Fighting Oxidative Stress with Sulfur: Hydrogen Sulfide in the Renal and Cardiovascular Systems
Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Fu...
Saved in:
Published in | Antioxidants Vol. 10; no. 3; p. 373 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
02.03.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2076-3921 2076-3921 |
DOI | 10.3390/antiox10030373 |
Cover
Abstract | Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use. |
---|---|
AbstractList | Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use. Hydrogen sulfide (H S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H S is a prime subject for further research with potential for clinical use. Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use.Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use. Hydrogen sulfide (H 2 S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H 2 S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H 2 S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H 2 S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H 2 S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H 2 S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H 2 S is a prime subject for further research with potential for clinical use. Hydrogen sulfide (H₂S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H₂S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H₂S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H₂S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H₂S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H₂S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H₂S is a prime subject for further research with potential for clinical use. |
Author | Scammahorn, Joshua J. Bos, Eelke M. Joles, Jaap A. Nguyen, Isabel T. N. Van Goor, Harry |
AuthorAffiliation | 2 Department of Neurosurgery, Erasmus Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; e.bos@erasmusmc.nl 3 Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, 9713 GZ Groningen, The Netherlands 1 Department of Nephrology & Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; j.j.scammahorn@umcutrecht.nl (J.J.S.); T.N.Nguyen-4@umcutrecht.nl (I.T.N.N.); J.A.Joles@umcutrecht.nl (J.A.J.) |
AuthorAffiliation_xml | – name: 3 Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, 9713 GZ Groningen, The Netherlands – name: 1 Department of Nephrology & Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; j.j.scammahorn@umcutrecht.nl (J.J.S.); T.N.Nguyen-4@umcutrecht.nl (I.T.N.N.); J.A.Joles@umcutrecht.nl (J.A.J.) – name: 2 Department of Neurosurgery, Erasmus Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; e.bos@erasmusmc.nl |
Author_xml | – sequence: 1 givenname: Joshua J. surname: Scammahorn fullname: Scammahorn, Joshua J. – sequence: 2 givenname: Isabel T. N. surname: Nguyen fullname: Nguyen, Isabel T. N. – sequence: 3 givenname: Eelke M. orcidid: 0000-0003-3647-6740 surname: Bos fullname: Bos, Eelke M. – sequence: 4 givenname: Harry orcidid: 0000-0002-6670-1577 surname: Van Goor fullname: Van Goor, Harry – sequence: 5 givenname: Jaap A. orcidid: 0000-0003-2565-242X surname: Joles fullname: Joles, Jaap A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33801446$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstrGzEQh5eS0jyaa49F0EsvTvXeVQ-FYJoHBAJ1exZaadaWWUuppHXj_77rOA1xoK0uEqNvPpjhd1wdhBigqt4RfMaYwp9MKD7eE4wZZjV7VR1RXMsJU5QcPHsfVqc5L_F4FGENVm-qQzbehHN5VOkLP18UH-bo9t47U_wa0KwkyBn98mWBZkPfDekzutq4FOcQHgreAfIBlQWgbxBMj0xwaGqS83Ftsh16k9Bskwus8tvqdWf6DKeP90n14-Lr9-nV5Ob28np6fjOxgosyIUAVNJYrYAK3jlBlXSNFxwVnmLRWGcyppLRjRnKFuWHEtsoIRrixBFN2Ul3vvC6apb5LfmXSRkfj9UMhprk2qXjbg25twyRhoBractqBolQaxS23VIBVbnR92bnuhnYFzkIoyfR70v2f4Bd6Hte6VqqpKR4FHx8FKf4cIBe98tlC35sAcciaSia55Gwc7r-owI2oBanZiH54gS7jkMb1bynKOamVEP-kuKol40xtXe-fj_g0259gjMDZDrAp5pyge0II1tvw6f3wjQ38RYP1ZcxT3K7I939r-w0-_NyY |
CitedBy_id | crossref_primary_10_3389_fendo_2023_1124419 crossref_primary_10_3390_biom12020207 crossref_primary_10_1016_j_biopha_2024_117538 crossref_primary_10_1016_j_freeradbiomed_2022_01_028 crossref_primary_10_1039_D1NJ04079K crossref_primary_10_3389_fphar_2022_899859 crossref_primary_10_3390_biom12101372 crossref_primary_10_3390_targets2030012 crossref_primary_10_1007_s00044_024_03326_9 crossref_primary_10_3390_biom14091145 crossref_primary_10_1152_ajpheart_00764_2023 crossref_primary_10_1016_j_niox_2024_06_004 crossref_primary_10_1021_acs_analchem_1c04324 crossref_primary_10_1152_physrev_00028_2021 crossref_primary_10_3390_antiox10050633 crossref_primary_10_1007_s00216_021_03792_9 crossref_primary_10_1124_jpet_121_001017 crossref_primary_10_1007_s00210_024_03086_8 crossref_primary_10_1016_j_saa_2023_122582 crossref_primary_10_1039_D2NJ01152B crossref_primary_10_3390_antiox11112253 crossref_primary_10_5483_BMBRep_2022_55_10_124 crossref_primary_10_1038_s41401_025_01476_z crossref_primary_10_1080_10408398_2022_2057915 crossref_primary_10_3390_antiox12051025 crossref_primary_10_1016_j_jhazmat_2025_137781 crossref_primary_10_1016_j_freeradbiomed_2024_07_031 crossref_primary_10_19161_etd_1355434 crossref_primary_10_1007_s10895_023_03179_2 crossref_primary_10_1002_med_21913 crossref_primary_10_1016_j_redox_2024_103484 crossref_primary_10_3748_wjg_v29_i29_4557 crossref_primary_10_3390_antiox13020245 crossref_primary_10_3390_ijms24098376 crossref_primary_10_3389_fchem_2023_1126309 crossref_primary_10_1007_s11356_024_35378_0 crossref_primary_10_3390_antiox11051004 crossref_primary_10_1016_j_ebiom_2022_103942 crossref_primary_10_3390_antiox13050531 crossref_primary_10_3390_ijms22157808 crossref_primary_10_1016_j_niox_2023_11_005 crossref_primary_10_3390_ijms23126720 crossref_primary_10_1080_28347056_2024_2304348 crossref_primary_10_1039_D3TB00863K crossref_primary_10_1016_j_placenta_2023_09_004 crossref_primary_10_3390_antiox11010147 crossref_primary_10_3390_metabo13060688 crossref_primary_10_1039_D2OB00442A crossref_primary_10_12677_IJPN_2022_113006 crossref_primary_10_3390_antiox10071065 crossref_primary_10_1007_s11033_023_08723_8 |
Cites_doi | 10.3389/fphar.2016.00385 10.1002/iub.1740 10.1111/ajt.12483 10.1515/cclm-2012-0551 10.1016/j.juro.2016.05.029 10.1002/cbin.10507 10.1161/CIRCULATIONAHA.113.002208 10.1089/ars.2016.6665 10.1152/ajpcell.00329.2016 10.15407/fz62.06.009 10.17219/acem/58998 10.1038/s41580-020-0230-3 10.1096/fj.14-266015 10.1016/j.cmet.2017.05.003 10.1053/j.ackd.2018.08.009 10.1016/j.bbalip.2016.03.001 10.1681/ASN.2012030268 10.1039/C5SC04818D 10.1139/cjpp-2018-0153 10.1007/s10863-009-9217-7 10.1016/j.niox.2014.10.002 10.1038/srep34608 10.1021/acschembio.8b00463 10.1016/j.biocel.2019.105636 10.1016/S0021-9258(18)72535-0 10.1186/1423-0127-20-69 10.1016/0006-2952(89)90288-8 10.1371/journal.pone.0225152 10.1016/j.yjmcc.2014.03.007 10.1073/pnas.1115634109 10.1002/1873-3468.13090 10.4103/2249-4863.154630 10.1016/j.semnephrol.2015.08.007 10.1016/j.jacc.2008.07.051 10.1089/ars.2017.7273 10.1016/j.pharep.2017.10.007 10.1089/ars.2017.7068 10.1681/ASN.2008121269 10.1089/ars.2017.7083 10.1093/occmed/46.5.367 10.1146/annurev-biochem-061516-045037 10.1016/j.bcp.2019.113775 10.5489/cuaj.5658 10.1016/j.niox.2014.12.009 10.3109/0886022X.2010.509830 10.1038/s41598-017-11004-7 10.1111/bph.12825 10.1073/pnas.1504376112 10.1089/ars.2017.7058 10.1089/ars.2017.7040 10.1038/s42003-019-0431-5 10.1152/ajpheart.00645.2016 10.1016/j.lfs.2020.118074 10.1155/2018/4579140 10.1007/s11845-015-1328-z 10.1097/HJH.0000000000001885 10.1016/j.biopha.2019.01.045 10.1093/cvr/cvu026 10.1080/14786419.2017.1323211 10.1016/j.redox.2013.01.014 10.1159/000478628 10.1186/s12882-017-0673-8 10.1007/s12013-019-00871-8 10.1371/journal.pone.0063291 10.1016/j.niox.2015.07.001 10.1089/ars.2011.3882 10.1016/j.kint.2020.02.020 10.1093/jat/13.2.105 10.1016/S0378-4347(00)82537-2 10.1038/hr.2014.125 10.23876/j.krcp.19.063 10.1097/MNH.0000000000000206 10.1016/j.ijcard.2014.01.068 10.1016/j.niox.2014.12.007 10.1186/s13578-015-0003-4 10.1016/j.niox.2015.01.005 10.1213/ANE.0000000000002369 10.15407/fz57.04.003 10.1007/s11357-018-0018-y 10.1016/S0140-6736(19)32563-2 10.1016/j.freeradbiomed.2012.11.005 10.1155/2018/4010395 10.1016/j.bcp.2017.09.010 10.1038/nrneph.2013.250 10.3390/molecules24152857 10.1053/j.ackd.2018.08.004 10.1089/ars.2012.5024 10.1016/j.cbi.2017.07.002 10.1097/MCC.0000000000000654 10.1093/ndt/gfr560 10.1155/2018/6717212 10.1089/ars.2019.7728 10.3389/fphar.2019.00116 10.15407/fz63.01.003 10.4103/0366-6999.228249 10.1093/ndt/gfq136 10.4161/oxim.2.5.9657 10.3390/biom10020302 10.1093/toxsci/65.1.18 10.1097/SHK.0000000000000478 10.1096/fj.201800436R 10.1016/j.freeradbiomed.2019.06.028 10.1155/2015/758358 10.1080/15563650.2018.1435886 10.1016/j.stem.2014.03.005 10.1159/000499940 10.3390/biom5010194 10.1016/j.freeradbiomed.2013.04.001 10.1016/j.niox.2018.03.002 10.1089/ars.2017.7434 10.1016/j.cnur.2018.07.001 10.1007/s11255-018-2053-0 10.1093/jcag/gwz006.002 10.2215/CJN.09880912 10.1371/journal.pone.0157493 10.3390/molecules18010690 10.3390/ijms20020313 10.1155/2018/3205125 10.2215/CJN.07830814 10.1111/bph.14446 10.1038/ajh.2011.246 10.1006/abbi.1997.0486 10.1016/j.bcp.2017.11.011 10.1155/2016/8145785 10.15407/fz62.02.003 10.1155/2016/6043038 10.2174/0929867324666170509145240 10.1523/JNEUROSCI.16-03-01066.1996 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 7QR 7T5 7TO 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ H94 HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/antiox10030373 |
DatabaseName | CrossRef PubMed Chemoreception Abstracts Immunology Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Immunology Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2076-3921 |
ExternalDocumentID | oai_doaj_org_article_bc83613e982b42fe9226a94c4c25ec9d PMC7998720 33801446 10_3390_antiox10030373 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Hartstichting grantid: CVON2014-11 – fundername: Nierstichting grantid: 17016 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM 7QR 7T5 7TO 8FD ABUWG AZQEC DWQXO FR3 GNUQQ H94 P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c545t-1e29e8c49e350bd129cd865f454301bc9a042622f3a64904a31cb9a5314ac1023 |
IEDL.DBID | M48 |
ISSN | 2076-3921 |
IngestDate | Wed Aug 27 01:29:53 EDT 2025 Thu Aug 21 14:05:45 EDT 2025 Fri Sep 05 13:45:07 EDT 2025 Thu Sep 04 18:47:46 EDT 2025 Fri Jul 25 12:00:40 EDT 2025 Fri Jul 25 12:02:48 EDT 2025 Thu Jan 02 22:56:21 EST 2025 Tue Jul 01 02:20:10 EDT 2025 Thu Apr 24 22:51:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | hydrogen sulfide thiosulfate H2S donors reactive oxygen species cardiorenal syndrome |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c545t-1e29e8c49e350bd129cd865f454301bc9a042622f3a64904a31cb9a5314ac1023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2565-242X 0000-0002-6670-1577 0000-0003-3647-6740 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/antiox10030373 |
PMID | 33801446 |
PQID | 2497634393 |
PQPubID | 2032435 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bc83613e982b42fe9226a94c4c25ec9d pubmedcentral_primary_oai_pubmedcentral_nih_gov_7998720 proquest_miscellaneous_2636464354 proquest_miscellaneous_2508575173 proquest_journals_2524417955 proquest_journals_2497634393 pubmed_primary_33801446 crossref_primary_10_3390_antiox10030373 crossref_citationtrail_10_3390_antiox10030373 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210302 |
PublicationDateYYYYMMDD | 2021-03-02 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210302 day: 2 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Antioxidants |
PublicationTitleAlternate | Antioxidants (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 Wu (ref_10) 2018; 2018 ref_91 ref_90 Szabo (ref_1) 2018; 149 Majzunova (ref_62) 2013; 20 Dudoignon (ref_81) 2019; 143 Lin (ref_98) 2018; 76 Yang (ref_35) 2019; 2 Wei (ref_74) 2015; 39 Guidotti (ref_2) 1996; 46 Kai (ref_48) 2012; 16 Dugbartey (ref_50) 2018; 70 Kalyanaraman (ref_28) 2013; 1 Capasso (ref_119) 2013; 18 Fu (ref_43) 2012; 109 Xu (ref_36) 2014; 172 Zhu (ref_52) 2018; 2018 Ratliff (ref_71) 2016; 25 Wallace (ref_118) 2019; 2 Flannigan (ref_58) 2015; 29 ref_127 Leigh (ref_70) 2018; 13 Lin (ref_99) 2016; 196 Perridon (ref_12) 2016; 8 Hine (ref_31) 2017; 25 Yaxley (ref_107) 2015; 4 Ronco (ref_22) 2018; 25 Li (ref_130) 2015; 5 ref_123 Iciek (ref_79) 2019; 66 Ravindran (ref_126) 2017; 274 Praga (ref_86) 2019; 25 Snijder (ref_111) 2015; 172 Hillebrands (ref_24) 2016; 25 Drachuk (ref_59) 2016; 62 Braam (ref_20) 2014; 10 Aminzadeh (ref_100) 2012; 27 ref_72 Honda (ref_64) 2019; 38 Ronco (ref_18) 2008; 52 Wang (ref_49) 2020; 172 Bucci (ref_112) 2014; 102 (ref_45) 2013; 55 Warenycia (ref_4) 1989; 38 Kim (ref_120) 2018; 32 Liu (ref_135) 2014; 15 Koning (ref_25) 2017; 312 Tan (ref_134) 2018; 29 Ozkaya (ref_92) 2010; 32 Liu (ref_104) 2015; 8 Wohlgemuth (ref_78) 2014; 71 Thiele (ref_83) 2015; 10 Koning (ref_11) 2015; 46 Fukuto (ref_14) 2018; 592 Sbodio (ref_33) 2019; 176 Luo (ref_68) 2019; 33 Mani (ref_113) 2013; 127 Kannan (ref_125) 2019; 77 Liang (ref_75) 2015; 46 Cao (ref_38) 2019; 31 Snijder (ref_131) 2013; 13 Frenay (ref_16) 2019; 30 Isoni (ref_103) 2009; 2 Dorman (ref_3) 2002; 65 Foster (ref_57) 2009; 41 Amaral (ref_47) 2019; 141 Mencke (ref_114) 2016; 6 Olson (ref_69) 2013; 51 Nguyen (ref_26) 2020; 98 Fernandez (ref_13) 2015; 46 Rizer (ref_121) 2018; 56 Goodwin (ref_5) 1989; 13 Vitvitsky (ref_54) 2018; 13 Mizuta (ref_128) 2020; 257 Chen (ref_88) 2018; 2018 Xue (ref_105) 2013; 19 Assa (ref_129) 2020; 2020 Hine (ref_32) 2018; 28 ref_53 Cai (ref_106) 2016; 1861 Abe (ref_8) 1996; 16 Xie (ref_27) 2016; 2016 Ma (ref_76) 2018; 96 Mys (ref_61) 2017; 63 Wang (ref_115) 2017; 42 Jin (ref_60) 2015; 2015 Sies (ref_55) 2020; 21 Strutynska (ref_73) 2016; 62 Liu (ref_96) 2016; 2016 Nowotny (ref_102) 2015; 5 Wallace (ref_89) 2018; 28 Oosterhuis (ref_124) 2015; 49 Bjelakovic (ref_132) 2014; 17 Yuan (ref_95) 2019; 31 ref_63 Bao (ref_29) 1998; 350 Tehzeeb (ref_133) 2019; 11 Azizi (ref_84) 2016; 185 Frenay (ref_17) 2016; 55–56 Snijder (ref_23) 2014; 42 Ahmad (ref_42) 2016; 45 Lee (ref_65) 2018; 40 Clark (ref_87) 2015; 35 ref_117 Semenykhina (ref_44) 2011; 57 Zhang (ref_46) 2019; 117 Meersch (ref_82) 2017; 125 Wen (ref_116) 2018; 2018 Koning (ref_15) 2017; 27 Madamanchi (ref_56) 2013; 61 Karmin (ref_101) 2018; 25 Binkley (ref_7) 1942; 144 Wedmann (ref_40) 2016; 7 Zhang (ref_77) 2018; 131 House (ref_19) 2010; 25 Uduman (ref_21) 2018; 25 Kurtz (ref_66) 2012; 25 Hart (ref_110) 2015; 38 Cao (ref_9) 2016; 7 Palde (ref_41) 2015; 112 Abdelmonem (ref_136) 2019; 112 Kanagy (ref_30) 2017; 312 Ozatik (ref_93) 2019; 51 Cao (ref_67) 2018; 149 Ronco (ref_80) 2019; 394 Nigwekar (ref_122) 2013; 8 Farrar (ref_97) 2018; 53 Pal (ref_39) 2018; 70 Kimura (ref_37) 2017; 7 Savage (ref_6) 1990; 526 Sies (ref_51) 2017; 86 Bos (ref_85) 2009; 20 Blankestijn (ref_108) 2019; 37 Bos (ref_34) 2013; 24 Doroszko (ref_109) 2016; 25 |
References_xml | – volume: 7 start-page: 385 year: 2016 ident: ref_9 article-title: The Role of Hydrogen Sulfide in Renal System publication-title: Front. Pharm. doi: 10.3389/fphar.2016.00385 – volume: 70 start-page: 393 year: 2018 ident: ref_39 article-title: Hydrogen sulfide in physiology and pathogenesis of bacteria and viruses publication-title: Iubmb Life doi: 10.1002/iub.1740 – volume: 55–56 start-page: 18 year: 2016 ident: ref_17 article-title: High urinary sulfate concentration is associated with reduced risk of renal disease progression in type 2 diabetes publication-title: Nitric Oxide – volume: 13 start-page: 3067 year: 2013 ident: ref_131 article-title: Emerging role of gasotransmitters in renal transplantation publication-title: Am. J. Transpl. doi: 10.1111/ajt.12483 – volume: 17 start-page: 40 year: 2014 ident: ref_132 article-title: Antioxidant supplements and mortality publication-title: Curr. Opin. Clin. Nutr Metab. Care – volume: 51 start-page: 623 year: 2013 ident: ref_69 article-title: Hydrogen sulfide as an oxygen sensor publication-title: Clin. Chem. Lab. Med. doi: 10.1515/cclm-2012-0551 – volume: 196 start-page: 1778 year: 2016 ident: ref_99 article-title: GYY4137, a Slow-Releasing Hydrogen Sulfide Donor, Ameliorates Renal Damage Associated with Chronic Obstructive Uropathy publication-title: J. Urol. doi: 10.1016/j.juro.2016.05.029 – volume: 39 start-page: 1173 year: 2015 ident: ref_74 article-title: H2 S restores the cardioprotection from ischemic post-conditioning in isolated aged rat hearts publication-title: Cell Biol. Int. doi: 10.1002/cbin.10507 – volume: 127 start-page: 2523 year: 2013 ident: ref_113 article-title: Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.113.002208 – volume: 25 start-page: 119 year: 2016 ident: ref_71 article-title: Oxidant Mechanisms in Renal Injury and Disease publication-title: Antioxid Redox Signal. doi: 10.1089/ars.2016.6665 – volume: 312 start-page: C537 year: 2017 ident: ref_30 article-title: Vascular biology of hydrogen sulfide publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00329.2016 – volume: 62 start-page: 9 year: 2016 ident: ref_59 article-title: The role of hydrogen sulfide in diastolic function restoration during aging publication-title: Fiziol. Zh. doi: 10.15407/fz62.06.009 – volume: 25 start-page: 173 year: 2016 ident: ref_109 article-title: Resistant Hypertension publication-title: Adv. Clin. Exp. Med. doi: 10.17219/acem/58998 – volume: 21 start-page: 363 year: 2020 ident: ref_55 article-title: Reactive oxygen species (ROS) as pleiotropic physiological signalling agents publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0230-3 – volume: 29 start-page: 1591 year: 2015 ident: ref_58 article-title: Proresolution effects of hydrogen sulfide during colitis are mediated through hypoxia-inducible factor-1α publication-title: Faseb. J. doi: 10.1096/fj.14-266015 – volume: 25 start-page: 1320 year: 2017 ident: ref_31 article-title: Hypothalamic-Pituitary Axis Regulates Hydrogen Sulfide Production publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.05.003 – volume: 25 start-page: 391 year: 2018 ident: ref_21 article-title: Epidemiology of Cardiorenal Syndrome publication-title: Adv. Chronic Kidney Dis. doi: 10.1053/j.ackd.2018.08.009 – volume: 1861 start-page: 419 year: 2016 ident: ref_106 article-title: Cystathionine γ lyase-hydrogen sulfide increases peroxisome proliferator-activated receptor γ activity by sulfhydration at C139 site thereby promoting glucose uptake and lipid storage in adipocytes publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2016.03.001 – volume: 24 start-page: 759 year: 2013 ident: ref_34 article-title: Cystathionine γ-lyase protects against renal ischemia/reperfusion by modulating oxidative stress publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2012030268 – volume: 7 start-page: 3414 year: 2016 ident: ref_40 article-title: Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation publication-title: Chem. Sci. doi: 10.1039/C5SC04818D – volume: 96 start-page: 902 year: 2018 ident: ref_76 article-title: Chronic aerobic exercise training alleviates myocardial fibrosis in aged rats through restoring bioavailability of hydrogen sulfide publication-title: Can. J. Physiol. Pharm. doi: 10.1139/cjpp-2018-0153 – volume: 41 start-page: 159 year: 2009 ident: ref_57 article-title: Redox signaling and protein phosphorylation in mitochondria: Progress and prospects publication-title: J. Bioenerg. Biomembr. doi: 10.1007/s10863-009-9217-7 – volume: 42 start-page: 87 year: 2014 ident: ref_23 article-title: Sodium thiosulfate attenuates angiotensin II-induced hypertension, proteinuria and renal damage publication-title: Nitric Oxide doi: 10.1016/j.niox.2014.10.002 – volume: 6 start-page: 34608 year: 2016 ident: ref_114 article-title: Cystathionine γ-lyase is expressed in human atherosclerotic plaque microvessels and is involved in micro-angiogenesis publication-title: Sci. Rep. doi: 10.1038/srep34608 – volume: 13 start-page: 2300 year: 2018 ident: ref_54 article-title: Cytochrome c Reduction by H(2)S Potentiates Sulfide Signaling publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.8b00463 – volume: 117 start-page: 105636 year: 2019 ident: ref_46 article-title: Hydrogen sulfide protects against cell damage through modulation of PI3K/Akt/Nrf2 signaling publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2019.105636 – volume: 144 start-page: 507 year: 1942 ident: ref_7 article-title: The Formation of Cysteine from Homocysteine and Serine by Liver Tissue of Rats publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)72535-0 – volume: 20 start-page: 69 year: 2013 ident: ref_62 article-title: Redox signaling in pathophysiology of hypertension publication-title: J. BioMed. Sci. doi: 10.1186/1423-0127-20-69 – volume: 38 start-page: 973 year: 1989 ident: ref_4 article-title: Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels publication-title: Biochem. Pharm. doi: 10.1016/0006-2952(89)90288-8 – ident: ref_53 doi: 10.1371/journal.pone.0225152 – volume: 8 start-page: 2264 year: 2016 ident: ref_12 article-title: The role of hydrogen sulfide in aging and age-related pathologies publication-title: Aging (Albany Ny.) – volume: 71 start-page: 62 year: 2014 ident: ref_78 article-title: The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2014.03.007 – volume: 109 start-page: 2943 year: 2012 ident: ref_43 article-title: Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1115634109 – volume: 592 start-page: 2140 year: 2018 ident: ref_14 article-title: Biological hydropersulfides and related polysulfides—A new concept and perspective in redox biology publication-title: FEBS Lett. doi: 10.1002/1873-3468.13090 – volume: 4 start-page: 193 year: 2015 ident: ref_107 article-title: Resistant hypertension: An approach to management in primary care publication-title: J. Fam. Med. Prim. Care doi: 10.4103/2249-4863.154630 – volume: 35 start-page: 455 year: 2015 ident: ref_87 article-title: The Pathogenesis and Therapeutic Implications of Tubulointerstitial Inflammation in Human Lupus Nephritis publication-title: Semin. Nephrol. doi: 10.1016/j.semnephrol.2015.08.007 – volume: 52 start-page: 1527 year: 2008 ident: ref_18 article-title: Cardiorenal syndrome publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2008.07.051 – volume: 29 start-page: 149 year: 2018 ident: ref_134 article-title: Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2017.7273 – volume: 70 start-page: 196 year: 2018 ident: ref_50 article-title: The smell of renal protection against chronic kidney disease: Hydrogen sulfide offers a potential stinky remedy publication-title: Pharm. Rep. doi: 10.1016/j.pharep.2017.10.007 – volume: 28 start-page: 1533 year: 2018 ident: ref_89 article-title: Hydrogen Sulfide-Releasing Therapeutics: Translation to the Clinic publication-title: Antioxid Redox Signal. doi: 10.1089/ars.2017.7068 – volume: 20 start-page: 1901 year: 2009 ident: ref_85 article-title: Hydrogen sulfide-induced hypometabolism prevents renal ischemia/reperfusion injury publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2008121269 – volume: 27 start-page: 684 year: 2017 ident: ref_15 article-title: The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine publication-title: Antioxid Redox Signal. doi: 10.1089/ars.2017.7083 – volume: 46 start-page: 367 year: 1996 ident: ref_2 article-title: Hydrogen sulphide publication-title: Occup. Med. doi: 10.1093/occmed/46.5.367 – volume: 86 start-page: 715 year: 2017 ident: ref_51 article-title: Oxidative Stress publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-061516-045037 – volume: 172 start-page: 113775 year: 2020 ident: ref_49 article-title: Hydrogen sulfide modulates epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via HIF-1α activation publication-title: Biochem. Pharm. doi: 10.1016/j.bcp.2019.113775 – volume: 13 start-page: E210 year: 2018 ident: ref_70 article-title: Endogenous H(2)S production deficiencies lead to impaired renal erythropoietin production publication-title: Can. Urol. Assoc. J. doi: 10.5489/cuaj.5658 – volume: 46 start-page: 14 year: 2015 ident: ref_13 article-title: On the chemical biology of the nitrite/sulfide interaction publication-title: Nitric Oxide doi: 10.1016/j.niox.2014.12.009 – volume: 32 start-page: 1125 year: 2010 ident: ref_92 article-title: A case of acetaminophen (paracetamol) causing renal failure without liver damage in a child and review of literature publication-title: Ren. Fail. doi: 10.3109/0886022X.2010.509830 – volume: 7 start-page: 10459 year: 2017 ident: ref_37 article-title: 3-Mercaptopyruvate sulfurtransferase produces potential redox regulators cysteine- and glutathione-persulfide (Cys-SSH and GSSH) together with signaling molecules H(2)S(2), H(2)S(3) and H(2)S publication-title: Sci. Rep. doi: 10.1038/s41598-017-11004-7 – volume: 172 start-page: 1494 year: 2015 ident: ref_111 article-title: Exogenous administration of thiosulfate, a donor of hydrogen sulfide, attenuates angiotensin II-induced hypertensive heart disease in rats publication-title: Br. J. Pharm. doi: 10.1111/bph.12825 – volume: 112 start-page: 7960 year: 2015 ident: ref_41 article-title: A universal entropy-driven mechanism for thioredoxin-target recognition publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1504376112 – volume: 31 start-page: 1 year: 2019 ident: ref_38 article-title: A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer? publication-title: Antioxid Redox Signal. doi: 10.1089/ars.2017.7058 – volume: 30 start-page: 1999 year: 2019 ident: ref_16 article-title: Urinary Excretion of Sulfur Metabolites and Risk of Cardiovascular Events and All-Cause Mortality in the General Population publication-title: Antioxid Redox Signal. doi: 10.1089/ars.2017.7040 – volume: 2 start-page: 194 year: 2019 ident: ref_35 article-title: Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B(6) publication-title: Commun. Biol. doi: 10.1038/s42003-019-0431-5 – volume: 312 start-page: H415 year: 2017 ident: ref_25 article-title: The fate of sulfate in chronic heart failure publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00645.2016 – volume: 257 start-page: 118074 year: 2020 ident: ref_128 article-title: Sodium thiosulfate prevents doxorubicin-induced DNA damage and apoptosis in cardiomyocytes in mice publication-title: Life Sci. doi: 10.1016/j.lfs.2020.118074 – volume: 2018 start-page: 4579140 year: 2018 ident: ref_10 article-title: An Update on Hydrogen Sulfide and Nitric Oxide Interactions in the Cardiovascular System publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2018/4579140 – volume: 185 start-page: 649 year: 2016 ident: ref_84 article-title: Administration of hydrogen sulfide protects ischemia reperfusion-induced acute kidney injury by reducing the oxidative stress publication-title: Ir. J. Med. Sci. doi: 10.1007/s11845-015-1328-z – volume: 37 start-page: 398 year: 2019 ident: ref_108 article-title: Prevalence of potential modifiable factors of hypertension in patients with difficult-to-control hypertension publication-title: J. Hypertens. doi: 10.1097/HJH.0000000000001885 – volume: 112 start-page: 108584 year: 2019 ident: ref_136 article-title: Hydrogen sulfide enhances the effectiveness of mesenchymal stem cell therapy in rats with heart failure: In vitro preconditioning versus in vivo co-delivery publication-title: BioMed. Pharm. doi: 10.1016/j.biopha.2019.01.045 – volume: 102 start-page: 138 year: 2014 ident: ref_112 article-title: Hydrogen sulfide accounts for the peripheral vascular effects of zofenopril independently of ACE inhibition publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvu026 – volume: 32 start-page: 1193 year: 2018 ident: ref_120 article-title: Comparative studies of bioactive organosulphur compounds and antioxidant activities in garlic (Allium sativum L.), elephant garlic (Allium ampeloprasum L.) and onion (Allium cepa L.) publication-title: Nat. Prod. Res. doi: 10.1080/14786419.2017.1323211 – volume: 1 start-page: 244 year: 2013 ident: ref_28 article-title: Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms publication-title: Redox Biol. doi: 10.1016/j.redox.2013.01.014 – volume: 42 start-page: 859 year: 2017 ident: ref_115 article-title: Atherosclerosis and the Hydrogen Sulfide Signaling Pathway—Therapeutic Approaches to Disease Prevention publication-title: Cell Physiol. Biochem. doi: 10.1159/000478628 – ident: ref_91 doi: 10.1186/s12882-017-0673-8 – volume: 77 start-page: 261 year: 2019 ident: ref_125 article-title: Attenuation of cardiac ischemia-reperfusion injury by sodium thiosulfate is partially dependent on the effect of cystathione beta synthase in the myocardium publication-title: Cell Biochem. Biophys. doi: 10.1007/s12013-019-00871-8 – ident: ref_117 doi: 10.1371/journal.pone.0063291 – volume: 49 start-page: 56 year: 2015 ident: ref_124 article-title: DL-propargylglycine reduces blood pressure and renal injury but increases kidney weight in angiotensin-II infused rats publication-title: Nitric Oxide doi: 10.1016/j.niox.2015.07.001 – volume: 16 start-page: 203 year: 2012 ident: ref_48 article-title: Hydrogen sulfide inhibits hypoxia- but not anoxia-induced hypoxia-inducible factor 1 activation in a von hippel-lindau- and mitochondria-dependent manner publication-title: Antioxid Redox Signal. doi: 10.1089/ars.2011.3882 – volume: 98 start-page: 366 year: 2020 ident: ref_26 article-title: Sodium thiosulfate improves renal function and oxygenation in L-NNA-induced hypertension in rats publication-title: Kidney Int. doi: 10.1016/j.kint.2020.02.020 – volume: 13 start-page: 105 year: 1989 ident: ref_5 article-title: Determination of sulfide in brain tissue by gas dialysis/ion chromatography: Postmortem studies and two case reports publication-title: J. Anal. Toxicol. doi: 10.1093/jat/13.2.105 – volume: 526 start-page: 540 year: 1990 ident: ref_6 article-title: Determination of sulfide in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography publication-title: J. Chromatogr. doi: 10.1016/S0378-4347(00)82537-2 – volume: 38 start-page: 13 year: 2015 ident: ref_110 article-title: Hydrogen sulfide treatment reduces blood pressure and oxidative stress in angiotensin II-induced hypertensive mice publication-title: Hypertens. Res. doi: 10.1038/hr.2014.125 – volume: 38 start-page: 414 year: 2019 ident: ref_64 article-title: The role of oxidative stress and hypoxia in renal disease publication-title: Kidney Res. Clin. Pr. doi: 10.23876/j.krcp.19.063 – volume: 11 start-page: e5959 year: 2019 ident: ref_133 article-title: Is Stem Cell Therapy an Answer to Heart Failure: A Literature Search publication-title: Cureus – volume: 25 start-page: 107 year: 2016 ident: ref_24 article-title: Hydrogen sulfide in hypertension publication-title: Curr. Opin. Nephrol. Hypertens. doi: 10.1097/MNH.0000000000000206 – volume: 172 start-page: 313 year: 2014 ident: ref_36 article-title: Targeting hydrogen sulfide as a promising therapeutic strategy for atherosclerosis publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2014.01.068 – volume: 46 start-page: 114 year: 2015 ident: ref_75 article-title: Hydrogen sulfide improves glucose metabolism and prevents hypertrophy in cardiomyocytes publication-title: Nitric Oxide doi: 10.1016/j.niox.2014.12.007 – volume: 5 start-page: 11 year: 2015 ident: ref_130 article-title: Mediation of exogenous hydrogen sulfide in recovery of ischemic post-conditioning-induced cardioprotection via down-regulating oxidative stress and up-regulating PI3K/Akt/GSK-3β pathway in isolated aging rat hearts publication-title: Cell Biosci. doi: 10.1186/s13578-015-0003-4 – volume: 46 start-page: 37 year: 2015 ident: ref_11 article-title: Hydrogen sulfide in renal physiology, disease and transplantation--the smell of renal protection publication-title: Nitric Oxide doi: 10.1016/j.niox.2015.01.005 – volume: 125 start-page: 1223 year: 2017 ident: ref_82 article-title: Perioperative Acute Kidney Injury: An Under-Recognized Problem publication-title: Anesth Analg. doi: 10.1213/ANE.0000000000002369 – volume: 57 start-page: 3 year: 2011 ident: ref_44 article-title: Hydrogen sulfide inhibits Ca(2+)-induced mitochondrial permeability transition pore opening in adult and old rat heart publication-title: Fiziol. Zh. doi: 10.15407/fz57.04.003 – volume: 66 start-page: 533 year: 2019 ident: ref_79 article-title: Sulfane sulfur—New findings on an old topic publication-title: Acta Biochim. Pol. – volume: 40 start-page: 163 year: 2018 ident: ref_65 article-title: Hydrogen sulfide ameliorates aging-associated changes in the kidney publication-title: Geroscience doi: 10.1007/s11357-018-0018-y – volume: 394 start-page: 1949 year: 2019 ident: ref_80 article-title: Acute kidney injury publication-title: Lancet doi: 10.1016/S0140-6736(19)32563-2 – volume: 55 start-page: 1 year: 2013 ident: ref_45 article-title: Potential biological chemistry of hydrogen sulfide (H2S) with the nitrogen oxides publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.11.005 – volume: 2018 start-page: 4010395 year: 2018 ident: ref_116 article-title: The Drug Developments of Hydrogen Sulfide on Cardiovascular Disease publication-title: Oxidative Med. Cell Longev. doi: 10.1155/2018/4010395 – volume: 149 start-page: 5 year: 2018 ident: ref_1 article-title: A timeline of hydrogen sulfide (H(2)S) research: From environmental toxin to biological mediator publication-title: Biochem. Pharm. doi: 10.1016/j.bcp.2017.09.010 – volume: 10 start-page: 48 year: 2014 ident: ref_20 article-title: Cardiorenal syndrome--current understanding and future perspectives publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2013.250 – ident: ref_123 doi: 10.3390/molecules24152857 – volume: 25 start-page: 382 year: 2018 ident: ref_22 article-title: Cardiorenal Syndrome: An Overview publication-title: Adv. Chronic Kidney Dis. doi: 10.1053/j.ackd.2018.08.004 – volume: 19 start-page: 5 year: 2013 ident: ref_105 article-title: Hydrogen sulfide treatment promotes glucose uptake by increasing insulin receptor sensitivity and ameliorates kidney lesions in type 2 diabetes publication-title: Antioxid Redox Signal. doi: 10.1089/ars.2012.5024 – volume: 274 start-page: 24 year: 2017 ident: ref_126 article-title: Sodium thiosulfate post-conditioning protects rat hearts against ischemia reperfusion injury via reduction of apoptosis and oxidative stress publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2017.07.002 – volume: 25 start-page: 558 year: 2019 ident: ref_86 article-title: Acute kidney injury in interstitial nephritis publication-title: Curr. Opin. Crit. Care doi: 10.1097/MCC.0000000000000654 – volume: 27 start-page: 498 year: 2012 ident: ref_100 article-title: Downregulation of the renal and hepatic hydrogen sulfide (H2S)-producing enzymes and capacity in chronic kidney disease publication-title: Nephrol. Dial. Transpl. doi: 10.1093/ndt/gfr560 – volume: 2018 start-page: 6717212 year: 2018 ident: ref_88 article-title: Hydrogen Sulfide Attenuates LPS-Induced Acute Kidney Injury by Inhibiting Inflammation and Oxidative Stress publication-title: Oxid Med. Cell Longev. doi: 10.1155/2018/6717212 – volume: 31 start-page: 1302 year: 2019 ident: ref_95 article-title: S-Sulfhydration of SIRT3 by Hydrogen Sulfide Attenuates Mitochondrial Dysfunction in Cisplatin-Induced Acute Kidney Injury publication-title: Antioxid Redox Signal. doi: 10.1089/ars.2019.7728 – ident: ref_90 doi: 10.3389/fphar.2019.00116 – volume: 63 start-page: 3 year: 2017 ident: ref_61 article-title: Pyridoxal-5-phosphate restores hydrogen sulfide synthes and redox state of heart and blood vessels tissue in old animals publication-title: Fiziol. Zh. doi: 10.15407/fz63.01.003 – volume: 131 start-page: 839 year: 2018 ident: ref_77 article-title: Hydrogen Sulfide Regulating Myocardial Structure and Function by Targeting Cardiomyocyte Autophagy publication-title: Chin. Med. J. doi: 10.4103/0366-6999.228249 – volume: 25 start-page: 1416 year: 2010 ident: ref_19 article-title: Definition and classification of Cardio-Renal Syndromes: Workgroup statements from the 7th ADQI Consensus Conference publication-title: Nephrol. Dial. Transpl. doi: 10.1093/ndt/gfq136 – volume: 2 start-page: 317 year: 2009 ident: ref_103 article-title: cAMP activates the generation of reactive oxygen species and inhibits the secretion of IL-6 in peripheral blood mononuclear cells from type 2 diabetic patients publication-title: Oxidative Med. Cell Longev. doi: 10.4161/oxim.2.5.9657 – ident: ref_127 doi: 10.3390/biom10020302 – volume: 65 start-page: 18 year: 2002 ident: ref_3 article-title: Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: Correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium publication-title: Toxicol. Sci. doi: 10.1093/toxsci/65.1.18 – volume: 45 start-page: 88 year: 2016 ident: ref_42 article-title: AP39, A Mitochondrially Targeted Hydrogen Sulfide Donor, Exerts Protective Effects in Renal Epithelial Cells Subjected to Oxidative Stress in Vitro and in Acute Renal Injury in Vivo publication-title: Shock doi: 10.1097/SHK.0000000000000478 – volume: 33 start-page: 469 year: 2019 ident: ref_68 article-title: Hydrogen sulfide upregulates renal AQP-2 protein expression and promotes urine concentration publication-title: Faseb. J. doi: 10.1096/fj.201800436R – volume: 141 start-page: 261 year: 2019 ident: ref_47 article-title: Antioxidant and antihypertensive responses to oral nitrite involves activation of the Nrf2 pathway publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2019.06.028 – volume: 2015 start-page: 758358 year: 2015 ident: ref_60 article-title: Cardiac H2S Generation Is Reduced in Ageing Diabetic Mice publication-title: Oxidative Med. Cell Longev. doi: 10.1155/2015/758358 – volume: 56 start-page: 609 year: 2018 ident: ref_121 article-title: Challenges in the diagnosis of acute cyanide poisoning publication-title: Clin. Toxicol. doi: 10.1080/15563650.2018.1435886 – volume: 15 start-page: 66 year: 2014 ident: ref_135 article-title: Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca(2+) channel sulfhydration publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.03.005 – volume: 143 start-page: 179 year: 2019 ident: ref_81 article-title: Is the Renin-Angiotensin-Aldosterone System Good for the Kidney in Acute Settings? publication-title: Nephron doi: 10.1159/000499940 – volume: 5 start-page: 194 year: 2015 ident: ref_102 article-title: Advanced glycation end products and oxidative stress in type 2 diabetes mellitus publication-title: Biomolecules doi: 10.3390/biom5010194 – volume: 61 start-page: 473 year: 2013 ident: ref_56 article-title: Redox signaling in cardiovascular health and disease publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.04.001 – ident: ref_63 – volume: 76 start-page: 16 year: 2018 ident: ref_98 article-title: Daily therapy with a slow-releasing H(2)S donor GYY4137 enables early functional recovery and ameliorates renal injury associated with urinary obstruction publication-title: Nitric Oxide doi: 10.1016/j.niox.2018.03.002 – volume: 28 start-page: 1483 year: 2018 ident: ref_32 article-title: Dietary and Endocrine Regulation of Endogenous Hydrogen Sulfide Production: Implications for Longevity publication-title: Antioxid Redox Signal. doi: 10.1089/ars.2017.7434 – volume: 53 start-page: 499 year: 2018 ident: ref_97 article-title: Acute Kidney Injury publication-title: Nurs. Clin. North Am. doi: 10.1016/j.cnur.2018.07.001 – volume: 51 start-page: 745 year: 2019 ident: ref_93 article-title: Effects of hydrogen sulfide on acetaminophen-induced acute renal toxicity in rats publication-title: Int. Urol. Nephrol. doi: 10.1007/s11255-018-2053-0 – volume: 2 start-page: 7 year: 2019 ident: ref_118 article-title: A3 A proof-of-concept, phase 2 clinical trial of the gi safety of a hydrogen sulfide-releasing anti-inflammatory drug (ATB-346) publication-title: J. Can. AsSoc. Gastroenterol. doi: 10.1093/jcag/gwz006.002 – volume: 8 start-page: 1162 year: 2013 ident: ref_122 article-title: Sodium thiosulfate therapy for calcific uremic arteriolopathy publication-title: Clin. J. Am. Soc. Nephrol. doi: 10.2215/CJN.09880912 – ident: ref_72 doi: 10.1371/journal.pone.0157493 – volume: 8 start-page: 6814 year: 2015 ident: ref_104 article-title: Effects of hydrogen sulfide on high glucose-induced glomerular podocyte injury in mice publication-title: Int. J. Clin. Exp. Pathol. – volume: 18 start-page: 690 year: 2013 ident: ref_119 article-title: Antioxidant action and therapeutic efficacy of Allium sativum L. publication-title: Molecules doi: 10.3390/molecules18010690 – ident: ref_94 doi: 10.3390/ijms20020313 – volume: 2018 start-page: 3205125 year: 2018 ident: ref_52 article-title: Cystathionine β-Synthase in Physiology and Cancer publication-title: BioMed Res. Int. doi: 10.1155/2018/3205125 – volume: 10 start-page: 500 year: 2015 ident: ref_83 article-title: AKI associated with cardiac surgery publication-title: Clin. J. Am. Soc. Nephrol. doi: 10.2215/CJN.07830814 – volume: 176 start-page: 583 year: 2019 ident: ref_33 article-title: Regulators of the transsulfuration pathway publication-title: Br. J. Pharm. doi: 10.1111/bph.14446 – volume: 25 start-page: 839 year: 2012 ident: ref_66 article-title: Control of renin synthesis and secretion publication-title: Am. J. Hypertens. doi: 10.1038/ajh.2011.246 – volume: 350 start-page: 95 year: 1998 ident: ref_29 article-title: Identification and tissue distribution of human cystathionine beta-synthase mRNA isoforms publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1997.0486 – volume: 149 start-page: 20 year: 2018 ident: ref_67 article-title: The role of hydrogen sulfide in cyclic nucleotide signaling publication-title: Biochem. Pharm. doi: 10.1016/j.bcp.2017.11.011 – volume: 2016 start-page: 8145785 year: 2016 ident: ref_96 article-title: A H 2 S Donor GYY4137 Exacerbates Cisplatin-Induced Nephrotoxicity in Mice publication-title: Mediat. Inflamm. doi: 10.1155/2016/8145785 – volume: 62 start-page: 3 year: 2016 ident: ref_73 article-title: Mitochondrial dysfunction in the aging heart is accompanied by constitutive no-synthases uncoupling on the background of oxidative and nitrosative stress publication-title: Fiziol. Zh. doi: 10.15407/fz62.02.003 – volume: 2016 start-page: 6043038 year: 2016 ident: ref_27 article-title: Hydrogen Sulfide and Cellular Redox Homeostasis publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2016/6043038 – volume: 25 start-page: 367 year: 2018 ident: ref_101 article-title: Metabolic Imbalance of Homocysteine and Hydrogen Sulfide in Kidney Disease publication-title: Curr. Med. Chem. doi: 10.2174/0929867324666170509145240 – volume: 2020 start-page: 6014915 year: 2020 ident: ref_129 article-title: Safety and Tolerability of Sodium Thiosulfate in Patients with an Acute Coronary Syndrome Undergoing Coronary Angiography: A Dose-Escalation Safety Pilot Study (SAFE-ACS) publication-title: J. Interv. Cardiol. – volume: 16 start-page: 1066 year: 1996 ident: ref_8 article-title: The possible role of hydrogen sulfide as an endogenous neuromodulator publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-03-01066.1996 |
SSID | ssj0000913809 |
Score | 2.385188 |
SecondaryResourceType | review_article |
Snippet | Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded.... Hydrogen sulfide (H S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded.... Hydrogen sulfide (H₂S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded.... Hydrogen sulfide (H 2 S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 373 |
SubjectTerms | Age Animal models animals Antioxidants blood Blood vessels cardiorenal syndrome Cardiovascular system catabolism Cell therapy Cysteine Cytochrome Disease Enzymes H2S donors Heart Homeostasis Homocysteine Hydrogen Hydrogen sulfide Hypoxia-inducible factor 1a Immunosuppressive agents Kidneys Laboratory animals Metabolism Mitochondria NF-κB protein Nonsteroidal anti-inflammatory drugs Oxidants Oxidative stress Proteins Reactive oxygen species Review Signal transduction Stem cells Sulfur Therapeutic applications therapeutics thiosulfate Transplantation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9wwDBalT-vDWNduS9cVDwp7Ck1sOYn3tpUeR2EbtCv0LdiOww5KrlzvoPv3lZz0uJSWvewt2AqxZcmSHPkTwHGeWV0GPrVRjUyxLTTpXJmnFZk-Z7XJ0PJt5B8_i-kVnl_r641SX5wT1sMD94w7cb5SZHKCqaRD2QZD_oI16NFLHbxpePfNTLYRTMU92OSqykyP0qgorj-xnDx4n7NQq1KNrFAE63_Ow3yaKLlheSZv4PXgMopv_VB3YSt0b2FnA0hwD-oJx9j0KH7dz5qI5S0u4y0QwQet4nJ1064WX8X0b7OYk8jEhlkTxKwT5AGKi8BfsF0jTkf5qWIANN-Hq8nZ79NpOpROSD25RMs0D9KEyqMJSmeuIaPum6rQLWokjXbe2AhFL1tlC-QFUbl3xpJCovWM5vAOtrt5Fz6AQO-K1hkGyaF3AjHfWVtpRHQOfdsmkD6ysvYDrjiXt7ipKb5g1tdj1ifwZU1_2yNqvEj5nVdmTcVI2LGB5KMe5KP-l3wkcPi4rvWgnnc1xZy0r5Ivpp7v1jJWZtM6gc_rbtI7_pliuzBfMU0sbprzMF-kKVSB5PJpTOB9L0nrySjFuD1YJFCOZGw023FPN_sT8b9LCpFLmR38D_Z8hFeSs3Q4q04ewvZysQqfyM1auqOoUQ-eeyaI priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBVtcmkPJf12khYVCj2Z2NLItnoJSciyFJqWpIHcjCTL6UKw080uJP--M1qtiUvSm7HG2JJmpDej8RvGPueZUaWnqI1sRAptodDmyjytcOuzRukMDP2N_P2kmJ7Dtwt1EQNuNzGtcr0mhoW66R3FyPeEEqFallL7139SqhpFp6uxhMZTtolLcIV6vnl4fPLzdIiyEOtllekVW6NE_37PUBLhbU7KLUs52o0Caf9DSPPfhMl7O9Bki72I0JEfrOb6JXviu1fs-T1CwdesnpCvjZf8x-2sCZze_Cz8DcIp4MrPllftcv6VT--aeY-qE27MGs9nHUckyE89vcF0DT8a5anySGz-hp1Pjn8dTdNYQiF1CI0Wae6F9pUD7aXKbIObu2uqQrWgAC3bOm0CJb1opSmAJkbmzmqDhgnGEavDW7bR9Z1_zzg4W7RWE1kOPuMLo60xlQIAa8G1bcLS9VDWLvKLU5mLqxr9DBr6ejz0CfsyyF-vmDUelTykmRmkiBE73Ojnl3U0sNq6SiI08boSFkTrNeJKo8GBE8o73SRsdz2vdTTTmxp9T1xfEZPJh5sHnUvYp6EZ7Y8OVUzn-yXJhCKnOX3mozKFLAChn4KEvVtp0tAZKYm_B4qElSMdG_V23NLNfgce8BJd5VJk2___9B32TFAeDuXNiV22sZgv_QcEUgv7MVrLXw0mH0I priority: 102 providerName: ProQuest |
Title | Fighting Oxidative Stress with Sulfur: Hydrogen Sulfide in the Renal and Cardiovascular Systems |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33801446 https://www.proquest.com/docview/2497634393 https://www.proquest.com/docview/2524417955 https://www.proquest.com/docview/2508575173 https://www.proquest.com/docview/2636464354 https://pubmed.ncbi.nlm.nih.gov/PMC7998720 https://doaj.org/article/bc83613e982b42fe9226a94c4c25ec9d |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZge4EHxG8yRmUkJJ4CjX12YiSE2LSqQtpAG5X2FtmOA5WqFLJW6v577ty0LKiTeKvia5vYd7nvcy7fMfYmG1qVB9q1kZVIodYKYy7P0gJTn7PKDMHS28inZ3o8gS-X6vJv_VM3gVc7qR31k5q0s3er39efMOA_EuNEyv7eUl3gKiN_lbm8y_YxK2kiYqcd1I93ZZPJIlZ8CKTuKcKCbK3huOMnejkqSvnvwp__llHeyEujh-xBByj557UHPGJ3QvOY3b8hM_iElSNi4PiRf11Nq6j0zS_iOyKctmH5xXJWL9sPfHxdtXN0qHhgWgU-bTjiQ34e6B9sU_HjXvUq7-TOn7LJ6OT78TjtGiukHgHTIs2CMKHwYIJUQ1dhyvdVoVUNCjDenTc2CtWLWloNtFwy885YDFewnrQenrG9Zt6EF4yDd7p2hiR08DtBW-OsLRQAOAe-rhOWbqay9J3qODW_mJXIPmjqy_7UJ-zt1v7XWm_jVssjWpmtFelkxwPz9kfZhV3pfCERsARTCAeiDgbRpjXgwQsVvKkSdrhZ13LjeyUyUrzrIlKTu4eViH3blErY6-0wRiU9arFNmC_JJrY-zeg0b7XRUgMCQgUJe772pO3FSEmqPqATlvd8rHe1_ZFm-jOqg-dIoHMxPPiPc3vJ7gkq0aGSOnHI9hbtMrxCjLVwA7Z_dHL27XwQ9ygGMZT-AJrfJ9k |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNwQLwJFDASiFPUxI8kRkKIlq62tF1QH1JvwXYcWKnKlu2uaP8Uv5GZJBs1qOXWWxRPFMeeGX_jjL8BeBNHRqWedm1EwUNZJgptLo3DDJc-a5SOpKHTyHvjZHQkvxyr4xX4szwLQ2mVS59YO-pi6miPfJ0rXlfLUurj6a-QqkbR39VlCY1GLXb8xW8M2c4-bH_G-X3L-XDrcHMUtlUFQodoYR7GnmufOam9UJEtcL1zRZaoUiqJym6dNjVLOy-FSST1VcTOaoO6Ko1riA7Q5a9KOtE6gNWNrfG3_W5Xh1g2s0g37JBC6GjdUNLieUzGJFLRW_3qIgFXIdt_EzQvrXjDe3C3harsU6Nb92HFVw_gziUCw4eQDym2x0v29XxS1Bzi7KA-fcJog5cdLE7Kxew9G10Usymqan1jUng2qRgiT7bv6Q2mKthmLy-WtUTqj-DoRgb3MQyqaeWfApPOJqXVRM6Dz_jEaGtMpqSU1kpXlgGEy6HMXctnTmU1TnKMa2jo8_7QB_Cukz9tmDyuldygmemkiIG7vjGd_chbg86tywRCIa8zbiUvvUYca7R00nHlnS4CWFvOa966hbMcY13054gBxdXNnY4H8LprRnunnzim8tMFydRFVWPq5rUyiUgkQk0lA3jSaFL3MUIQX5BMAkh7Otb72n5LNflZ846nGJqnPHr2_66_glujw73dfHd7vPMcbnPKAaKcPb4Gg_ls4V8giJvbl63lMPh-08b6F5WZWjs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6ULYg-iHejVUdQfApN5pJkBBF7WbZW19Ja6Fs6M5noQsnW7S62f81f5zlJNjTS-ta3kDkhcznXmTPfAXgTR0alnnZtRMFDWSYKZS6NwwxNnzVKR9LQbeSv42R0KD8fqaMV-LO8C0NplUudWCvqYupoj3ydK15Xy1JqvWzTIva2hh9Pf4VUQYpOWpflNBoW2fUXvzF8O_uws4Vr_Zbz4fb3zVHYVhgIHXoO8zD2XPvMSe2FimyBts8VWaJKqSQyvnXa1IjtvBQmkdRvETurDfKtNK4BPUD1v5qiVZQDWN3YHu_tdzs8hLiZRbpBihRCR-uGEhjPYxIskYqeJawLBlzl5f6brHnJ-g3vwd3WbWWfGj67Dyu-egB3LoEZPoR8SHE-PrJv55OixhNnB_VNFEabvexgcVIuZu_Z6KKYTZFt6xeTwrNJxdALZfue_mCqgm32cmRZC6r-CA5vZHIfw6CaVv4pMOlsUlpNQD34jU-MtsZkSkpprXRlGUC4nMrctdjmVGLjJMcYh6Y-7099AO86-tMG1eNayg1amY6K0LjrF9PZj7wV7ty6TKBb5HXGreSl1-jTGi2ddFx5p4sA1pbrmrcq4izHuBd1O_qD4urmjt8DeN01o-zTgY6p_HRBNHWB1Zi6eS1NIhKJbqeSATxpOKkbjBCEHSSTANIej_VG22-pJj9rDPIUw_SUR8_-3_VXcAuFNP-yM959Drc5pQNR-h5fg8F8tvAv0J-b25et4DA4vmlZ_QuJlF5n |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fighting+Oxidative+Stress+with+Sulfur%3A+Hydrogen+Sulfide+in+the+Renal+and+Cardiovascular+Systems&rft.jtitle=Antioxidants&rft.au=Scammahorn%2C+Joshua+J&rft.au=Nguyen%2C+Isabel+T+N&rft.au=Bos%2C+Eelke+M&rft.au=Van+Goor%2C+Harry&rft.date=2021-03-02&rft.issn=2076-3921&rft.eissn=2076-3921&rft.volume=10&rft.issue=3&rft_id=info:doi/10.3390%2Fantiox10030373&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3921&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3921&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3921&client=summon |