenname: Claude surname: Doussan fullname: Doussan, Claude – sequence: 6 givenname: Axelle surname: Koch fullname: Koch, Axelle – sequence: 7 givenname: Timo surname: Koch fullname: Koch, Timo – sequence: 8 givenname: Mathieu surname: Javaux fullname: Javaux, Mathieu – sequence: 9 givenname: Magdalena surname: Landl fullname: Landl, Magdalena – sequence: 10 givenname: Daniel surname: Leitner fullname: Leitner, Daniel – sequence: 11 givenname: Guillaume surname: Lobet fullname: Lobet, Guillaume – sequence: 12 givenname: Trung Hieu surname: Mai fullname: Mai, Trung Hieu – sequence: 13 givenname: Félicien surname: Meunier fullname: Meunier, Félicien – sequence: 14 givenname: Lukas surname: Petrich fullname: Petrich, Lukas – sequence: 15 givenname: Johannes A. surname: Postma fullname: Postma, Johannes A. – sequence: 16 givenname: Eckart surname: Priesack fullname: Priesack, Eckart – sequence: 17 givenname: Volker surname: Schmidt fullname: Schmidt, Volker – sequence: 18 givenname: Jan surname: Vanderborght fullname: Vanderborght, Jan – sequence: 19 givenname: Harry surname: Vereecken fullname: Vereecken, Harry – sequence: 20 givenname: Matthias surname: Weber fullname: Weber, Matthias |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32296451$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-03163308$$DView record in HAL https://www.osti.gov/servlets/purl/1628300$$D View this record in Osti.gov |
BookMark | eNp1Uk1v1DAQjVARLaVnbsjiBIfd-iN2HA5Iy4rSSotA0ApuluM4jdusvdjOSpz549jZLmorkUNiT968mXnznhcH1lldFC8RnBPC69NuM4Q5hhjOISSIPSmOEGPlrGT458G982FxEsINTA-FsK6rZ8UhwbhmJUVHxZ-lHAbQOQ--Sh-NMhsZjbPvwNINg2ycT9etBh-0Vf1a-ltjr4HrwNloVcbJYfY9-lHF0csBfHMugoVXvYk6hzT47FqdmgSXvQZLGXTOnVA_ZNQeXG2ivNUviqedHII-ufseF1dnHy-X57PVl08Xy8VqpmhJ44yUvEmNq5JUdcObRnHNO8oUbHENKdcUlZB1XErcpNGRhBWlFaSIp3OVVCLHxcWOt3XyRmy8SQP9Fk4aMQWcvxaTBoMWVckaonmlCUQlhk1Tqpq0Xdt1mGLeVonr_Y5rMzZr3SptY1LgAenDP9b04tptRYUIo4Qlgtc7AheiEUFlyXrlrE3KCcQwJzB3_HYH6h9xny9WIsfy3gmBfIsSFuywyptEaYVNyxMIcorTG8M6Q97cNe3dr1GHKNYmKJ0WbbUbg8Ckhqys2aTVq_vz_Su-d04C0H05F4LXnUgjTN5J45ohlRTZpCKbVGSTismkKe_0Ud6e-n8ZfwF0XOc8 |
CitedBy_id | crossref_primary_10_1038_s41598_021_90062_4 crossref_primary_10_1007_s11104_023_06349_0 crossref_primary_10_1016_j_camwa_2022_01_021 crossref_primary_10_1016_j_jcp_2021_110823 crossref_primary_10_7717_peerj_9750 crossref_primary_10_3389_fpls_2022_824720 crossref_primary_10_1093_insilicoplants_diad005 crossref_primary_10_1111_pce_14284 crossref_primary_10_3389_fpls_2022_798741 crossref_primary_10_1093_aob_mcab120 crossref_primary_10_1093_insilicoplants_diac005 crossref_primary_10_1017_S0014479725000018 |
Cites_doi | 10.1093/jxb/ery361 10.1093/oxfordjournals.aob.a085488 10.1051/agro/2009001 10.12688/f1000research.13541.1 10.1007/s11104-010-0639-0 10.1016/j.jtbi.2003.12.012 10.1111/j.1442-9993.2001.01070.pp.x 10.1111/nph.14641 10.1007/s00607-008-0003-x 10.1007/s10596-015-9499-2 10.1007/s11104-013-1769-y 10.2136/sssaj1980.03615995004400050002x 10.2136/vzj2007.0115 10.2136/vzj2007.0114 10.1111/ppl.12654 10.1007/s11104-005-0866-y 10.2136/vzj2008.0116 10.1093/aob/mcx221 10.5194/bg-9-3857-2012 10.1016/j.proenv.2013.06.005 10.1093/insilicoplants/diz012 10.1111/j.1469-8137.1987.tb04683.x 10.18419/darus-471 10.1007/s11104-018-3890-4 10.1007/978-3-642-60763-9 10.2136/vzj2017.12.0210 10.1104/pp.111.179895 10.1101/808972 10.1007/s11104-009-9984-2 10.1016/j.apm.2017.08.011 10.2136/vzj2016.07.0061 10.5281/zenodo.2479595 10.1016/0304-3800(95)00084-9 10.1007/s11104-015-2673-4 10.1104/pp.18.01006 10.5194/hess-16-2957-2012 10.2136/vzj2017.12.0212 10.1016/j.agrformet.2019.01.034 10.1016/j.fcr.2007.03.014 10.1111/1365-2745.12877 10.1104/pp.18.00104 10.3389/fpls.2019.01358 10.3732/ajb.1700046 10.5194/hess-18-1723-2014 10.1006/anbo.2000.1149 10.1111/pce.12983 10.1007/s11104-019-04068-z 10.5194/gmd-9-1937-2016 10.1006/anbo.1997.0540 10.3732/ajb.94.9.1506 10.1016/j.agrformet.2019.02.037 10.1016/j.ecolmodel.2013.11.014 10.1016/j.advwatres.2011.03.007 10.1007/s11104-018-3595-8 10.1093/aob/mcw154 10.2136/vzj2005.0206 10.1023/B:PLSO.0000016540.47134.03 10.1111/j.1469-8137.1991.tb00019.x 10.1016/j.envsoft.2014.09.004 10.1002/nme.2579 10.1104/pp.114.253625 10.2134/agronj2003.1362 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Schnepf, Black, Couvreur, Delory, Doussan, Koch, Koch, Javaux, Landl, Leitner, Lobet, Mai, Meunier, Petrich, Postma, Priesack, Schmidt, Vanderborght, Vereecken and Weber. info:eu-repo/semantics/openAccess Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2020 Schnepf, Black, Couvreur, Delory, Doussan, Koch, Koch, Javaux, Landl, Leitner, Lobet, Mai, Meunier, Petrich, Postma, Priesack, Schmidt, Vanderborght, Vereecken and Weber. 2020 Schnepf, Black, Couvreur, Delory, Doussan, Koch, Koch, Javaux, Landl, Leitner, Lobet, Mai, Meunier, Petrich, Postma, Priesack, Schmidt, Vanderborght, Vereecken and Weber |
Copyright_xml | – notice: Copyright © 2020 Schnepf, Black, Couvreur, Delory, Doussan, Koch, Koch, Javaux, Landl, Leitner, Lobet, Mai, Meunier, Petrich, Postma, Priesack, Schmidt, Vanderborght, Vereecken and Weber. – notice: info:eu-repo/semantics/openAccess – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2020 Schnepf, Black, Couvreur, Delory, Doussan, Koch, Koch, Javaux, Landl, Leitner, Lobet, Mai, Meunier, Petrich, Postma, Priesack, Schmidt, Vanderborght, Vereecken and Weber. 2020 Schnepf, Black, Couvreur, Delory, Doussan, Koch, Koch, Javaux, Landl, Leitner, Lobet, Mai, Meunier, Petrich, Postma, Priesack, Schmidt, Vanderborght, Vereecken and Weber |
CorporateAuthor | Pennsylvania State Univ., University Park, PA (United States) |
CorporateAuthor_xml | – sequence: 0 name: Pennsylvania State Univ., University Park, PA (United States) |
DBID | AAYXX CITATION NPM 7X8 3HK 1XC VOOES OIOZB OTOTI 5PM DOA |
DOI | 10.3389/fpls.2020.00316 |
DatabaseName | CrossRef PubMed MEDLINE - Academic NORA - Norwegian Open Research Archives Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_746b3e87e301420bb4c93dfdff2528d7 PMC7136536 1628300 oai_HAL_hal_03163308v1 10852_102091 32296451 10_3389_fpls_2020_00316 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: SCHM 574 997/33-1; SCHN 1361/3-1 – fundername: Fonds De La Recherche Scientifique - FNRS grantid: FC84104 |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IGS IPNFZ ISR NPM RIG 7X8 3HK ABPTK ITC 1XC VOOES OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c545t-348b322c4379b8bbc8e8f56c0d29058e51406f8aa2b6641a07557051841a70203 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:27:53 EDT 2025 Thu Aug 21 14:09:54 EDT 2025 Thu Dec 05 06:27:01 EST 2024 Fri May 09 12:23:07 EDT 2025 Wed May 31 13:43:28 EDT 2023 Fri Jul 11 06:12:24 EDT 2025 Thu Jan 02 22:33:38 EST 2025 Thu Apr 24 22:59:13 EDT 2025 Tue Jul 01 02:06:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | functional-structural root architecture models call for participation model comparison benchmark root water uptake |
Language | English |
License | Copyright © 2020 Schnepf, Black, Couvreur, Delory, Doussan, Koch, Koch, Javaux, Landl, Leitner, Lobet, Mai, Meunier, Petrich, Postma, Priesack, Schmidt, Vanderborght, Vereecken and Weber. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c545t-348b322c4379b8bbc8e8f56c0d29058e51406f8aa2b6641a07557051841a70203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC7136536 AR0000821 USDOE Advanced Research Projects Agency - Energy (ARPA-E) Reviewed by: Jan W. Hopmans, University of California, Davis, United States; Youcef Mammeri, UMR7352 Laboratoire Amiénois de Mathématique Fondamentale et Appliquée (LAMFA), France; Dietrich Hertel, University of Göttingen, Germany Edited by: Sebastian Leuzinger, Auckland University of Technology, New Zealand This article was submitted to Functional Plant Ecology, a section of the journal Frontiers in Plant Science |
ORCID | 0000-0003-2203-4466 0000-0002-1087-3978 0000-0001-7381-3211 |
OpenAccessLink | https://doaj.org/article/746b3e87e301420bb4c93dfdff2528d7 |
PMID | 32296451 |
PQID | 2390649620 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_746b3e87e301420bb4c93dfdff2528d7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7136536 osti_scitechconnect_1628300 hal_primary_oai_HAL_hal_03163308v1 cristin_nora_10852_102091 proquest_miscellaneous_2390649620 pubmed_primary_32296451 crossref_citationtrail_10_3389_fpls_2020_00316 crossref_primary_10_3389_fpls_2020_00316 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-31 |
PublicationDateYYYYMMDD | 2020-03-31 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: United States |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2020 |
Publisher | Frontiers Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – sequence: 0 name: Frontiers Research Foundation – name: Frontiers – name: Frontiers Media S.A |
References | de Moraes (B12) 2019; 10 Fang (B21) 2019; 441 Fitter (B23) 1991; 118 Anderson (B2) 2001; 26 Couvreur (B9) 2014; 18 Schnepf (B55); 17 Javaux (B30) 2008; 7 Nygren (B46) 2010 Schröder (B57) 2008; 7 Oram (B47) 2018; 106 Eyring (B20) 2016; 9 Schnepf (B56); 121 Ahmad (B1) 2018; 163 Delory (B13) 2016; 398 Dunbabin (B18) 2013; 372 Schnepf (B54) 2019 Couvreur (B8) 2018; 178 Koch (B35); 17 Koch (B34) 2019 Daly (B11) 2018; 41 Landsberg (B37) 1978; 42 Porter (B51) 2014; 62 Lobet (B40) 2011; 157 Landl (B36) 2018; 425 Janott (B28) 2011; 341 Vanderborght (B65) 2005; 4 Lobet (B41) 2015; 167 Pagès (B49) 2004; 258 Pagès (B48) 2014; 290 Schroeder (B59) 2006 Sulis (B62) 2019 Dupuy (B19) 2007; 94 Sperry (B60) 2003; 95 Luo (B42) 2012; 9 Geuzaine (B25) 2009; 79 Janssen (B29) 1995; 83 Koch (B33) Li (B39) 2018; 177 Van Genuchten (B64) 1980; 44 Helmig (B26) 1997 Bastian (B4) 2008; 82 Delory (B14) 2018; 7 Dunbabin (B16) 2007; 104 Li (B38) 2017; 104 Postma (B52) 2017; 215 Beudez (B6) 2013; 19 Mai (B43) 2019; 439 Bellocchi (B5) 2010; 30 Schröder (B58) 2009; 8 Passot (B50) 2018; 70 Bidel (B7) 2000; 85 Zarebanadkouki (B66) 2016; 118 Flemisch (B24) 2011; 34 Doussan (B15) 1998; 81 Steefel (B61) 2015; 19 Koch (B32) 2019 Roose (B53) 2004; 228 Kimball (B31) 2019; 271 Hund (B27) 2009; 325 Dunbabin (B17) 2006; 283 Couvreur (B10) 2012; 16 Meunier (B44) 2017; 52 Baram (B3) 2016; 15 Meunier (B45) 2019 Fitter (B22) 1987; 106 B63 |
References_xml | – volume: 70 start-page: 2345 year: 2018 ident: B50 article-title: Connecting the dots between computational tools to analyse soil–root water relations publication-title: J. Exp. Bot doi: 10.1093/jxb/ery361 – volume: 42 start-page: 493 year: 1978 ident: B37 article-title: Water movement through plant roots publication-title: Ann. Bot doi: 10.1093/oxfordjournals.aob.a085488 – volume: 30 start-page: 109 year: 2010 ident: B5 article-title: Validation of biophysical models: issues and methodologies. A review publication-title: Agron. Sustain. Dev doi: 10.1051/agro/2009001 – volume: 7 start-page: 22 year: 2018 ident: B14 article-title: archiDART v3.0: a new data analysis pipeline allowing the topological analysis of plant root systems publication-title: F1000Res doi: 10.12688/f1000research.13541.1 – volume: 341 start-page: 233 year: 2011 ident: B28 article-title: A one-dimensional model of water flow in soil-plant systems based on plant architecture publication-title: Plant Soil doi: 10.1007/s11104-010-0639-0 – volume: 228 start-page: 155 year: 2004 ident: B53 article-title: A model for water uptake by plant roots publication-title: J. Theor. Biol doi: 10.1016/j.jtbi.2003.12.012 – volume: 26 start-page: 32 year: 2001 ident: B2 article-title: A new method for non-parametric multivariate analysis of variance publication-title: Aust. J. Ecol doi: 10.1111/j.1442-9993.2001.01070.pp.x – volume: 215 start-page: 1274 year: 2017 ident: B52 article-title: Opensimroot: widening the scope and application of root architectural models publication-title: New Phytol doi: 10.1111/nph.14641 – volume: 82 start-page: 103 year: 2008 ident: B4 article-title: A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework publication-title: Computing doi: 10.1007/s00607-008-0003-x – volume: 19 start-page: 439 year: 2015 ident: B61 article-title: Reactive transport benchmarks for subsurface environmental simulation publication-title: Comput. Geosci doi: 10.1007/s10596-015-9499-2 – volume: 372 start-page: 93 year: 2013 ident: B18 article-title: Modelling root-soil interactions using three-dimensional models of root growth, architecture and function publication-title: Plant Soil doi: 10.1007/s11104-013-1769-y – volume: 44 start-page: 892 year: 1980 ident: B64 article-title: Closed-form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Sci. Soc. Am. J doi: 10.2136/sssaj1980.03615995004400050002x – volume: 7 start-page: 1079 year: 2008 ident: B30 article-title: Use of a three-dimensional detailed modeling approach for predicting root water uptake publication-title: Vadose Zone J doi: 10.2136/vzj2007.0115 – volume: 7 year: 2008 ident: B57 article-title: Effect of local soil hydraulic conductivity drop using a three-dimensional root water uptake model publication-title: Vadose Zone J doi: 10.2136/vzj2007.0114 – volume: 163 start-page: 59 year: 2018 ident: B1 article-title: Intraspecific variation in embolism resistance and stem anatomy across four sunflower (Helianthus annuus L.) accessions publication-title: Physiol. Plant doi: 10.1111/ppl.12654 – volume: 283 start-page: 57 year: 2006 ident: B17 article-title: Upscaling from rhizosphere to whole root system: modelling the effects of phospholipid surfactants on water and nutrient uptake publication-title: Plant Soil doi: 10.1007/s11104-005-0866-y – year: 2019 ident: B34 article-title: DuMux 3-an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling publication-title: arXiv – volume: 8 start-page: 783 year: 2009 ident: B58 article-title: Implementation of a microscopic soil–root hydraulic conductivity drop function in a three-dimensional soil–root architecture water transfer model publication-title: Vadose Zone J doi: 10.2136/vzj2008.0116 – volume: 121 start-page: 1033 ident: B56 article-title: CRootBox: a structural–functional modelling framework for root systems publication-title: Ann. Bot doi: 10.1093/aob/mcx221 – volume: 9 start-page: 3857 year: 2012 ident: B42 article-title: A framework for benchmarking land models publication-title: Biogeosciences doi: 10.5194/bg-9-3857-2012 – volume: 19 start-page: 37 year: 2013 ident: B6 article-title: Influence of three root spatial arrangement on soil water flow and uptake. Results from an explicit and an equivalent, upscaled, model publication-title: Proc. Environ. Sci doi: 10.1016/j.proenv.2013.06.005 – start-page: diz012 year: 2019 ident: B45 article-title: MARSHAL, a novel tool for virtual phenotyping of maize root system hydraulic architectures publication-title: in silico Plants doi: 10.1093/insilicoplants/diz012 – volume: 106 start-page: 61 year: 1987 ident: B22 article-title: An architectural approach to the comparative ecology of plant root systems publication-title: New Phytol doi: 10.1111/j.1469-8137.1987.tb04683.x – year: 2019 ident: B32 publication-title: Benchmark C1.2–Numerical Results Reference Solution doi: 10.18419/darus-471 – volume: 439 start-page: 273 year: 2019 ident: B43 article-title: Continuum multiscale model of root water and nutrient uptake from soil with explicit consideration of the 3D root architecture and the rhizosphere gradients publication-title: Plant Soil doi: 10.1007/s11104-018-3890-4 – volume-title: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems year: 1997 ident: B26 doi: 10.1007/978-3-642-60763-9 – volume-title: Proceedings of the 6th International Workshop on Functional-Structural Plant Models year: 2010 ident: B46 article-title: Rhizodeposition: a carbon efflux often neglected in functional-structural plant models – volume: 17 ident: B35 article-title: A new simulation framework for soil-root interaction, evaporation, root growth, and solute transport publication-title: Vadose Zone J doi: 10.2136/vzj2017.12.0210 – volume: 157 start-page: 29 year: 2011 ident: B40 article-title: A novel image-analysis toolbox enabling quantitative analysis of root system architecture publication-title: Plant Physiol doi: 10.1104/pp.111.179895 – year: 2019 ident: B54 article-title: Call for participation: collaborative benchmarking of functional-structural root architecture models. The case of root water uptake publication-title: bioRxiv doi: 10.1101/808972 – volume: 325 start-page: 335 year: 2009 ident: B27 article-title: Growth of axile and lateral roots of maize: I development of a phenotying platform publication-title: Plant Soil doi: 10.1007/s11104-009-9984-2 – volume: 52 start-page: 648 year: 2017 ident: B44 article-title: A hybrid analytical-numerical method for solving water flow equations in root hydraulic architectures publication-title: Appl. Math. Modell doi: 10.1016/j.apm.2017.08.011 – volume: 15 year: 2016 ident: B3 article-title: Estimating nitrate leaching to groundwater from orchards: comparing crop nitrogen excess, deep vadose zone data-driven estimates, and hydrus modeling publication-title: Vadose Zone J doi: 10.2136/vzj2016.07.0061 – ident: B33 publication-title: Dumux 3.0.0 doi: 10.5281/zenodo.2479595 – volume: 83 start-page: 55 year: 1995 ident: B29 article-title: Calibration of process-oriented models publication-title: Ecol. Modell doi: 10.1016/0304-3800(95)00084-9 – volume: 398 start-page: 351 year: 2016 ident: B13 article-title: archiDART: an R package for the automated computation of plant root architectural traits publication-title: Plant Soil doi: 10.1007/s11104-015-2673-4 – volume: 178 start-page: 1689 year: 2018 ident: B8 article-title: Going with the flow: multiscale insights into the composite nature of water transport in roots publication-title: Plant Physiol doi: 10.1104/pp.18.01006 – volume: 16 start-page: 2957 year: 2012 ident: B10 article-title: A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach publication-title: Hydrol. Earth Syst. Sci doi: 10.5194/hess-16-2957-2012 – volume: 17 ident: B55 article-title: Statistical characterization of the root system architecture model CRootBox publication-title: Vadose Zone J doi: 10.2136/vzj2017.12.0212 – start-page: 260 year: 2019 ident: B62 article-title: Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations publication-title: Agric. For. Meteorol doi: 10.1016/j.agrformet.2019.01.034 – volume: 104 start-page: 44 year: 2007 ident: B16 article-title: Simulating the role of rooting traits in crop-weed competition publication-title: Field Crops Res doi: 10.1016/j.fcr.2007.03.014 – volume: 106 start-page: 265 year: 2018 ident: B47 article-title: Below-ground complementarity effects in a grassland biodiversity experiment are related to deep-rooting species publication-title: J. Ecol doi: 10.1111/1365-2745.12877 – volume: 177 start-page: 1382 year: 2018 ident: B39 article-title: The persistent homology mathematical framework provides enhanced genotype-to-phenotype associations for plant morphology publication-title: Plant Physiol doi: 10.1104/pp.18.00104 – volume: 10 start-page: 1358 year: 2019 ident: B12 article-title: Mechanical and hydric stress effects on maize root system development at different soil compaction levels publication-title: Front. Plant Sci doi: 10.3389/fpls.2019.01358 – volume: 104 start-page: 1 year: 2017 ident: B38 article-title: Persistent homology and the branching topologies of plants publication-title: Am. J. Bot doi: 10.3732/ajb.1700046 – volume: 18 start-page: 1723 year: 2014 ident: B9 article-title: Horizontal soil water potential heterogeneity: simplifying approaches for crop water dynamics models publication-title: Hydrol. Earth Syst. Sci doi: 10.5194/hess-18-1723-2014 – volume: 85 start-page: 869 year: 2000 ident: B7 article-title: MassFlowDyn I: a carbon transport and partitioning model for root system architecture publication-title: Ann. Bot doi: 10.1006/anbo.2000.1149 – volume: 41 start-page: 121 year: 2018 ident: B11 article-title: Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling publication-title: Plant Cell Environ doi: 10.1111/pce.12983 – volume: 441 start-page: 33 year: 2019 ident: B21 article-title: An efficient three-dimensional rhizosphere modeling capability to study the effect of root system architecture on soil water and reactive transport publication-title: Plant Soil doi: 10.1007/s11104-019-04068-z – volume: 9 start-page: 1937 year: 2016 ident: B20 article-title: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization publication-title: Geosci. Model Dev doi: 10.5194/gmd-9-1937-2016 – volume: 81 start-page: 213 year: 1998 ident: B15 article-title: Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption—model description publication-title: Ann. Bot doi: 10.1006/anbo.1997.0540 – volume: 94 start-page: 1506 year: 2007 ident: B19 article-title: A generic 3D finite element model of tree anchorage integrating soil mechanics and real root system architecture publication-title: Am. J. Bot doi: 10.3732/ajb.94.9.1506 – volume: 271 start-page: 264 year: 2019 ident: B31 article-title: Simulation of maize evapotranspiration: an inter-comparison among 29 maize models publication-title: Agric. For. Meteorol doi: 10.1016/j.agrformet.2019.02.037 – volume: 290 start-page: 76 year: 2014 ident: B48 article-title: Calibration and evaluation of archisimple, a simple model of root system architecture publication-title: Ecol. Modell doi: 10.1016/j.ecolmodel.2013.11.014 – volume: 34 start-page: 1102 year: 2011 ident: B24 article-title: DuMux: DUNE for multi-$phase, component, scale, physics, …$ flow and transport in porous media publication-title: Adv. Water Resour doi: 10.1016/j.advwatres.2011.03.007 – ident: B63 – volume: 425 start-page: 457 year: 2018 ident: B36 article-title: Measuring root system traits of wheat in 2d images to parameterize 3d root architecture models publication-title: Plant Soil doi: 10.1007/s11104-018-3595-8 – volume: 118 start-page: 853 year: 2016 ident: B66 article-title: Estimation of the hydraulic conductivities of lupine roots by inverse modelling of high-resolution measurements of root water uptake publication-title: Ann. Bot doi: 10.1093/aob/mcw154 – volume: 4 start-page: 206 year: 2005 ident: B65 article-title: A set of analytical benchmarks to test numerical models of flow and transport in soils publication-title: Vadose Zone J doi: 10.2136/vzj2005.0206 – volume: 258 start-page: 103 year: 2004 ident: B49 article-title: Root typ: a generic model to depict and analyse the root system architecture publication-title: Plant Soil doi: 10.1023/B:PLSO.0000016540.47134.03 – volume: 118 start-page: 383 year: 1991 ident: B23 article-title: Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species publication-title: New Phytol doi: 10.1111/j.1469-8137.1991.tb00019.x – volume: 62 start-page: 495 year: 2014 ident: B51 article-title: Harmonization and translation of crop modeling data to ensure interoperability publication-title: Environ. Modell. Softw doi: 10.1016/j.envsoft.2014.09.004 – volume-title: The Visualization Toolkit. 4th Edn year: 2006 ident: B59 – volume: 79 start-page: 1309 year: 2009 ident: B25 article-title: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities publication-title: Int. J. Numer. Methods Eng doi: 10.1002/nme.2579 – volume: 167 start-page: 617 year: 2015 ident: B41 article-title: Root system markup language: toward a unified root architecture description language publication-title: Plant Physiol doi: 10.1104/pp.114.253625 – volume: 95 start-page: 1362 year: 2003 ident: B60 article-title: Xylem hydraulics and the soil–plant–atmosphere continuum publication-title: Agron. J doi: 10.2134/agronj2003.1362 |
SSID | ssj0000500997 |
Score | 2.3425827 |
Snippet | Three-dimensional models of root growth, architecture and function are becoming important tools that aid the design of agricultural management schemes and the... |
SourceID | doaj pubmedcentral osti hal cristin proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 316 |
SubjectTerms | benchmark call for participation functional-structural root architecture functional-structural root architecture models Life Sciences model comparison Plant Science Plant Sciences root water uptake Vegetal Biology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA8yrOBFXD_rrhLFg5e6mbb52tvM4DCIiqiDewtJmjKLYzss3QXP_uO-l3bHVhQvXkpp0o_0_R7v1-bl9wh5YaXWqAOe-qJwKUp2p1qykDpuhXCWZzoqMb17L1br4s0ZPxuU-sKcsE4euHtxJ7IQLg9KBuT-GXOu8Dovq7KqMp6pMq4jh5g3-JjqVL2R-shOywe-wvRJtduiOneGmVw5Vje_6aMX1aOAFHX7IcxsMCty0kD7n5jn7wmUg4i0vENu91SSzrohHJIbob5LDuYN0L3v98iPhd1uKVBS-sEOUqdP6eKX5a8CnQNKN99s_GNOm4ouIc51vwfTT1FaFmU56MemaelsMOdAsYYaDJUCzOgCIiGeG3t9AfJ6Qde71n4N98l6-frzYpX2FRdSD0yqTfNCOfBwjyKFTjnnVVAVF56VmWZcBWBXTFTK2swJUUwt8A0uwa0V7Euc03xAJnVTh0eEeq84827qQ4FrfZl1QDTB3Z0vK-aCTEjSG8DUMGQUKuUZbNGYCXl1bRLje6lyrJixhXaD1jRoTYPWjNqmIiEv9yfsOpWOv3edo4333VBeOx4A0JkedOZfoEvIc0DI6Bqr2VuDx_Aeec7UFYziCAFkgMqgHq_HxCXfmqlAzTWWkGfXuDLg0ThNY-vQXMKz5hp4ohYZ9HnY4Wx_JzCOFgWHa8sRAkePMm6pzzdRNVxiQmMuHv-P8R-RW_hGu7WZx2QCeAxPgJy17mn0w59b-DTf priority: 102 providerName: Directory of Open Access Journals |
Title | Call for Participation: Collaborative Benchmarking of Functional-Structural Root Architecture Models. The Case of Root Water Uptake |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32296451 https://www.proquest.com/docview/2390649620 http://hdl.handle.net/10852/102091 https://hal.inrae.fr/hal-03163308 https://www.osti.gov/servlets/purl/1628300 https://pubmed.ncbi.nlm.nih.gov/PMC7136536 https://doaj.org/article/746b3e87e301420bb4c93dfdff2528d7 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagcOCCeBMWVgZx4JIlcRzHQUKorSgVYhECKnqzbMehiJCUElbsmT_OjJPtNqhIXKIodvyamcxne_KZkMc6y3PkAQ8t5yZEyu4wzyIXmlQLYXTKcs_EdPxWzBf89TJdnh8H1A_gj71TOzxParGpjn59P30BBv8cZ5zgb5-W6wqJtxkGaSWxuEgugVvK0EqPe6zfEX0jGvKHrQjBQy7YsqP62VcGoGHrjawe-CtP6w9eaIVBk6MG0vcB07_jK3cc1uwaudojTTruVOM6ueDqG-TypAE0eHqT_J7qqqKAWOk7vRNZ_YxOzxXjxNEJKPHqm_YL6rQp6QzcYLd6GH7wzLPI2kHfN01LxztbEhSPWIOuUtBCOgVHie_6XJ8A227oYt3qr-4WWcxefpzOw_5AhtAC0GrDhEsDHwCLHIZGGmOlk2UqbFSwPEqlA_AViVJqzQwMcawBjqQZWL2E-wy3PG-TUd3U7i6h1so0sia2juOvwJE2gEPha2BsUUbGZQEJegGoGrqMPKYpgysDfBOQozORKNszmeOBGhWkK5SmQmkqlKanPhUBebJ9Yd2RePw76wRlvM2G7Nv-QbP5rHpjVhkXJnEyczgfZZEx3OZJURZlyVImC2j8I9CQQRnz8RuFz7COJInkCfTiABVIAdJBul6LcU22VbFASrYoIA_P9EqBweMujq5d8xPamuQAI3PBIM-dTs-2NYFwcsFTKDsbaOCgKcOU-svKk4pnGO-YiHv_Ue8BuYID1v2ZeZ-MQN3cA4BmrTn0SxpwfbWMD735_QGJpDVm |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Call+for+Participation%3A+Collaborative+Benchmarking+of+Functional-Structural+Root+Architecture+Models.+The+Case+of+Root+Water+Uptake&rft.jtitle=Frontiers+in+plant+science&rft.au=Schnepf%2C+Andrea&rft.au=Black%2C+Christopher+K&rft.au=Couvreur%2C+Valentin&rft.au=Delory%2C+Benjamin+M&rft.date=2020-03-31&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=11&rft.spage=316&rft_id=info:doi/10.3389%2Ffpls.2020.00316&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |