A Seasonal Autoregressive Integrated Moving Average (SARIMA) forecasting model to predict the epidemic trends of scrub typhus in China

Scrub typhus is a deadly infectious disease that is frequently underdiagnosed. Forecasting the emergence of infectious diseases using epidemiological models has emerged as a crucial instrument for comprehending the dynamics of their occurrence. This research aimed to investigate epidemic traits and...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 6; p. e0325905
Main Authors Peng, Pei-Ying, Duan, Hui-Ying, Xu, Lei, Sun, Ji-Qin, Ma, Li-Juan, Zu, Ya, Yan, Ting-Liang
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 23.06.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Scrub typhus is a deadly infectious disease that is frequently underdiagnosed. Forecasting the emergence of infectious diseases using epidemiological models has emerged as a crucial instrument for comprehending the dynamics of their occurrence. This research aimed to investigate epidemic traits and create a predictive model for scrub typhus in mainland China, employing the Seasonal Autoregressive Integrated Moving Average (SARIMA) time series method. Monthly records of scrub typhus cases were gathered from the China Center for Disease Control and Prevention, covering the timeframe from 2006 to 2019. From 2006 to 2018, a total of 142849 scrub typhus cases were reported in China, the females’ morbidity was higher than the males’ one ( P < 0.001). The ideal model was SARIMA (1, 0, 2) (1, 1, 1) 12 with its residual being white noise ( P > 0.05). This method forecasted scrub typhus cases between January and December 2019, with the predicted values for 2019 falling within the 95% confidence range. The research indicates that the SARIMA model accurately simulated the epidemiological patterns of scrub typhus across mainland China. Utilizing the SARIMA model is a practical approach for tracking scrub typhus cases in mainland China.
AbstractList Scrub typhus is a deadly infectious disease that is frequently underdiagnosed. Forecasting the emergence of infectious diseases using epidemiological models has emerged as a crucial instrument for comprehending the dynamics of their occurrence. This research aimed to investigate epidemic traits and create a predictive model for scrub typhus in mainland China, employing the Seasonal Autoregressive Integrated Moving Average (SARIMA) time series method. Monthly records of scrub typhus cases were gathered from the China Center for Disease Control and Prevention, covering the timeframe from 2006 to 2019. From 2006 to 2018, a total of 142849 scrub typhus cases were reported in China, the females’ morbidity was higher than the males’ one ( P  < 0.001). The ideal model was SARIMA (1, 0, 2) (1, 1, 1) 12 with its residual being white noise ( P  > 0.05). This method forecasted scrub typhus cases between January and December 2019, with the predicted values for 2019 falling within the 95% confidence range. The research indicates that the SARIMA model accurately simulated the epidemiological patterns of scrub typhus across mainland China. Utilizing the SARIMA model is a practical approach for tracking scrub typhus cases in mainland China.
Scrub typhus is a deadly infectious disease that is frequently underdiagnosed. Forecasting the emergence of infectious diseases using epidemiological models has emerged as a crucial instrument for comprehending the dynamics of their occurrence. This research aimed to investigate epidemic traits and create a predictive model for scrub typhus in mainland China, employing the Seasonal Autoregressive Integrated Moving Average (SARIMA) time series method. Monthly records of scrub typhus cases were gathered from the China Center for Disease Control and Prevention, covering the timeframe from 2006 to 2019. From 2006 to 2018, a total of 142849 scrub typhus cases were reported in China, the females' morbidity was higher than the males' one (P < 0.001). The ideal model was SARIMA (1, 0, 2) (1, 1, 1) 12 with its residual being white noise (P > 0.05). This method forecasted scrub typhus cases between January and December 2019, with the predicted values for 2019 falling within the 95% confidence range. The research indicates that the SARIMA model accurately simulated the epidemiological patterns of scrub typhus across mainland China. Utilizing the SARIMA model is a practical approach for tracking scrub typhus cases in mainland China.
Scrub typhus is a deadly infectious disease that is frequently underdiagnosed. Forecasting the emergence of infectious diseases using epidemiological models has emerged as a crucial instrument for comprehending the dynamics of their occurrence. This research aimed to investigate epidemic traits and create a predictive model for scrub typhus in mainland China, employing the Seasonal Autoregressive Integrated Moving Average (SARIMA) time series method. Monthly records of scrub typhus cases were gathered from the China Center for Disease Control and Prevention, covering the timeframe from 2006 to 2019. From 2006 to 2018, a total of 142849 scrub typhus cases were reported in China, the females' morbidity was higher than the males' one (P < 0.001). The ideal model was SARIMA (1, 0, 2) (1, 1, 1) 12 with its residual being white noise (P > 0.05). This method forecasted scrub typhus cases between January and December 2019, with the predicted values for 2019 falling within the 95% confidence range. The research indicates that the SARIMA model accurately simulated the epidemiological patterns of scrub typhus across mainland China. Utilizing the SARIMA model is a practical approach for tracking scrub typhus cases in mainland China.Scrub typhus is a deadly infectious disease that is frequently underdiagnosed. Forecasting the emergence of infectious diseases using epidemiological models has emerged as a crucial instrument for comprehending the dynamics of their occurrence. This research aimed to investigate epidemic traits and create a predictive model for scrub typhus in mainland China, employing the Seasonal Autoregressive Integrated Moving Average (SARIMA) time series method. Monthly records of scrub typhus cases were gathered from the China Center for Disease Control and Prevention, covering the timeframe from 2006 to 2019. From 2006 to 2018, a total of 142849 scrub typhus cases were reported in China, the females' morbidity was higher than the males' one (P < 0.001). The ideal model was SARIMA (1, 0, 2) (1, 1, 1) 12 with its residual being white noise (P > 0.05). This method forecasted scrub typhus cases between January and December 2019, with the predicted values for 2019 falling within the 95% confidence range. The research indicates that the SARIMA model accurately simulated the epidemiological patterns of scrub typhus across mainland China. Utilizing the SARIMA model is a practical approach for tracking scrub typhus cases in mainland China.
Scrub typhus is a deadly infectious disease that is frequently underdiagnosed. Forecasting the emergence of infectious diseases using epidemiological models has emerged as a crucial instrument for comprehending the dynamics of their occurrence. This research aimed to investigate epidemic traits and create a predictive model for scrub typhus in mainland China, employing the Seasonal Autoregressive Integrated Moving Average (SARIMA) time series method. Monthly records of scrub typhus cases were gathered from the China Center for Disease Control and Prevention, covering the timeframe from 2006 to 2019. From 2006 to 2018, a total of 142849 scrub typhus cases were reported in China, the females' morbidity was higher than the males' one (P 0.05). This method forecasted scrub typhus cases between January and December 2019, with the predicted values for 2019 falling within the 95% confidence range. The research indicates that the SARIMA model accurately simulated the epidemiological patterns of scrub typhus across mainland China. Utilizing the SARIMA model is a practical approach for tracking scrub typhus cases in mainland China.
Audience Academic
Author Duan, Hui-Ying
Sun, Ji-Qin
Xu, Lei
Ma, Li-Juan
Yan, Ting-Liang
Zu, Ya
Peng, Pei-Ying
AuthorAffiliation Kalinga Institute of Medical Sciences, INDIA
2 Department of Clinical Laboratory, Qujing Second People’s Hospital, Qujing, Yunnan Province, China
1 Institute of Microbiology of Qujing Medical College, Qujing, Yunnan Province, China
AuthorAffiliation_xml – name: Kalinga Institute of Medical Sciences, INDIA
– name: 1 Institute of Microbiology of Qujing Medical College, Qujing, Yunnan Province, China
– name: 2 Department of Clinical Laboratory, Qujing Second People’s Hospital, Qujing, Yunnan Province, China
Author_xml – sequence: 1
  givenname: Pei-Ying
  orcidid: 0000-0001-9544-1527
  surname: Peng
  fullname: Peng, Pei-Ying
– sequence: 2
  givenname: Hui-Ying
  surname: Duan
  fullname: Duan, Hui-Ying
– sequence: 3
  givenname: Lei
  surname: Xu
  fullname: Xu, Lei
– sequence: 4
  givenname: Ji-Qin
  surname: Sun
  fullname: Sun, Ji-Qin
– sequence: 5
  givenname: Li-Juan
  surname: Ma
  fullname: Ma, Li-Juan
– sequence: 6
  givenname: Ya
  surname: Zu
  fullname: Zu, Ya
– sequence: 7
  givenname: Ting-Liang
  surname: Yan
  fullname: Yan, Ting-Liang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40549749$$D View this record in MEDLINE/PubMed
BookMark eNptks1u1DAUhSNURH_gDRBYYlMWM9ixncQrFFX8jNQKicLacuybjEeZeLCdkfoCPDdOJ606qMoi8fXnc-9xznl2MrgBsuwtwUtCS_Jp40Y_qH65S-UlpjkXmL_Izoig-aLIMT158n2anYewwZjTqiheZacMcyZKJs6yvzW6BRVcUkL1GJ2HzkMIdg9oNcS0UBEMunF7O3So3oNXHaDL2_rn6qb-iNrEaxXitLl1BnoUHdp5MFZHFNeAYGcNbK1G0cNgAnItCtqPDYp3u_UYkB3Q1doO6nX2slV9gDfz-yL7_fXLr6vvi-sf31ZX9fVCc8bjIqdtRaghlBJRMGJyrJqmaFrNy4KZvMHKlAxUWRAlmCpFI4zJBdCqbEpOFKYX2fuD7q53Qc5XGCTNc8p5la4nEasDYZzayJ23W-XvpFNW3hec76Ty0eoeJFOtppoq3OSaUZVGEQQ4xoJDm-o0aX2eu43NFoyGIXrVH4ke7wx2LTu3lyQnFROkTAqXs4J3f0YIUW5t0ND3agA3HgYvKMVisvbhP_R5ezPVqeTADq1LjfUkKuuKccwwziet5TNUeu5_Zgpca1P96MC7p04fLT4ELQHsAGjvQvDQPiIEyynPD9PKKc9yzjP9By7H6aA
Cites_doi 10.1086/425365
10.1016/j.actatropica.2011.05.018
10.1007/BF00145683
10.1186/s12879-016-2153-3
10.3389/fpubh.2022.1004462
10.4269/ajtmh.12-0728
10.1016/j.jiph.2019.12.008
10.1590/S0037-86822011000400007
10.3390/ijerph19031504
10.1016/j.jiph.2018.04.009
10.1002/sim.963
10.7196/SAMJ.2018.v108i7.12885
10.3390/ijerph15050966
10.3201/eid2104.141387
10.1038/s41598-024-53800-y
10.1371/journal.pntd.0005838
10.1016/j.prevetmed.2012.12.003
10.1080/03088839.2021.1876937
10.1186/s12879-020-4930-2
10.1097/00001432-200310000-00009
10.3201/eid2308.170050
10.1038/s41598-022-07082-x
10.1128/JCM.01526-10
10.1007/s42399-020-00555-y
10.1186/s12936-016-1602-1
ContentType Journal Article
Copyright Copyright: © 2025 Peng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Peng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Peng et al 2025 Peng et al
2025 Peng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Peng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Peng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Peng et al 2025 Peng et al
– notice: 2025 Peng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0325905
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Proquest Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Agricultural Science Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate A forecasting model to predict the epidemic trends of scrub typhus in China
EISSN 1932-6203
ExternalDocumentID 3223558538
oai_doaj_org_article_4afc3c3a0b2c43aabb91e50095ef3c33
PMC12184917
A845040020
40549749
10_1371_journal_pone_0325905
Genre Journal Article
GeographicLocations China
United States--US
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – grantid: 2025J1660
– grantid: [2023] 10
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c545t-23f813d13319641d20abb6bfc5764d2b0ad74ea761a94a79b9dd29e387b751a03
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Sep 03 00:56:39 EDT 2025
Wed Aug 27 01:31:28 EDT 2025
Thu Aug 21 18:26:23 EDT 2025
Fri Jul 11 17:01:22 EDT 2025
Fri Jul 25 09:17:08 EDT 2025
Thu Jul 03 02:13:44 EDT 2025
Tue Jul 01 05:44:13 EDT 2025
Fri Jun 27 02:12:16 EDT 2025
Tue Aug 05 12:07:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2025 Peng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-23f813d13319641d20abb6bfc5764d2b0ad74ea761a94a79b9dd29e387b751a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-9544-1527
OpenAccessLink https://doaj.org/article/4afc3c3a0b2c43aabb91e50095ef3c33
PMID 40549749
PQID 3223558538
PQPubID 1436336
ParticipantIDs plos_journals_3223558538
doaj_primary_oai_doaj_org_article_4afc3c3a0b2c43aabb91e50095ef3c33
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12184917
proquest_miscellaneous_3223633090
proquest_journals_3223558538
gale_infotracmisc_A845040020
gale_infotracacademiconefile_A845040020
pubmed_primary_40549749
crossref_primary_10_1371_journal_pone_0325905
PublicationCentury 2000
PublicationDate 20250623
PublicationDateYYYYMMDD 2025-06-23
PublicationDate_xml – month: 6
  year: 2025
  text: 20250623
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References FF Nobre (pone.0325905.ref021) 2001; 20
Y-C Wu (pone.0325905.ref015) 2016; 10
EP George (pone.0325905.ref020) 1976
PY Peng (pone.0325905.ref042) 2024; 14
N-Y Ha (pone.0325905.ref001) 2017; 6
G Watt (pone.0325905.ref033) 2003; 16
Y Wei (pone.0325905.ref014) 2017; 11
G Xu (pone.0325905.ref007) 2017; 11
Z Wang (pone.0325905.ref039) 2022; 10
Y Luo (pone.0325905.ref024) 2019; 10
M Zhang (pone.0325905.ref028) 2011; 32
K Koyuncu (pone.0325905.ref037) 2021; 48
C Kocher (pone.0325905.ref010) 2017; 23
A Bonell (pone.0325905.ref006) 2017; 11
Y Wei (pone.0325905.ref040) 2014; 9
O Ebhuoma (pone.0325905.ref034) 2018; 108
E Yang (pone.0325905.ref031) 2018; 15
HS Lee (pone.0325905.ref017) 2013; 110
X Fang (pone.0325905.ref032) 2020; 20
MY Anwar (pone.0325905.ref016) 2016; 15
L Izzard (pone.0325905.ref009) 2010; 48
C-C Kuo (pone.0325905.ref004) 2011; 120
MD Li (pone.0325905.ref026) 2004
L Fang (pone.0325905.ref022) 2020; 2
EZ Martinez (pone.0325905.ref018) 2011; 44
GH Wu (pone.0325905.ref025) 2013; 19
Q Mao (pone.0325905.ref035) 2018; 11
DJ Kelly (pone.0325905.ref005) 2009
H Liu (pone.0325905.ref036) 2020; 13
China Ministry of Health (pone.0325905.ref019) 2009
XR Chen (pone.0325905.ref012) 1987
C Xiangrui (pone.0325905.ref011) 1991; 7
Y Sun (pone.0325905.ref023) 2017; 17
JW Thiga (pone.0325905.ref008) 2015; 21
ZK Jiang (pone.0325905.ref027) 2014; 20
CV Tan (pone.0325905.ref038) 2022; 19
P-Y Peng (pone.0325905.ref041) 2022; 12
W-Y Zhang (pone.0325905.ref013) 2013; 7
M Jensenius (pone.0325905.ref003) 2004; 39
SK Mahajan (pone.0325905.ref002) 2005; 53
J Hu (pone.0325905.ref030) 2015; 10
W Li (pone.0325905.ref029) 2013; 89
References_xml – volume: 39
  start-page: 1493
  issue: 10
  year: 2004
  ident: pone.0325905.ref003
  article-title: Rickettsioses and the international traveler
  publication-title: Clin Infect Dis
  doi: 10.1086/425365
– volume: 120
  start-page: 52
  year: 2011
  ident: pone.0325905.ref004
  article-title: Spatial analysis of scrub typhus infection and its association with environmental and socioeconomic factors in Taiwan
  publication-title: Acta Trop
  doi: 10.1016/j.actatropica.2011.05.018
– volume: 7
  start-page: 304
  issue: 3
  year: 1991
  ident: pone.0325905.ref011
  article-title: Recent studies on scrub typhus and Rickettsia tsutsugamushi in Shandong Province--China
  publication-title: Eur J Epidemiol
  doi: 10.1007/BF00145683
– volume: 17
  start-page: 13
  issue: 1
  year: 2017
  ident: pone.0325905.ref023
  article-title: Rapid increase of scrub typhus incidence in Guangzhou, southern China, 2006-2014
  publication-title: BMC Infect Dis
  doi: 10.1186/s12879-016-2153-3
– volume: 10
  start-page: 1004462
  year: 2022
  ident: pone.0325905.ref039
  article-title: A potential tool for predicting epidemic trends and outbreaks of scrub typhus based on Internet search big data analysis in Yunnan Province, China
  publication-title: Front Public Health
  doi: 10.3389/fpubh.2022.1004462
– volume: 10
  issue: 5
  year: 2015
  ident: pone.0325905.ref030
  article-title: Clinical characteristics and risk factors of an outbreak with scrub typhus in previously unrecognized areas, Jiangsu province, China 2013
  publication-title: PLoS One
– volume: 11
  issue: 11
  year: 2017
  ident: pone.0325905.ref007
  article-title: A review of the global epidemiology of scrub typhus
  publication-title: PLoS Negl Trop Dis
– volume: 10
  start-page: 920
  year: 2019
  ident: pone.0325905.ref024
  article-title: Progress in research of Orientia tsutsugamushi and its host and vector
  publication-title: Dis Sur
– volume: 89
  start-page: 123
  issue: 1
  year: 2013
  ident: pone.0325905.ref029
  article-title: Laboratory diagnosis and genotype identification of scrub typhus from Pinggu district, Beijing, 2008 and 2010
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.12-0728
– start-page: 651
  volume-title: Practical epidemiology
  year: 2004
  ident: pone.0325905.ref026
– volume: 13
  start-page: 287
  issue: 2
  year: 2020
  ident: pone.0325905.ref036
  article-title: Forecast of the trend in incidence of acute hemorrhagic conjunctivitis in China from 2011-2019 using the Seasonal Autoregressive Integrated Moving Average (SARIMA) and Exponential Smoothing (ETS) models
  publication-title: J Infect Public Health
  doi: 10.1016/j.jiph.2019.12.008
– volume: 44
  start-page: 436
  issue: 4
  year: 2011
  ident: pone.0325905.ref018
  article-title: A SARIMA forecasting model to predict the number of cases of dengue in Campinas, State of São Paulo, Brazil
  publication-title: Rev Soc Bras Med Trop
  doi: 10.1590/S0037-86822011000400007
– volume: 19
  start-page: 1504
  issue: 3
  year: 2022
  ident: pone.0325905.ref038
  article-title: Forecasting COVID-19 Case Trends Using SARIMA Models during the Third Wave of COVID-19 in Malaysia
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph19031504
– volume: 19
  start-page: 370
  issue: 5
  year: 2013
  ident: pone.0325905.ref025
  article-title: General situation on studies of animal hosts of tsutsugamushi disease in China
  publication-title: Chin J Hyg Insectic Equip
– volume: 11
  start-page: 707
  issue: 5
  year: 2018
  ident: pone.0325905.ref035
  article-title: Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model
  publication-title: J Infect Public Health
  doi: 10.1016/j.jiph.2018.04.009
– start-page: 140
  issue: 2
  year: 1987
  ident: pone.0325905.ref012
  article-title: Investigation of the first scrub typhus epidemic in Shandong Province
  publication-title: Milit Med Sci
– volume: 11
  issue: 3
  year: 2017
  ident: pone.0325905.ref014
  article-title: Climate variability, animal reservoir and transmission of scrub typhus in Southern China
  publication-title: PLoS Negl Trop Dis
– volume: 32
  start-page: 419
  issue: 4
  year: 2011
  ident: pone.0325905.ref028
  article-title: Current epidemic status and issues on prevention and control of scrub typhus
  publication-title: Chin J Hyg Insectic Equip
– volume: 20
  start-page: 3051
  issue: 20
  year: 2001
  ident: pone.0325905.ref021
  article-title: Dynamic linear model and SARIMA: a comparison of their forecasting performance in epidemiology
  publication-title: Stat Med
  doi: 10.1002/sim.963
– volume: 20
  start-page: 209
  issue: 3
  year: 2014
  ident: pone.0325905.ref027
  article-title: General situation of epidemiology of tsutsugamushi disease of autumn-winter type in China
  publication-title: Chin J Hyg Insectic Equip
– volume: 108
  start-page: 573
  issue: 7
  year: 2018
  ident: pone.0325905.ref034
  article-title: A Seasonal Autoregressive Integrated Moving Average (SARIMA) forecasting model to predict monthly malaria cases in KwaZulu-Natal, South Africa
  publication-title: S Afr Med J
  doi: 10.7196/SAMJ.2018.v108i7.12885
– volume: 7
  issue: 12
  year: 2013
  ident: pone.0325905.ref013
  article-title: Scrub typhus in mainland China, 2006-2012: the need for targeted public health interventions
  publication-title: PLoS Negl Trop Dis
– volume: 15
  start-page: 966
  issue: 5
  year: 2018
  ident: pone.0325905.ref031
  article-title: A Simulation-Based Study on the Comparison of Statistical and Time Series Forecasting Methods for Early Detection of Infectious Disease Outbreaks
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph15050966
– volume: 21
  start-page: 688
  issue: 4
  year: 2015
  ident: pone.0325905.ref008
  article-title: High seroprevalence of antibodies against spotted fever and scrub typhus bacteria in patients with febrile Illness, Kenya
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid2104.141387
– volume: 14
  start-page: 3138
  issue: 1
  year: 2024
  ident: pone.0325905.ref042
  article-title: Epidemiologic changes of a longitudinal surveillance study spanning 51 years of scrub typhus in mainland China
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-53800-y
– volume: 11
  issue: 9
  year: 2017
  ident: pone.0325905.ref006
  article-title: Estimating the burden of scrub typhus: A systematic review
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0005838
– volume: 10
  issue: 8
  year: 2016
  ident: pone.0325905.ref015
  article-title: Spatiotemporal Dynamics of Scrub Typhus Transmission in Mainland China, 2006-2014
  publication-title: PLoS Negl Trop Dis
– year: 2009
  ident: pone.0325905.ref005
  article-title: Scrub typhus: the geographic distribution of phenotypic and genotypic variants of Orientia tsutsugamushi
  publication-title: Clin Infect Dis
– volume: 110
  start-page: 190
  issue: 2
  year: 2013
  ident: pone.0325905.ref017
  article-title: Time series analysis of human and bovine brucellosis in South Korea from 2005 to 2010
  publication-title: Prev Vet Med
  doi: 10.1016/j.prevetmed.2012.12.003
– volume: 48
  start-page: 1096
  issue: 8
  year: 2021
  ident: pone.0325905.ref037
  article-title: Forecasting COVID-19 impact on RWI/ISL container throughput index by using SARIMA models
  publication-title: Maritime Policy & Management
  doi: 10.1080/03088839.2021.1876937
– volume: 9
  issue: 7
  year: 2014
  ident: pone.0325905.ref040
  article-title: Rapid increase of scrub typhus: an epidemiology and spatial-temporal cluster analysis in Guangzhou City, Southern China, 2006-2012
  publication-title: PLoS One
– year: 2009
  ident: pone.0325905.ref019
– volume: 20
  start-page: 222
  issue: 1
  year: 2020
  ident: pone.0325905.ref032
  article-title: Forecasting incidence of infectious diarrhea using random forest in Jiangsu Province, China
  publication-title: BMC Infect Dis
  doi: 10.1186/s12879-020-4930-2
– volume-title: Time series analysis forecasting and control
  year: 1976
  ident: pone.0325905.ref020
– volume: 16
  start-page: 429
  issue: 5
  year: 2003
  ident: pone.0325905.ref033
  article-title: Scrub typhus and tropical rickettsioses
  publication-title: Curr Opin Infect Dis
  doi: 10.1097/00001432-200310000-00009
– volume: 6
  issue: 12
  year: 2017
  ident: pone.0325905.ref001
  article-title: Longevity of antibody and T-cell responses against outer membrane antigens of Orientia tsutsugamushi in scrub typhus patients
  publication-title: Emerg Microbes Infect
– volume: 23
  start-page: 1389
  issue: 8
  year: 2017
  ident: pone.0325905.ref010
  article-title: Serologic Evidence of Scrub Typhus in the Peruvian Amazon
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid2308.170050
– volume: 12
  start-page: 2985
  issue: 1
  year: 2022
  ident: pone.0325905.ref041
  article-title: Epidemiological characteristics and spatiotemporal patterns of scrub typhus in Yunnan Province from 2006 to 2017
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-07082-x
– volume: 48
  start-page: 4404
  issue: 12
  year: 2010
  ident: pone.0325905.ref009
  article-title: Isolation of a novel Orientia species (O. chuto sp. nov.) from a patient infected in Dubai
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01526-10
– volume: 2
  start-page: 2521
  issue: 12
  year: 2020
  ident: pone.0325905.ref022
  article-title: Analysis and Estimation of COVID-19 Spreading in Russia Based on ARIMA Model
  publication-title: SN Compr Clin Med
  doi: 10.1007/s42399-020-00555-y
– volume: 53
  start-page: 954
  year: 2005
  ident: pone.0325905.ref002
  article-title: Scrub typhus
  publication-title: J Assoc Physicians India
– volume: 15
  start-page: 566
  issue: 1
  year: 2016
  ident: pone.0325905.ref016
  article-title: Time series analysis of malaria in Afghanistan: using ARIMA models to predict future trends in incidence
  publication-title: Malar J
  doi: 10.1186/s12936-016-1602-1
SSID ssj0053866
Score 2.478292
Snippet Scrub typhus is a deadly infectious disease that is frequently underdiagnosed. Forecasting the emergence of infectious diseases using epidemiological models...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0325905
SubjectTerms Analysis
Autoregressive moving-average models
Biology and Life Sciences
China
China - epidemiology
Communicable diseases
Data collection
Disease control
Distribution
Engineering and Technology
Epidemic models
Epidemics
Epidemiological Models
Epidemiology
Female
Forecasting
Forecasting - methods
Forecasting models
Forecasting techniques
Forecasts and trends
Health surveillance
Humans
Infectious diseases
Male
Medicine and Health Sciences
Models, Statistical
Morbidity
Moving averages
Orientia tsutsugamushi
People and Places
Physical Sciences
Prediction models
Research and Analysis Methods
Scrub typhus
Scrub Typhus - epidemiology
Seasonal variations
Seasons
Software
Time series
Trends
Typhus
White noise
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQnrggylcDLRokJNpD2sR2EvsYEFWLVA6USr1FtuNVK6EkarIH_gC_uzNOstqgSly4xs7HzjyP520mbxj7WBSGk4pIrDJdx9JoEVvjXKxVppxMHMIoVFt8z8-v5beb7Gan1RfVhI3ywKPhTqVZO-GESSx3UhhjrU59RpmBX-PxoPOJe95MpsYYjKs4z6cP5USRnk5-Oenaxp8kAlN-ale3sxEFvf5tVF51v9r-sZTz78rJna3o7Dl7NuWQUI7Pvsee-OYF25tWaQ9Hk5T08Uv2p4Qrb0K2DSWpFfhArzHCwcWsE1HDZfhXAUpENUYXOLoqf1xclseA-ax3pqfCaAgdc2BoobunVzsDYOIIfmwv62AIlbXQrqGnljcw_O5uNz3cNRD6c79i12dff345j6fOC7HDjGqIuVirVNTIX0mvK615gnbP7dohO5E1t4mpC-lNkadGS1Noq-uaay9UYYssNYl4zVYN2nqfgcvSOkeaaQ1yH6WMVj5N6sxy4R3HDTpi8eyGqhsFNqrwlq1AYjLasyK3VZPbIvaZfLWdS_LY4QCCpppAU_0LNBH7RJ6uaBGjH52ZvkXA-5AcVlUqmVF040nEDhYzcfG5xfA-YWV-0r7C-EiC9QhAPHPGz-PDH7bDdFGqdWt8uxnn5EIkGq_-ZoTb9tdiei2RAeqIqQUQF-ZYjjR3t0E1PCUyj-T87f8w4Dv2lFMj5CRHrByw1XC_8YeYnQ32fViID5wKOdI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZguXBBlFdDCxokJNpD2iTOyycUEFWLVA6USnuL_Nq2EkrCJnvoH-B3M-M4oYsqrrGTOJ6Hv7En3zD2vihkQiwiYZkJE6ZS8FBJrUNRZqVOI41q5LItvuWnl-nXZbb0G269T6ucfKJz1KbVtEd-jIpHTOBonx-7XyFVjaLTVV9C4yF7RNRllNJVLOeAC_vmuf9djhfxsZfOUdc29ijiCPypaN2d5cix9s--edH9bPv7gOe_-ZN3FqSTp-yJR5JQjaLfYQ9s84zteFvt4cATSh8-Z78ruLDSYW6oiLPAuiAb_RycTWwRBs7d3gJUqNvoY-Dgovp-dl4dAqJaq2VP6dHg6ubA0EK3pgOeARA-gh2LzGoYXH4ttCvoqfANDLfd9aaHmwZcle4X7PLky4_Pp6GvvxBqxFVDmPBVGXODUSyxdsUmiaRSuVppjFFSk6hImiK1sshjKVJZCCWMSYTlZaGKLJYRf8kWDc71LgOdxSbHYFNJjIDKUorSxpHJVMKtTnCZDlg4iaHuRpqN2p21FRiejPNZk9hqL7aAfSJZzX2JJNtdaNdXtbe5OpUrzTWXkUp0yiUOXsQ2I1BpV3idB-wDSbomU0Y5aun_SMD3EClWXZVpRj4uiQK2v9UTTVBvNe-Srkwj7eu_yop3Tvpzf_O7uZkeShlvjW03Y5-c80jg01-N6jZ_LYLsFONAEbBySxG3pmO7pbm5dtzhMYX0GKK__v-49tjjhAodRzlqwT5bDOuNfYPoa1BvnYn9AfjfMFs
  priority: 102
  providerName: ProQuest
Title A Seasonal Autoregressive Integrated Moving Average (SARIMA) forecasting model to predict the epidemic trends of scrub typhus in China
URI https://www.ncbi.nlm.nih.gov/pubmed/40549749
https://www.proquest.com/docview/3223558538
https://www.proquest.com/docview/3223633090
https://pubmed.ncbi.nlm.nih.gov/PMC12184917
https://doaj.org/article/4afc3c3a0b2c43aabb91e50095ef3c33
http://dx.doi.org/10.1371/journal.pone.0325905
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3Pa9swFBZdCqOXse5Xs3VBg8Hag4ttyZZ1GMMtydpBymgXyM1IstIWip3FDqyXHfd37z3ZDvNILz5YP-LofU_6niV_j5CPQqgQVUS8JJK5x5VknlbGeDKJEsN9AzBypy0u4_MZ_zaP5juky9naDmC1NbTDfFKz1f3Jr58PX8DhP7usDSLoGp0sy8Ke-AwIPYqa7sLaJNBVp3yzrwDeHcftB3SPtdwjT4HEcODZsrdWOUn_zcQ9WN6X1TZW-v_hyn9Wq8lz8qylmTRtcLFPdmzxguy3jlzRo1Zt-vgl-ZPSa6scIacpChpYF4HDJEgvOimJnE7diweaAvBhAqJH1-nVxTQ9pkB5rVEVnp2mLqkOrUu6XOHuT02BW1LbZKA1tHaHb2m5oBVmxaH1w_J2XdG7groU3q_IbDL-cXbutckZPAOkq_ZCtkgClkOIi5JeQR76SutYLwwEMDwPta9ywa0ScaAkV0JqmeehtCwRWkSB8tlrMihg2A8INVGQxxCJagXhUZIomdjAzyMdMmtCWMOHxOvMkC0bDY7MbcQJiF2a8czQgllrwSE5RVtt6qKCtrtRrm6y1iEzrhaGGaZ8HRrOFDy8DGyEjNMu4D4bkk9o6QyRB3Y0qv1cAX4HFbOyNOERToChPySHvZrgn6ZXfIBY6Z60ymAKRU17wCK07PCzvfjDphg7xeNwhS3XTZ2YMV9C728auG3-bQfeIUl6QOwNR7-kuLt1wuIBxvsQv799tNN3ZC_EBMh-DAA4JIN6tbbvgZXVekSeiLmAa3IW4HXydUR2T8eX369G7j3HyDkiXn-P_wIeNTxn
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALory6pYCRQLSHtI6dlw8IhUe1S7s90FbaW2o7XlqpSsImK9Q_wM_hNzLjJEsXVdx6jbNex_PwN_Z4PkLexLHiWEXES0KZe4GSwtPKGE8mYWICZkCNXLbFUTQ6Db5Ow-ka-d3fhcG0yt4nOkedlwb3yPdA8bASONjnh-qHh6xReLraU2i0anFgr35CyFa_H38G-b7lfP_LyaeR17EKeAbQQuNxMUt8kUNshrWo_JwzpXWkZwaQd5BzzVQeB1ZBeK9koGKpZZ5zaUUS6zj0FRPQ7x1yFxZehhYVT5cBHowtirrreSL29zpt2K3Kwu4yAYEGkuRdW_4cS8ByLRhUl2V9E9D9N1_z2gK4_5A86JArTVtVWydrtnhE1jvfUNPtroD1zmPyK6XHVjmMT1OskWBdUA9-lY776hQ5nbi9DJqCLYFPo9vH6bfxJN2hgKKtUTWmY1PH00ObklZzPFBqKMBValtSW0Mbl89LyxmtkWiHNlfV-aKmFwV1rOBPyOmtSOYpGRQw1xuEmtDPIwhutYKIK0mUTKzP8lBzYQ0HWDAkXi-GrGrLemTubC-GcKidzwzFlnViG5KPKKvlu1iU2z0o59-zzsazQM2MMEIxzU0gFAxe-jZEEGtn8FwMyTuUdIauA-RoVHcDAv4Hi3BlaRKE6FM5G5KtlTfB5M1K8wbqSj_SOvtrHPDLXn9ubn69bMZOMcOusOWifScSgkno_VmrbsuvBVAfQNwphyRZUcSV6VhtKS7OXa1yH7cQpB9v_n9cr8i90cnkMDscHx08J_c5kiyzCDRiiwya-cK-AOTX6JfO3Cg5u237_gNv32yG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKIiEuiPLXhQJGAtEe0k3sJI4PCAVK1aW0QpRKe0ttx6GVUBI2WaG-AA_F0zHjJEsXVdx6jb1ex_OTb-zxN4S8FEIxZBHxkkjmXqgk97QyxpNJlJjQN6BGLtviKN4_CT_Ootka-T3chcG0ysEnOkedVwb3yCegeMgEDvY5Kfq0iM-7e2_rHx5WkMKT1qGcRqciB_biJ4RvzZvpLsj6FWN7H76-3_f6CgOeAeTQeowXScBziNOQlyrIma-0jnVhAIWHOdO-ykVoFYT6SoZKSC3znEnLE6FFFCifw7g3yE3BowBtTMyWwR7MM477q3pcBJNeM3bqqrQ7PoegAwvmXfoUuooBy-_CqP5eNVeB3n9zNy99DPfukjs9iqVpp3brZM2W98h67ycautWTWW_fJ79SemyVw_s0Rb4E6wJ88LF0OjBV5PTQ7WvQFOwK_BvdOk6_TA_TbQqI2hrVYGo2dTV7aFvReo6HSy0F6EptV-DW0Nbl9tKqoA0W3aHtRX22aOh5SV2F8Afk5Fok85CMSljrDUJNFOQxBLpaQfSVJEomNvDzSDNuDQOIMCbeIIas7ig-MnfOJyA06tYzQ7FlvdjG5B3KatkXCbrdg2r-LevtPQtVYbjhytfMhFzB5GVgIwS0toDnfExeo6QzdCMgR6P62xDwP0jIlaVJGKF_Zf6YbK70BPM3K80bqCvDTJvsr6HALwf9ubr5xbIZB8Vsu9JWi65PzLkvYfRHnbot3xYAfggxqByTZEURV5ZjtaU8P3O85QFuJ8hAPP7_vJ6TW2DZ2afp0cETcpthvWU_BoXYJKN2vrBPAQS2-pmzNkpOr9u8_wBiQ3C8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Seasonal+Autoregressive+Integrated+Moving+Average+%28SARIMA%29+forecasting+model+to+predict+the+epidemic+trends+of+scrub+typhus+in+China&rft.jtitle=PloS+one&rft.au=Peng%2C+Pei-Ying&rft.au=Duan%2C+Hui-Ying&rft.au=Xu%2C+Lei&rft.au=Sun%2C+Ji-Qin&rft.date=2025-06-23&rft.eissn=1932-6203&rft.volume=20&rft.issue=6&rft.spage=e0325905&rft_id=info:doi/10.1371%2Fjournal.pone.0325905&rft_id=info%3Apmid%2F40549749&rft.externalDocID=40549749
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon