The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis
Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationar...
Saved in:
Published in | Hydrology and earth system sciences Vol. 20; no. 9; pp. 3527 - 3547 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
05.09.2016
European Geosciences Union Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 1607-7938 1027-5606 1607-7938 |
DOI | 10.5194/hess-20-3527-2016 |
Cover
Loading…
Abstract | Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationarity is violated and alternative methods to conventional stationary extreme value analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, in this study we introduce the transformed-stationary (TS) methodology for non-stationary EVA. This approach consists of (i) transforming a non-stationary time series into a stationary one, to which the stationary EVA theory can be applied, and (ii) reverse transforming the result into a non-stationary extreme value distribution. As a transformation, we propose and discuss a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary generalized extreme value (GEV) and generalized Pareto distribution (GPD) models with a constant shape parameter. A validation of the methodology is carried out on time series of significant wave height, residual water level, and river discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For example, in contrast to (a), the proposed technique uses the whole time horizon of the series for the estimation of the extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b), it decouples the detection of non-stationary patterns from the fitting of the extreme value distribution. As a result, the steps of the analysis are simplified and intermediate diagnostics are possible. In particular, the transformation can be carried out by means of simple statistical techniques such as low-pass filters based on the running mean and the standard deviation, and the fitting procedure is a stationary one with a few degrees of freedom and is easy to implement and control. An open-source MATLAB toolbox has been developed to cover this methodology, which is available at https://github.com/menta78/tsEva/ (Mentaschi et al., 2016). |
---|---|
AbstractList | Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationarity is violated and alternative methods to conventional stationary extreme value analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, in this study we introduce the transformed-stationary (TS) methodology for non-stationary EVA. This approach consists of (i) transforming a non-stationary time series into a stationary one, to which the stationary EVA theory can be applied, and (ii) reverse transforming the result into a non-stationary extreme value distribution. As a transformation, we propose and discuss a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary generalized extreme value (GEV) and generalized Pareto distribution (GPD) models with a constant shape parameter. A validation of the methodology is carried out on time series of significant wave height, residual water level, and river discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For example, in contrast to (a), the proposed technique uses the whole time horizon of the series for the estimation of the extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b), it decouples the detection of non-stationary patterns from the fitting of the extreme value distribution. As a result, the steps of the analysis are simplified and intermediate diagnostics are possible. In particular, the transformation can be carried out by means of simple statistical techniques such as low-pass filters based on the running mean and the standard deviation, and the fitting procedure is a stationary one with a few degrees of freedom and is easy to implement and control. An open-source MATLAB toolbox has been developed to cover this methodology, which is available at https://github.com/menta78/tsEva/ (Mentaschi et al., 2016). Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationarity is violated and alternative methods to conventional stationary extreme value analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, in this study we introduce the transformed-stationary (TS) methodology for non-stationary EVA. This approach consists of (i) transforming a non-stationary time series into a stationary one, to which the stationary EVA theory can be applied, and (ii) reverse transforming the result into a non-stationary extreme value distribution. As a transformation, we propose and discuss a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary generalized extreme value (GEV) and generalized Pareto distribution (GPD) models with a constant shape parameter. A validation of the methodology is carried out on time series of significant wave height, residual water level, and river discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For example, in contrast to (a), the proposed technique uses the whole time horizon of the series for the estimation of the extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b), it decouples the detection of non-stationary patterns from the fitting of the extreme value distribution. As a result, the steps of the analysis are simplified and intermediate diagnostics are possible. In particular, the transformation can be carried out by means of simple statistical techniques such as low-pass filters based on the running mean and the standard deviation, and the fitting procedure is a stationary one with a few degrees of freedom and is easy to implement and control. An open-source MATLAB toolbox has been developed to cover this methodology, which is available at https://github.com/menta78/tsEva/ (Mentaschi et al., 2016). Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationarity is violated and alternative methods to conventional stationary extreme value analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, in this study we introduce the transformed-stationary (TS) methodology for non-stationary EVA. This approach consists of (i) transforming a non-stationary time series into a stationary one, to which the stationary EVA theory can be applied, and (ii) reverse transforming the result into a non-stationary extreme value distribution. As a transformation, we propose and discuss a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary generalized extreme value (GEV) and generalized Pareto distribution (GPD) models with a constant shape parameter. A validation of the methodology is carried out on time series of significant wave height, residual water level, and river discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For example, in contrast to (a), the proposed technique uses the whole time horizon of the series for the estimation of the extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b), it decouples the detection of non-stationary patterns from the fitting of the extreme value distribution. As a result, the steps of the analysis are simplified and intermediate diagnostics are possible. In particular, the transformation can be carried out by means of simple statistical techniques such as low-pass filters based on the running mean and the standard deviation, and the fitting procedure is a stationary one with a few degrees of freedom and is easy to implement and control. An open-source MAT-LAB toolbox has been developed to cover this methodology, which is available at https://github.com/menta78/tsEva/(Mentaschi et al., 2016). Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationarity is violated and alternative methods to conventional stationary extreme value analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, in this study we introduce the transformed-stationary (TS) methodology for non-stationary EVA. This approach consists of (i) transforming a non-stationary time series into a stationary one, to which the stationary EVA theory can be applied, and (ii) reverse transforming the result into a non-stationary extreme value distribution. As a transformation, we propose and discuss a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary generalized extreme value (GEV) and generalized Pareto distribution (GPD) models with a constant shape parameter. A validation of the methodology is carried out on time series of significant wave height, residual water level, and river discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For example, in contrast to (a), the proposed technique uses the whole time horizon of the series for the estimation of the extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b), it decouples the detection of non-stationary patterns from the fitting of the extreme value distribution. As a result, the steps of the analysis are simplified and intermediate diagnostics are possible. In particular, the transformation can be carried out by means of simple statistical techniques such as low-pass filters based on the running mean and the standard deviation, and the fitting procedure is a stationary one with a few degrees of freedom and is easy to implement and control. An open-source MATLAB toolbox has been developed to cover this methodology, which is available at |
Audience | Academic |
Author | Besio, Giovanni Mentaschi, Lorenzo Vousdoukas, Michalis Sartini, Ludovica Feyen, Luc Voukouvalas, Evangelos Alfieri, Lorenzo |
Author_xml | – sequence: 1 givenname: Lorenzo orcidid: 0000-0002-2967-9593 surname: Mentaschi fullname: Mentaschi, Lorenzo – sequence: 2 givenname: Michalis orcidid: 0000-0003-2655-6181 surname: Vousdoukas fullname: Vousdoukas, Michalis – sequence: 3 givenname: Evangelos surname: Voukouvalas fullname: Voukouvalas, Evangelos – sequence: 4 givenname: Ludovica surname: Sartini fullname: Sartini, Ludovica – sequence: 5 givenname: Luc surname: Feyen fullname: Feyen, Luc – sequence: 6 givenname: Giovanni orcidid: 0000-0002-0522-9635 surname: Besio fullname: Besio, Giovanni – sequence: 7 givenname: Lorenzo orcidid: 0000-0002-3616-386X surname: Alfieri fullname: Alfieri, Lorenzo |
BackLink | https://hal.science/hal-04201751$$DView record in HAL |
BookMark | eNp9Uk1r3DAUNCWFJml_QG-GnnJwom97e1tC2ywsFNr0LGT5ydZiW1vJG7L_vs91aLOlBB0kPWaGGWkusrMxjJBl7ym5lnQlbjpIqWCk4JKVuFP1KjunipRFueLV2bPzm-wipR0hrKoUO8_SfQf5FM2YXIgDNEWazOTDaOIxN_t9DMZ2H3OTtzBC9DY3Y5MnP-x77zw0-QBTF5rQh_aYo0COrp4rwOMUYYD8wfQHQK7pj8mnt9lrZ_oE7572y-zH50_3t3fF9uuXze16W1gp5FTQxlHOLHd4q6WrGausQt98BcY5UTNbyUY6XmISvBnJMSR1oiHCqrqW_DLbLLpNMDu9j35ATzoYr38PQmy1iZO3PWhQjpVSURQEUYNYWV4qwXhdK7CWKNS6WrQ6059I3a23ep4Rga9eSvpAEfthweLz_TxAmvQuHCKGT5oJKrikhK9eQtGKqjkpVX9RrUGbfnQBP8sOPlm9FggoS1bNSa__g8LVwOAtNsV5nJ8Qrk4IiJnws1pzSElvvn87xdIFa2NIKYL7k58SPZdPz-XTjOi5fHouH3LKfzjWL7VAY75_gfkLV7PfQQ |
CitedBy_id | crossref_primary_10_3390_w15132455 crossref_primary_10_1016_j_rsma_2024_103612 crossref_primary_10_1016_j_envint_2019_105367 crossref_primary_10_1002_ieam_4620 crossref_primary_10_5194_nhess_18_2127_2018 crossref_primary_10_3390_cli8020022 crossref_primary_10_1038_s41558_022_01540_0 crossref_primary_10_5194_nhess_23_3585_2023 crossref_primary_10_1002_2016GL072488 crossref_primary_10_1016_j_wace_2022_100438 crossref_primary_10_1029_2020EF001882 crossref_primary_10_1016_j_coastaleng_2025_104725 crossref_primary_10_1016_j_oceaneng_2024_116705 crossref_primary_10_1016_j_coastaleng_2021_103896 crossref_primary_10_5194_sp_4_osr8_6_2024 crossref_primary_10_1007_s11069_018_3499_1 crossref_primary_10_5194_os_19_1123_2023 crossref_primary_10_1038_s41558_021_01044_3 crossref_primary_10_1016_j_ocemod_2022_101980 crossref_primary_10_3389_fmars_2022_802022 crossref_primary_10_1049_iet_rpg_2018_5023 crossref_primary_10_1038_s41598_020_59431_3 crossref_primary_10_3389_fmars_2024_1494127 crossref_primary_10_1007_s40899_024_01176_2 crossref_primary_10_1016_j_oceaneng_2021_108946 crossref_primary_10_1016_j_ejrh_2025_102296 crossref_primary_10_3390_jmse13010136 crossref_primary_10_5194_nhess_22_3663_2022 crossref_primary_10_1016_j_gloenvcha_2022_102559 crossref_primary_10_5194_nhess_21_2705_2021 crossref_primary_10_1007_s40996_022_00940_8 crossref_primary_10_1016_j_ymssp_2023_110132 crossref_primary_10_1016_j_energy_2023_129081 crossref_primary_10_1016_j_apor_2024_104006 crossref_primary_10_1038_s41598_023_28945_x crossref_primary_10_1029_2022JC019012 crossref_primary_10_1016_j_wace_2023_100575 crossref_primary_10_5194_nhess_24_4031_2024 crossref_primary_10_3389_fmars_2023_1130769 crossref_primary_10_1016_j_oceaneng_2018_09_017 crossref_primary_10_1016_j_advwatres_2019_06_007 crossref_primary_10_1016_j_jweia_2022_105161 crossref_primary_10_1016_j_oceaneng_2022_110820 crossref_primary_10_1016_j_csda_2024_108025 crossref_primary_10_3390_jmse8121015 crossref_primary_10_5194_nhess_24_1951_2024 crossref_primary_10_3389_fmars_2020_00263 crossref_primary_10_3390_w12092405 crossref_primary_10_1016_j_ejrh_2023_101463 crossref_primary_10_3389_fmars_2022_1005514 crossref_primary_10_5194_hess_28_3983_2024 crossref_primary_10_1016_j_oceaneng_2025_120672 crossref_primary_10_1016_j_awe_2024_100026 crossref_primary_10_1016_j_scitotenv_2022_158341 crossref_primary_10_1016_j_oceaneng_2024_118731 crossref_primary_10_1016_j_probengmech_2023_103506 crossref_primary_10_1088_1748_9326_aab827 crossref_primary_10_1016_j_probengmech_2023_103549 crossref_primary_10_1111_jfr3_12459 |
Cites_doi | 10.5194/hess-19-2247-2015 10.1002/2014JC010093 10.1029/2005JC003344 10.1038/ngeo2539 10.1029/2009PA001809 10.1214/aos/1018031215 10.1007/978-1-4471-3675-0 10.1002/qj.828 10.1016/j.coastaleng.2008.07.004 10.1016/j.coastaleng.2009.12.005 10.1007/s10584-014-1254-5 10.1007/BF01915190 10.1029/2011GL047302 10.1016/j.ocemod.2009.10.010 10.1093/icesjms/fsp095 10.1007/BF02273522 10.1038/nclimate2124 10.1111/j.1753-318X.2009.01054.x 10.1007/BF00532484 10.5194/nhess-14-2053-2014 10.1007/s10584-011-0148-z 10.1038/nclimate2551 10.1002/2015JC011061 10.1007/s00382-016-3019-5 10.1111/j.2517-6161.1990.tb01796.x 10.1016/j.ocemod.2015.04.003 10.1007/s00382-015-2486-4 10.5194/hess-18-85-2014 10.2307/2265831 10.1007/978-1-4612-1694-0_15 10.1016/j.ijforecast.2003.09.005 10.1002/2014JD022098 10.5194/nhess-2016-124 10.1175/2010BAMS2955.1 10.1175/JCLI-D-11-00560.1 10.1038/nclimate1911 10.1007/s40641-015-0011-9 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2016 Copernicus GmbH Copyright Copernicus GmbH 2016 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: COPYRIGHT 2016 Copernicus GmbH – notice: Copyright Copernicus GmbH 2016 – notice: 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION ISR 7QH 7TG 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY 1XC DOA |
DOI | 10.5194/hess-20-3527-2016 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science & Pollution Managment ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database (Proquest) Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Hyper Article en Ligne (HAL) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1607-7938 |
EndPage | 3547 |
ExternalDocumentID | oai_doaj_org_article_e6f275615d5e4be49c376423bb6ecc06 oai_HAL_hal_04201751v1 4170554911 A481677285 10_5194_hess_20_3527_2016 |
GroupedDBID | 29I 2WC 5GY 5VS 7XC 8CJ 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ACGFO ACIWK ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1J D1K E3Z EBS ECGQY EDH EJD GROUPED_DOAJ GX1 H13 HCIFZ IAO IEA IEP IGS IPNFZ ISR ITC K6- KQ8 L6V L8X LK5 M7R M7S OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS PYCSY Q2X RIG RKB RNS TR2 XSB ~02 ~KM BBORY PMFND 7QH 7TG 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H96 KL. KR7 L.G PKEHL PQEST PQGLB PQUKI PRINS 1XC C1A PUEGO |
ID | FETCH-LOGICAL-c545t-1df132c3f545b5fb228c602839eaff4b2c85d5f378864b2a531601f4d04c6bb53 |
IEDL.DBID | 8FG |
ISSN | 1607-7938 1027-5606 |
IngestDate | Wed Aug 27 01:13:21 EDT 2025 Fri May 09 12:23:05 EDT 2025 Fri Jul 25 18:53:01 EDT 2025 Fri Jul 25 10:12:34 EDT 2025 Tue Jun 17 21:45:53 EDT 2025 Tue Jun 10 20:16:04 EDT 2025 Fri Jun 27 03:41:26 EDT 2025 Tue Jul 01 02:45:39 EDT 2025 Thu Apr 24 23:08:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/3.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c545t-1df132c3f545b5fb228c602839eaff4b2c85d5f378864b2a531601f4d04c6bb53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0522-9635 0000-0002-2967-9593 0000-0003-2655-6181 0000-0002-3616-386X |
OpenAccessLink | https://www.proquest.com/docview/1816602816?pq-origsite=%requestingapplication% |
PQID | 1816602816 |
PQPubID | 105724 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e6f275615d5e4be49c376423bb6ecc06 hal_primary_oai_HAL_hal_04201751v1 proquest_journals_2414351039 proquest_journals_1816602816 gale_infotracmisc_A481677285 gale_infotracacademiconefile_A481677285 gale_incontextgauss_ISR_A481677285 crossref_primary_10_5194_hess_20_3527_2016 crossref_citationtrail_10_5194_hess_20_3527_2016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-05 |
PublicationDateYYYYMMDD | 2016-09-05 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Hydrology and earth system sciences |
PublicationYear | 2016 |
Publisher | Copernicus GmbH European Geosciences Union Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: European Geosciences Union – name: Copernicus Publications |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref2 doi: 10.5194/hess-19-2247-2015 – ident: ref40 doi: 10.1002/2014JC010093 – ident: ref28 doi: 10.1029/2005JC003344 – ident: ref4 doi: 10.1038/ngeo2539 – ident: ref6 doi: 10.1029/2009PA001809 – ident: ref14 doi: 10.1214/aos/1018031215 – ident: ref9 doi: 10.1007/978-1-4471-3675-0 – ident: ref11 doi: 10.1002/qj.828 – ident: ref29 doi: 10.1016/j.coastaleng.2008.07.004 – ident: ref5 – ident: ref36 doi: 10.1016/j.coastaleng.2009.12.005 – ident: ref8 doi: 10.1007/s10584-014-1254-5 – ident: ref20 – ident: ref24 doi: 10.1007/BF01915190 – ident: ref25 doi: 10.1029/2011GL047302 – ident: ref12 doi: 10.1016/j.ocemod.2009.10.010 – ident: ref30 doi: 10.1093/icesjms/fsp095 – ident: ref7 doi: 10.1007/BF02273522 – ident: ref41 – ident: ref26 doi: 10.1038/nclimate2124 – ident: ref33 doi: 10.1111/j.1753-318X.2009.01054.x – ident: ref27 doi: 10.1007/BF00532484 – ident: ref19 – ident: ref32 – ident: ref17 – ident: ref21 doi: 10.5194/nhess-14-2053-2014 – ident: ref42 doi: 10.1007/s10584-011-0148-z – ident: ref23 doi: 10.1038/nclimate2551 – ident: ref39 doi: 10.1002/2015JC011061 – ident: ref38 – ident: ref43 doi: 10.1007/s00382-016-3019-5 – ident: ref10 doi: 10.1111/j.2517-6161.1990.tb01796.x – ident: ref31 doi: 10.1016/j.ocemod.2015.04.003 – ident: ref34 doi: 10.1007/s00382-015-2486-4 – ident: ref15 doi: 10.5194/hess-18-85-2014 – ident: ref45 doi: 10.2307/2265831 – ident: ref1 doi: 10.1007/978-1-4612-1694-0_15 – ident: ref16 doi: 10.1016/j.ijforecast.2003.09.005 – ident: ref37 doi: 10.1002/2014JD022098 – ident: ref44 doi: 10.5194/nhess-2016-124 – ident: ref3 doi: 10.1175/2010BAMS2955.1 – ident: ref13 doi: 10.1175/JCLI-D-11-00560.1 – ident: ref22 doi: 10.1038/nclimate1911 – ident: ref18 – ident: ref35 doi: 10.1007/s40641-015-0011-9 |
SSID | ssj0028862 |
Score | 2.4143107 |
Snippet | Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject... |
SourceID | doaj hal proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 3527 |
SubjectTerms | Analysis Climate change Confidence intervals Detection Distribution Extreme value distribution Extreme value theory Extreme values Filters Genetic transformation Low pass filters Methodology Methods Normal distribution River discharge River flow Rivers Sciences of the Universe Seasonal variability Seasonal variation Seasonal variations Significant wave height Significant waves Source code Statistical analysis Statistical methods Theory Time series Trends Value analysis Water discharge Water levels Wave height |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA-6F71I_cKtVcIiFITQndkkO-ttWyyraA9qobeQZJJuoUxlPwr97_29SWbpiOjF40zeJDPvJe9jXvJ7jL2LMvgShlUoWEchZ8FCD_ognKQiC87p2ZQOOH8904tz-flCXdwr9UV7whI8cGLcUdCREMoLVasgXZAzjyUBHwDdYPQEtg2b1wVTOdSqKp3ynOVUwKbrlM-EtyKPltAggo4NK7TB_OmeRWqB-3fq-eGSdkf-pqRby3O6x55kl5HP06s-ZQ9C84w9ytXLl3fP2Rqy5pvOAw21WKf8ul3d8Q4z_AO3_JIgpq88t03N11e0lTzCAeWpiHT7e52jA97cNPd7gPamf4icYMEDnk0gJi_Y-enHHycLkYspCA8naSOKOiLw9JOIK6eiK8vKa3IuIJ4YpSt9BRZHgpfXuLJYm4jVoqzH0mvn1OQlG2D88IrxybR0rq4i1aKSRXRVmPmpnVgv2zxiGLJxx1DjM9I4Fby4Nog4SAaGZGDKsSEZGJLBkL3fPfIzwWz8jfiYpLQjJITs9gbmjcnzxvxr3gzZiGRsCAOjoU02l3aLcT59_2bmsio0oo5KDdlhJoo3-AJv85kF8IFgs3qUBz1KLFLfax5hKvXeeDH_YugetCa0oipuC_TRzTSTNcnaFJTYhZzos__QDAcMDi_l8_f_B1des8fE4XYTnTpgg81qG97A69q4t-0C-wVlnSdv priority: 102 providerName: Directory of Open Access Journals |
Title | The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis |
URI | https://www.proquest.com/docview/1816602816 https://www.proquest.com/docview/2414351039 https://hal.science/hal-04201751 https://doaj.org/article/e6f275615d5e4be49c376423bb6ecc06 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELbY9gAvaOOHKIzKmpCQkKw1iZ2me0HdtFIQm2AwsTcrdux20pSOpkPaf893idMtCO2pSuw4je_83dlnf8fYOy-djWFYhYJ1FHLkcuCgdcJISrJgTDoa0gHnk9N0ei6_XKiLsOBWhW2VLSbWQF0sLK2R70cU4IIxjNKP178FZY2i6GpIobHBtiJYGtLwbPJpPeHKsrSJdsZDAcueNlFN-Cxyfw4cEXR4WKEMRjDt2KWavn8N0htz2iP5D1TX9meyzZ4Gx5GPG0nvsEeufMYehxzm89vnrILE-ar1Q10hqibKni9vecscfsBzPiOi6UvL87Lg1SVtKPdwQ3mTSrpeZOdogJeL8n4LwHBaSeREDu7wbENl8oKdT45_Hk1FSKkgLFyllYgKj-mnTTyujPImjjNLvZpASN5LE9tMFcoTyXyKqxwjFDM2L4uBtKkxKnnJNvF-94rxZBgbU2SeMlLJyJvMjewwT3Ir62ii67FB26HaBr5xSntxpTHvIBlokoGOB5pkoEkGPfZh_ch1Q7bxUOVDktK6IvFk1zcWy5kOw0671BO_fYSPctI4ObIAVHiQUELo7gCN7JGMNTFhlLTVZpbf4D2ff5zpsYSuYe6RqR57Hyr5Bb7A5uHkAvqByLM6NXc7NTFUbad4D6rU-cfT8VdN94CdwEYV_YnQRqtpOuBJpe-0_7_FcMPg9lJU__XDT79hT6jv6k1yapdtrpY37i28qpXp10Onz7YOj0-_ndHv5OT7r369RvEXDyki8g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1db9MwFLVG9zBe-EYUBlgTCAkpW5M6aYrEQwdULWsnAZvYm4kdu502pahNQeWv8Ff4cZybOIVMaG-TeEz8kdi5vufe-Ppcxp5ZYXQAYPVCoKMnuiaBHtTGU4KSLCgVdTt0wHl8GA2OxfuT8GSD_azOwlBYZaUTC0WdzjT9I9_zaYMLYOhHLoLywKy-wz9bvB6-xcd8HgT9d0dvBp5LIeBpmAa556cW7pZuW1yp0KogiDX10sZLWStUoOMwDS2Rqke4SiCR8FCsSFtCR0pRSgjo982YcLjBNvf74w-f1_4c2pSbqUHHg-EQlZumMInE3hRqyqOzySHKgLFRDfaK7ABrDLg2pRDMC0hQwFv_JvtVTUwZ1XK2u8zVrv5xgTPyP525W-yGM6t5r1wHt9mGye6wLZfhfbq6yxZYDzyvrHSTeosyBiGZr3jFq_6KJ3xCNNynmidZyhenFG5vYaTzMtF2sQXB0QHPZtnfPQDh6D8rJ-p0g7Yl0cs9dnwlY77PGni-ecB4uxMolcaW8nUJ36rYdHUnaSdaFHutpslalTxI7djYKSnIuYRXRiIkSYRk0JIkQpJEqMlerpt8LalILqu8T0K2rkgs4sWN2XwinVKSJrLE_u9jUEYoI7oacAP7GksUK7uFTnZIRCXxhGQUiDRJlnjO8NNH2ROQJ3hmcdhkL1wlO8MIdOLOdWAeiFqsVnO7VhOKTNeKd7ASam886I0k3QOyADlC_5uPPiohl07bLuQfCf9nMYxUOAUU8_Dw8tZP2dbgaDySo-HhwSN2neaxCCcMt1kjny_NY9ifuXri9ABnX656Af0G7O-P9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFB5qBe2LeMXUqkNRBGHIXmYvKYhEa0xsLaIW-jbuzM4kBdnUbFrJX_PX-Z29RFekb33cndvunPucM-cw9sxJawIIVhFBOgo5sBn4oLFCSyqyoHU8SOiC88ejeHwsP5xEJxvsV3sXhsIqW55YMep8buiMvO-TgwvC0I_7rgmL-LQ_en32Q1AFKfK0tuU0ahQ5sKufMN_KV5N9wPp5EIzefX07Fk2FAWGgOSyFnztYYyZ0eNKR00GQGlokxDc7J3Vg0iiPHOVcj_GUAWFhwDiZe9LEWlPFCLD_60mYelQ9IR29Xxt7GFF7WoNEQKuIa48q9CXZn4GHCbq4HKENAjjuyMSqdMBaQFybUXzmP2Kikn2j2-xWo7TyYY1ld9iGLe6ym0399NnqHiuBbXzZ6sA2F2Xt4c8WK95mLd_jGZ9SkutTw7Mi5-UpBbM7qMC8LmNdHfBzTMCLefH3DAACnWJySkxuMbZOo3KfHV_JZj9gm1jfPmQ8TAKt89RRNSzpO53agUmyMDOy8mTaHvPaDVWmyXVOJTe-K9g8BANFMFCBpwgGimDQYy_XQ87qRB-XdX5DUFp3pBzd1Yv5Yqoaklc2dpRb38dPWamtHBgwc2ivIADQjYdJdgnGirJwFITP0-wc60y-fFZDCTyH3ZNGPfai6eTm-AOTNbcmsA-UuKvTc6fTE2zCdJp3gUqdLx4PDxW9A98GX478Cx9ztJimGl5Wqj-U999mqIBQuSmiYPvy0U_ZDVCsOpwcHTxiW7SNVaxetMM2l4tz-xjK3VI_qaiIs29XTba_AcFCXyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+transformed-stationary+approach%3A+a+generic+and+simplified+methodology+for+non-stationary+extreme+value+analysis&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Mentaschi%2C+Lorenzo&rft.au=Vousdoukas%2C+Michalis&rft.au=Voukouvalas%2C+Evangelos&rft.au=Sartini%2C+Ludovica&rft.date=2016-09-05&rft.pub=European+Geosciences+Union&rft.issn=1027-5606&rft.eissn=1607-7938&rft.volume=20&rft.issue=8&rft.spage=3527&rft.epage=3547&rft_id=info:doi/10.5194%2Fhess-20-3527-2016&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04201751v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon |