Predicting breast cancer response to neoadjuvant chemotherapy using pretreatment diffuse optical spectroscopic texture analysis

Background: Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of cancer Vol. 116; no. 10; pp. 1329 - 1339
Main Authors Tran, William T, Gangeh, Mehrdad J, Sannachi, Lakshmanan, Chin, Lee, Watkins, Elyse, Bruni, Silvio G, Rastegar, Rashin Fallah, Curpen, Belinda, Trudeau, Maureen, Gandhi, Sonal, Yaffe, Martin, Slodkowska, Elzbieta, Childs, Charmaine, Sadeghi-Naini, Ali, Czarnota, Gregory J
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.05.2017
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC. Methods: Locally advanced breast cancer patients ( n =37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller–Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., ‘pretreatment’) to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and k -nearest neighbour classifiers. Results: Data indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO 2 homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO 2 -homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%. Conclusions: This study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments.
AbstractList Background:Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC.Methods:Locally advanced breast cancer patients (n=37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller-Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., 'pretreatment') to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and k-nearest neighbour classifiers.Results:Data indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO2 homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO2 -homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%.Conclusions:This study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments.
Background: Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC. Methods: Locally advanced breast cancer patients (n=37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller-Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., 'pretreatment') to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and k-nearest neighbour classifiers. Results: Data indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO sub(2) homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO sub(2)-homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%. Conclusions: This study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments.
Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC. Locally advanced breast cancer patients (n=37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller-Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., 'pretreatment') to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and k-nearest neighbour classifiers. Data indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO -homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%. This study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments.
Background: Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC. Methods: Locally advanced breast cancer patients ( n =37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller–Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., ‘pretreatment’) to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and k -nearest neighbour classifiers. Results: Data indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO 2 homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO 2 -homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%. Conclusions: This study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments.
Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC.BACKGROUNDDiffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC.Locally advanced breast cancer patients (n=37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller-Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., 'pretreatment') to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and k-nearest neighbour classifiers.METHODSLocally advanced breast cancer patients (n=37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller-Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., 'pretreatment') to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and k-nearest neighbour classifiers.Data indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO2 homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO2-homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%.RESULTSData indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO2 homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO2-homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%.This study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments.CONCLUSIONSThis study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments.
Author Tran, William T
Slodkowska, Elzbieta
Yaffe, Martin
Chin, Lee
Gandhi, Sonal
Gangeh, Mehrdad J
Bruni, Silvio G
Sannachi, Lakshmanan
Rastegar, Rashin Fallah
Watkins, Elyse
Sadeghi-Naini, Ali
Curpen, Belinda
Trudeau, Maureen
Childs, Charmaine
Czarnota, Gregory J
Author_xml – sequence: 1
  givenname: William T
  surname: Tran
  fullname: Tran, William T
  organization: Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Centre for Health and Social Care Research, Sheffield Hallam University
– sequence: 2
  givenname: Mehrdad J
  surname: Gangeh
  fullname: Gangeh, Mehrdad J
  organization: Department of Radiation Oncology, Sunnybrook Health Sciences Centre
– sequence: 3
  givenname: Lakshmanan
  surname: Sannachi
  fullname: Sannachi, Lakshmanan
  organization: Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Department of Medical Biophysics, University of Toronto
– sequence: 4
  givenname: Lee
  surname: Chin
  fullname: Chin, Lee
  organization: Department of Radiation Oncology, Sunnybrook Health Sciences Centre
– sequence: 5
  givenname: Elyse
  surname: Watkins
  fullname: Watkins, Elyse
  organization: Department of Radiation Oncology, Sunnybrook Health Sciences Centre
– sequence: 6
  givenname: Silvio G
  surname: Bruni
  fullname: Bruni, Silvio G
  organization: Department of Medical Imaging, Sunnybrook Hospital
– sequence: 7
  givenname: Rashin Fallah
  surname: Rastegar
  fullname: Rastegar, Rashin Fallah
  organization: Department of Medical Imaging, Sunnybrook Hospital
– sequence: 8
  givenname: Belinda
  surname: Curpen
  fullname: Curpen, Belinda
  organization: Department of Medical Imaging, Sunnybrook Hospital
– sequence: 9
  givenname: Maureen
  surname: Trudeau
  fullname: Trudeau, Maureen
  organization: Division of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre
– sequence: 10
  givenname: Sonal
  surname: Gandhi
  fullname: Gandhi, Sonal
  organization: Division of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre
– sequence: 11
  givenname: Martin
  surname: Yaffe
  fullname: Yaffe, Martin
  organization: Physical Sciences Platform, Sunnybrook Research Institute
– sequence: 12
  givenname: Elzbieta
  surname: Slodkowska
  fullname: Slodkowska, Elzbieta
  organization: Department of Anatomic Pathology, Sunnybrook Health Sciences Centre
– sequence: 13
  givenname: Charmaine
  surname: Childs
  fullname: Childs, Charmaine
  organization: Centre for Health and Social Care Research, Sheffield Hallam University
– sequence: 14
  givenname: Ali
  surname: Sadeghi-Naini
  fullname: Sadeghi-Naini, Ali
  organization: Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Department of Medical Biophysics, University of Toronto, Physical Sciences Platform, Sunnybrook Research Institute, Department of Radiation Oncology, University of Toronto
– sequence: 15
  givenname: Gregory J
  surname: Czarnota
  fullname: Czarnota, Gregory J
  email: gregory.czarnota@sunnybrook.ca
  organization: Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Department of Medical Biophysics, University of Toronto, Physical Sciences Platform, Sunnybrook Research Institute, Department of Radiation Oncology, University of Toronto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28419079$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAQxS1URLeFE3cUiQsSZPHHJrYvSKjiS6oEBzhbjjPZ9SqJg-1U7Kn_eifaUpUKxMmy5vfGb57njJyMYQRCnjO6ZlSot83erTllcq3lI7JileAlU1yekBWlVJZUc3pKzlLa41VTJZ-QU642TFOpV-T6W4TWu-zHbdFEsCkXzo4OYhEhTWFMUORQjBBsu5-v7IjlHQwh7yDa6VDMaRFOETJq8wBYb33XzSgLU_bO9kWawOUYkguTd0WGX3mOUNjR9ofk01PyuLN9gme35zn58fHD94vP5eXXT18u3l-WrtpUuWSOdqA0jqVqVtmWKy2tUJJCZ7niQtoaGmmruqq1o6ptrKplQ5moNBN1R8U5eXfsO83NAK1Dp9H2Zop-sPFggvXmz8rod2Ybrky1wUeFxgavbhvE8HOGlM3gk4O-txjOnAzmyWTNhVL_RxW6lxXdcERfPkD3YY6YzULpWgnJdI3Ui_vm71z__kYEXh8Bh0GnCN0dwqhZlsTgkphlSYyWSLMHtPPZZh-WyX3_D82boyZh53EL8Z7Rv-A3QbDRSA
CODEN BJCAAI
CitedBy_id crossref_primary_10_1111_cbdd_14164
crossref_primary_10_1371_journal_pone_0236182
crossref_primary_10_1038_s41598_023_33358_x
crossref_primary_10_18632_oncotarget_27867
crossref_primary_10_37349_etat_2023_00153
crossref_primary_10_3389_fonc_2024_1359148
crossref_primary_10_1002_mp_16574
crossref_primary_10_1007_s12094_017_1745_8
crossref_primary_10_1038_s41598_019_56185_5
crossref_primary_10_1158_1078_0432_CCR_18_3190
crossref_primary_10_18632_oncotarget_26996
crossref_primary_10_1186_s12967_021_03020_z
crossref_primary_10_1016_j_jmir_2023_04_001
crossref_primary_10_1158_1078_0432_CCR_20_1108
crossref_primary_10_1007_s10549_021_06239_y
crossref_primary_10_1016_j_radonc_2018_11_007
crossref_primary_10_1038_s41598_021_01024_9
crossref_primary_10_1186_s12885_024_13049_0
crossref_primary_10_1016_j_tranon_2021_101183
crossref_primary_10_1002_cjp2_314
crossref_primary_10_1016_j_eswa_2023_121081
crossref_primary_10_1038_s41598_020_67823_8
crossref_primary_10_1097_MNM_0000000000001543
crossref_primary_10_3390_tomography11030033
crossref_primary_10_1186_s13058_023_01607_6
crossref_primary_10_1016_j_clispe_2023_100027
crossref_primary_10_1097_MD_0000000000012683
crossref_primary_10_1117_1_JBO_29_7_076007
crossref_primary_10_1364_BOE_527968
crossref_primary_10_2174_1389450119666180809122244
crossref_primary_10_1364_BOE_532052
crossref_primary_10_1007_s11831_025_10255_2
crossref_primary_10_1021_acsnano_9b03335
Cites_doi 10.1016/j.semradonc.2009.05.006
10.1158/1078-0432.CCR-14-1415
10.1016/j.crad.2004.07.008
10.1117/1.429979
10.1158/1078-0432.CCR-14-0736
10.1016/j.acra.2005.03.069
10.1097/00000658-200209000-00006
10.18632/oncotarget.1950
10.3322/caac.21235
10.1038/bjc.2013.660
10.1111/j.1549-8719.2000.tb00138.x
10.1053/sonc.2002.37263
10.1118/1.4931603
10.1002/mrm.10496
10.1117/1.1629681
10.1126/science.2108497
10.1016/j.suc.2007.01.012
10.1073/pnas.1013103108
10.1002/nbm.3132
10.1200/JCO.2011.38.8595
10.1109/TSMC.1973.4309314
10.1118/1.4747526
10.1038/modpathol.2015.74
10.1073/pnas.0611058104
10.1016/0730-725X(93)90205-R
10.1007/s00259-012-2247-0
10.1088/0031-9155/40/5/009
10.1038/nrclinonc.2016.162
10.1098/rsta.2011.0279
10.1016/j.ejca.2008.10.026
10.1158/0008-5472.CAN-12-0056
10.1016/j.acra.2005.05.006
10.1109/34.824819
10.1117/1.2337546
10.1016/j.ejso.2008.03.015
10.1586/17434440.4.1.83
10.1093/jnci/93.4.266
10.1002/mrm.21347
10.1634/theoncologist.8-6-521
10.1093/jnci/djm135
10.1002/jmri.23971
10.1016/S0960-9776(03)00106-1
10.1136/amiajnl-2012-001460
10.1186/bcr1358
ContentType Journal Article
Copyright The Author(s) 2017
Copyright Nature Publishing Group May 9, 2017
Copyright © 2017 Cancer Research UK 2017 Cancer Research UK
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright Nature Publishing Group May 9, 2017
– notice: Copyright © 2017 Cancer Research UK 2017 Cancer Research UK
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TO
7U9
7X7
7XB
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AN0
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1038/bjc.2017.97
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Proquest Nursing & Allied Health Source
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
British Nursing Database (Proquest)
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
British Nursing Index with Full Text
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
Oncogenes and Growth Factors Abstracts
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Predicting chemotherapy response using DOS texture
EISSN 1532-1827
EndPage 1339
ExternalDocumentID PMC5482739
4322269915
28419079
10_1038_bjc_2017_97
Genre Journal Article
GeographicLocations United Kingdom--UK
Toronto Ontario Canada
Canada
GeographicLocations_xml – name: United Kingdom--UK
– name: Canada
– name: Toronto Ontario Canada
GroupedDBID ---
-Q-
0R~
23N
36B
39C
3V.
4.4
406
53G
5GY
5RE
6J9
70F
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8R4
8R5
AACDK
AANZL
AASML
AATNV
AAWTL
AAYZH
AAZLF
ABAKF
ABLJU
ABOCM
ABUWG
ABZZP
ACAOD
ACGFO
ACGFS
ACKTT
ACPRK
ACRQY
ACZOJ
ADBBV
ADFRT
ADHDB
AEFQL
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AIGIU
AILAN
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMYLF
AN0
AOIJS
ASPBG
AVWKF
AXYYD
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BNQBC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DNIVK
DPUIP
DU5
E3Z
EAP
EBLON
EBS
EE.
EIOEI
EJD
EMB
ESX
EX3
F5P
FDQFY
FEDTE
FERAY
FIGPU
FIZPM
FRJ
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HVGLF
HYE
HZ~
IH2
IWAJR
JSO
JZLTJ
KQ8
M1P
M7P
NAO
NAPCQ
NQJWS
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
ROL
RPM
SNX
SNYQT
SOHCF
SOJ
SRMVM
SWTZT
TAOOD
TBHMF
TDRGL
TR2
UKHRP
W2D
WH7
WOW
~02
AAFWJ
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7TO
7U9
7XB
8FE
8FH
8FK
ABRTQ
AZQEC
DWQXO
GNUQQ
H94
K9.
LK8
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c545t-1c0fe898278615ad2897a3870efa28237a6eb7a56569c08dba867b01359136f03
IEDL.DBID 7X7
ISSN 0007-0920
1532-1827
IngestDate Thu Aug 21 18:22:18 EDT 2025
Fri Jul 11 00:10:40 EDT 2025
Thu Jul 10 23:22:28 EDT 2025
Fri Jul 25 08:50:01 EDT 2025
Thu Apr 03 06:58:36 EDT 2025
Thu Apr 24 23:04:00 EDT 2025
Tue Jul 01 01:29:45 EDT 2025
Fri Feb 21 02:39:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords imaging biomarkers
diffuse optical spectroscopy imaging
breast cancer
Language English
License From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-1c0fe898278615ad2897a3870efa28237a6eb7a56569c08dba867b01359136f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/bjc.2017.97
PMID 28419079
PQID 1896837196
PQPubID 41855
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5482739
proquest_miscellaneous_1901762388
proquest_miscellaneous_1889775042
proquest_journals_1896837196
pubmed_primary_28419079
crossref_primary_10_1038_bjc_2017_97
crossref_citationtrail_10_1038_bjc_2017_97
springer_journals_10_1038_bjc_2017_97
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-09
PublicationDateYYYYMMDD 2017-05-09
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-09
  day: 09
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle British journal of cancer
PublicationTitleAbbrev Br J Cancer
PublicationTitleAlternate Br J Cancer
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Cerussi, Tanamai, Hsiang, Butler, Mehta, Tromberg (CR6) 2011; 369
Sadeghi-Naini, Vorauer, Chin, Falou, Tran, Wright, Gandhi, Yaffe, Czarnota (CR37) 2015; 42
Tredan, Galmarini, Patel, Tannock (CR42) 2007; 99
O’Connor, Aboagye, Adams, Aerts, Barrington, Beer, Boellaard, Bohndiek, Brady, Brown, Buckley, Chenevert, Clarke, Collette, Cook, Desouza, Dickson, Dive, Evelhoch, Faivre-Finn, Gallagher, Gilbert, Gillies, Goh, Griffiths, Groves, Halligan, Harris, Hawkes, Hoekstra, Huang, Hutton, Jackson, Jayson, Jones, Koh, Lacombe, Lambin, Lassau, Leach, Lee, Leen, Lewis, Liu, Lythgoe, Manoharan, Maxwell, Miles, Morgan, Morris, Ng, Padhani, Parker, Partridge, Pathak, Peet, Punwani, Reynolds, Robinson, Shankar, Sharma, Soloviev, Stroobants, Sullivan, Taylor, Tofts, Tozer, Van Herk, Walker-Samuel, Wason, Williams, Workman, Yankeelov, Brindle, Mcshane, Jackson, Waterton (CR32) 2017; 14
Roblyer, Ueda, Cerussi, Tanamai, Durkin, Mehta, Hsiang, Butler, Mclaren, Chen, Tromberg (CR35) 2011; 108
Yang, Tridandapani, Beitler, Yu, Yoshida, Curran, Liu (CR48) 2012; 39
Desantis, Lin, Mariotto, Siegel, Stein, Kramer, Alteri, Robbins, Jemal (CR10) 2014; 64
Jain, Duin, Mao (CR23) 2000; 22
Chicklore, Goh, Siddique, Roy, Marsden, COOK (CR8) 2013; 40
Mathew, Asgeirsson, Cheung, Chan, Dahda, Robertson (CR29) 2009; 35
Mourant, Canpolat, Brocker, Esponda-Ramos, Johnson, Matanock, Stetter, Freyer (CR30) 2000; 5
Teruel, Heldahl, Goa, Pickles, Lundgren, Bathen, Gibbs (CR41) 2014; 27
Sadeghi-Naini, Sannachi, Pritchard, Trudeau, Gandhi, Wright, Zubovits, Yaffe, Kolios, Czarnota (CR36) 2014; 5
CR31
Chen, Giger, Li, Bick, Newstead (CR7) 2007; 58
Cerussi, Shah, Hsiang, Durkin, Butler, Tromberg (CR5) 2006; 11
Li, Giger, Olopade, Margolis, Lan, Chinander (CR28) 2005; 12
Haralick, Shanmugam, Dinstein (CR20) 1973; 3
Jakubowski, Cerussi, Bevilacqua, Shah, Hsiang, Butler, Tromberg (CR24) 2004; 9
de Winter (CR9) 2013; 18
Xu, Povoski (CR47) 2007; 4
Siegel, Castellan (CR39) 1988
Lerski, Straughan, Schad, Boyce, Bluml, Zuna (CR27) 1993; 11
Tromberg, Cerussi, Shah, Compton, Durkin, Hsiang, Butler, Mehta (CR43) 2005; 7
Ahmed, Gibbs, Pickles, Turnbull (CR1) 2013; 38
Duda, Hart, Stork (CR11) 2001
Eisenhauer, Therasse, Bogaerts, Schwartz, Sargent, Ford, Dancey, Arbuck, Gwyther, Mooney, Rubinstein, SHANKAR, DODD, KAPLAN, Lacombe, Verweij (CR12) 2009; 45
Lee, Newman (CR26) 2007; 87
Giordano (CR17) 2003; 8
Teicher, Herman, Holden, Wang, Pfeffer, Crawford, Frei (CR40) 1990; 247
Hockel, Vaupel (CR21) 2001; 93
Gupta, Undrill (CR19) 1995; 40
Schaafsma, Van De Giessen, Charehbili, Smit, Kroep, Lelieveldt, Liefers, Chan, Lowik, Dijkstra, Van De Velde, Wasser, Vahrmeijer (CR38) 2015; 21
Ueda, Roblyer, Cerussi, Durkin, Leproux, Santoro, Xu, O'Sullivan, Hsiang, Mehta, Butler, Tromberg (CR44) 2012; 72
Golden, Lipson, Telli, Ford, Rubin (CR18) 2013; 20
Folkman (CR14) 2002; 29
Castellano, Bonilha, Li, Cendes (CR3) 2004; 59
Intes (CR22) 2005; 12
Evans, Armstrong, Whelehan, Thomson, Rauchhaus, Purdie, Jordan, Jones, Thompson, Vinnicombe (CR13) 2013; 109
Whitman, Strom (CR46) 2009; 19
von Minckwitz, Untch, Blohmer, Costa, Eidtmann, Fasching, Gerber, Eiermann, Hilfrich, Huober, Jackisch, Kaufmann, Konecny, Denkert, Nekljudova, Mehta, Loibl (CR45) 2012; 30
Ogston, Miller, Payne, Hutcheon, Sarkar, Smith, Schofield, Heys (CR33) 2003; 12
Galmarini, Galmarini, Sarchi, Abulafia, Galmarini (CR15) 2000; 7
Cerussi, Hsiang, Shah, Mehta, Durkin, Butler, Tromberg (CR4) 2007; 104
Cance, Carey, Calvo, Sartor, Sawyer, Moore, Rosenman, Ollila, Graham (CR2) 2002; 236
Gibbs, Turnbull (CR16) 2003; 50
Jiang, Pogue, Kaufman, Gui, Jermyn, Frazee, Poplack, Diflorio-Alexander, Wells, Paulsen (CR25) 2014; 20
Provenzano, Bossuyt, Viale, Cameron, Badve, Denkert, Macgrogan, Penault-Llorca, Boughey, Curigliano, Dixon, Esserman, Fastner, Kuehn, Peintinger, von Minckwitz, White, Yang, Symmans (CR34) 2015; 28
RO Duda (BFbjc201797_CR11) 2001
MC Lee (BFbjc201797_CR26) 2007; 87
CE Desantis (BFbjc201797_CR10) 2014; 64
P Gibbs (BFbjc201797_CR16) 2003; 50
S Jiang (BFbjc201797_CR25) 2014; 20
JR Teruel (BFbjc201797_CR41) 2014; 27
BA Teicher (BFbjc201797_CR40) 1990; 247
AK Jain (BFbjc201797_CR23) 2000; 22
WG Cance (BFbjc201797_CR2) 2002; 236
BJ Tromberg (BFbjc201797_CR43) 2005; 7
S Chicklore (BFbjc201797_CR8) 2013; 40
X Yang (BFbjc201797_CR48) 2012; 39
R Gupta (BFbjc201797_CR19) 1995; 40
O Tredan (BFbjc201797_CR42) 2007; 99
A Evans (BFbjc201797_CR13) 2013; 109
KN Ogston (BFbjc201797_CR33) 2003; 12
A Cerussi (BFbjc201797_CR5) 2006; 11
M Hockel (BFbjc201797_CR21) 2001; 93
JCF de Winter (BFbjc201797_CR9) 2013; 18
G von Minckwitz (BFbjc201797_CR45) 2012; 30
EA Eisenhauer (BFbjc201797_CR12) 2009; 45
DI Golden (BFbjc201797_CR18) 2013; 20
DB Jakubowski (BFbjc201797_CR24) 2004; 9
FC Galmarini (BFbjc201797_CR15) 2000; 7
BE Schaafsma (BFbjc201797_CR38) 2015; 21
A Sadeghi-Naini (BFbjc201797_CR36) 2014; 5
GJ Whitman (BFbjc201797_CR46) 2009; 19
A Cerussi (BFbjc201797_CR4) 2007; 104
RA Lerski (BFbjc201797_CR27) 1993; 11
H Li (BFbjc201797_CR28) 2005; 12
JP O’Connor (BFbjc201797_CR32) 2017; 14
D Roblyer (BFbjc201797_CR35) 2011; 108
AE Cerussi (BFbjc201797_CR6) 2011; 369
BFbjc201797_CR31
J Mathew (BFbjc201797_CR29) 2009; 35
G Castellano (BFbjc201797_CR3) 2004; 59
J Folkman (BFbjc201797_CR14) 2002; 29
RX Xu (BFbjc201797_CR47) 2007; 4
RM Haralick (BFbjc201797_CR20) 1973; 3
A Ahmed (BFbjc201797_CR1) 2013; 38
JR Mourant (BFbjc201797_CR30) 2000; 5
W Chen (BFbjc201797_CR7) 2007; 58
X Intes (BFbjc201797_CR22) 2005; 12
A Sadeghi-Naini (BFbjc201797_CR37) 2015; 42
S Ueda (BFbjc201797_CR44) 2012; 72
E Provenzano (BFbjc201797_CR34) 2015; 28
S Siegel (BFbjc201797_CR39) 1988
SH Giordano (BFbjc201797_CR17) 2003; 8
References_xml – volume: 19
  start-page: 211
  year: 2009
  end-page: 221
  ident: CR46
  article-title: Workup and staging of locally advanced breast cancer
  publication-title: Semin Radiat Oncol
  doi: 10.1016/j.semradonc.2009.05.006
– volume: 20
  start-page: 6006
  year: 2014
  end-page: 6015
  ident: CR25
  article-title: Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-14-1415
– year: 1988
  ident: CR39
  publication-title: Nonparametric Statistics for the Behavioral Sciences
– volume: 59
  start-page: 1061
  year: 2004
  end-page: 1069
  ident: CR3
  article-title: Texture analysis of medical images
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2004.07.008
– volume: 5
  start-page: 131
  year: 2000
  end-page: 137
  ident: CR30
  article-title: Light scattering from cells: the contribution of the nucleus and the effects of proliferative status
  publication-title: J Biomed Opt
  doi: 10.1117/1.429979
– volume: 21
  start-page: 577
  year: 2015
  end-page: 584
  ident: CR38
  article-title: Optical mammography using diffuse optical spectroscopy for monitoring tumor response to neoadjuvant chemotherapy in women with locally advanced breast cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-14-0736
– volume: 12
  start-page: 863
  year: 2005
  end-page: 873
  ident: CR28
  article-title: Computerized texture analysis of mammographic parenchymal patterns of digitized mammograms
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2005.03.069
– volume: 236
  start-page: 295
  year: 2002
  end-page: 302
  ident: CR2
  article-title: Long-term outcome of neoadjuvant therapy for locally advanced breast carcinoma: effective clinical downstaging allows breast preservation and predicts outstanding local control and survival
  publication-title: Ann Surg
  doi: 10.1097/00000658-200209000-00006
– volume: 5
  start-page: 3497
  year: 2014
  end-page: 3511
  ident: CR36
  article-title: Early prediction of therapy responses and outcomes in breast cancer patients using quantitative ultrasound spectral texture
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.1950
– volume: 64
  start-page: 252
  year: 2014
  end-page: 271
  ident: CR10
  article-title: Cancer treatment and survivorship statistics, 2014
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21235
– volume: 109
  start-page: 2798
  year: 2013
  end-page: 2802
  ident: CR13
  article-title: Can shear-wave elastography predict response to neoadjuvant chemotherapy in women with invasive breast cancer?
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2013.660
– volume: 7
  start-page: 405
  year: 2000
  end-page: 410
  ident: CR15
  article-title: Heterogeneous distribution of tumor blood supply affects the response to chemotherapy in patients with head and neck cancer
  publication-title: Microcirculation
  doi: 10.1111/j.1549-8719.2000.tb00138.x
– volume: 29
  start-page: 15
  year: 2002
  end-page: 18
  ident: CR14
  article-title: Role of angiogenesis in tumor growth and metastasis
  publication-title: Semin Oncol
  doi: 10.1053/sonc.2002.37263
– volume: 42
  start-page: 6130
  year: 2015
  end-page: 6146
  ident: CR37
  article-title: Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images
  publication-title: Med Phys
  doi: 10.1118/1.4931603
– volume: 50
  start-page: 92
  year: 2003
  end-page: 98
  ident: CR16
  article-title: Textural analysis of contrast-enhanced MR images of the breast
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10496
– volume: 9
  start-page: 230
  year: 2004
  end-page: 238
  ident: CR24
  article-title: Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study
  publication-title: J Biomed Opt
  doi: 10.1117/1.1629681
– volume: 18
  start-page: 1
  year: 2013
  end-page: 10
  ident: CR9
  article-title: Using the Student's -test with extremely small sample sizes
  publication-title: Pract Assess Res Eval
– volume: 247
  start-page: 1457
  year: 1990
  end-page: 1461
  ident: CR40
  article-title: Tumor resistance to alkylating agents conferred by mechanisms operative only
  publication-title: Science
  doi: 10.1126/science.2108497
– volume: 87
  start-page: 379
  year: 2007
  end-page: 398
  ident: CR26
  article-title: Management of patients with locally advanced breast cancer
  publication-title: Surg Clin North Am
  doi: 10.1016/j.suc.2007.01.012
– volume: 108
  start-page: 14626
  year: 2011
  end-page: 14631
  ident: CR35
  article-title: Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1013103108
– volume: 27
  start-page: 887
  year: 2014
  end-page: 896
  ident: CR41
  article-title: Dynamic contrast-enhanced MRI texture analysis for pretreatment prediction of clinical and pathological response to neoadjuvant chemotherapy in patients with locally advanced breast cancer
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3132
– volume: 30
  start-page: 1796
  year: 2012
  end-page: 1804
  ident: CR45
  article-title: Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2011.38.8595
– volume: 3
  start-page: 610
  year: 1973
  end-page: 621
  ident: CR20
  article-title: Textural features for image classification
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1973.4309314
– volume: 39
  start-page: 5732
  year: 2012
  end-page: 5739
  ident: CR48
  article-title: Ultrasound GLCM texture analysis of radiation-induced parotid-gland injury in head-and-neck cancer radiotherapy: an study of late toxicity
  publication-title: Med Phys
  doi: 10.1118/1.4747526
– volume: 28
  start-page: 1185
  year: 2015
  end-page: 1201
  ident: CR34
  article-title: Standardization of pathologic evaluation and reporting of postneoadjuvant specimens in clinical trials of breast cancer: recommendations from an International Working Group
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.2015.74
– volume: 104
  start-page: 4014
  year: 2007
  end-page: 4019
  ident: CR4
  article-title: Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0611058104
– volume: 11
  start-page: 873
  year: 1993
  end-page: 887
  ident: CR27
  article-title: MR image texture analysis—an approach to tissue characterization
  publication-title: Magn Reson Imaging
  doi: 10.1016/0730-725X(93)90205-R
– volume: 40
  start-page: 133
  year: 2013
  end-page: 140
  ident: CR8
  article-title: Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-012-2247-0
– year: 2001
  ident: CR11
  publication-title: Pattern Classification
– volume: 40
  start-page: 835
  year: 1995
  end-page: 855
  ident: CR19
  article-title: The use of texture analysis to delineate suspicious masses in mammography
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/40/5/009
– volume: 14
  start-page: 169
  year: 2017
  end-page: 186
  ident: CR32
  article-title: Imaging biomarker roadmap for cancer studies
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2016.162
– volume: 369
  start-page: 4512
  year: 2011
  end-page: 4530
  ident: CR6
  article-title: Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy
  publication-title: Philos Trans A Math Phys Eng Sci
  doi: 10.1098/rsta.2011.0279
– volume: 45
  start-page: 228
  year: 2009
  end-page: 247
  ident: CR12
  article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2008.10.026
– ident: CR31
– volume: 72
  start-page: 4318
  year: 2012
  end-page: 4328
  ident: CR44
  article-title: Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-0056
– volume: 12
  start-page: 934
  year: 2005
  end-page: 947
  ident: CR22
  article-title: Time-domain optical mammography SoftScan: initial results
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2005.05.006
– volume: 22
  start-page: 4
  year: 2000
  end-page: 37
  ident: CR23
  article-title: Statistical pattern recognition: a review
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.824819
– volume: 11
  start-page: 044005
  year: 2006
  ident: CR5
  article-title: absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy
  publication-title: J Biomed Opt
  doi: 10.1117/1.2337546
– volume: 35
  start-page: 113
  year: 2009
  end-page: 122
  ident: CR29
  article-title: Neoadjuvant chemotherapy for locally advanced breast cancer: a review of the literature and future directions
  publication-title: Eur J Surg Oncol
  doi: 10.1016/j.ejso.2008.03.015
– volume: 4
  start-page: 83
  year: 2007
  end-page: 95
  ident: CR47
  article-title: Diffuse optical imaging and spectroscopy for cancer
  publication-title: Expert Rev Med Devices
  doi: 10.1586/17434440.4.1.83
– volume: 93
  start-page: 266
  year: 2001
  end-page: 276
  ident: CR21
  article-title: Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/93.4.266
– volume: 58
  start-page: 562
  year: 2007
  end-page: 571
  ident: CR7
  article-title: Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21347
– volume: 8
  start-page: 521
  year: 2003
  end-page: 530
  ident: CR17
  article-title: Update on locally advanced breast cancer
  publication-title: Oncologist
  doi: 10.1634/theoncologist.8-6-521
– volume: 99
  start-page: 1441
  year: 2007
  end-page: 1454
  ident: CR42
  article-title: Drug resistance and the solid tumor microenvironment
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djm135
– volume: 38
  start-page: 89
  year: 2013
  end-page: 101
  ident: CR1
  article-title: Texture analysis in assessment and prediction of chemotherapy response in breast cancer
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.23971
– volume: 12
  start-page: 320
  year: 2003
  end-page: 327
  ident: CR33
  article-title: A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival
  publication-title: Breast
  doi: 10.1016/S0960-9776(03)00106-1
– volume: 20
  start-page: 1059
  year: 2013
  end-page: 1066
  ident: CR18
  article-title: Dynamic contrast-enhanced MRI-based biomarkers of therapeutic response in triple-negative breast cancer
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2012-001460
– volume: 7
  start-page: 279
  year: 2005
  end-page: 285
  ident: CR43
  article-title: Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr1358
– volume: 109
  start-page: 2798
  year: 2013
  ident: BFbjc201797_CR13
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2013.660
– volume: 8
  start-page: 521
  year: 2003
  ident: BFbjc201797_CR17
  publication-title: Oncologist
  doi: 10.1634/theoncologist.8-6-521
– volume-title: Pattern Classification
  year: 2001
  ident: BFbjc201797_CR11
– volume: 29
  start-page: 15
  year: 2002
  ident: BFbjc201797_CR14
  publication-title: Semin Oncol
  doi: 10.1053/sonc.2002.37263
– volume: 236
  start-page: 295
  year: 2002
  ident: BFbjc201797_CR2
  publication-title: Ann Surg
  doi: 10.1097/00000658-200209000-00006
– volume: 58
  start-page: 562
  year: 2007
  ident: BFbjc201797_CR7
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21347
– volume: 104
  start-page: 4014
  year: 2007
  ident: BFbjc201797_CR4
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0611058104
– ident: BFbjc201797_CR31
– volume: 12
  start-page: 934
  year: 2005
  ident: BFbjc201797_CR22
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2005.05.006
– volume: 20
  start-page: 6006
  year: 2014
  ident: BFbjc201797_CR25
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-14-1415
– volume: 5
  start-page: 131
  year: 2000
  ident: BFbjc201797_CR30
  publication-title: J Biomed Opt
  doi: 10.1117/1.429979
– volume: 27
  start-page: 887
  year: 2014
  ident: BFbjc201797_CR41
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3132
– volume: 72
  start-page: 4318
  year: 2012
  ident: BFbjc201797_CR44
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-0056
– volume: 369
  start-page: 4512
  year: 2011
  ident: BFbjc201797_CR6
  publication-title: Philos Trans A Math Phys Eng Sci
  doi: 10.1098/rsta.2011.0279
– volume: 45
  start-page: 228
  year: 2009
  ident: BFbjc201797_CR12
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2008.10.026
– volume: 11
  start-page: 873
  year: 1993
  ident: BFbjc201797_CR27
  publication-title: Magn Reson Imaging
  doi: 10.1016/0730-725X(93)90205-R
– volume: 93
  start-page: 266
  year: 2001
  ident: BFbjc201797_CR21
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/93.4.266
– volume: 4
  start-page: 83
  year: 2007
  ident: BFbjc201797_CR47
  publication-title: Expert Rev Med Devices
  doi: 10.1586/17434440.4.1.83
– volume: 9
  start-page: 230
  year: 2004
  ident: BFbjc201797_CR24
  publication-title: J Biomed Opt
  doi: 10.1117/1.1629681
– volume: 18
  start-page: 1
  year: 2013
  ident: BFbjc201797_CR9
  publication-title: Pract Assess Res Eval
– volume: 40
  start-page: 835
  year: 1995
  ident: BFbjc201797_CR19
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/40/5/009
– volume: 42
  start-page: 6130
  year: 2015
  ident: BFbjc201797_CR37
  publication-title: Med Phys
  doi: 10.1118/1.4931603
– volume: 22
  start-page: 4
  year: 2000
  ident: BFbjc201797_CR23
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.824819
– volume: 87
  start-page: 379
  year: 2007
  ident: BFbjc201797_CR26
  publication-title: Surg Clin North Am
  doi: 10.1016/j.suc.2007.01.012
– volume: 35
  start-page: 113
  year: 2009
  ident: BFbjc201797_CR29
  publication-title: Eur J Surg Oncol
  doi: 10.1016/j.ejso.2008.03.015
– volume: 28
  start-page: 1185
  year: 2015
  ident: BFbjc201797_CR34
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.2015.74
– volume: 30
  start-page: 1796
  year: 2012
  ident: BFbjc201797_CR45
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2011.38.8595
– volume: 108
  start-page: 14626
  year: 2011
  ident: BFbjc201797_CR35
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1013103108
– volume: 7
  start-page: 405
  year: 2000
  ident: BFbjc201797_CR15
  publication-title: Microcirculation
  doi: 10.1111/j.1549-8719.2000.tb00138.x
– volume: 12
  start-page: 863
  year: 2005
  ident: BFbjc201797_CR28
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2005.03.069
– volume: 11
  start-page: 044005
  year: 2006
  ident: BFbjc201797_CR5
  publication-title: J Biomed Opt
  doi: 10.1117/1.2337546
– volume: 14
  start-page: 169
  year: 2017
  ident: BFbjc201797_CR32
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2016.162
– volume: 64
  start-page: 252
  year: 2014
  ident: BFbjc201797_CR10
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21235
– volume: 12
  start-page: 320
  year: 2003
  ident: BFbjc201797_CR33
  publication-title: Breast
  doi: 10.1016/S0960-9776(03)00106-1
– volume: 20
  start-page: 1059
  year: 2013
  ident: BFbjc201797_CR18
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2012-001460
– volume: 59
  start-page: 1061
  year: 2004
  ident: BFbjc201797_CR3
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2004.07.008
– volume: 21
  start-page: 577
  year: 2015
  ident: BFbjc201797_CR38
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-14-0736
– volume: 38
  start-page: 89
  year: 2013
  ident: BFbjc201797_CR1
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.23971
– volume-title: Nonparametric Statistics for the Behavioral Sciences
  year: 1988
  ident: BFbjc201797_CR39
– volume: 40
  start-page: 133
  year: 2013
  ident: BFbjc201797_CR8
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-012-2247-0
– volume: 99
  start-page: 1441
  year: 2007
  ident: BFbjc201797_CR42
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djm135
– volume: 19
  start-page: 211
  year: 2009
  ident: BFbjc201797_CR46
  publication-title: Semin Radiat Oncol
  doi: 10.1016/j.semradonc.2009.05.006
– volume: 247
  start-page: 1457
  year: 1990
  ident: BFbjc201797_CR40
  publication-title: Science
  doi: 10.1126/science.2108497
– volume: 7
  start-page: 279
  year: 2005
  ident: BFbjc201797_CR43
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr1358
– volume: 3
  start-page: 610
  year: 1973
  ident: BFbjc201797_CR20
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1973.4309314
– volume: 39
  start-page: 5732
  year: 2012
  ident: BFbjc201797_CR48
  publication-title: Med Phys
  doi: 10.1118/1.4747526
– volume: 50
  start-page: 92
  year: 2003
  ident: BFbjc201797_CR16
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10496
– volume: 5
  start-page: 3497
  year: 2014
  ident: BFbjc201797_CR36
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.1950
SSID ssj0009087
Score 2.4254498
Snippet Background: Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced...
Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer...
Background:Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast...
Background: Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1329
SubjectTerms 631/1647/527
692/53/2423
692/699/67/1059/99
692/699/67/1347
Accuracy
Anthracyclines - administration & dosage
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Area Under Curve
Biomedical and Life Sciences
Biomedicine
Breast cancer
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - drug therapy
Breast Neoplasms - pathology
Bridged-Ring Compounds - administration & dosage
Cancer Research
Cancer therapies
Carcinoma, Ductal, Breast - diagnostic imaging
Carcinoma, Ductal, Breast - drug therapy
Carcinoma, Ductal, Breast - pathology
Carcinoma, Lobular - drug therapy
Carcinoma, Lobular - pathology
Chemotherapy
Chemotherapy, Adjuvant
Drug Resistance
Epidemiology
Female
Health sciences
Hemoglobin
Hemoglobins - metabolism
Humans
Magnetic resonance imaging
Mammography
Medical imaging
Medical research
Middle Aged
Molecular Medicine
Neoadjuvant Therapy
Oncology
Oxygen - metabolism
Predictive Value of Tests
Radiation
ROC Curve
Spectrum Analysis
Taxoids - administration & dosage
Tomography, Optical - methods
Translational Therapeutics
Trastuzumab - administration & dosage
Tumor Burden
Tumors
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58gHgR39YXEdaLUE232yY5yqKIsOJBwVtJuqkPtF12uwdP_nVn2nR1XRFvhUwgzUySL8k3XwBaKuhnPKO0D2ulT4jAlxpjObI6Sk3H8CymfOfeTXx137l-iB6czvbI0SprSctqmm7YYWfmhfQGA3GqxDwskmY7hXM37n4p7HJZC2TS2Ztqc5eMx0P5vfL08jODKWepkT_uR6tl53IVVhxeZOd1C9dgzubrsNRzN-Ib8HE7pG8iLzNDBPOSpeTIIRvW7FfLyoLlttD9lzGiZix-sm8u7eqdEe39kRHpsCGcM3oyZYzVikF1zM2qXEzSvCwGzykjogh2G9NOzGQT7i8v7rpXvntUwU8RLJV-kPLMSiXbQiKY0X3ccAkd4qi1mW6Tco2OrRGacJ5KuewbLWNBh6WRCsI44-EWLORFbneAdUyEnsQNjKGMKJ1qHhg6FTGGa8RVHQ9Omr5OUqc4Tg9fvCbVzXcoE3RMQo5JlPCgNTEe1EIbv5vtN05L3GgbJYFUMW60cTLx4GhSjOOELj80dvGYbPBHScu-_YcNgiNcHEIpPdiu42DSFlzGsVgoD8RUhEwMSKd7uiR_fqr0uiOSWg2x5nETS9-aPvuLu_-024Nl-qrYl2ofFsrh2B4gQirNYTUyPgG_6BJw
  priority: 102
  providerName: Springer Nature
Title Predicting breast cancer response to neoadjuvant chemotherapy using pretreatment diffuse optical spectroscopic texture analysis
URI https://link.springer.com/article/10.1038/bjc.2017.97
https://www.ncbi.nlm.nih.gov/pubmed/28419079
https://www.proquest.com/docview/1896837196
https://www.proquest.com/docview/1889775042
https://www.proquest.com/docview/1901762388
https://pubmed.ncbi.nlm.nih.gov/PMC5482739
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-QwEB88heNexPuuX-TAeznomW63TfIkuigiKHKcsG8lSdNT8dq1tg8--a8706ar3h6-LF0yhaYzaSYzv_kNwI6K8oIXVPbhnAzJIwilRltOnE6sGRtepFTvfHqWHl-MT6bJ1Afc7jyscvgmdh_qvLIUI9-NpErxMIUGsze7DalrFGVXfQuNN7BC1GUE6RJT8US6y2XPmUnhODXivj6Px3LXXBN_YSR-EtvT8x1pwc1cREv-kzLtdqKjNVj1LiTb73X-HpZc-QHenvok-Ud4OK_pmvDMzBDmvGGWdFuzugfEOtZUrHSVzq9bdKRx-NL99ZVY94yQ8H8Y4RAHDDqjLiot3lbNusg368oziQazml1ZRtiRtnZMe36TT3BxdPh7chz6PguhRf-pCSPLCyeVHAmJ_o3O8QwmdIwL2RV6RGQ2OnVGaHL9lOUyN1qmguKniYritODxZ1guq9J9BTY2CSoXzzSGiqS01TwyFCgxhmt0tcYB_BjedWY9CTn1wrjJumR4LDNUTEaKyZQIYGcuPOu5N_4vtjkoLfML8C57MpcAvs2HcelQPkTjK25JBidK9PajV2TQX8L9IpYygC-9HcyfBXd2HBYqAPHCQuYCRN39cqS8uuwovBNiX43xzu-DLT179MUprr8-xQ14R4IdDlNtwnJTt24LfaXGbHcLAn_lJNqGlYPDs_Nf-G-STh4BzigaYA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQS9IN4EChipvSCFOm_7gBCPVlvaXVWolXoLtuPQViVZ0kSoJ_4Rv5GZPLYti3rrbSWPV3HmczyexzcAa9LLcp5T2Ye1wiWLwBUKsRxZFRkdap7HVO88mcbjg_DLYXS4BH-GWhhKqxy-ie2HOisN-cg3PCFjvEwhYN7PfrrUNYqiq0MLjQ4WO_b8F17Zzt5tf0b9rvv-1ub-p7HbdxVwDVoLtesZnlshhZ8IPM1VhjeORAUIW5srn6hbVGx1osjQkYaLTCsRJ-QtjKQXxDkP8H9vwXIY4FVmBMsfN6d7Xy9ofrnoWDrJASh93lcE8kBs6BNiTPSSt8QvdfkMXDBsF_Mz_wnStmff1j242xut7EOHsvuwZIsHcHvSh-Ufwu-9in5TBjXTlOVeM0NoqljVpeBaVpessKXKTho03XH4yP7oa7_OGeXef2eU-ThkvTPq29LgtHLW-tpZWxBKxJvl7NgwylZpKstUz6jyCA5uRAePYVSUhX0KLNQRwglvUZrKspRR3NPkmtGaKzTuQgfeDO86NT3tOXXfOE3b8HsgUlRMSopJZeLA2lx41rF9_F9sdVBa2m_5s_QCoA68ng_jZqUIjMJX3JAMLpQI9f1rZNBCwxMqEMKBJx0O5s-CtgQOJ9KB5ApC5gJEFn51pDg-aknDI-J7DXDm-oClS4--uMRn1y_xFdwZ7092093t6c5zWKFJbRaoXIVRXTX2BVpqtX7Zbw8G3256R_4FAORTbQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKqFeqr5JS1tXgkuldJ1kE9uHCiHoCkpBHIq0t9ROnAJqk21IVHHq_-qvYyZxFuhW3LitZHsVZ76Jx_P4BmBdBXnBCyr7sFb6ZBH4UiOWY6vjzIwNLxKqdz44THaPx5-n8XQJ_g61MJRWOXwTuw91XmXkIx8FUiV4mULAjAqXFnG0M9mc_fKpgxRFWod2Gj1E9u3Fb7y-nX_c20FZb4Th5NPX7V3fdRjwM7QcGj_IeGGlkqGQeLLrHG8fQkcIYVvokGhcdGKN0GT0qIzL3GiZCPIcxiqIkoJH-L_34L6I4oB0TEzFFeEvlz1fJ7kCVchdbSCP5MicEXdiID4Q09T103DBxF3M1PwnXNudgpNH8NCZr2yrx9tjWLLlE1g5cAH6p_DnqKbflEvNDOW7NywjXNWs7pNxLWsqVtpK52ctGvE4fGJ_uiqwC0ZZ-N8Z5UAO-e-MOri0uKyadV531pWGEgVnNTvNGAmorS3TjlvlGRzfiQSew3JZlXYV2NjECCy8Txkq0NKZ5oEhJ40xXKOZN_bg_fCu08wRoFMfjh9pF4iPZIqCSUkwqRIerM8nz3rej_9PWxuEljrlP0-voOrBu_kwqi3FYjS-4pbm4EaJWj-8ZQ7aanhWRVJ68KLHwfxZ0KrAYaE8EDcQMp9AtOE3R8rTk44-PCbm1whXbgxYuvboi1t8efsW38IK6mH6Ze9w_xU8oDVdOqhag-Wmbu1rNNka86bTDQbf7loZLwHpglY9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+breast+cancer+response+to+neoadjuvant+chemotherapy+using+pretreatment+diffuse+optical+spectroscopic+texture+analysis&rft.jtitle=British+journal+of+cancer&rft.au=Tran%2C+William+T&rft.au=Gangeh%2C+Mehrdad+J&rft.au=Sannachi%2C+Lakshmanan&rft.au=Chin%2C+Lee&rft.date=2017-05-09&rft.pub=Nature+Publishing+Group&rft.issn=0007-0920&rft.eissn=1532-1827&rft.volume=116&rft.issue=10&rft.spage=1329&rft_id=info:doi/10.1038%2Fbjc.2017.97&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4322269915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-0920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-0920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-0920&client=summon