The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis

Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationar...

Full description

Saved in:
Bibliographic Details
Published inHydrology and earth system sciences Vol. 20; no. 9; pp. 3527 - 3547
Main Authors Mentaschi, Lorenzo, Vousdoukas, Michalis, Voukouvalas, Evangelos, Sartini, Ludovica, Feyen, Luc, Besio, Giovanni, Alfieri, Lorenzo
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 05.09.2016
European Geosciences Union
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1607-7938
1027-5606
1607-7938
DOI10.5194/hess-20-3527-2016

Cover

Loading…
Abstract Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationarity is violated and alternative methods to conventional stationary extreme value analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, in this study we introduce the transformed-stationary (TS) methodology for non-stationary EVA. This approach consists of (i) transforming a non-stationary time series into a stationary one, to which the stationary EVA theory can be applied, and (ii) reverse transforming the result into a non-stationary extreme value distribution. As a transformation, we propose and discuss a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary generalized extreme value (GEV) and generalized Pareto distribution (GPD) models with a constant shape parameter. A validation of the methodology is carried out on time series of significant wave height, residual water level, and river discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For example, in contrast to (a), the proposed technique uses the whole time horizon of the series for the estimation of the extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b), it decouples the detection of non-stationary patterns from the fitting of the extreme value distribution. As a result, the steps of the analysis are simplified and intermediate diagnostics are possible. In particular, the transformation can be carried out by means of simple statistical techniques such as low-pass filters based on the running mean and the standard deviation, and the fitting procedure is a stationary one with a few degrees of freedom and is easy to implement and control. An open-source MATLAB toolbox has been developed to cover this methodology, which is available at https://github.com/menta78/tsEva/ (Mentaschi et al., 2016).
AbstractList Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationarity is violated and alternative methods to conventional stationary extreme value analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, in this study we introduce the transformed-stationary (TS) methodology for non-stationary EVA. This approach consists of (i) transforming a non-stationary time series into a stationary one, to which the stationary EVA theory can be applied, and (ii) reverse transforming the result into a non-stationary extreme value distribution. As a transformation, we propose and discuss a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary generalized extreme value (GEV) and generalized Pareto distribution (GPD) models with a constant shape parameter. A validation of the methodology is carried out on time series of significant wave height, residual water level, and river discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For example, in contrast to (a), the proposed technique uses the whole time horizon of the series for the estimation of the extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b), it decouples the detection of non-stationary patterns from the fitting of the extreme value distribution. As a result, the steps of the analysis are simplified and intermediate diagnostics are possible. In particular, the transformation can be carried out by means of simple statistical techniques such as low-pass filters based on the running mean and the standard deviation, and the fitting procedure is a stationary one with a few degrees of freedom and is easy to implement and control. An open-source MATLAB toolbox has been developed to cover this methodology, which is available at https://github.com/menta78/tsEva/ (Mentaschi et al., 2016).
Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationarity is violated and alternative methods to conventional stationary extreme value analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, in this study we introduce the transformed-stationary (TS) methodology for non-stationary EVA. This approach consists of (i) transforming a non-stationary time series into a stationary one, to which the stationary EVA theory can be applied, and (ii) reverse transforming the result into a non-stationary extreme value distribution. As a transformation, we propose and discuss a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary generalized extreme value (GEV) and generalized Pareto distribution (GPD) models with a constant shape parameter. A validation of the methodology is carried out on time series of significant wave height, residual water level, and river discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For example, in contrast to (a), the proposed technique uses the whole time horizon of the series for the estimation of the extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b), it decouples the detection of non-stationary patterns from the fitting of the extreme value distribution. As a result, the steps of the analysis are simplified and intermediate diagnostics are possible. In particular, the transformation can be carried out by means of simple statistical techniques such as low-pass filters based on the running mean and the standard deviation, and the fitting procedure is a stationary one with a few degrees of freedom and is easy to implement and control. An open-source MATLAB toolbox has been developed to cover this methodology, which is available at https://github.com/menta78/tsEva/ (Mentaschi et al., 2016).
Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationarity is violated and alternative methods to conventional stationary extreme value analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, in this study we introduce the transformed-stationary (TS) methodology for non-stationary EVA. This approach consists of (i) transforming a non-stationary time series into a stationary one, to which the stationary EVA theory can be applied, and (ii) reverse transforming the result into a non-stationary extreme value distribution. As a transformation, we propose and discuss a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary generalized extreme value (GEV) and generalized Pareto distribution (GPD) models with a constant shape parameter. A validation of the methodology is carried out on time series of significant wave height, residual water level, and river discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For example, in contrast to (a), the proposed technique uses the whole time horizon of the series for the estimation of the extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b), it decouples the detection of non-stationary patterns from the fitting of the extreme value distribution. As a result, the steps of the analysis are simplified and intermediate diagnostics are possible. In particular, the transformation can be carried out by means of simple statistical techniques such as low-pass filters based on the running mean and the standard deviation, and the fitting procedure is a stationary one with a few degrees of freedom and is easy to implement and control. An open-source MAT-LAB toolbox has been developed to cover this methodology, which is available at https://github.com/menta78/tsEva/(Mentaschi et al., 2016).
Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationarity is violated and alternative methods to conventional stationary extreme value analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, in this study we introduce the transformed-stationary (TS) methodology for non-stationary EVA. This approach consists of (i) transforming a non-stationary time series into a stationary one, to which the stationary EVA theory can be applied, and (ii) reverse transforming the result into a non-stationary extreme value distribution. As a transformation, we propose and discuss a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary generalized extreme value (GEV) and generalized Pareto distribution (GPD) models with a constant shape parameter. A validation of the methodology is carried out on time series of significant wave height, residual water level, and river discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For example, in contrast to (a), the proposed technique uses the whole time horizon of the series for the estimation of the extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b), it decouples the detection of non-stationary patterns from the fitting of the extreme value distribution. As a result, the steps of the analysis are simplified and intermediate diagnostics are possible. In particular, the transformation can be carried out by means of simple statistical techniques such as low-pass filters based on the running mean and the standard deviation, and the fitting procedure is a stationary one with a few degrees of freedom and is easy to implement and control. An open-source MATLAB toolbox has been developed to cover this methodology, which is available at
Audience Academic
Author Besio, Giovanni
Mentaschi, Lorenzo
Vousdoukas, Michalis
Sartini, Ludovica
Feyen, Luc
Voukouvalas, Evangelos
Alfieri, Lorenzo
Author_xml – sequence: 1
  givenname: Lorenzo
  orcidid: 0000-0002-2967-9593
  surname: Mentaschi
  fullname: Mentaschi, Lorenzo
– sequence: 2
  givenname: Michalis
  orcidid: 0000-0003-2655-6181
  surname: Vousdoukas
  fullname: Vousdoukas, Michalis
– sequence: 3
  givenname: Evangelos
  surname: Voukouvalas
  fullname: Voukouvalas, Evangelos
– sequence: 4
  givenname: Ludovica
  surname: Sartini
  fullname: Sartini, Ludovica
– sequence: 5
  givenname: Luc
  surname: Feyen
  fullname: Feyen, Luc
– sequence: 6
  givenname: Giovanni
  orcidid: 0000-0002-0522-9635
  surname: Besio
  fullname: Besio, Giovanni
– sequence: 7
  givenname: Lorenzo
  orcidid: 0000-0002-3616-386X
  surname: Alfieri
  fullname: Alfieri, Lorenzo
BackLink https://hal.science/hal-04201751$$DView record in HAL
BookMark eNp9Uk1r3DAUNCWFJml_QG-GnnJwom97e1tC2ywsFNr0LGT5ydZiW1vJG7L_vs91aLOlBB0kPWaGGWkusrMxjJBl7ym5lnQlbjpIqWCk4JKVuFP1KjunipRFueLV2bPzm-wipR0hrKoUO8_SfQf5FM2YXIgDNEWazOTDaOIxN_t9DMZ2H3OTtzBC9DY3Y5MnP-x77zw0-QBTF5rQh_aYo0COrp4rwOMUYYD8wfQHQK7pj8mnt9lrZ_oE7572y-zH50_3t3fF9uuXze16W1gp5FTQxlHOLHd4q6WrGausQt98BcY5UTNbyUY6XmISvBnJMSR1oiHCqrqW_DLbLLpNMDu9j35ATzoYr38PQmy1iZO3PWhQjpVSURQEUYNYWV4qwXhdK7CWKNS6WrQ6059I3a23ep4Rga9eSvpAEfthweLz_TxAmvQuHCKGT5oJKrikhK9eQtGKqjkpVX9RrUGbfnQBP8sOPlm9FggoS1bNSa__g8LVwOAtNsV5nJ8Qrk4IiJnws1pzSElvvn87xdIFa2NIKYL7k58SPZdPz-XTjOi5fHouH3LKfzjWL7VAY75_gfkLV7PfQQ
CitedBy_id crossref_primary_10_3390_w15132455
crossref_primary_10_1016_j_rsma_2024_103612
crossref_primary_10_1016_j_envint_2019_105367
crossref_primary_10_1002_ieam_4620
crossref_primary_10_5194_nhess_18_2127_2018
crossref_primary_10_3390_cli8020022
crossref_primary_10_1038_s41558_022_01540_0
crossref_primary_10_5194_nhess_23_3585_2023
crossref_primary_10_1002_2016GL072488
crossref_primary_10_1016_j_wace_2022_100438
crossref_primary_10_1029_2020EF001882
crossref_primary_10_1016_j_coastaleng_2025_104725
crossref_primary_10_1016_j_oceaneng_2024_116705
crossref_primary_10_1016_j_coastaleng_2021_103896
crossref_primary_10_5194_sp_4_osr8_6_2024
crossref_primary_10_1007_s11069_018_3499_1
crossref_primary_10_5194_os_19_1123_2023
crossref_primary_10_1038_s41558_021_01044_3
crossref_primary_10_1016_j_ocemod_2022_101980
crossref_primary_10_3389_fmars_2022_802022
crossref_primary_10_1049_iet_rpg_2018_5023
crossref_primary_10_1038_s41598_020_59431_3
crossref_primary_10_3389_fmars_2024_1494127
crossref_primary_10_1007_s40899_024_01176_2
crossref_primary_10_1016_j_oceaneng_2021_108946
crossref_primary_10_1016_j_ejrh_2025_102296
crossref_primary_10_3390_jmse13010136
crossref_primary_10_5194_nhess_22_3663_2022
crossref_primary_10_1016_j_gloenvcha_2022_102559
crossref_primary_10_5194_nhess_21_2705_2021
crossref_primary_10_1007_s40996_022_00940_8
crossref_primary_10_1016_j_ymssp_2023_110132
crossref_primary_10_1016_j_energy_2023_129081
crossref_primary_10_1016_j_apor_2024_104006
crossref_primary_10_1038_s41598_023_28945_x
crossref_primary_10_1029_2022JC019012
crossref_primary_10_1016_j_wace_2023_100575
crossref_primary_10_5194_nhess_24_4031_2024
crossref_primary_10_3389_fmars_2023_1130769
crossref_primary_10_1016_j_oceaneng_2018_09_017
crossref_primary_10_1016_j_advwatres_2019_06_007
crossref_primary_10_1016_j_jweia_2022_105161
crossref_primary_10_1016_j_oceaneng_2022_110820
crossref_primary_10_1016_j_csda_2024_108025
crossref_primary_10_3390_jmse8121015
crossref_primary_10_5194_nhess_24_1951_2024
crossref_primary_10_3389_fmars_2020_00263
crossref_primary_10_3390_w12092405
crossref_primary_10_1016_j_ejrh_2023_101463
crossref_primary_10_3389_fmars_2022_1005514
crossref_primary_10_5194_hess_28_3983_2024
crossref_primary_10_1016_j_oceaneng_2025_120672
crossref_primary_10_1016_j_awe_2024_100026
crossref_primary_10_1016_j_scitotenv_2022_158341
crossref_primary_10_1016_j_oceaneng_2024_118731
crossref_primary_10_1016_j_probengmech_2023_103506
crossref_primary_10_1088_1748_9326_aab827
crossref_primary_10_1016_j_probengmech_2023_103549
crossref_primary_10_1111_jfr3_12459
Cites_doi 10.5194/hess-19-2247-2015
10.1002/2014JC010093
10.1029/2005JC003344
10.1038/ngeo2539
10.1029/2009PA001809
10.1214/aos/1018031215
10.1007/978-1-4471-3675-0
10.1002/qj.828
10.1016/j.coastaleng.2008.07.004
10.1016/j.coastaleng.2009.12.005
10.1007/s10584-014-1254-5
10.1007/BF01915190
10.1029/2011GL047302
10.1016/j.ocemod.2009.10.010
10.1093/icesjms/fsp095
10.1007/BF02273522
10.1038/nclimate2124
10.1111/j.1753-318X.2009.01054.x
10.1007/BF00532484
10.5194/nhess-14-2053-2014
10.1007/s10584-011-0148-z
10.1038/nclimate2551
10.1002/2015JC011061
10.1007/s00382-016-3019-5
10.1111/j.2517-6161.1990.tb01796.x
10.1016/j.ocemod.2015.04.003
10.1007/s00382-015-2486-4
10.5194/hess-18-85-2014
10.2307/2265831
10.1007/978-1-4612-1694-0_15
10.1016/j.ijforecast.2003.09.005
10.1002/2014JD022098
10.5194/nhess-2016-124
10.1175/2010BAMS2955.1
10.1175/JCLI-D-11-00560.1
10.1038/nclimate1911
10.1007/s40641-015-0011-9
ContentType Journal Article
Copyright COPYRIGHT 2016 Copernicus GmbH
Copyright Copernicus GmbH 2016
2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: COPYRIGHT 2016 Copernicus GmbH
– notice: Copyright Copernicus GmbH 2016
– notice: 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
ISR
7QH
7TG
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
1XC
DOA
DOI 10.5194/hess-20-3527-2016
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database (Proquest)
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Hyper Article en Ligne (HAL)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1607-7938
EndPage 3547
ExternalDocumentID oai_doaj_org_article_e6f275615d5e4be49c376423bb6ecc06
oai_HAL_hal_04201751v1
4170554911
A481677285
10_5194_hess_20_3527_2016
GroupedDBID 29I
2WC
5GY
5VS
7XC
8CJ
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABJCF
ABUWG
ACGFO
ACIWK
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1J
D1K
E3Z
EBS
ECGQY
EDH
EJD
GROUPED_DOAJ
GX1
H13
HCIFZ
IAO
IEA
IEP
IGS
IPNFZ
ISR
ITC
K6-
KQ8
L6V
L8X
LK5
M7R
M7S
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
~KM
BBORY
PMFND
7QH
7TG
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H96
KL.
KR7
L.G
PKEHL
PQEST
PQGLB
PQUKI
PRINS
1XC
C1A
PUEGO
ID FETCH-LOGICAL-c545t-1df132c3f545b5fb228c602839eaff4b2c85d5f378864b2a531601f4d04c6bb53
IEDL.DBID 8FG
ISSN 1607-7938
1027-5606
IngestDate Wed Aug 27 01:13:21 EDT 2025
Fri May 09 12:23:05 EDT 2025
Fri Jul 25 18:53:01 EDT 2025
Fri Jul 25 10:12:34 EDT 2025
Tue Jun 17 21:45:53 EDT 2025
Tue Jun 10 20:16:04 EDT 2025
Fri Jun 27 03:41:26 EDT 2025
Tue Jul 01 02:45:39 EDT 2025
Thu Apr 24 23:08:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/3.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-1df132c3f545b5fb228c602839eaff4b2c85d5f378864b2a531601f4d04c6bb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0522-9635
0000-0002-2967-9593
0000-0003-2655-6181
0000-0002-3616-386X
OpenAccessLink https://www.proquest.com/docview/1816602816?pq-origsite=%requestingapplication%
PQID 1816602816
PQPubID 105724
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_e6f275615d5e4be49c376423bb6ecc06
hal_primary_oai_HAL_hal_04201751v1
proquest_journals_2414351039
proquest_journals_1816602816
gale_infotracmisc_A481677285
gale_infotracacademiconefile_A481677285
gale_incontextgauss_ISR_A481677285
crossref_primary_10_5194_hess_20_3527_2016
crossref_citationtrail_10_5194_hess_20_3527_2016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-05
PublicationDateYYYYMMDD 2016-09-05
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-05
  day: 05
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Hydrology and earth system sciences
PublicationYear 2016
Publisher Copernicus GmbH
European Geosciences Union
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: European Geosciences Union
– name: Copernicus Publications
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref2
  doi: 10.5194/hess-19-2247-2015
– ident: ref40
  doi: 10.1002/2014JC010093
– ident: ref28
  doi: 10.1029/2005JC003344
– ident: ref4
  doi: 10.1038/ngeo2539
– ident: ref6
  doi: 10.1029/2009PA001809
– ident: ref14
  doi: 10.1214/aos/1018031215
– ident: ref9
  doi: 10.1007/978-1-4471-3675-0
– ident: ref11
  doi: 10.1002/qj.828
– ident: ref29
  doi: 10.1016/j.coastaleng.2008.07.004
– ident: ref5
– ident: ref36
  doi: 10.1016/j.coastaleng.2009.12.005
– ident: ref8
  doi: 10.1007/s10584-014-1254-5
– ident: ref20
– ident: ref24
  doi: 10.1007/BF01915190
– ident: ref25
  doi: 10.1029/2011GL047302
– ident: ref12
  doi: 10.1016/j.ocemod.2009.10.010
– ident: ref30
  doi: 10.1093/icesjms/fsp095
– ident: ref7
  doi: 10.1007/BF02273522
– ident: ref41
– ident: ref26
  doi: 10.1038/nclimate2124
– ident: ref33
  doi: 10.1111/j.1753-318X.2009.01054.x
– ident: ref27
  doi: 10.1007/BF00532484
– ident: ref19
– ident: ref32
– ident: ref17
– ident: ref21
  doi: 10.5194/nhess-14-2053-2014
– ident: ref42
  doi: 10.1007/s10584-011-0148-z
– ident: ref23
  doi: 10.1038/nclimate2551
– ident: ref39
  doi: 10.1002/2015JC011061
– ident: ref38
– ident: ref43
  doi: 10.1007/s00382-016-3019-5
– ident: ref10
  doi: 10.1111/j.2517-6161.1990.tb01796.x
– ident: ref31
  doi: 10.1016/j.ocemod.2015.04.003
– ident: ref34
  doi: 10.1007/s00382-015-2486-4
– ident: ref15
  doi: 10.5194/hess-18-85-2014
– ident: ref45
  doi: 10.2307/2265831
– ident: ref1
  doi: 10.1007/978-1-4612-1694-0_15
– ident: ref16
  doi: 10.1016/j.ijforecast.2003.09.005
– ident: ref37
  doi: 10.1002/2014JD022098
– ident: ref44
  doi: 10.5194/nhess-2016-124
– ident: ref3
  doi: 10.1175/2010BAMS2955.1
– ident: ref13
  doi: 10.1175/JCLI-D-11-00560.1
– ident: ref22
  doi: 10.1038/nclimate1911
– ident: ref18
– ident: ref35
  doi: 10.1007/s40641-015-0011-9
SSID ssj0028862
Score 2.4143107
Snippet Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject...
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3527
SubjectTerms Analysis
Climate change
Confidence intervals
Detection
Distribution
Extreme value distribution
Extreme value theory
Extreme values
Filters
Genetic transformation
Low pass filters
Methodology
Methods
Normal distribution
River discharge
River flow
Rivers
Sciences of the Universe
Seasonal variability
Seasonal variation
Seasonal variations
Significant wave height
Significant waves
Source code
Statistical analysis
Statistical methods
Theory
Time series
Trends
Value analysis
Water discharge
Water levels
Wave height
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA-6F71I_cKtVcIiFITQndkkO-ttWyyraA9qobeQZJJuoUxlPwr97_29SWbpiOjF40zeJDPvJe9jXvJ7jL2LMvgShlUoWEchZ8FCD_ognKQiC87p2ZQOOH8904tz-flCXdwr9UV7whI8cGLcUdCREMoLVasgXZAzjyUBHwDdYPQEtg2b1wVTOdSqKp3ynOVUwKbrlM-EtyKPltAggo4NK7TB_OmeRWqB-3fq-eGSdkf-pqRby3O6x55kl5HP06s-ZQ9C84w9ytXLl3fP2Rqy5pvOAw21WKf8ul3d8Q4z_AO3_JIgpq88t03N11e0lTzCAeWpiHT7e52jA97cNPd7gPamf4icYMEDnk0gJi_Y-enHHycLkYspCA8naSOKOiLw9JOIK6eiK8vKa3IuIJ4YpSt9BRZHgpfXuLJYm4jVoqzH0mvn1OQlG2D88IrxybR0rq4i1aKSRXRVmPmpnVgv2zxiGLJxx1DjM9I4Fby4Nog4SAaGZGDKsSEZGJLBkL3fPfIzwWz8jfiYpLQjJITs9gbmjcnzxvxr3gzZiGRsCAOjoU02l3aLcT59_2bmsio0oo5KDdlhJoo3-AJv85kF8IFgs3qUBz1KLFLfax5hKvXeeDH_YugetCa0oipuC_TRzTSTNcnaFJTYhZzos__QDAcMDi_l8_f_B1des8fE4XYTnTpgg81qG97A69q4t-0C-wVlnSdv
  priority: 102
  providerName: Directory of Open Access Journals
Title The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis
URI https://www.proquest.com/docview/1816602816
https://www.proquest.com/docview/2414351039
https://hal.science/hal-04201751
https://doaj.org/article/e6f275615d5e4be49c376423bb6ecc06
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELbY9gAvaOOHKIzKmpCQkKw1iZ2me0HdtFIQm2AwsTcrdux20pSOpkPaf893idMtCO2pSuw4je_83dlnf8fYOy-djWFYhYJ1FHLkcuCgdcJISrJgTDoa0gHnk9N0ei6_XKiLsOBWhW2VLSbWQF0sLK2R70cU4IIxjNKP178FZY2i6GpIobHBtiJYGtLwbPJpPeHKsrSJdsZDAcueNlFN-Cxyfw4cEXR4WKEMRjDt2KWavn8N0htz2iP5D1TX9meyzZ4Gx5GPG0nvsEeufMYehxzm89vnrILE-ar1Q10hqibKni9vecscfsBzPiOi6UvL87Lg1SVtKPdwQ3mTSrpeZOdogJeL8n4LwHBaSeREDu7wbENl8oKdT45_Hk1FSKkgLFyllYgKj-mnTTyujPImjjNLvZpASN5LE9tMFcoTyXyKqxwjFDM2L4uBtKkxKnnJNvF-94rxZBgbU2SeMlLJyJvMjewwT3Ir62ii67FB26HaBr5xSntxpTHvIBlokoGOB5pkoEkGPfZh_ch1Q7bxUOVDktK6IvFk1zcWy5kOw0671BO_fYSPctI4ObIAVHiQUELo7gCN7JGMNTFhlLTVZpbf4D2ff5zpsYSuYe6RqR57Hyr5Bb7A5uHkAvqByLM6NXc7NTFUbad4D6rU-cfT8VdN94CdwEYV_YnQRqtpOuBJpe-0_7_FcMPg9lJU__XDT79hT6jv6k1yapdtrpY37i28qpXp10Onz7YOj0-_ndHv5OT7r369RvEXDyki8g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1db9MwFLVG9zBe-EYUBlgTCAkpW5M6aYrEQwdULWsnAZvYm4kdu502pahNQeWv8Ff4cZybOIVMaG-TeEz8kdi5vufe-Ppcxp5ZYXQAYPVCoKMnuiaBHtTGU4KSLCgVdTt0wHl8GA2OxfuT8GSD_azOwlBYZaUTC0WdzjT9I9_zaYMLYOhHLoLywKy-wz9bvB6-xcd8HgT9d0dvBp5LIeBpmAa556cW7pZuW1yp0KogiDX10sZLWStUoOMwDS2Rqke4SiCR8FCsSFtCR0pRSgjo982YcLjBNvf74w-f1_4c2pSbqUHHg-EQlZumMInE3hRqyqOzySHKgLFRDfaK7ABrDLg2pRDMC0hQwFv_JvtVTUwZ1XK2u8zVrv5xgTPyP525W-yGM6t5r1wHt9mGye6wLZfhfbq6yxZYDzyvrHSTeosyBiGZr3jFq_6KJ3xCNNynmidZyhenFG5vYaTzMtF2sQXB0QHPZtnfPQDh6D8rJ-p0g7Yl0cs9dnwlY77PGni-ecB4uxMolcaW8nUJ36rYdHUnaSdaFHutpslalTxI7djYKSnIuYRXRiIkSYRk0JIkQpJEqMlerpt8LalILqu8T0K2rkgs4sWN2XwinVKSJrLE_u9jUEYoI7oacAP7GksUK7uFTnZIRCXxhGQUiDRJlnjO8NNH2ROQJ3hmcdhkL1wlO8MIdOLOdWAeiFqsVnO7VhOKTNeKd7ASam886I0k3QOyADlC_5uPPiohl07bLuQfCf9nMYxUOAUU8_Dw8tZP2dbgaDySo-HhwSN2neaxCCcMt1kjny_NY9ifuXri9ABnX656Af0G7O-P9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFB5qBe2LeMXUqkNRBGHIXmYvKYhEa0xsLaIW-jbuzM4kBdnUbFrJX_PX-Z29RFekb33cndvunPucM-cw9sxJawIIVhFBOgo5sBn4oLFCSyqyoHU8SOiC88ejeHwsP5xEJxvsV3sXhsIqW55YMep8buiMvO-TgwvC0I_7rgmL-LQ_en32Q1AFKfK0tuU0ahQ5sKufMN_KV5N9wPp5EIzefX07Fk2FAWGgOSyFnztYYyZ0eNKR00GQGlokxDc7J3Vg0iiPHOVcj_GUAWFhwDiZe9LEWlPFCLD_60mYelQ9IR29Xxt7GFF7WoNEQKuIa48q9CXZn4GHCbq4HKENAjjuyMSqdMBaQFybUXzmP2Kikn2j2-xWo7TyYY1ld9iGLe6ym0399NnqHiuBbXzZ6sA2F2Xt4c8WK95mLd_jGZ9SkutTw7Mi5-UpBbM7qMC8LmNdHfBzTMCLefH3DAACnWJySkxuMbZOo3KfHV_JZj9gm1jfPmQ8TAKt89RRNSzpO53agUmyMDOy8mTaHvPaDVWmyXVOJTe-K9g8BANFMFCBpwgGimDQYy_XQ87qRB-XdX5DUFp3pBzd1Yv5Yqoaklc2dpRb38dPWamtHBgwc2ivIADQjYdJdgnGirJwFITP0-wc60y-fFZDCTyH3ZNGPfai6eTm-AOTNbcmsA-UuKvTc6fTE2zCdJp3gUqdLx4PDxW9A98GX478Cx9ztJimGl5Wqj-U999mqIBQuSmiYPvy0U_ZDVCsOpwcHTxiW7SNVaxetMM2l4tz-xjK3VI_qaiIs29XTba_AcFCXyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+transformed-stationary+approach%3A+a+generic+and+simplified+methodology+for+non-stationary+extreme+value+analysis&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Mentaschi%2C+Lorenzo&rft.au=Vousdoukas%2C+Michalis&rft.au=Voukouvalas%2C+Evangelos&rft.au=Sartini%2C+Ludovica&rft.date=2016-09-05&rft.pub=European+Geosciences+Union&rft.issn=1027-5606&rft.eissn=1607-7938&rft.volume=20&rft.issue=8&rft.spage=3527&rft.epage=3547&rft_id=info:doi/10.5194%2Fhess-20-3527-2016&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04201751v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon