Call for Participation: Collaborative Benchmarking of Functional-Structural Root Architecture Models. The Case of Root Water Uptake

Three-dimensional models of root growth, architecture and function are becoming important tools that aid the design of agricultural management schemes and the selection of beneficial root traits. However, while benchmarking is common in many disciplines that use numerical models, such as natural and...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 11; p. 316
Main Authors Schnepf, Andrea, Black, Christopher K., Couvreur, Valentin, Delory, Benjamin M., Doussan, Claude, Koch, Axelle, Koch, Timo, Javaux, Mathieu, Landl, Magdalena, Leitner, Daniel, Lobet, Guillaume, Mai, Trung Hieu, Meunier, Félicien, Petrich, Lukas, Postma, Johannes A., Priesack, Eckart, Schmidt, Volker, Vanderborght, Jan, Vereecken, Harry, Weber, Matthias
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers 31.03.2020
Frontiers Research Foundation
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Three-dimensional models of root growth, architecture and function are becoming important tools that aid the design of agricultural management schemes and the selection of beneficial root traits. However, while benchmarking is common in many disciplines that use numerical models, such as natural and engineering sciences, functional-structural root architecture models have never been systematically compared. The following reasons might induce disagreement between the simulation results of different models: different representation of root growth, sink term of root water and solute uptake and representation of the rhizosphere. Presently, the extent of discrepancies is unknown, and a framework for quantitatively comparing functional-structural root architecture models is required. We propose, in a first step, to define benchmarking scenarios that test individual components of complex models: root architecture, water flow in soil and water flow in roots. While the latter two will focus mainly on comparing numerical aspects, the root architectural models have to be compared at a conceptual level as they generally differ in process representation. Therefore, defining common inputs that allow recreating reference root systems in all models will be a key challenge. In a second step, benchmarking scenarios for the coupled problems are defined. We expect that the results of step 1 will enable us to better interpret differences found in step 2. This benchmarking will result in a better understanding of the different models and contribute toward improving them. Improved models will allow us to simulate various scenarios with greater confidence and avoid bugs, numerical errors or conceptual misunderstandings. This work will set a standard for future model development.
AbstractList Three-dimensional models of root growth, architecture and function are becoming important tools that aid the design of agricultural management schemes and the selection of beneficial root traits. However, while benchmarking is common in many disciplines that use numerical models, such as natural and engineering sciences, functional-structural root architecture models have never been systematically compared. The following reasons might induce disagreement between the simulation results of different models: different representation of root growth, sink term of root water and solute uptake and representation of the rhizosphere. Presently, the extent of discrepancies is unknown, and a framework for quantitatively comparing functional-structural root architecture models is required. We propose, in a first step, to define benchmarking scenarios that test individual components of complex models: root architecture, water flow in soil and water flow in roots. While the latter two will focus mainly on comparing numerical aspects, the root architectural models have to be compared at a conceptual level as they generally differ in process representation. Therefore, defining common inputs that allow recreating reference root systems in all models will be a key challenge. In a second step, benchmarking scenarios for the coupled problems are defined. We expect that the results of step 1 will enable us to better interpret differences found in step 2. This benchmarking will result in a better understanding of the different models and contribute toward improving them. Improved models will allow us to simulate various scenarios with greater confidence and avoid bugs, numerical errors or conceptual misunderstandings. This work will set a standard for future model development.
Three-dimensional models of root growth, architecture and function are becoming important tools that aid the design of agricultural management schemes and the selection of beneficial root traits. However, while benchmarking is common in many disciplines that use numerical models, such as natural and engineering sciences, functional-structural root architecture models have never been systematically compared. The following reasons might induce disagreement between the simulation results of different models: different representation of root growth, sink term of root water and solute uptake and representation of the rhizosphere. Presently, the extent of discrepancies is unknown, and a framework for quantitatively comparing functional-structural root architecture models is required. We propose, in a first step, to define benchmarking scenarios that test individual components of complex models: root architecture, water flow in soil and water flow in roots. While the latter two will focus mainly on comparing numerical aspects, the root architectural models have to be compared at a conceptual level as they generally differ in process representation. Therefore, defining common inputs that allow recreating reference root systems in all models will be a key challenge. In a second step, benchmarking scenarios for the coupled problems are defined. We expect that the results of step 1 will enable us to better interpret differences found in step 2. This benchmarking will result in a better understanding of the different models and contribute toward improving them. Improved models will allow us to simulate various scenarios with greater confidence and avoid bugs, numerical errors or conceptual misunderstandings. This work will set a standard for future model development.Three-dimensional models of root growth, architecture and function are becoming important tools that aid the design of agricultural management schemes and the selection of beneficial root traits. However, while benchmarking is common in many disciplines that use numerical models, such as natural and engineering sciences, functional-structural root architecture models have never been systematically compared. The following reasons might induce disagreement between the simulation results of different models: different representation of root growth, sink term of root water and solute uptake and representation of the rhizosphere. Presently, the extent of discrepancies is unknown, and a framework for quantitatively comparing functional-structural root architecture models is required. We propose, in a first step, to define benchmarking scenarios that test individual components of complex models: root architecture, water flow in soil and water flow in roots. While the latter two will focus mainly on comparing numerical aspects, the root architectural models have to be compared at a conceptual level as they generally differ in process representation. Therefore, defining common inputs that allow recreating reference root systems in all models will be a key challenge. In a second step, benchmarking scenarios for the coupled problems are defined. We expect that the results of step 1 will enable us to better interpret differences found in step 2. This benchmarking will result in a better understanding of the different models and contribute toward improving them. Improved models will allow us to simulate various scenarios with greater confidence and avoid bugs, numerical errors or conceptual misunderstandings. This work will set a standard for future model development.
Author Doussan, Claude
Lobet, Guillaume
Javaux, Mathieu
Black, Christopher K.
Schnepf, Andrea
Vereecken, Harry
Schmidt, Volker
Koch, Axelle
Leitner, Daniel
Weber, Matthias
Delory, Benjamin M.
Landl, Magdalena
Postma, Johannes A.
Priesack, Eckart
Koch, Timo
Meunier, Félicien
Mai, Trung Hieu
Couvreur, Valentin
Vanderborght, Jan
Petrich, Lukas
AuthorAffiliation 6 INRAE, Avignon Université, EMMAH , Avignon , France
4 Earth and Life Institute, Agronomy, Université Catholique de Louvain , Louvain-la-Neuve , Belgium
1 Institut für Bio- und Geowissenschaften: Agrosphäre (IBG-3), Forschungszentrum Jülich GmbH , Jülich , Germany
11 Department of Earth and Environment, Boston University , Boston, MA , United States
3 Department of Plant Science, The Pennsylvania State University , University Park, PA , United States
10 CAVElab–Computational and Applied Vegetation Ecology, Ghent University , Ghent , Belgium
2 International Soil Modelling Consortium ISMC , Jülich , Germany
12 Institute of Stochastics, Ulm University , Ulm , Germany
7 Earth and Life Institute, Environmental Sciences, Université Catholique de Louvain , Louvain-la-Neuve , Belgium
13 Institut für Bio- und Geowissenschaften: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH , Jülich , Germany
8 Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart , Stuttgart , Germa
AuthorAffiliation_xml – name: 12 Institute of Stochastics, Ulm University , Ulm , Germany
– name: 14 Institute of Biochemical Plant Pathology, Helmholtz Zentrum München , Neuherberg , Germany
– name: 1 Institut für Bio- und Geowissenschaften: Agrosphäre (IBG-3), Forschungszentrum Jülich GmbH , Jülich , Germany
– name: 9 Simulationswerkstatt , Leonding , Austria
– name: 7 Earth and Life Institute, Environmental Sciences, Université Catholique de Louvain , Louvain-la-Neuve , Belgium
– name: 2 International Soil Modelling Consortium ISMC , Jülich , Germany
– name: 5 Institute of Ecology, Leuphana University Lüneburg , Lüneburg , Germany
– name: 10 CAVElab–Computational and Applied Vegetation Ecology, Ghent University , Ghent , Belgium
– name: 4 Earth and Life Institute, Agronomy, Université Catholique de Louvain , Louvain-la-Neuve , Belgium
– name: 3 Department of Plant Science, The Pennsylvania State University , University Park, PA , United States
– name: 11 Department of Earth and Environment, Boston University , Boston, MA , United States
– name: 13 Institut für Bio- und Geowissenschaften: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH , Jülich , Germany
– name: 6 INRAE, Avignon Université, EMMAH , Avignon , France
– name: 8 Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart , Stuttgart , Germany
Author_xml – sequence: 1
  givenname: Andrea
  surname: Schnepf
  fullname: Schnepf, Andrea
– sequence: 2
  givenname: Christopher K.
  surname: Black
  fullname: Black, Christopher K.
– sequence: 3
  givenname: Valentin
  surname: Couvreur
  fullname: Couvreur, Valentin
– sequence: 4
  givenname: Benjamin M.
  surname: Delory
  fullname: Delory, Benjamin M.
– sequence: 5
  givenname: Claude
  surname: Doussan
  fullname: Doussan, Claude
– sequence: 6
  givenname: Axelle
  surname: Koch
  fullname: Koch, Axelle
– sequence: 7
  givenname: Timo
  surname: Koch
  fullname: Koch, Timo
– sequence: 8
  givenname: Mathieu
  surname: Javaux
  fullname: Javaux, Mathieu
– sequence: 9
  givenname: Magdalena
  surname: Landl
  fullname: Landl, Magdalena
– sequence: 10
  givenname: Daniel
  surname: Leitner
  fullname: Leitner, Daniel
– sequence: 11
  givenname: Guillaume
  surname: Lobet
  fullname: Lobet, Guillaume
– sequence: 12
  givenname: Trung Hieu
  surname: Mai
  fullname: Mai, Trung Hieu
– sequence: 13
  givenname: Félicien
  surname: Meunier
  fullname: Meunier, Félicien
– sequence: 14
  givenname: Lukas
  surname: Petrich
  fullname: Petrich, Lukas
– sequence: 15
  givenname: Johannes A.
  surname: Postma
  fullname: Postma, Johannes A.
– sequence: 16
  givenname: Eckart
  surname: Priesack
  fullname: Priesack, Eckart
– sequence: 17
  givenname: Volker
  surname: Schmidt
  fullname: Schmidt, Volker
– sequence: 18
  givenname: Jan
  surname: Vanderborght
  fullname: Vanderborght, Jan
– sequence: 19
  givenname: Harry
  surname: Vereecken
  fullname: Vereecken, Harry
– sequence: 20
  givenname: Matthias
  surname: Weber
  fullname: Weber, Matthias
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32296451$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-03163308$$DView record in HAL
https://www.osti.gov/servlets/purl/1628300$$D View this record in Osti.gov
BookMark eNp1Uk1v1DAQjVARLaVnbsjiBIfd-iN2HA5Iy4rSSotA0ApuluM4jdusvdjOSpz549jZLmorkUNiT968mXnznhcH1lldFC8RnBPC69NuM4Q5hhjOISSIPSmOEGPlrGT458G982FxEsINTA-FsK6rZ8UhwbhmJUVHxZ-lHAbQOQ--Sh-NMhsZjbPvwNINg2ycT9etBh-0Vf1a-ltjr4HrwNloVcbJYfY9-lHF0csBfHMugoVXvYk6hzT47FqdmgSXvQZLGXTOnVA_ZNQeXG2ivNUviqedHII-ufseF1dnHy-X57PVl08Xy8VqpmhJ44yUvEmNq5JUdcObRnHNO8oUbHENKdcUlZB1XErcpNGRhBWlFaSIp3OVVCLHxcWOt3XyRmy8SQP9Fk4aMQWcvxaTBoMWVckaonmlCUQlhk1Tqpq0Xdt1mGLeVonr_Y5rMzZr3SptY1LgAenDP9b04tptRYUIo4Qlgtc7AheiEUFlyXrlrE3KCcQwJzB3_HYH6h9xny9WIsfy3gmBfIsSFuywyptEaYVNyxMIcorTG8M6Q97cNe3dr1GHKNYmKJ0WbbUbg8Ckhqys2aTVq_vz_Su-d04C0H05F4LXnUgjTN5J45ohlRTZpCKbVGSTismkKe_0Ud6e-n8ZfwF0XOc8
CitedBy_id crossref_primary_10_1038_s41598_021_90062_4
crossref_primary_10_1007_s11104_023_06349_0
crossref_primary_10_1016_j_camwa_2022_01_021
crossref_primary_10_1016_j_jcp_2021_110823
crossref_primary_10_7717_peerj_9750
crossref_primary_10_3389_fpls_2022_824720
crossref_primary_10_1093_insilicoplants_diad005
crossref_primary_10_1111_pce_14284
crossref_primary_10_3389_fpls_2022_798741
crossref_primary_10_1093_aob_mcab120
crossref_primary_10_1093_insilicoplants_diac005
crossref_primary_10_1017_S0014479725000018
Cites_doi 10.1093/jxb/ery361
10.1093/oxfordjournals.aob.a085488
10.1051/agro/2009001
10.12688/f1000research.13541.1
10.1007/s11104-010-0639-0
10.1016/j.jtbi.2003.12.012
10.1111/j.1442-9993.2001.01070.pp.x
10.1111/nph.14641
10.1007/s00607-008-0003-x
10.1007/s10596-015-9499-2
10.1007/s11104-013-1769-y
10.2136/sssaj1980.03615995004400050002x
10.2136/vzj2007.0115
10.2136/vzj2007.0114
10.1111/ppl.12654
10.1007/s11104-005-0866-y
10.2136/vzj2008.0116
10.1093/aob/mcx221
10.5194/bg-9-3857-2012
10.1016/j.proenv.2013.06.005
10.1093/insilicoplants/diz012
10.1111/j.1469-8137.1987.tb04683.x
10.18419/darus-471
10.1007/s11104-018-3890-4
10.1007/978-3-642-60763-9
10.2136/vzj2017.12.0210
10.1104/pp.111.179895
10.1101/808972
10.1007/s11104-009-9984-2
10.1016/j.apm.2017.08.011
10.2136/vzj2016.07.0061
10.5281/zenodo.2479595
10.1016/0304-3800(95)00084-9
10.1007/s11104-015-2673-4
10.1104/pp.18.01006
10.5194/hess-16-2957-2012
10.2136/vzj2017.12.0212
10.1016/j.agrformet.2019.01.034
10.1016/j.fcr.2007.03.014
10.1111/1365-2745.12877
10.1104/pp.18.00104
10.3389/fpls.2019.01358
10.3732/ajb.1700046
10.5194/hess-18-1723-2014
10.1006/anbo.2000.1149
10.1111/pce.12983
10.1007/s11104-019-04068-z
10.5194/gmd-9-1937-2016
10.1006/anbo.1997.0540
10.3732/ajb.94.9.1506
10.1016/j.agrformet.2019.02.037
10.1016/j.ecolmodel.2013.11.014
10.1016/j.advwatres.2011.03.007
10.1007/s11104-018-3595-8
10.1093/aob/mcw154
10.2136/vzj2005.0206
10.1023/B:PLSO.0000016540.47134.03
10.1111/j.1469-8137.1991.tb00019.x
10.1016/j.envsoft.2014.09.004
10.1002/nme.2579
10.1104/pp.114.253625
10.2134/agronj2003.1362
ContentType Journal Article
Copyright Copyright © 2020 Schnepf, Black, Couvreur, Delory, Doussan, Koch, Koch, Javaux, Landl, Leitner, Lobet, Mai, Meunier, Petrich, Postma, Priesack, Schmidt, Vanderborght, Vereecken and Weber.
info:eu-repo/semantics/openAccess
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2020 Schnepf, Black, Couvreur, Delory, Doussan, Koch, Koch, Javaux, Landl, Leitner, Lobet, Mai, Meunier, Petrich, Postma, Priesack, Schmidt, Vanderborght, Vereecken and Weber. 2020 Schnepf, Black, Couvreur, Delory, Doussan, Koch, Koch, Javaux, Landl, Leitner, Lobet, Mai, Meunier, Petrich, Postma, Priesack, Schmidt, Vanderborght, Vereecken and Weber
Copyright_xml – notice: Copyright © 2020 Schnepf, Black, Couvreur, Delory, Doussan, Koch, Koch, Javaux, Landl, Leitner, Lobet, Mai, Meunier, Petrich, Postma, Priesack, Schmidt, Vanderborght, Vereecken and Weber.
– notice: info:eu-repo/semantics/openAccess
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2020 Schnepf, Black, Couvreur, Delory, Doussan, Koch, Koch, Javaux, Landl, Leitner, Lobet, Mai, Meunier, Petrich, Postma, Priesack, Schmidt, Vanderborght, Vereecken and Weber. 2020 Schnepf, Black, Couvreur, Delory, Doussan, Koch, Koch, Javaux, Landl, Leitner, Lobet, Mai, Meunier, Petrich, Postma, Priesack, Schmidt, Vanderborght, Vereecken and Weber
CorporateAuthor Pennsylvania State Univ., University Park, PA (United States)
CorporateAuthor_xml – sequence: 0
  name: Pennsylvania State Univ., University Park, PA (United States)
DBID AAYXX
CITATION
NPM
7X8
3HK
1XC
VOOES
OIOZB
OTOTI
5PM
DOA
DOI 10.3389/fpls.2020.00316
DatabaseName CrossRef
PubMed
MEDLINE - Academic
NORA - Norwegian Open Research Archives
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_746b3e87e301420bb4c93dfdff2528d7
PMC7136536
1628300
oai_HAL_hal_03163308v1
10852_102091
32296451
10_3389_fpls_2020_00316
Genre Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: SCHM 574 997/33-1; SCHN 1361/3-1
– fundername: Fonds De La Recherche Scientifique - FNRS
  grantid: FC84104
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
7X8
3HK
ABPTK
ITC
1XC
VOOES
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c545t-348b322c4379b8bbc8e8f56c0d29058e51406f8aa2b6641a07557051841a70203
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:27:53 EDT 2025
Thu Aug 21 14:09:54 EDT 2025
Thu Dec 05 06:27:01 EST 2024
Fri May 09 12:23:07 EDT 2025
Wed May 31 13:43:28 EDT 2023
Fri Jul 11 06:12:24 EDT 2025
Thu Jan 02 22:33:38 EST 2025
Thu Apr 24 22:59:13 EDT 2025
Tue Jul 01 02:06:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords functional-structural root architecture models
call for participation
model comparison
benchmark
root water uptake
Language English
License Copyright © 2020 Schnepf, Black, Couvreur, Delory, Doussan, Koch, Koch, Javaux, Landl, Leitner, Lobet, Mai, Meunier, Petrich, Postma, Priesack, Schmidt, Vanderborght, Vereecken and Weber.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-348b322c4379b8bbc8e8f56c0d29058e51406f8aa2b6641a07557051841a70203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC7136536
AR0000821
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
Reviewed by: Jan W. Hopmans, University of California, Davis, United States; Youcef Mammeri, UMR7352 Laboratoire Amiénois de Mathématique Fondamentale et Appliquée (LAMFA), France; Dietrich Hertel, University of Göttingen, Germany
Edited by: Sebastian Leuzinger, Auckland University of Technology, New Zealand
This article was submitted to Functional Plant Ecology, a section of the journal Frontiers in Plant Science
ORCID 0000-0003-2203-4466
0000-0002-1087-3978
0000-0001-7381-3211
OpenAccessLink https://doaj.org/article/746b3e87e301420bb4c93dfdff2528d7
PMID 32296451
PQID 2390649620
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_746b3e87e301420bb4c93dfdff2528d7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7136536
osti_scitechconnect_1628300
hal_primary_oai_HAL_hal_03163308v1
cristin_nora_10852_102091
proquest_miscellaneous_2390649620
pubmed_primary_32296451
crossref_citationtrail_10_3389_fpls_2020_00316
crossref_primary_10_3389_fpls_2020_00316
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-31
PublicationDateYYYYMMDD 2020-03-31
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-31
  day: 31
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: United States
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2020
Publisher Frontiers
Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – sequence: 0
  name: Frontiers Research Foundation
– name: Frontiers
– name: Frontiers Media S.A
References de Moraes (B12) 2019; 10
Fang (B21) 2019; 441
Fitter (B23) 1991; 118
Anderson (B2) 2001; 26
Couvreur (B9) 2014; 18
Schnepf (B55); 17
Javaux (B30) 2008; 7
Nygren (B46) 2010
Schröder (B57) 2008; 7
Oram (B47) 2018; 106
Eyring (B20) 2016; 9
Schnepf (B56); 121
Ahmad (B1) 2018; 163
Delory (B13) 2016; 398
Dunbabin (B18) 2013; 372
Schnepf (B54) 2019
Couvreur (B8) 2018; 178
Koch (B35); 17
Koch (B34) 2019
Daly (B11) 2018; 41
Landsberg (B37) 1978; 42
Porter (B51) 2014; 62
Lobet (B40) 2011; 157
Landl (B36) 2018; 425
Janott (B28) 2011; 341
Vanderborght (B65) 2005; 4
Lobet (B41) 2015; 167
Pagès (B49) 2004; 258
Pagès (B48) 2014; 290
Schroeder (B59) 2006
Sulis (B62) 2019
Dupuy (B19) 2007; 94
Sperry (B60) 2003; 95
Luo (B42) 2012; 9
Geuzaine (B25) 2009; 79
Janssen (B29) 1995; 83
Koch (B33)
Li (B39) 2018; 177
Van Genuchten (B64) 1980; 44
Helmig (B26) 1997
Bastian (B4) 2008; 82
Delory (B14) 2018; 7
Dunbabin (B16) 2007; 104
Li (B38) 2017; 104
Postma (B52) 2017; 215
Beudez (B6) 2013; 19
Mai (B43) 2019; 439
Bellocchi (B5) 2010; 30
Schröder (B58) 2009; 8
Passot (B50) 2018; 70
Bidel (B7) 2000; 85
Zarebanadkouki (B66) 2016; 118
Flemisch (B24) 2011; 34
Doussan (B15) 1998; 81
Steefel (B61) 2015; 19
Koch (B32) 2019
Roose (B53) 2004; 228
Kimball (B31) 2019; 271
Hund (B27) 2009; 325
Dunbabin (B17) 2006; 283
Couvreur (B10) 2012; 16
Meunier (B44) 2017; 52
Baram (B3) 2016; 15
Meunier (B45) 2019
Fitter (B22) 1987; 106
B63
References_xml – volume: 70
  start-page: 2345
  year: 2018
  ident: B50
  article-title: Connecting the dots between computational tools to analyse soil–root water relations
  publication-title: J. Exp. Bot
  doi: 10.1093/jxb/ery361
– volume: 42
  start-page: 493
  year: 1978
  ident: B37
  article-title: Water movement through plant roots
  publication-title: Ann. Bot
  doi: 10.1093/oxfordjournals.aob.a085488
– volume: 30
  start-page: 109
  year: 2010
  ident: B5
  article-title: Validation of biophysical models: issues and methodologies. A review
  publication-title: Agron. Sustain. Dev
  doi: 10.1051/agro/2009001
– volume: 7
  start-page: 22
  year: 2018
  ident: B14
  article-title: archiDART v3.0: a new data analysis pipeline allowing the topological analysis of plant root systems
  publication-title: F1000Res
  doi: 10.12688/f1000research.13541.1
– volume: 341
  start-page: 233
  year: 2011
  ident: B28
  article-title: A one-dimensional model of water flow in soil-plant systems based on plant architecture
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0639-0
– volume: 228
  start-page: 155
  year: 2004
  ident: B53
  article-title: A model for water uptake by plant roots
  publication-title: J. Theor. Biol
  doi: 10.1016/j.jtbi.2003.12.012
– volume: 26
  start-page: 32
  year: 2001
  ident: B2
  article-title: A new method for non-parametric multivariate analysis of variance
  publication-title: Aust. J. Ecol
  doi: 10.1111/j.1442-9993.2001.01070.pp.x
– volume: 215
  start-page: 1274
  year: 2017
  ident: B52
  article-title: Opensimroot: widening the scope and application of root architectural models
  publication-title: New Phytol
  doi: 10.1111/nph.14641
– volume: 82
  start-page: 103
  year: 2008
  ident: B4
  article-title: A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework
  publication-title: Computing
  doi: 10.1007/s00607-008-0003-x
– volume: 19
  start-page: 439
  year: 2015
  ident: B61
  article-title: Reactive transport benchmarks for subsurface environmental simulation
  publication-title: Comput. Geosci
  doi: 10.1007/s10596-015-9499-2
– volume: 372
  start-page: 93
  year: 2013
  ident: B18
  article-title: Modelling root-soil interactions using three-dimensional models of root growth, architecture and function
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1769-y
– volume: 44
  start-page: 892
  year: 1980
  ident: B64
  article-title: Closed-form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci. Soc. Am. J
  doi: 10.2136/sssaj1980.03615995004400050002x
– volume: 7
  start-page: 1079
  year: 2008
  ident: B30
  article-title: Use of a three-dimensional detailed modeling approach for predicting root water uptake
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2007.0115
– volume: 7
  year: 2008
  ident: B57
  article-title: Effect of local soil hydraulic conductivity drop using a three-dimensional root water uptake model
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2007.0114
– volume: 163
  start-page: 59
  year: 2018
  ident: B1
  article-title: Intraspecific variation in embolism resistance and stem anatomy across four sunflower (Helianthus annuus L.) accessions
  publication-title: Physiol. Plant
  doi: 10.1111/ppl.12654
– volume: 283
  start-page: 57
  year: 2006
  ident: B17
  article-title: Upscaling from rhizosphere to whole root system: modelling the effects of phospholipid surfactants on water and nutrient uptake
  publication-title: Plant Soil
  doi: 10.1007/s11104-005-0866-y
– year: 2019
  ident: B34
  article-title: DuMux 3-an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling
  publication-title: arXiv
– volume: 8
  start-page: 783
  year: 2009
  ident: B58
  article-title: Implementation of a microscopic soil–root hydraulic conductivity drop function in a three-dimensional soil–root architecture water transfer model
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2008.0116
– volume: 121
  start-page: 1033
  ident: B56
  article-title: CRootBox: a structural–functional modelling framework for root systems
  publication-title: Ann. Bot
  doi: 10.1093/aob/mcx221
– volume: 9
  start-page: 3857
  year: 2012
  ident: B42
  article-title: A framework for benchmarking land models
  publication-title: Biogeosciences
  doi: 10.5194/bg-9-3857-2012
– volume: 19
  start-page: 37
  year: 2013
  ident: B6
  article-title: Influence of three root spatial arrangement on soil water flow and uptake. Results from an explicit and an equivalent, upscaled, model
  publication-title: Proc. Environ. Sci
  doi: 10.1016/j.proenv.2013.06.005
– start-page: diz012
  year: 2019
  ident: B45
  article-title: MARSHAL, a novel tool for virtual phenotyping of maize root system hydraulic architectures
  publication-title: in silico Plants
  doi: 10.1093/insilicoplants/diz012
– volume: 106
  start-page: 61
  year: 1987
  ident: B22
  article-title: An architectural approach to the comparative ecology of plant root systems
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1987.tb04683.x
– year: 2019
  ident: B32
  publication-title: Benchmark C1.2–Numerical Results Reference Solution
  doi: 10.18419/darus-471
– volume: 439
  start-page: 273
  year: 2019
  ident: B43
  article-title: Continuum multiscale model of root water and nutrient uptake from soil with explicit consideration of the 3D root architecture and the rhizosphere gradients
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3890-4
– volume-title: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems
  year: 1997
  ident: B26
  doi: 10.1007/978-3-642-60763-9
– volume-title: Proceedings of the 6th International Workshop on Functional-Structural Plant Models
  year: 2010
  ident: B46
  article-title: Rhizodeposition: a carbon efflux often neglected in functional-structural plant models
– volume: 17
  ident: B35
  article-title: A new simulation framework for soil-root interaction, evaporation, root growth, and solute transport
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2017.12.0210
– volume: 157
  start-page: 29
  year: 2011
  ident: B40
  article-title: A novel image-analysis toolbox enabling quantitative analysis of root system architecture
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.179895
– year: 2019
  ident: B54
  article-title: Call for participation: collaborative benchmarking of functional-structural root architecture models. The case of root water uptake
  publication-title: bioRxiv
  doi: 10.1101/808972
– volume: 325
  start-page: 335
  year: 2009
  ident: B27
  article-title: Growth of axile and lateral roots of maize: I development of a phenotying platform
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-9984-2
– volume: 52
  start-page: 648
  year: 2017
  ident: B44
  article-title: A hybrid analytical-numerical method for solving water flow equations in root hydraulic architectures
  publication-title: Appl. Math. Modell
  doi: 10.1016/j.apm.2017.08.011
– volume: 15
  year: 2016
  ident: B3
  article-title: Estimating nitrate leaching to groundwater from orchards: comparing crop nitrogen excess, deep vadose zone data-driven estimates, and hydrus modeling
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2016.07.0061
– ident: B33
  publication-title: Dumux 3.0.0
  doi: 10.5281/zenodo.2479595
– volume: 83
  start-page: 55
  year: 1995
  ident: B29
  article-title: Calibration of process-oriented models
  publication-title: Ecol. Modell
  doi: 10.1016/0304-3800(95)00084-9
– volume: 398
  start-page: 351
  year: 2016
  ident: B13
  article-title: archiDART: an R package for the automated computation of plant root architectural traits
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2673-4
– volume: 178
  start-page: 1689
  year: 2018
  ident: B8
  article-title: Going with the flow: multiscale insights into the composite nature of water transport in roots
  publication-title: Plant Physiol
  doi: 10.1104/pp.18.01006
– volume: 16
  start-page: 2957
  year: 2012
  ident: B10
  article-title: A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach
  publication-title: Hydrol. Earth Syst. Sci
  doi: 10.5194/hess-16-2957-2012
– volume: 17
  ident: B55
  article-title: Statistical characterization of the root system architecture model CRootBox
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2017.12.0212
– start-page: 260
  year: 2019
  ident: B62
  article-title: Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations
  publication-title: Agric. For. Meteorol
  doi: 10.1016/j.agrformet.2019.01.034
– volume: 104
  start-page: 44
  year: 2007
  ident: B16
  article-title: Simulating the role of rooting traits in crop-weed competition
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2007.03.014
– volume: 106
  start-page: 265
  year: 2018
  ident: B47
  article-title: Below-ground complementarity effects in a grassland biodiversity experiment are related to deep-rooting species
  publication-title: J. Ecol
  doi: 10.1111/1365-2745.12877
– volume: 177
  start-page: 1382
  year: 2018
  ident: B39
  article-title: The persistent homology mathematical framework provides enhanced genotype-to-phenotype associations for plant morphology
  publication-title: Plant Physiol
  doi: 10.1104/pp.18.00104
– volume: 10
  start-page: 1358
  year: 2019
  ident: B12
  article-title: Mechanical and hydric stress effects on maize root system development at different soil compaction levels
  publication-title: Front. Plant Sci
  doi: 10.3389/fpls.2019.01358
– volume: 104
  start-page: 1
  year: 2017
  ident: B38
  article-title: Persistent homology and the branching topologies of plants
  publication-title: Am. J. Bot
  doi: 10.3732/ajb.1700046
– volume: 18
  start-page: 1723
  year: 2014
  ident: B9
  article-title: Horizontal soil water potential heterogeneity: simplifying approaches for crop water dynamics models
  publication-title: Hydrol. Earth Syst. Sci
  doi: 10.5194/hess-18-1723-2014
– volume: 85
  start-page: 869
  year: 2000
  ident: B7
  article-title: MassFlowDyn I: a carbon transport and partitioning model for root system architecture
  publication-title: Ann. Bot
  doi: 10.1006/anbo.2000.1149
– volume: 41
  start-page: 121
  year: 2018
  ident: B11
  article-title: Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12983
– volume: 441
  start-page: 33
  year: 2019
  ident: B21
  article-title: An efficient three-dimensional rhizosphere modeling capability to study the effect of root system architecture on soil water and reactive transport
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-04068-z
– volume: 9
  start-page: 1937
  year: 2016
  ident: B20
  article-title: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization
  publication-title: Geosci. Model Dev
  doi: 10.5194/gmd-9-1937-2016
– volume: 81
  start-page: 213
  year: 1998
  ident: B15
  article-title: Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption—model description
  publication-title: Ann. Bot
  doi: 10.1006/anbo.1997.0540
– volume: 94
  start-page: 1506
  year: 2007
  ident: B19
  article-title: A generic 3D finite element model of tree anchorage integrating soil mechanics and real root system architecture
  publication-title: Am. J. Bot
  doi: 10.3732/ajb.94.9.1506
– volume: 271
  start-page: 264
  year: 2019
  ident: B31
  article-title: Simulation of maize evapotranspiration: an inter-comparison among 29 maize models
  publication-title: Agric. For. Meteorol
  doi: 10.1016/j.agrformet.2019.02.037
– volume: 290
  start-page: 76
  year: 2014
  ident: B48
  article-title: Calibration and evaluation of archisimple, a simple model of root system architecture
  publication-title: Ecol. Modell
  doi: 10.1016/j.ecolmodel.2013.11.014
– volume: 34
  start-page: 1102
  year: 2011
  ident: B24
  article-title: DuMux: DUNE for multi-$phase, component, scale, physics, …$ flow and transport in porous media
  publication-title: Adv. Water Resour
  doi: 10.1016/j.advwatres.2011.03.007
– ident: B63
– volume: 425
  start-page: 457
  year: 2018
  ident: B36
  article-title: Measuring root system traits of wheat in 2d images to parameterize 3d root architecture models
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3595-8
– volume: 118
  start-page: 853
  year: 2016
  ident: B66
  article-title: Estimation of the hydraulic conductivities of lupine roots by inverse modelling of high-resolution measurements of root water uptake
  publication-title: Ann. Bot
  doi: 10.1093/aob/mcw154
– volume: 4
  start-page: 206
  year: 2005
  ident: B65
  article-title: A set of analytical benchmarks to test numerical models of flow and transport in soils
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2005.0206
– volume: 258
  start-page: 103
  year: 2004
  ident: B49
  article-title: Root typ: a generic model to depict and analyse the root system architecture
  publication-title: Plant Soil
  doi: 10.1023/B:PLSO.0000016540.47134.03
– volume: 118
  start-page: 383
  year: 1991
  ident: B23
  article-title: Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1991.tb00019.x
– volume: 62
  start-page: 495
  year: 2014
  ident: B51
  article-title: Harmonization and translation of crop modeling data to ensure interoperability
  publication-title: Environ. Modell. Softw
  doi: 10.1016/j.envsoft.2014.09.004
– volume-title: The Visualization Toolkit. 4th Edn
  year: 2006
  ident: B59
– volume: 79
  start-page: 1309
  year: 2009
  ident: B25
  article-title: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities
  publication-title: Int. J. Numer. Methods Eng
  doi: 10.1002/nme.2579
– volume: 167
  start-page: 617
  year: 2015
  ident: B41
  article-title: Root system markup language: toward a unified root architecture description language
  publication-title: Plant Physiol
  doi: 10.1104/pp.114.253625
– volume: 95
  start-page: 1362
  year: 2003
  ident: B60
  article-title: Xylem hydraulics and the soil–plant–atmosphere continuum
  publication-title: Agron. J
  doi: 10.2134/agronj2003.1362
SSID ssj0000500997
Score 2.3425827
Snippet Three-dimensional models of root growth, architecture and function are becoming important tools that aid the design of agricultural management schemes and the...
SourceID doaj
pubmedcentral
osti
hal
cristin
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 316
SubjectTerms benchmark
call for participation
functional-structural root architecture
functional-structural root architecture models
Life Sciences
model comparison
Plant Science
Plant Sciences
root water uptake
Vegetal Biology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA8yrOBFXD_rrhLFg5e6mbb52tvM4DCIiqiDewtJmjKLYzss3QXP_uO-l3bHVhQvXkpp0o_0_R7v1-bl9wh5YaXWqAOe-qJwKUp2p1qykDpuhXCWZzoqMb17L1br4s0ZPxuU-sKcsE4euHtxJ7IQLg9KBuT-GXOu8Dovq7KqMp6pMq4jh5g3-JjqVL2R-shOywe-wvRJtduiOneGmVw5Vje_6aMX1aOAFHX7IcxsMCty0kD7n5jn7wmUg4i0vENu91SSzrohHJIbob5LDuYN0L3v98iPhd1uKVBS-sEOUqdP6eKX5a8CnQNKN99s_GNOm4ouIc51vwfTT1FaFmU56MemaelsMOdAsYYaDJUCzOgCIiGeG3t9AfJ6Qde71n4N98l6-frzYpX2FRdSD0yqTfNCOfBwjyKFTjnnVVAVF56VmWZcBWBXTFTK2swJUUwt8A0uwa0V7Euc03xAJnVTh0eEeq84827qQ4FrfZl1QDTB3Z0vK-aCTEjSG8DUMGQUKuUZbNGYCXl1bRLje6lyrJixhXaD1jRoTYPWjNqmIiEv9yfsOpWOv3edo4333VBeOx4A0JkedOZfoEvIc0DI6Bqr2VuDx_Aeec7UFYziCAFkgMqgHq_HxCXfmqlAzTWWkGfXuDLg0ThNY-vQXMKz5hp4ohYZ9HnY4Wx_JzCOFgWHa8sRAkePMm6pzzdRNVxiQmMuHv-P8R-RW_hGu7WZx2QCeAxPgJy17mn0w59b-DTf
  priority: 102
  providerName: Directory of Open Access Journals
Title Call for Participation: Collaborative Benchmarking of Functional-Structural Root Architecture Models. The Case of Root Water Uptake
URI https://www.ncbi.nlm.nih.gov/pubmed/32296451
https://www.proquest.com/docview/2390649620
http://hdl.handle.net/10852/102091
https://hal.inrae.fr/hal-03163308
https://www.osti.gov/servlets/purl/1628300
https://pubmed.ncbi.nlm.nih.gov/PMC7136536
https://doaj.org/article/746b3e87e301420bb4c93dfdff2528d7
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagcOCCeBMWVgZx4JIlcRzHQUKorSgVYhECKnqzbMehiJCUElbsmT_OjJPtNqhIXKIodvyamcxne_KZkMc6y3PkAQ8t5yZEyu4wzyIXmlQLYXTKcs_EdPxWzBf89TJdnh8H1A_gj71TOzxParGpjn59P30BBv8cZ5zgb5-W6wqJtxkGaSWxuEgugVvK0EqPe6zfEX0jGvKHrQjBQy7YsqP62VcGoGHrjawe-CtP6w9eaIVBk6MG0vcB07_jK3cc1uwaudojTTruVOM6ueDqG-TypAE0eHqT_J7qqqKAWOk7vRNZ_YxOzxXjxNEJKPHqm_YL6rQp6QzcYLd6GH7wzLPI2kHfN01LxztbEhSPWIOuUtBCOgVHie_6XJ8A227oYt3qr-4WWcxefpzOw_5AhtAC0GrDhEsDHwCLHIZGGmOlk2UqbFSwPEqlA_AViVJqzQwMcawBjqQZWL2E-wy3PG-TUd3U7i6h1so0sia2juOvwJE2gEPha2BsUUbGZQEJegGoGrqMPKYpgysDfBOQozORKNszmeOBGhWkK5SmQmkqlKanPhUBebJ9Yd2RePw76wRlvM2G7Nv-QbP5rHpjVhkXJnEyczgfZZEx3OZJURZlyVImC2j8I9CQQRnz8RuFz7COJInkCfTiABVIAdJBul6LcU22VbFASrYoIA_P9EqBweMujq5d8xPamuQAI3PBIM-dTs-2NYFwcsFTKDsbaOCgKcOU-svKk4pnGO-YiHv_Ue8BuYID1v2ZeZ-MQN3cA4BmrTn0SxpwfbWMD735_QGJpDVm
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Call+for+Participation%3A+Collaborative+Benchmarking+of+Functional-Structural+Root+Architecture+Models.+The+Case+of+Root+Water+Uptake&rft.jtitle=Frontiers+in+plant+science&rft.au=Schnepf%2C+Andrea&rft.au=Black%2C+Christopher+K&rft.au=Couvreur%2C+Valentin&rft.au=Delory%2C+Benjamin+M&rft.date=2020-03-31&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=11&rft.spage=316&rft_id=info:doi/10.3389%2Ffpls.2020.00316&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon