Fighting Oxidative Stress with Sulfur: Hydrogen Sulfide in the Renal and Cardiovascular Systems

Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Fu...

Full description

Saved in:
Bibliographic Details
Published inAntioxidants Vol. 10; no. 3; p. 373
Main Authors Scammahorn, Joshua J., Nguyen, Isabel T. N., Bos, Eelke M., Van Goor, Harry, Joles, Jaap A.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 02.03.2021
MDPI
Subjects
Online AccessGet full text
ISSN2076-3921
2076-3921
DOI10.3390/antiox10030373

Cover

Abstract Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use.
AbstractList Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use.
Hydrogen sulfide (H S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H S is a prime subject for further research with potential for clinical use.
Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use.Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use.
Hydrogen sulfide (H 2 S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H 2 S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H 2 S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H 2 S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H 2 S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H 2 S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H 2 S is a prime subject for further research with potential for clinical use.
Hydrogen sulfide (H₂S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H₂S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H₂S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H₂S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H₂S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H₂S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H₂S is a prime subject for further research with potential for clinical use.
Author Scammahorn, Joshua J.
Bos, Eelke M.
Joles, Jaap A.
Nguyen, Isabel T. N.
Van Goor, Harry
AuthorAffiliation 2 Department of Neurosurgery, Erasmus Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; e.bos@erasmusmc.nl
3 Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, 9713 GZ Groningen, The Netherlands
1 Department of Nephrology & Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; j.j.scammahorn@umcutrecht.nl (J.J.S.); T.N.Nguyen-4@umcutrecht.nl (I.T.N.N.); J.A.Joles@umcutrecht.nl (J.A.J.)
AuthorAffiliation_xml – name: 3 Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, 9713 GZ Groningen, The Netherlands
– name: 1 Department of Nephrology & Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; j.j.scammahorn@umcutrecht.nl (J.J.S.); T.N.Nguyen-4@umcutrecht.nl (I.T.N.N.); J.A.Joles@umcutrecht.nl (J.A.J.)
– name: 2 Department of Neurosurgery, Erasmus Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; e.bos@erasmusmc.nl
Author_xml – sequence: 1
  givenname: Joshua J.
  surname: Scammahorn
  fullname: Scammahorn, Joshua J.
– sequence: 2
  givenname: Isabel T. N.
  surname: Nguyen
  fullname: Nguyen, Isabel T. N.
– sequence: 3
  givenname: Eelke M.
  orcidid: 0000-0003-3647-6740
  surname: Bos
  fullname: Bos, Eelke M.
– sequence: 4
  givenname: Harry
  orcidid: 0000-0002-6670-1577
  surname: Van Goor
  fullname: Van Goor, Harry
– sequence: 5
  givenname: Jaap A.
  orcidid: 0000-0003-2565-242X
  surname: Joles
  fullname: Joles, Jaap A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33801446$$D View this record in MEDLINE/PubMed
BookMark eNqFkstrGzEQh5eS0jyaa49F0EsvTvXeVQ-FYJoHBAJ1exZaadaWWUuppHXj_77rOA1xoK0uEqNvPpjhd1wdhBigqt4RfMaYwp9MKD7eE4wZZjV7VR1RXMsJU5QcPHsfVqc5L_F4FGENVm-qQzbehHN5VOkLP18UH-bo9t47U_wa0KwkyBn98mWBZkPfDekzutq4FOcQHgreAfIBlQWgbxBMj0xwaGqS83Ftsh16k9Bskwus8tvqdWf6DKeP90n14-Lr9-nV5Ob28np6fjOxgosyIUAVNJYrYAK3jlBlXSNFxwVnmLRWGcyppLRjRnKFuWHEtsoIRrixBFN2Ul3vvC6apb5LfmXSRkfj9UMhprk2qXjbg25twyRhoBractqBolQaxS23VIBVbnR92bnuhnYFzkIoyfR70v2f4Bd6Hte6VqqpKR4FHx8FKf4cIBe98tlC35sAcciaSia55Gwc7r-owI2oBanZiH54gS7jkMb1bynKOamVEP-kuKol40xtXe-fj_g0259gjMDZDrAp5pyge0II1tvw6f3wjQ38RYP1ZcxT3K7I939r-w0-_NyY
CitedBy_id crossref_primary_10_3389_fendo_2023_1124419
crossref_primary_10_3390_biom12020207
crossref_primary_10_1016_j_biopha_2024_117538
crossref_primary_10_1016_j_freeradbiomed_2022_01_028
crossref_primary_10_1039_D1NJ04079K
crossref_primary_10_3389_fphar_2022_899859
crossref_primary_10_3390_biom12101372
crossref_primary_10_3390_targets2030012
crossref_primary_10_1007_s00044_024_03326_9
crossref_primary_10_3390_biom14091145
crossref_primary_10_1152_ajpheart_00764_2023
crossref_primary_10_1016_j_niox_2024_06_004
crossref_primary_10_1021_acs_analchem_1c04324
crossref_primary_10_1152_physrev_00028_2021
crossref_primary_10_3390_antiox10050633
crossref_primary_10_1007_s00216_021_03792_9
crossref_primary_10_1124_jpet_121_001017
crossref_primary_10_1007_s00210_024_03086_8
crossref_primary_10_1016_j_saa_2023_122582
crossref_primary_10_1039_D2NJ01152B
crossref_primary_10_3390_antiox11112253
crossref_primary_10_5483_BMBRep_2022_55_10_124
crossref_primary_10_1038_s41401_025_01476_z
crossref_primary_10_1080_10408398_2022_2057915
crossref_primary_10_3390_antiox12051025
crossref_primary_10_1016_j_jhazmat_2025_137781
crossref_primary_10_1016_j_freeradbiomed_2024_07_031
crossref_primary_10_19161_etd_1355434
crossref_primary_10_1007_s10895_023_03179_2
crossref_primary_10_1002_med_21913
crossref_primary_10_1016_j_redox_2024_103484
crossref_primary_10_3748_wjg_v29_i29_4557
crossref_primary_10_3390_antiox13020245
crossref_primary_10_3390_ijms24098376
crossref_primary_10_3389_fchem_2023_1126309
crossref_primary_10_1007_s11356_024_35378_0
crossref_primary_10_3390_antiox11051004
crossref_primary_10_1016_j_ebiom_2022_103942
crossref_primary_10_3390_antiox13050531
crossref_primary_10_3390_ijms22157808
crossref_primary_10_1016_j_niox_2023_11_005
crossref_primary_10_3390_ijms23126720
crossref_primary_10_1080_28347056_2024_2304348
crossref_primary_10_1039_D3TB00863K
crossref_primary_10_1016_j_placenta_2023_09_004
crossref_primary_10_3390_antiox11010147
crossref_primary_10_3390_metabo13060688
crossref_primary_10_1039_D2OB00442A
crossref_primary_10_12677_IJPN_2022_113006
crossref_primary_10_3390_antiox10071065
crossref_primary_10_1007_s11033_023_08723_8
Cites_doi 10.3389/fphar.2016.00385
10.1002/iub.1740
10.1111/ajt.12483
10.1515/cclm-2012-0551
10.1016/j.juro.2016.05.029
10.1002/cbin.10507
10.1161/CIRCULATIONAHA.113.002208
10.1089/ars.2016.6665
10.1152/ajpcell.00329.2016
10.15407/fz62.06.009
10.17219/acem/58998
10.1038/s41580-020-0230-3
10.1096/fj.14-266015
10.1016/j.cmet.2017.05.003
10.1053/j.ackd.2018.08.009
10.1016/j.bbalip.2016.03.001
10.1681/ASN.2012030268
10.1039/C5SC04818D
10.1139/cjpp-2018-0153
10.1007/s10863-009-9217-7
10.1016/j.niox.2014.10.002
10.1038/srep34608
10.1021/acschembio.8b00463
10.1016/j.biocel.2019.105636
10.1016/S0021-9258(18)72535-0
10.1186/1423-0127-20-69
10.1016/0006-2952(89)90288-8
10.1371/journal.pone.0225152
10.1016/j.yjmcc.2014.03.007
10.1073/pnas.1115634109
10.1002/1873-3468.13090
10.4103/2249-4863.154630
10.1016/j.semnephrol.2015.08.007
10.1016/j.jacc.2008.07.051
10.1089/ars.2017.7273
10.1016/j.pharep.2017.10.007
10.1089/ars.2017.7068
10.1681/ASN.2008121269
10.1089/ars.2017.7083
10.1093/occmed/46.5.367
10.1146/annurev-biochem-061516-045037
10.1016/j.bcp.2019.113775
10.5489/cuaj.5658
10.1016/j.niox.2014.12.009
10.3109/0886022X.2010.509830
10.1038/s41598-017-11004-7
10.1111/bph.12825
10.1073/pnas.1504376112
10.1089/ars.2017.7058
10.1089/ars.2017.7040
10.1038/s42003-019-0431-5
10.1152/ajpheart.00645.2016
10.1016/j.lfs.2020.118074
10.1155/2018/4579140
10.1007/s11845-015-1328-z
10.1097/HJH.0000000000001885
10.1016/j.biopha.2019.01.045
10.1093/cvr/cvu026
10.1080/14786419.2017.1323211
10.1016/j.redox.2013.01.014
10.1159/000478628
10.1186/s12882-017-0673-8
10.1007/s12013-019-00871-8
10.1371/journal.pone.0063291
10.1016/j.niox.2015.07.001
10.1089/ars.2011.3882
10.1016/j.kint.2020.02.020
10.1093/jat/13.2.105
10.1016/S0378-4347(00)82537-2
10.1038/hr.2014.125
10.23876/j.krcp.19.063
10.1097/MNH.0000000000000206
10.1016/j.ijcard.2014.01.068
10.1016/j.niox.2014.12.007
10.1186/s13578-015-0003-4
10.1016/j.niox.2015.01.005
10.1213/ANE.0000000000002369
10.15407/fz57.04.003
10.1007/s11357-018-0018-y
10.1016/S0140-6736(19)32563-2
10.1016/j.freeradbiomed.2012.11.005
10.1155/2018/4010395
10.1016/j.bcp.2017.09.010
10.1038/nrneph.2013.250
10.3390/molecules24152857
10.1053/j.ackd.2018.08.004
10.1089/ars.2012.5024
10.1016/j.cbi.2017.07.002
10.1097/MCC.0000000000000654
10.1093/ndt/gfr560
10.1155/2018/6717212
10.1089/ars.2019.7728
10.3389/fphar.2019.00116
10.15407/fz63.01.003
10.4103/0366-6999.228249
10.1093/ndt/gfq136
10.4161/oxim.2.5.9657
10.3390/biom10020302
10.1093/toxsci/65.1.18
10.1097/SHK.0000000000000478
10.1096/fj.201800436R
10.1016/j.freeradbiomed.2019.06.028
10.1155/2015/758358
10.1080/15563650.2018.1435886
10.1016/j.stem.2014.03.005
10.1159/000499940
10.3390/biom5010194
10.1016/j.freeradbiomed.2013.04.001
10.1016/j.niox.2018.03.002
10.1089/ars.2017.7434
10.1016/j.cnur.2018.07.001
10.1007/s11255-018-2053-0
10.1093/jcag/gwz006.002
10.2215/CJN.09880912
10.1371/journal.pone.0157493
10.3390/molecules18010690
10.3390/ijms20020313
10.1155/2018/3205125
10.2215/CJN.07830814
10.1111/bph.14446
10.1038/ajh.2011.246
10.1006/abbi.1997.0486
10.1016/j.bcp.2017.11.011
10.1155/2016/8145785
10.15407/fz62.02.003
10.1155/2016/6043038
10.2174/0929867324666170509145240
10.1523/JNEUROSCI.16-03-01066.1996
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7QR
7T5
7TO
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
H94
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/antiox10030373
DatabaseName CrossRef
PubMed
Chemoreception Abstracts
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Immunology Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
PubMed
MEDLINE - Academic
Publicly Available Content Database


AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2076-3921
ExternalDocumentID oai_doaj_org_article_bc83613e982b42fe9226a94c4c25ec9d
PMC7998720
33801446
10_3390_antiox10030373
Genre Journal Article
Review
GrantInformation_xml – fundername: Hartstichting
  grantid: CVON2014-11
– fundername: Nierstichting
  grantid: 17016
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
7QR
7T5
7TO
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
H94
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
7S9
L.6
5PM
ID FETCH-LOGICAL-c545t-1e29e8c49e350bd129cd865f454301bc9a042622f3a64904a31cb9a5314ac1023
IEDL.DBID M48
ISSN 2076-3921
IngestDate Wed Aug 27 01:29:53 EDT 2025
Thu Aug 21 14:05:45 EDT 2025
Fri Sep 05 13:45:07 EDT 2025
Thu Sep 04 18:47:46 EDT 2025
Fri Jul 25 12:00:40 EDT 2025
Fri Jul 25 12:02:48 EDT 2025
Thu Jan 02 22:56:21 EST 2025
Tue Jul 01 02:20:10 EDT 2025
Thu Apr 24 22:51:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords hydrogen sulfide
thiosulfate
H2S donors
reactive oxygen species
cardiorenal syndrome
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-1e29e8c49e350bd129cd865f454301bc9a042622f3a64904a31cb9a5314ac1023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2565-242X
0000-0002-6670-1577
0000-0003-3647-6740
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/antiox10030373
PMID 33801446
PQID 2497634393
PQPubID 2032435
ParticipantIDs doaj_primary_oai_doaj_org_article_bc83613e982b42fe9226a94c4c25ec9d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7998720
proquest_miscellaneous_2636464354
proquest_miscellaneous_2508575173
proquest_journals_2524417955
proquest_journals_2497634393
pubmed_primary_33801446
crossref_primary_10_3390_antiox10030373
crossref_citationtrail_10_3390_antiox10030373
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210302
PublicationDateYYYYMMDD 2021-03-02
PublicationDate_xml – month: 3
  year: 2021
  text: 20210302
  day: 2
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Antioxidants
PublicationTitleAlternate Antioxidants (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
Wu (ref_10) 2018; 2018
ref_91
ref_90
Szabo (ref_1) 2018; 149
Majzunova (ref_62) 2013; 20
Dudoignon (ref_81) 2019; 143
Lin (ref_98) 2018; 76
Yang (ref_35) 2019; 2
Wei (ref_74) 2015; 39
Guidotti (ref_2) 1996; 46
Kai (ref_48) 2012; 16
Dugbartey (ref_50) 2018; 70
Kalyanaraman (ref_28) 2013; 1
Capasso (ref_119) 2013; 18
Fu (ref_43) 2012; 109
Xu (ref_36) 2014; 172
Zhu (ref_52) 2018; 2018
Ratliff (ref_71) 2016; 25
Wallace (ref_118) 2019; 2
Flannigan (ref_58) 2015; 29
ref_127
Leigh (ref_70) 2018; 13
Lin (ref_99) 2016; 196
Perridon (ref_12) 2016; 8
Hine (ref_31) 2017; 25
Yaxley (ref_107) 2015; 4
Ronco (ref_22) 2018; 25
Li (ref_130) 2015; 5
ref_123
Iciek (ref_79) 2019; 66
Ravindran (ref_126) 2017; 274
Praga (ref_86) 2019; 25
Snijder (ref_111) 2015; 172
Hillebrands (ref_24) 2016; 25
Drachuk (ref_59) 2016; 62
Braam (ref_20) 2014; 10
Aminzadeh (ref_100) 2012; 27
ref_72
Honda (ref_64) 2019; 38
Ronco (ref_18) 2008; 52
Wang (ref_49) 2020; 172
Bucci (ref_112) 2014; 102
(ref_45) 2013; 55
Warenycia (ref_4) 1989; 38
Kim (ref_120) 2018; 32
Liu (ref_135) 2014; 15
Koning (ref_25) 2017; 312
Tan (ref_134) 2018; 29
Ozkaya (ref_92) 2010; 32
Liu (ref_104) 2015; 8
Wohlgemuth (ref_78) 2014; 71
Thiele (ref_83) 2015; 10
Koning (ref_11) 2015; 46
Fukuto (ref_14) 2018; 592
Sbodio (ref_33) 2019; 176
Luo (ref_68) 2019; 33
Mani (ref_113) 2013; 127
Kannan (ref_125) 2019; 77
Liang (ref_75) 2015; 46
Cao (ref_38) 2019; 31
Snijder (ref_131) 2013; 13
Frenay (ref_16) 2019; 30
Isoni (ref_103) 2009; 2
Dorman (ref_3) 2002; 65
Foster (ref_57) 2009; 41
Amaral (ref_47) 2019; 141
Mencke (ref_114) 2016; 6
Olson (ref_69) 2013; 51
Nguyen (ref_26) 2020; 98
Fernandez (ref_13) 2015; 46
Rizer (ref_121) 2018; 56
Goodwin (ref_5) 1989; 13
Vitvitsky (ref_54) 2018; 13
Mizuta (ref_128) 2020; 257
Chen (ref_88) 2018; 2018
Xue (ref_105) 2013; 19
Assa (ref_129) 2020; 2020
Hine (ref_32) 2018; 28
ref_53
Cai (ref_106) 2016; 1861
Abe (ref_8) 1996; 16
Xie (ref_27) 2016; 2016
Ma (ref_76) 2018; 96
Mys (ref_61) 2017; 63
Wang (ref_115) 2017; 42
Jin (ref_60) 2015; 2015
Sies (ref_55) 2020; 21
Strutynska (ref_73) 2016; 62
Liu (ref_96) 2016; 2016
Nowotny (ref_102) 2015; 5
Wallace (ref_89) 2018; 28
Oosterhuis (ref_124) 2015; 49
Bjelakovic (ref_132) 2014; 17
Yuan (ref_95) 2019; 31
ref_63
Bao (ref_29) 1998; 350
Tehzeeb (ref_133) 2019; 11
Azizi (ref_84) 2016; 185
Frenay (ref_17) 2016; 55–56
Snijder (ref_23) 2014; 42
Ahmad (ref_42) 2016; 45
Lee (ref_65) 2018; 40
Clark (ref_87) 2015; 35
ref_117
Semenykhina (ref_44) 2011; 57
Zhang (ref_46) 2019; 117
Meersch (ref_82) 2017; 125
Wen (ref_116) 2018; 2018
Koning (ref_15) 2017; 27
Madamanchi (ref_56) 2013; 61
Karmin (ref_101) 2018; 25
Binkley (ref_7) 1942; 144
Wedmann (ref_40) 2016; 7
Zhang (ref_77) 2018; 131
House (ref_19) 2010; 25
Uduman (ref_21) 2018; 25
Kurtz (ref_66) 2012; 25
Hart (ref_110) 2015; 38
Cao (ref_9) 2016; 7
Palde (ref_41) 2015; 112
Abdelmonem (ref_136) 2019; 112
Kanagy (ref_30) 2017; 312
Ozatik (ref_93) 2019; 51
Cao (ref_67) 2018; 149
Ronco (ref_80) 2019; 394
Nigwekar (ref_122) 2013; 8
Farrar (ref_97) 2018; 53
Pal (ref_39) 2018; 70
Kimura (ref_37) 2017; 7
Savage (ref_6) 1990; 526
Sies (ref_51) 2017; 86
Bos (ref_85) 2009; 20
Blankestijn (ref_108) 2019; 37
Bos (ref_34) 2013; 24
Doroszko (ref_109) 2016; 25
References_xml – volume: 7
  start-page: 385
  year: 2016
  ident: ref_9
  article-title: The Role of Hydrogen Sulfide in Renal System
  publication-title: Front. Pharm.
  doi: 10.3389/fphar.2016.00385
– volume: 70
  start-page: 393
  year: 2018
  ident: ref_39
  article-title: Hydrogen sulfide in physiology and pathogenesis of bacteria and viruses
  publication-title: Iubmb Life
  doi: 10.1002/iub.1740
– volume: 55–56
  start-page: 18
  year: 2016
  ident: ref_17
  article-title: High urinary sulfate concentration is associated with reduced risk of renal disease progression in type 2 diabetes
  publication-title: Nitric Oxide
– volume: 13
  start-page: 3067
  year: 2013
  ident: ref_131
  article-title: Emerging role of gasotransmitters in renal transplantation
  publication-title: Am. J. Transpl.
  doi: 10.1111/ajt.12483
– volume: 17
  start-page: 40
  year: 2014
  ident: ref_132
  article-title: Antioxidant supplements and mortality
  publication-title: Curr. Opin. Clin. Nutr Metab. Care
– volume: 51
  start-page: 623
  year: 2013
  ident: ref_69
  article-title: Hydrogen sulfide as an oxygen sensor
  publication-title: Clin. Chem. Lab. Med.
  doi: 10.1515/cclm-2012-0551
– volume: 196
  start-page: 1778
  year: 2016
  ident: ref_99
  article-title: GYY4137, a Slow-Releasing Hydrogen Sulfide Donor, Ameliorates Renal Damage Associated with Chronic Obstructive Uropathy
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2016.05.029
– volume: 39
  start-page: 1173
  year: 2015
  ident: ref_74
  article-title: H2 S restores the cardioprotection from ischemic post-conditioning in isolated aged rat hearts
  publication-title: Cell Biol. Int.
  doi: 10.1002/cbin.10507
– volume: 127
  start-page: 2523
  year: 2013
  ident: ref_113
  article-title: Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.002208
– volume: 25
  start-page: 119
  year: 2016
  ident: ref_71
  article-title: Oxidant Mechanisms in Renal Injury and Disease
  publication-title: Antioxid Redox Signal.
  doi: 10.1089/ars.2016.6665
– volume: 312
  start-page: C537
  year: 2017
  ident: ref_30
  article-title: Vascular biology of hydrogen sulfide
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00329.2016
– volume: 62
  start-page: 9
  year: 2016
  ident: ref_59
  article-title: The role of hydrogen sulfide in diastolic function restoration during aging
  publication-title: Fiziol. Zh.
  doi: 10.15407/fz62.06.009
– volume: 25
  start-page: 173
  year: 2016
  ident: ref_109
  article-title: Resistant Hypertension
  publication-title: Adv. Clin. Exp. Med.
  doi: 10.17219/acem/58998
– volume: 21
  start-page: 363
  year: 2020
  ident: ref_55
  article-title: Reactive oxygen species (ROS) as pleiotropic physiological signalling agents
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-0230-3
– volume: 29
  start-page: 1591
  year: 2015
  ident: ref_58
  article-title: Proresolution effects of hydrogen sulfide during colitis are mediated through hypoxia-inducible factor-1α
  publication-title: Faseb. J.
  doi: 10.1096/fj.14-266015
– volume: 25
  start-page: 1320
  year: 2017
  ident: ref_31
  article-title: Hypothalamic-Pituitary Axis Regulates Hydrogen Sulfide Production
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.05.003
– volume: 25
  start-page: 391
  year: 2018
  ident: ref_21
  article-title: Epidemiology of Cardiorenal Syndrome
  publication-title: Adv. Chronic Kidney Dis.
  doi: 10.1053/j.ackd.2018.08.009
– volume: 1861
  start-page: 419
  year: 2016
  ident: ref_106
  article-title: Cystathionine γ lyase-hydrogen sulfide increases peroxisome proliferator-activated receptor γ activity by sulfhydration at C139 site thereby promoting glucose uptake and lipid storage in adipocytes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2016.03.001
– volume: 24
  start-page: 759
  year: 2013
  ident: ref_34
  article-title: Cystathionine γ-lyase protects against renal ischemia/reperfusion by modulating oxidative stress
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2012030268
– volume: 7
  start-page: 3414
  year: 2016
  ident: ref_40
  article-title: Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC04818D
– volume: 96
  start-page: 902
  year: 2018
  ident: ref_76
  article-title: Chronic aerobic exercise training alleviates myocardial fibrosis in aged rats through restoring bioavailability of hydrogen sulfide
  publication-title: Can. J. Physiol. Pharm.
  doi: 10.1139/cjpp-2018-0153
– volume: 41
  start-page: 159
  year: 2009
  ident: ref_57
  article-title: Redox signaling and protein phosphorylation in mitochondria: Progress and prospects
  publication-title: J. Bioenerg. Biomembr.
  doi: 10.1007/s10863-009-9217-7
– volume: 42
  start-page: 87
  year: 2014
  ident: ref_23
  article-title: Sodium thiosulfate attenuates angiotensin II-induced hypertension, proteinuria and renal damage
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2014.10.002
– volume: 6
  start-page: 34608
  year: 2016
  ident: ref_114
  article-title: Cystathionine γ-lyase is expressed in human atherosclerotic plaque microvessels and is involved in micro-angiogenesis
  publication-title: Sci. Rep.
  doi: 10.1038/srep34608
– volume: 13
  start-page: 2300
  year: 2018
  ident: ref_54
  article-title: Cytochrome c Reduction by H(2)S Potentiates Sulfide Signaling
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.8b00463
– volume: 117
  start-page: 105636
  year: 2019
  ident: ref_46
  article-title: Hydrogen sulfide protects against cell damage through modulation of PI3K/Akt/Nrf2 signaling
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2019.105636
– volume: 144
  start-page: 507
  year: 1942
  ident: ref_7
  article-title: The Formation of Cysteine from Homocysteine and Serine by Liver Tissue of Rats
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)72535-0
– volume: 20
  start-page: 69
  year: 2013
  ident: ref_62
  article-title: Redox signaling in pathophysiology of hypertension
  publication-title: J. BioMed. Sci.
  doi: 10.1186/1423-0127-20-69
– volume: 38
  start-page: 973
  year: 1989
  ident: ref_4
  article-title: Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels
  publication-title: Biochem. Pharm.
  doi: 10.1016/0006-2952(89)90288-8
– ident: ref_53
  doi: 10.1371/journal.pone.0225152
– volume: 8
  start-page: 2264
  year: 2016
  ident: ref_12
  article-title: The role of hydrogen sulfide in aging and age-related pathologies
  publication-title: Aging (Albany Ny.)
– volume: 71
  start-page: 62
  year: 2014
  ident: ref_78
  article-title: The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2014.03.007
– volume: 109
  start-page: 2943
  year: 2012
  ident: ref_43
  article-title: Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1115634109
– volume: 592
  start-page: 2140
  year: 2018
  ident: ref_14
  article-title: Biological hydropersulfides and related polysulfides—A new concept and perspective in redox biology
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.13090
– volume: 4
  start-page: 193
  year: 2015
  ident: ref_107
  article-title: Resistant hypertension: An approach to management in primary care
  publication-title: J. Fam. Med. Prim. Care
  doi: 10.4103/2249-4863.154630
– volume: 35
  start-page: 455
  year: 2015
  ident: ref_87
  article-title: The Pathogenesis and Therapeutic Implications of Tubulointerstitial Inflammation in Human Lupus Nephritis
  publication-title: Semin. Nephrol.
  doi: 10.1016/j.semnephrol.2015.08.007
– volume: 52
  start-page: 1527
  year: 2008
  ident: ref_18
  article-title: Cardiorenal syndrome
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2008.07.051
– volume: 29
  start-page: 149
  year: 2018
  ident: ref_134
  article-title: Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2017.7273
– volume: 70
  start-page: 196
  year: 2018
  ident: ref_50
  article-title: The smell of renal protection against chronic kidney disease: Hydrogen sulfide offers a potential stinky remedy
  publication-title: Pharm. Rep.
  doi: 10.1016/j.pharep.2017.10.007
– volume: 28
  start-page: 1533
  year: 2018
  ident: ref_89
  article-title: Hydrogen Sulfide-Releasing Therapeutics: Translation to the Clinic
  publication-title: Antioxid Redox Signal.
  doi: 10.1089/ars.2017.7068
– volume: 20
  start-page: 1901
  year: 2009
  ident: ref_85
  article-title: Hydrogen sulfide-induced hypometabolism prevents renal ischemia/reperfusion injury
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2008121269
– volume: 27
  start-page: 684
  year: 2017
  ident: ref_15
  article-title: The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine
  publication-title: Antioxid Redox Signal.
  doi: 10.1089/ars.2017.7083
– volume: 46
  start-page: 367
  year: 1996
  ident: ref_2
  article-title: Hydrogen sulphide
  publication-title: Occup. Med.
  doi: 10.1093/occmed/46.5.367
– volume: 86
  start-page: 715
  year: 2017
  ident: ref_51
  article-title: Oxidative Stress
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-061516-045037
– volume: 172
  start-page: 113775
  year: 2020
  ident: ref_49
  article-title: Hydrogen sulfide modulates epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via HIF-1α activation
  publication-title: Biochem. Pharm.
  doi: 10.1016/j.bcp.2019.113775
– volume: 13
  start-page: E210
  year: 2018
  ident: ref_70
  article-title: Endogenous H(2)S production deficiencies lead to impaired renal erythropoietin production
  publication-title: Can. Urol. Assoc. J.
  doi: 10.5489/cuaj.5658
– volume: 46
  start-page: 14
  year: 2015
  ident: ref_13
  article-title: On the chemical biology of the nitrite/sulfide interaction
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2014.12.009
– volume: 32
  start-page: 1125
  year: 2010
  ident: ref_92
  article-title: A case of acetaminophen (paracetamol) causing renal failure without liver damage in a child and review of literature
  publication-title: Ren. Fail.
  doi: 10.3109/0886022X.2010.509830
– volume: 7
  start-page: 10459
  year: 2017
  ident: ref_37
  article-title: 3-Mercaptopyruvate sulfurtransferase produces potential redox regulators cysteine- and glutathione-persulfide (Cys-SSH and GSSH) together with signaling molecules H(2)S(2), H(2)S(3) and H(2)S
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11004-7
– volume: 172
  start-page: 1494
  year: 2015
  ident: ref_111
  article-title: Exogenous administration of thiosulfate, a donor of hydrogen sulfide, attenuates angiotensin II-induced hypertensive heart disease in rats
  publication-title: Br. J. Pharm.
  doi: 10.1111/bph.12825
– volume: 112
  start-page: 7960
  year: 2015
  ident: ref_41
  article-title: A universal entropy-driven mechanism for thioredoxin-target recognition
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1504376112
– volume: 31
  start-page: 1
  year: 2019
  ident: ref_38
  article-title: A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer?
  publication-title: Antioxid Redox Signal.
  doi: 10.1089/ars.2017.7058
– volume: 30
  start-page: 1999
  year: 2019
  ident: ref_16
  article-title: Urinary Excretion of Sulfur Metabolites and Risk of Cardiovascular Events and All-Cause Mortality in the General Population
  publication-title: Antioxid Redox Signal.
  doi: 10.1089/ars.2017.7040
– volume: 2
  start-page: 194
  year: 2019
  ident: ref_35
  article-title: Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B(6)
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-019-0431-5
– volume: 312
  start-page: H415
  year: 2017
  ident: ref_25
  article-title: The fate of sulfate in chronic heart failure
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00645.2016
– volume: 257
  start-page: 118074
  year: 2020
  ident: ref_128
  article-title: Sodium thiosulfate prevents doxorubicin-induced DNA damage and apoptosis in cardiomyocytes in mice
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2020.118074
– volume: 2018
  start-page: 4579140
  year: 2018
  ident: ref_10
  article-title: An Update on Hydrogen Sulfide and Nitric Oxide Interactions in the Cardiovascular System
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2018/4579140
– volume: 185
  start-page: 649
  year: 2016
  ident: ref_84
  article-title: Administration of hydrogen sulfide protects ischemia reperfusion-induced acute kidney injury by reducing the oxidative stress
  publication-title: Ir. J. Med. Sci.
  doi: 10.1007/s11845-015-1328-z
– volume: 37
  start-page: 398
  year: 2019
  ident: ref_108
  article-title: Prevalence of potential modifiable factors of hypertension in patients with difficult-to-control hypertension
  publication-title: J. Hypertens.
  doi: 10.1097/HJH.0000000000001885
– volume: 112
  start-page: 108584
  year: 2019
  ident: ref_136
  article-title: Hydrogen sulfide enhances the effectiveness of mesenchymal stem cell therapy in rats with heart failure: In vitro preconditioning versus in vivo co-delivery
  publication-title: BioMed. Pharm.
  doi: 10.1016/j.biopha.2019.01.045
– volume: 102
  start-page: 138
  year: 2014
  ident: ref_112
  article-title: Hydrogen sulfide accounts for the peripheral vascular effects of zofenopril independently of ACE inhibition
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvu026
– volume: 32
  start-page: 1193
  year: 2018
  ident: ref_120
  article-title: Comparative studies of bioactive organosulphur compounds and antioxidant activities in garlic (Allium sativum L.), elephant garlic (Allium ampeloprasum L.) and onion (Allium cepa L.)
  publication-title: Nat. Prod. Res.
  doi: 10.1080/14786419.2017.1323211
– volume: 1
  start-page: 244
  year: 2013
  ident: ref_28
  article-title: Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2013.01.014
– volume: 42
  start-page: 859
  year: 2017
  ident: ref_115
  article-title: Atherosclerosis and the Hydrogen Sulfide Signaling Pathway—Therapeutic Approaches to Disease Prevention
  publication-title: Cell Physiol. Biochem.
  doi: 10.1159/000478628
– ident: ref_91
  doi: 10.1186/s12882-017-0673-8
– volume: 77
  start-page: 261
  year: 2019
  ident: ref_125
  article-title: Attenuation of cardiac ischemia-reperfusion injury by sodium thiosulfate is partially dependent on the effect of cystathione beta synthase in the myocardium
  publication-title: Cell Biochem. Biophys.
  doi: 10.1007/s12013-019-00871-8
– ident: ref_117
  doi: 10.1371/journal.pone.0063291
– volume: 49
  start-page: 56
  year: 2015
  ident: ref_124
  article-title: DL-propargylglycine reduces blood pressure and renal injury but increases kidney weight in angiotensin-II infused rats
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2015.07.001
– volume: 16
  start-page: 203
  year: 2012
  ident: ref_48
  article-title: Hydrogen sulfide inhibits hypoxia- but not anoxia-induced hypoxia-inducible factor 1 activation in a von hippel-lindau- and mitochondria-dependent manner
  publication-title: Antioxid Redox Signal.
  doi: 10.1089/ars.2011.3882
– volume: 98
  start-page: 366
  year: 2020
  ident: ref_26
  article-title: Sodium thiosulfate improves renal function and oxygenation in L-NNA-induced hypertension in rats
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2020.02.020
– volume: 13
  start-page: 105
  year: 1989
  ident: ref_5
  article-title: Determination of sulfide in brain tissue by gas dialysis/ion chromatography: Postmortem studies and two case reports
  publication-title: J. Anal. Toxicol.
  doi: 10.1093/jat/13.2.105
– volume: 526
  start-page: 540
  year: 1990
  ident: ref_6
  article-title: Determination of sulfide in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography
  publication-title: J. Chromatogr.
  doi: 10.1016/S0378-4347(00)82537-2
– volume: 38
  start-page: 13
  year: 2015
  ident: ref_110
  article-title: Hydrogen sulfide treatment reduces blood pressure and oxidative stress in angiotensin II-induced hypertensive mice
  publication-title: Hypertens. Res.
  doi: 10.1038/hr.2014.125
– volume: 38
  start-page: 414
  year: 2019
  ident: ref_64
  article-title: The role of oxidative stress and hypoxia in renal disease
  publication-title: Kidney Res. Clin. Pr.
  doi: 10.23876/j.krcp.19.063
– volume: 11
  start-page: e5959
  year: 2019
  ident: ref_133
  article-title: Is Stem Cell Therapy an Answer to Heart Failure: A Literature Search
  publication-title: Cureus
– volume: 25
  start-page: 107
  year: 2016
  ident: ref_24
  article-title: Hydrogen sulfide in hypertension
  publication-title: Curr. Opin. Nephrol. Hypertens.
  doi: 10.1097/MNH.0000000000000206
– volume: 172
  start-page: 313
  year: 2014
  ident: ref_36
  article-title: Targeting hydrogen sulfide as a promising therapeutic strategy for atherosclerosis
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2014.01.068
– volume: 46
  start-page: 114
  year: 2015
  ident: ref_75
  article-title: Hydrogen sulfide improves glucose metabolism and prevents hypertrophy in cardiomyocytes
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2014.12.007
– volume: 5
  start-page: 11
  year: 2015
  ident: ref_130
  article-title: Mediation of exogenous hydrogen sulfide in recovery of ischemic post-conditioning-induced cardioprotection via down-regulating oxidative stress and up-regulating PI3K/Akt/GSK-3β pathway in isolated aging rat hearts
  publication-title: Cell Biosci.
  doi: 10.1186/s13578-015-0003-4
– volume: 46
  start-page: 37
  year: 2015
  ident: ref_11
  article-title: Hydrogen sulfide in renal physiology, disease and transplantation--the smell of renal protection
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2015.01.005
– volume: 125
  start-page: 1223
  year: 2017
  ident: ref_82
  article-title: Perioperative Acute Kidney Injury: An Under-Recognized Problem
  publication-title: Anesth Analg.
  doi: 10.1213/ANE.0000000000002369
– volume: 57
  start-page: 3
  year: 2011
  ident: ref_44
  article-title: Hydrogen sulfide inhibits Ca(2+)-induced mitochondrial permeability transition pore opening in adult and old rat heart
  publication-title: Fiziol. Zh.
  doi: 10.15407/fz57.04.003
– volume: 66
  start-page: 533
  year: 2019
  ident: ref_79
  article-title: Sulfane sulfur—New findings on an old topic
  publication-title: Acta Biochim. Pol.
– volume: 40
  start-page: 163
  year: 2018
  ident: ref_65
  article-title: Hydrogen sulfide ameliorates aging-associated changes in the kidney
  publication-title: Geroscience
  doi: 10.1007/s11357-018-0018-y
– volume: 394
  start-page: 1949
  year: 2019
  ident: ref_80
  article-title: Acute kidney injury
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)32563-2
– volume: 55
  start-page: 1
  year: 2013
  ident: ref_45
  article-title: Potential biological chemistry of hydrogen sulfide (H2S) with the nitrogen oxides
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.11.005
– volume: 2018
  start-page: 4010395
  year: 2018
  ident: ref_116
  article-title: The Drug Developments of Hydrogen Sulfide on Cardiovascular Disease
  publication-title: Oxidative Med. Cell Longev.
  doi: 10.1155/2018/4010395
– volume: 149
  start-page: 5
  year: 2018
  ident: ref_1
  article-title: A timeline of hydrogen sulfide (H(2)S) research: From environmental toxin to biological mediator
  publication-title: Biochem. Pharm.
  doi: 10.1016/j.bcp.2017.09.010
– volume: 10
  start-page: 48
  year: 2014
  ident: ref_20
  article-title: Cardiorenal syndrome--current understanding and future perspectives
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2013.250
– ident: ref_123
  doi: 10.3390/molecules24152857
– volume: 25
  start-page: 382
  year: 2018
  ident: ref_22
  article-title: Cardiorenal Syndrome: An Overview
  publication-title: Adv. Chronic Kidney Dis.
  doi: 10.1053/j.ackd.2018.08.004
– volume: 19
  start-page: 5
  year: 2013
  ident: ref_105
  article-title: Hydrogen sulfide treatment promotes glucose uptake by increasing insulin receptor sensitivity and ameliorates kidney lesions in type 2 diabetes
  publication-title: Antioxid Redox Signal.
  doi: 10.1089/ars.2012.5024
– volume: 274
  start-page: 24
  year: 2017
  ident: ref_126
  article-title: Sodium thiosulfate post-conditioning protects rat hearts against ischemia reperfusion injury via reduction of apoptosis and oxidative stress
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2017.07.002
– volume: 25
  start-page: 558
  year: 2019
  ident: ref_86
  article-title: Acute kidney injury in interstitial nephritis
  publication-title: Curr. Opin. Crit. Care
  doi: 10.1097/MCC.0000000000000654
– volume: 27
  start-page: 498
  year: 2012
  ident: ref_100
  article-title: Downregulation of the renal and hepatic hydrogen sulfide (H2S)-producing enzymes and capacity in chronic kidney disease
  publication-title: Nephrol. Dial. Transpl.
  doi: 10.1093/ndt/gfr560
– volume: 2018
  start-page: 6717212
  year: 2018
  ident: ref_88
  article-title: Hydrogen Sulfide Attenuates LPS-Induced Acute Kidney Injury by Inhibiting Inflammation and Oxidative Stress
  publication-title: Oxid Med. Cell Longev.
  doi: 10.1155/2018/6717212
– volume: 31
  start-page: 1302
  year: 2019
  ident: ref_95
  article-title: S-Sulfhydration of SIRT3 by Hydrogen Sulfide Attenuates Mitochondrial Dysfunction in Cisplatin-Induced Acute Kidney Injury
  publication-title: Antioxid Redox Signal.
  doi: 10.1089/ars.2019.7728
– ident: ref_90
  doi: 10.3389/fphar.2019.00116
– volume: 63
  start-page: 3
  year: 2017
  ident: ref_61
  article-title: Pyridoxal-5-phosphate restores hydrogen sulfide synthes and redox state of heart and blood vessels tissue in old animals
  publication-title: Fiziol. Zh.
  doi: 10.15407/fz63.01.003
– volume: 131
  start-page: 839
  year: 2018
  ident: ref_77
  article-title: Hydrogen Sulfide Regulating Myocardial Structure and Function by Targeting Cardiomyocyte Autophagy
  publication-title: Chin. Med. J.
  doi: 10.4103/0366-6999.228249
– volume: 25
  start-page: 1416
  year: 2010
  ident: ref_19
  article-title: Definition and classification of Cardio-Renal Syndromes: Workgroup statements from the 7th ADQI Consensus Conference
  publication-title: Nephrol. Dial. Transpl.
  doi: 10.1093/ndt/gfq136
– volume: 2
  start-page: 317
  year: 2009
  ident: ref_103
  article-title: cAMP activates the generation of reactive oxygen species and inhibits the secretion of IL-6 in peripheral blood mononuclear cells from type 2 diabetic patients
  publication-title: Oxidative Med. Cell Longev.
  doi: 10.4161/oxim.2.5.9657
– ident: ref_127
  doi: 10.3390/biom10020302
– volume: 65
  start-page: 18
  year: 2002
  ident: ref_3
  article-title: Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: Correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/65.1.18
– volume: 45
  start-page: 88
  year: 2016
  ident: ref_42
  article-title: AP39, A Mitochondrially Targeted Hydrogen Sulfide Donor, Exerts Protective Effects in Renal Epithelial Cells Subjected to Oxidative Stress in Vitro and in Acute Renal Injury in Vivo
  publication-title: Shock
  doi: 10.1097/SHK.0000000000000478
– volume: 33
  start-page: 469
  year: 2019
  ident: ref_68
  article-title: Hydrogen sulfide upregulates renal AQP-2 protein expression and promotes urine concentration
  publication-title: Faseb. J.
  doi: 10.1096/fj.201800436R
– volume: 141
  start-page: 261
  year: 2019
  ident: ref_47
  article-title: Antioxidant and antihypertensive responses to oral nitrite involves activation of the Nrf2 pathway
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2019.06.028
– volume: 2015
  start-page: 758358
  year: 2015
  ident: ref_60
  article-title: Cardiac H2S Generation Is Reduced in Ageing Diabetic Mice
  publication-title: Oxidative Med. Cell Longev.
  doi: 10.1155/2015/758358
– volume: 56
  start-page: 609
  year: 2018
  ident: ref_121
  article-title: Challenges in the diagnosis of acute cyanide poisoning
  publication-title: Clin. Toxicol.
  doi: 10.1080/15563650.2018.1435886
– volume: 15
  start-page: 66
  year: 2014
  ident: ref_135
  article-title: Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca(2+) channel sulfhydration
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.03.005
– volume: 143
  start-page: 179
  year: 2019
  ident: ref_81
  article-title: Is the Renin-Angiotensin-Aldosterone System Good for the Kidney in Acute Settings?
  publication-title: Nephron
  doi: 10.1159/000499940
– volume: 5
  start-page: 194
  year: 2015
  ident: ref_102
  article-title: Advanced glycation end products and oxidative stress in type 2 diabetes mellitus
  publication-title: Biomolecules
  doi: 10.3390/biom5010194
– volume: 61
  start-page: 473
  year: 2013
  ident: ref_56
  article-title: Redox signaling in cardiovascular health and disease
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.04.001
– ident: ref_63
– volume: 76
  start-page: 16
  year: 2018
  ident: ref_98
  article-title: Daily therapy with a slow-releasing H(2)S donor GYY4137 enables early functional recovery and ameliorates renal injury associated with urinary obstruction
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2018.03.002
– volume: 28
  start-page: 1483
  year: 2018
  ident: ref_32
  article-title: Dietary and Endocrine Regulation of Endogenous Hydrogen Sulfide Production: Implications for Longevity
  publication-title: Antioxid Redox Signal.
  doi: 10.1089/ars.2017.7434
– volume: 53
  start-page: 499
  year: 2018
  ident: ref_97
  article-title: Acute Kidney Injury
  publication-title: Nurs. Clin. North Am.
  doi: 10.1016/j.cnur.2018.07.001
– volume: 51
  start-page: 745
  year: 2019
  ident: ref_93
  article-title: Effects of hydrogen sulfide on acetaminophen-induced acute renal toxicity in rats
  publication-title: Int. Urol. Nephrol.
  doi: 10.1007/s11255-018-2053-0
– volume: 2
  start-page: 7
  year: 2019
  ident: ref_118
  article-title: A3 A proof-of-concept, phase 2 clinical trial of the gi safety of a hydrogen sulfide-releasing anti-inflammatory drug (ATB-346)
  publication-title: J. Can. AsSoc. Gastroenterol.
  doi: 10.1093/jcag/gwz006.002
– volume: 8
  start-page: 1162
  year: 2013
  ident: ref_122
  article-title: Sodium thiosulfate therapy for calcific uremic arteriolopathy
  publication-title: Clin. J. Am. Soc. Nephrol.
  doi: 10.2215/CJN.09880912
– ident: ref_72
  doi: 10.1371/journal.pone.0157493
– volume: 8
  start-page: 6814
  year: 2015
  ident: ref_104
  article-title: Effects of hydrogen sulfide on high glucose-induced glomerular podocyte injury in mice
  publication-title: Int. J. Clin. Exp. Pathol.
– volume: 18
  start-page: 690
  year: 2013
  ident: ref_119
  article-title: Antioxidant action and therapeutic efficacy of Allium sativum L.
  publication-title: Molecules
  doi: 10.3390/molecules18010690
– ident: ref_94
  doi: 10.3390/ijms20020313
– volume: 2018
  start-page: 3205125
  year: 2018
  ident: ref_52
  article-title: Cystathionine β-Synthase in Physiology and Cancer
  publication-title: BioMed Res. Int.
  doi: 10.1155/2018/3205125
– volume: 10
  start-page: 500
  year: 2015
  ident: ref_83
  article-title: AKI associated with cardiac surgery
  publication-title: Clin. J. Am. Soc. Nephrol.
  doi: 10.2215/CJN.07830814
– volume: 176
  start-page: 583
  year: 2019
  ident: ref_33
  article-title: Regulators of the transsulfuration pathway
  publication-title: Br. J. Pharm.
  doi: 10.1111/bph.14446
– volume: 25
  start-page: 839
  year: 2012
  ident: ref_66
  article-title: Control of renin synthesis and secretion
  publication-title: Am. J. Hypertens.
  doi: 10.1038/ajh.2011.246
– volume: 350
  start-page: 95
  year: 1998
  ident: ref_29
  article-title: Identification and tissue distribution of human cystathionine beta-synthase mRNA isoforms
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1997.0486
– volume: 149
  start-page: 20
  year: 2018
  ident: ref_67
  article-title: The role of hydrogen sulfide in cyclic nucleotide signaling
  publication-title: Biochem. Pharm.
  doi: 10.1016/j.bcp.2017.11.011
– volume: 2016
  start-page: 8145785
  year: 2016
  ident: ref_96
  article-title: A H 2 S Donor GYY4137 Exacerbates Cisplatin-Induced Nephrotoxicity in Mice
  publication-title: Mediat. Inflamm.
  doi: 10.1155/2016/8145785
– volume: 62
  start-page: 3
  year: 2016
  ident: ref_73
  article-title: Mitochondrial dysfunction in the aging heart is accompanied by constitutive no-synthases uncoupling on the background of oxidative and nitrosative stress
  publication-title: Fiziol. Zh.
  doi: 10.15407/fz62.02.003
– volume: 2016
  start-page: 6043038
  year: 2016
  ident: ref_27
  article-title: Hydrogen Sulfide and Cellular Redox Homeostasis
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2016/6043038
– volume: 25
  start-page: 367
  year: 2018
  ident: ref_101
  article-title: Metabolic Imbalance of Homocysteine and Hydrogen Sulfide in Kidney Disease
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867324666170509145240
– volume: 2020
  start-page: 6014915
  year: 2020
  ident: ref_129
  article-title: Safety and Tolerability of Sodium Thiosulfate in Patients with an Acute Coronary Syndrome Undergoing Coronary Angiography: A Dose-Escalation Safety Pilot Study (SAFE-ACS)
  publication-title: J. Interv. Cardiol.
– volume: 16
  start-page: 1066
  year: 1996
  ident: ref_8
  article-title: The possible role of hydrogen sulfide as an endogenous neuromodulator
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-03-01066.1996
SSID ssj0000913809
Score 2.385188
SecondaryResourceType review_article
Snippet Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded....
Hydrogen sulfide (H S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded....
Hydrogen sulfide (H₂S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded....
Hydrogen sulfide (H 2 S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 373
SubjectTerms Age
Animal models
animals
Antioxidants
blood
Blood vessels
cardiorenal syndrome
Cardiovascular system
catabolism
Cell therapy
Cysteine
Cytochrome
Disease
Enzymes
H2S donors
Heart
Homeostasis
Homocysteine
Hydrogen
Hydrogen sulfide
Hypoxia-inducible factor 1a
Immunosuppressive agents
Kidneys
Laboratory animals
Metabolism
Mitochondria
NF-κB protein
Nonsteroidal anti-inflammatory drugs
Oxidants
Oxidative stress
Proteins
Reactive oxygen species
Review
Signal transduction
Stem cells
Sulfur
Therapeutic applications
therapeutics
thiosulfate
Transplantation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9wwDBalT-vDWNduS9cVDwp7Ck1sOYn3tpUeR2EbtCv0LdiOww5KrlzvoPv3lZz0uJSWvewt2AqxZcmSHPkTwHGeWV0GPrVRjUyxLTTpXJmnFZk-Z7XJ0PJt5B8_i-kVnl_r641SX5wT1sMD94w7cb5SZHKCqaRD2QZD_oI16NFLHbxpePfNTLYRTMU92OSqykyP0qgorj-xnDx4n7NQq1KNrFAE63_Ow3yaKLlheSZv4PXgMopv_VB3YSt0b2FnA0hwD-oJx9j0KH7dz5qI5S0u4y0QwQet4nJ1064WX8X0b7OYk8jEhlkTxKwT5AGKi8BfsF0jTkf5qWIANN-Hq8nZ79NpOpROSD25RMs0D9KEyqMJSmeuIaPum6rQLWokjXbe2AhFL1tlC-QFUbl3xpJCovWM5vAOtrt5Fz6AQO-K1hkGyaF3AjHfWVtpRHQOfdsmkD6ysvYDrjiXt7ipKb5g1tdj1ifwZU1_2yNqvEj5nVdmTcVI2LGB5KMe5KP-l3wkcPi4rvWgnnc1xZy0r5Ivpp7v1jJWZtM6gc_rbtI7_pliuzBfMU0sbprzMF-kKVSB5PJpTOB9L0nrySjFuD1YJFCOZGw023FPN_sT8b9LCpFLmR38D_Z8hFeSs3Q4q04ewvZysQqfyM1auqOoUQ-eeyaI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBVtcmkPJf12khYVCj2Z2NLItnoJSciyFJqWpIHcjCTL6UKw080uJP--M1qtiUvSm7HG2JJmpDej8RvGPueZUaWnqI1sRAptodDmyjytcOuzRukMDP2N_P2kmJ7Dtwt1EQNuNzGtcr0mhoW66R3FyPeEEqFallL7139SqhpFp6uxhMZTtolLcIV6vnl4fPLzdIiyEOtllekVW6NE_37PUBLhbU7KLUs52o0Caf9DSPPfhMl7O9Bki72I0JEfrOb6JXviu1fs-T1CwdesnpCvjZf8x-2sCZze_Cz8DcIp4MrPllftcv6VT--aeY-qE27MGs9nHUckyE89vcF0DT8a5anySGz-hp1Pjn8dTdNYQiF1CI0Wae6F9pUD7aXKbIObu2uqQrWgAC3bOm0CJb1opSmAJkbmzmqDhgnGEavDW7bR9Z1_zzg4W7RWE1kOPuMLo60xlQIAa8G1bcLS9VDWLvKLU5mLqxr9DBr6ejz0CfsyyF-vmDUelTykmRmkiBE73Ojnl3U0sNq6SiI08boSFkTrNeJKo8GBE8o73SRsdz2vdTTTmxp9T1xfEZPJh5sHnUvYp6EZ7Y8OVUzn-yXJhCKnOX3mozKFLAChn4KEvVtp0tAZKYm_B4qElSMdG_V23NLNfgce8BJd5VJk2___9B32TFAeDuXNiV22sZgv_QcEUgv7MVrLXw0mH0I
  priority: 102
  providerName: ProQuest
Title Fighting Oxidative Stress with Sulfur: Hydrogen Sulfide in the Renal and Cardiovascular Systems
URI https://www.ncbi.nlm.nih.gov/pubmed/33801446
https://www.proquest.com/docview/2497634393
https://www.proquest.com/docview/2524417955
https://www.proquest.com/docview/2508575173
https://www.proquest.com/docview/2636464354
https://pubmed.ncbi.nlm.nih.gov/PMC7998720
https://doaj.org/article/bc83613e982b42fe9226a94c4c25ec9d
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZge4EHxG8yRmUkJJ4CjX12YiSE2LSqQtpAG5X2FtmOA5WqFLJW6v577ty0LKiTeKvia5vYd7nvcy7fMfYmG1qVB9q1kZVIodYKYy7P0gJTn7PKDMHS28inZ3o8gS-X6vJv_VM3gVc7qR31k5q0s3er39efMOA_EuNEyv7eUl3gKiN_lbm8y_YxK2kiYqcd1I93ZZPJIlZ8CKTuKcKCbK3huOMnejkqSvnvwp__llHeyEujh-xBByj557UHPGJ3QvOY3b8hM_iElSNi4PiRf11Nq6j0zS_iOyKctmH5xXJWL9sPfHxdtXN0qHhgWgU-bTjiQ34e6B9sU_HjXvUq7-TOn7LJ6OT78TjtGiukHgHTIs2CMKHwYIJUQ1dhyvdVoVUNCjDenTc2CtWLWloNtFwy885YDFewnrQenrG9Zt6EF4yDd7p2hiR08DtBW-OsLRQAOAe-rhOWbqay9J3qODW_mJXIPmjqy_7UJ-zt1v7XWm_jVssjWpmtFelkxwPz9kfZhV3pfCERsARTCAeiDgbRpjXgwQsVvKkSdrhZ13LjeyUyUrzrIlKTu4eViH3blErY6-0wRiU9arFNmC_JJrY-zeg0b7XRUgMCQgUJe772pO3FSEmqPqATlvd8rHe1_ZFm-jOqg-dIoHMxPPiPc3vJ7gkq0aGSOnHI9hbtMrxCjLVwA7Z_dHL27XwQ9ygGMZT-AJrfJ9k
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNwQLwJFDASiFPUxI8kRkKIlq62tF1QH1JvwXYcWKnKlu2uaP8Uv5GZJBs1qOXWWxRPFMeeGX_jjL8BeBNHRqWedm1EwUNZJgptLo3DDJc-a5SOpKHTyHvjZHQkvxyr4xX4szwLQ2mVS59YO-pi6miPfJ0rXlfLUurj6a-QqkbR39VlCY1GLXb8xW8M2c4-bH_G-X3L-XDrcHMUtlUFQodoYR7GnmufOam9UJEtcL1zRZaoUiqJym6dNjVLOy-FSST1VcTOaoO6Ko1riA7Q5a9KOtE6gNWNrfG3_W5Xh1g2s0g37JBC6GjdUNLieUzGJFLRW_3qIgFXIdt_EzQvrXjDe3C3harsU6Nb92HFVw_gziUCw4eQDym2x0v29XxS1Bzi7KA-fcJog5cdLE7Kxew9G10Usymqan1jUng2qRgiT7bv6Q2mKthmLy-WtUTqj-DoRgb3MQyqaeWfApPOJqXVRM6Dz_jEaGtMpqSU1kpXlgGEy6HMXctnTmU1TnKMa2jo8_7QB_Cukz9tmDyuldygmemkiIG7vjGd_chbg86tywRCIa8zbiUvvUYca7R00nHlnS4CWFvOa966hbMcY13054gBxdXNnY4H8LprRnunnzim8tMFydRFVWPq5rUyiUgkQk0lA3jSaFL3MUIQX5BMAkh7Otb72n5LNflZ846nGJqnPHr2_66_glujw73dfHd7vPMcbnPKAaKcPb4Gg_ls4V8giJvbl63lMPh-08b6F5WZWjs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6ULYg-iHejVUdQfApN5pJkBBF7WbZW19Ja6Fs6M5noQsnW7S62f81f5zlJNjTS-ta3kDkhcznXmTPfAXgTR0alnnZtRMFDWSYKZS6NwwxNnzVKR9LQbeSv42R0KD8fqaMV-LO8C0NplUudWCvqYupoj3ydK15Xy1JqvWzTIva2hh9Pf4VUQYpOWpflNBoW2fUXvzF8O_uws4Vr_Zbz4fb3zVHYVhgIHXoO8zD2XPvMSe2FimyBts8VWaJKqSQyvnXa1IjtvBQmkdRvETurDfKtNK4BPUD1v5qiVZQDWN3YHu_tdzs8hLiZRbpBihRCR-uGEhjPYxIskYqeJawLBlzl5f6brHnJ-g3vwd3WbWWfGj67Dyu-egB3LoEZPoR8SHE-PrJv55OixhNnB_VNFEabvexgcVIuZu_Z6KKYTZFt6xeTwrNJxdALZfue_mCqgm32cmRZC6r-CA5vZHIfw6CaVv4pMOlsUlpNQD34jU-MtsZkSkpprXRlGUC4nMrctdjmVGLjJMcYh6Y-7099AO86-tMG1eNayg1amY6K0LjrF9PZj7wV7ty6TKBb5HXGreSl1-jTGi2ddFx5p4sA1pbrmrcq4izHuBd1O_qD4urmjt8DeN01o-zTgY6p_HRBNHWB1Zi6eS1NIhKJbqeSATxpOKkbjBCEHSSTANIej_VG22-pJj9rDPIUw_SUR8_-3_VXcAuFNP-yM959Drc5pQNR-h5fg8F8tvAv0J-b25et4DA4vmlZ_QuJlF5n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fighting+Oxidative+Stress+with+Sulfur%3A+Hydrogen+Sulfide+in+the+Renal+and+Cardiovascular+Systems&rft.jtitle=Antioxidants&rft.au=Scammahorn%2C+Joshua+J&rft.au=Nguyen%2C+Isabel+T+N&rft.au=Bos%2C+Eelke+M&rft.au=Van+Goor%2C+Harry&rft.date=2021-03-02&rft.issn=2076-3921&rft.eissn=2076-3921&rft.volume=10&rft.issue=3&rft_id=info:doi/10.3390%2Fantiox10030373&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3921&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3921&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3921&client=summon