Predicting breast cancer response to neoadjuvant chemotherapy using pretreatment diffuse optical spectroscopic texture analysis
Background: Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC...
Saved in:
Published in | British journal of cancer Vol. 116; no. 10; pp. 1329 - 1339 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.05.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background:
Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC.
Methods:
Locally advanced breast cancer patients (
n
=37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller–Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., ‘pretreatment’) to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and
k
-nearest neighbour classifiers.
Results:
Data indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO
2
homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO
2
-homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%.
Conclusions:
This study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments. |
---|---|
AbstractList | Background:Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC.Methods:Locally advanced breast cancer patients (n=37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller-Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., 'pretreatment') to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and k-nearest neighbour classifiers.Results:Data indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO2 homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO2 -homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%.Conclusions:This study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments. Background: Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC. Methods: Locally advanced breast cancer patients (n=37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller-Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., 'pretreatment') to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and k-nearest neighbour classifiers. Results: Data indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO sub(2) homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO sub(2)-homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%. Conclusions: This study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments. Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC. Locally advanced breast cancer patients (n=37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller-Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., 'pretreatment') to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and k-nearest neighbour classifiers. Data indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO -homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%. This study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments. Background: Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC. Methods: Locally advanced breast cancer patients ( n =37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller–Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., ‘pretreatment’) to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and k -nearest neighbour classifiers. Results: Data indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO 2 homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO 2 -homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%. Conclusions: This study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments. Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC.BACKGROUNDDiffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC.Locally advanced breast cancer patients (n=37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller-Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., 'pretreatment') to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and k-nearest neighbour classifiers.METHODSLocally advanced breast cancer patients (n=37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller-Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., 'pretreatment') to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and k-nearest neighbour classifiers.Data indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO2 homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO2-homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%.RESULTSData indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO2 homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO2-homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%.This study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments.CONCLUSIONSThis study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments. |
Author | Tran, William T Slodkowska, Elzbieta Yaffe, Martin Chin, Lee Gandhi, Sonal Gangeh, Mehrdad J Bruni, Silvio G Sannachi, Lakshmanan Rastegar, Rashin Fallah Watkins, Elyse Sadeghi-Naini, Ali Curpen, Belinda Trudeau, Maureen Childs, Charmaine Czarnota, Gregory J |
Author_xml | – sequence: 1 givenname: William T surname: Tran fullname: Tran, William T organization: Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Centre for Health and Social Care Research, Sheffield Hallam University – sequence: 2 givenname: Mehrdad J surname: Gangeh fullname: Gangeh, Mehrdad J organization: Department of Radiation Oncology, Sunnybrook Health Sciences Centre – sequence: 3 givenname: Lakshmanan surname: Sannachi fullname: Sannachi, Lakshmanan organization: Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Department of Medical Biophysics, University of Toronto – sequence: 4 givenname: Lee surname: Chin fullname: Chin, Lee organization: Department of Radiation Oncology, Sunnybrook Health Sciences Centre – sequence: 5 givenname: Elyse surname: Watkins fullname: Watkins, Elyse organization: Department of Radiation Oncology, Sunnybrook Health Sciences Centre – sequence: 6 givenname: Silvio G surname: Bruni fullname: Bruni, Silvio G organization: Department of Medical Imaging, Sunnybrook Hospital – sequence: 7 givenname: Rashin Fallah surname: Rastegar fullname: Rastegar, Rashin Fallah organization: Department of Medical Imaging, Sunnybrook Hospital – sequence: 8 givenname: Belinda surname: Curpen fullname: Curpen, Belinda organization: Department of Medical Imaging, Sunnybrook Hospital – sequence: 9 givenname: Maureen surname: Trudeau fullname: Trudeau, Maureen organization: Division of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre – sequence: 10 givenname: Sonal surname: Gandhi fullname: Gandhi, Sonal organization: Division of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre – sequence: 11 givenname: Martin surname: Yaffe fullname: Yaffe, Martin organization: Physical Sciences Platform, Sunnybrook Research Institute – sequence: 12 givenname: Elzbieta surname: Slodkowska fullname: Slodkowska, Elzbieta organization: Department of Anatomic Pathology, Sunnybrook Health Sciences Centre – sequence: 13 givenname: Charmaine surname: Childs fullname: Childs, Charmaine organization: Centre for Health and Social Care Research, Sheffield Hallam University – sequence: 14 givenname: Ali surname: Sadeghi-Naini fullname: Sadeghi-Naini, Ali organization: Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Department of Medical Biophysics, University of Toronto, Physical Sciences Platform, Sunnybrook Research Institute, Department of Radiation Oncology, University of Toronto – sequence: 15 givenname: Gregory J surname: Czarnota fullname: Czarnota, Gregory J email: gregory.czarnota@sunnybrook.ca organization: Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Department of Medical Biophysics, University of Toronto, Physical Sciences Platform, Sunnybrook Research Institute, Department of Radiation Oncology, University of Toronto |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28419079$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v1DAQxS1URLeFE3cUiQsSZPHHJrYvSKjiS6oEBzhbjjPZ9SqJg-1U7Kn_eifaUpUKxMmy5vfGb57njJyMYQRCnjO6ZlSot83erTllcq3lI7JileAlU1yekBWlVJZUc3pKzlLa41VTJZ-QU642TFOpV-T6W4TWu-zHbdFEsCkXzo4OYhEhTWFMUORQjBBsu5-v7IjlHQwh7yDa6VDMaRFOETJq8wBYb33XzSgLU_bO9kWawOUYkguTd0WGX3mOUNjR9ofk01PyuLN9gme35zn58fHD94vP5eXXT18u3l-WrtpUuWSOdqA0jqVqVtmWKy2tUJJCZ7niQtoaGmmruqq1o6ptrKplQ5moNBN1R8U5eXfsO83NAK1Dp9H2Zop-sPFggvXmz8rod2Ybrky1wUeFxgavbhvE8HOGlM3gk4O-txjOnAzmyWTNhVL_RxW6lxXdcERfPkD3YY6YzULpWgnJdI3Ui_vm71z__kYEXh8Bh0GnCN0dwqhZlsTgkphlSYyWSLMHtPPZZh-WyX3_D82boyZh53EL8Z7Rv-A3QbDRSA |
CODEN | BJCAAI |
CitedBy_id | crossref_primary_10_1111_cbdd_14164 crossref_primary_10_1371_journal_pone_0236182 crossref_primary_10_1038_s41598_023_33358_x crossref_primary_10_18632_oncotarget_27867 crossref_primary_10_37349_etat_2023_00153 crossref_primary_10_3389_fonc_2024_1359148 crossref_primary_10_1002_mp_16574 crossref_primary_10_1007_s12094_017_1745_8 crossref_primary_10_1038_s41598_019_56185_5 crossref_primary_10_1158_1078_0432_CCR_18_3190 crossref_primary_10_18632_oncotarget_26996 crossref_primary_10_1186_s12967_021_03020_z crossref_primary_10_1016_j_jmir_2023_04_001 crossref_primary_10_1158_1078_0432_CCR_20_1108 crossref_primary_10_1007_s10549_021_06239_y crossref_primary_10_1016_j_radonc_2018_11_007 crossref_primary_10_1038_s41598_021_01024_9 crossref_primary_10_1186_s12885_024_13049_0 crossref_primary_10_1016_j_tranon_2021_101183 crossref_primary_10_1002_cjp2_314 crossref_primary_10_1016_j_eswa_2023_121081 crossref_primary_10_1038_s41598_020_67823_8 crossref_primary_10_1097_MNM_0000000000001543 crossref_primary_10_3390_tomography11030033 crossref_primary_10_1186_s13058_023_01607_6 crossref_primary_10_1016_j_clispe_2023_100027 crossref_primary_10_1097_MD_0000000000012683 crossref_primary_10_1117_1_JBO_29_7_076007 crossref_primary_10_1364_BOE_527968 crossref_primary_10_2174_1389450119666180809122244 crossref_primary_10_1364_BOE_532052 crossref_primary_10_1007_s11831_025_10255_2 crossref_primary_10_1021_acsnano_9b03335 |
Cites_doi | 10.1016/j.semradonc.2009.05.006 10.1158/1078-0432.CCR-14-1415 10.1016/j.crad.2004.07.008 10.1117/1.429979 10.1158/1078-0432.CCR-14-0736 10.1016/j.acra.2005.03.069 10.1097/00000658-200209000-00006 10.18632/oncotarget.1950 10.3322/caac.21235 10.1038/bjc.2013.660 10.1111/j.1549-8719.2000.tb00138.x 10.1053/sonc.2002.37263 10.1118/1.4931603 10.1002/mrm.10496 10.1117/1.1629681 10.1126/science.2108497 10.1016/j.suc.2007.01.012 10.1073/pnas.1013103108 10.1002/nbm.3132 10.1200/JCO.2011.38.8595 10.1109/TSMC.1973.4309314 10.1118/1.4747526 10.1038/modpathol.2015.74 10.1073/pnas.0611058104 10.1016/0730-725X(93)90205-R 10.1007/s00259-012-2247-0 10.1088/0031-9155/40/5/009 10.1038/nrclinonc.2016.162 10.1098/rsta.2011.0279 10.1016/j.ejca.2008.10.026 10.1158/0008-5472.CAN-12-0056 10.1016/j.acra.2005.05.006 10.1109/34.824819 10.1117/1.2337546 10.1016/j.ejso.2008.03.015 10.1586/17434440.4.1.83 10.1093/jnci/93.4.266 10.1002/mrm.21347 10.1634/theoncologist.8-6-521 10.1093/jnci/djm135 10.1002/jmri.23971 10.1016/S0960-9776(03)00106-1 10.1136/amiajnl-2012-001460 10.1186/bcr1358 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Nature Publishing Group May 9, 2017 Copyright © 2017 Cancer Research UK 2017 Cancer Research UK |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group May 9, 2017 – notice: Copyright © 2017 Cancer Research UK 2017 Cancer Research UK |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TO 7U9 7X7 7XB 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AN0 AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1038/bjc.2017.97 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Proquest Nursing & Allied Health Source Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland British Nursing Database (Proquest) ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Natural Science Collection (ProQuest) ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition British Nursing Index with Full Text ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student Oncogenes and Growth Factors Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Predicting chemotherapy response using DOS texture |
EISSN | 1532-1827 |
EndPage | 1339 |
ExternalDocumentID | PMC5482739 4322269915 28419079 10_1038_bjc_2017_97 |
Genre | Journal Article |
GeographicLocations | United Kingdom--UK Toronto Ontario Canada Canada |
GeographicLocations_xml | – name: United Kingdom--UK – name: Canada – name: Toronto Ontario Canada |
GroupedDBID | --- -Q- 0R~ 23N 36B 39C 3V. 4.4 406 53G 5GY 5RE 6J9 70F 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8R4 8R5 AACDK AANZL AASML AATNV AAWTL AAYZH AAZLF ABAKF ABLJU ABOCM ABUWG ABZZP ACAOD ACGFO ACGFS ACKTT ACPRK ACRQY ACZOJ ADBBV ADFRT ADHDB AEFQL AEJRE AEMSY AENEX AEVLU AEXYK AFBBN AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AIGIU AILAN AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMYLF AN0 AOIJS ASPBG AVWKF AXYYD AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKKNO BNQBC BPHCQ BVXVI C6C CCPQU CS3 DIK DNIVK DPUIP DU5 E3Z EAP EBLON EBS EE. EIOEI EJD EMB ESX EX3 F5P FDQFY FEDTE FERAY FIGPU FIZPM FRJ FSGXE FYUFA GX1 HCIFZ HMCUK HVGLF HYE HZ~ IH2 IWAJR JSO JZLTJ KQ8 M1P M7P NAO NAPCQ NQJWS O9- OK1 P2P PQQKQ PROAC PSQYO Q2X RNT RNTTT ROL RPM SNX SNYQT SOHCF SOJ SRMVM SWTZT TAOOD TBHMF TDRGL TR2 UKHRP W2D WH7 WOW ~02 AAFWJ AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7TO 7U9 7XB 8FE 8FH 8FK ABRTQ AZQEC DWQXO GNUQQ H94 K9. LK8 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c545t-1c0fe898278615ad2897a3870efa28237a6eb7a56569c08dba867b01359136f03 |
IEDL.DBID | 7X7 |
ISSN | 0007-0920 1532-1827 |
IngestDate | Thu Aug 21 18:22:18 EDT 2025 Fri Jul 11 00:10:40 EDT 2025 Thu Jul 10 23:22:28 EDT 2025 Fri Jul 25 08:50:01 EDT 2025 Thu Apr 03 06:58:36 EDT 2025 Thu Apr 24 23:04:00 EDT 2025 Tue Jul 01 01:29:45 EDT 2025 Fri Feb 21 02:39:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | imaging biomarkers diffuse optical spectroscopy imaging breast cancer |
Language | English |
License | From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c545t-1c0fe898278615ad2897a3870efa28237a6eb7a56569c08dba867b01359136f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/bjc.2017.97 |
PMID | 28419079 |
PQID | 1896837196 |
PQPubID | 41855 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5482739 proquest_miscellaneous_1901762388 proquest_miscellaneous_1889775042 proquest_journals_1896837196 pubmed_primary_28419079 crossref_primary_10_1038_bjc_2017_97 crossref_citationtrail_10_1038_bjc_2017_97 springer_journals_10_1038_bjc_2017_97 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-09 |
PublicationDateYYYYMMDD | 2017-05-09 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | British journal of cancer |
PublicationTitleAbbrev | Br J Cancer |
PublicationTitleAlternate | Br J Cancer |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Cerussi, Tanamai, Hsiang, Butler, Mehta, Tromberg (CR6) 2011; 369 Sadeghi-Naini, Vorauer, Chin, Falou, Tran, Wright, Gandhi, Yaffe, Czarnota (CR37) 2015; 42 Tredan, Galmarini, Patel, Tannock (CR42) 2007; 99 O’Connor, Aboagye, Adams, Aerts, Barrington, Beer, Boellaard, Bohndiek, Brady, Brown, Buckley, Chenevert, Clarke, Collette, Cook, Desouza, Dickson, Dive, Evelhoch, Faivre-Finn, Gallagher, Gilbert, Gillies, Goh, Griffiths, Groves, Halligan, Harris, Hawkes, Hoekstra, Huang, Hutton, Jackson, Jayson, Jones, Koh, Lacombe, Lambin, Lassau, Leach, Lee, Leen, Lewis, Liu, Lythgoe, Manoharan, Maxwell, Miles, Morgan, Morris, Ng, Padhani, Parker, Partridge, Pathak, Peet, Punwani, Reynolds, Robinson, Shankar, Sharma, Soloviev, Stroobants, Sullivan, Taylor, Tofts, Tozer, Van Herk, Walker-Samuel, Wason, Williams, Workman, Yankeelov, Brindle, Mcshane, Jackson, Waterton (CR32) 2017; 14 Roblyer, Ueda, Cerussi, Tanamai, Durkin, Mehta, Hsiang, Butler, Mclaren, Chen, Tromberg (CR35) 2011; 108 Yang, Tridandapani, Beitler, Yu, Yoshida, Curran, Liu (CR48) 2012; 39 Desantis, Lin, Mariotto, Siegel, Stein, Kramer, Alteri, Robbins, Jemal (CR10) 2014; 64 Jain, Duin, Mao (CR23) 2000; 22 Chicklore, Goh, Siddique, Roy, Marsden, COOK (CR8) 2013; 40 Mathew, Asgeirsson, Cheung, Chan, Dahda, Robertson (CR29) 2009; 35 Mourant, Canpolat, Brocker, Esponda-Ramos, Johnson, Matanock, Stetter, Freyer (CR30) 2000; 5 Teruel, Heldahl, Goa, Pickles, Lundgren, Bathen, Gibbs (CR41) 2014; 27 Sadeghi-Naini, Sannachi, Pritchard, Trudeau, Gandhi, Wright, Zubovits, Yaffe, Kolios, Czarnota (CR36) 2014; 5 CR31 Chen, Giger, Li, Bick, Newstead (CR7) 2007; 58 Cerussi, Shah, Hsiang, Durkin, Butler, Tromberg (CR5) 2006; 11 Li, Giger, Olopade, Margolis, Lan, Chinander (CR28) 2005; 12 Haralick, Shanmugam, Dinstein (CR20) 1973; 3 Jakubowski, Cerussi, Bevilacqua, Shah, Hsiang, Butler, Tromberg (CR24) 2004; 9 de Winter (CR9) 2013; 18 Xu, Povoski (CR47) 2007; 4 Siegel, Castellan (CR39) 1988 Lerski, Straughan, Schad, Boyce, Bluml, Zuna (CR27) 1993; 11 Tromberg, Cerussi, Shah, Compton, Durkin, Hsiang, Butler, Mehta (CR43) 2005; 7 Ahmed, Gibbs, Pickles, Turnbull (CR1) 2013; 38 Duda, Hart, Stork (CR11) 2001 Eisenhauer, Therasse, Bogaerts, Schwartz, Sargent, Ford, Dancey, Arbuck, Gwyther, Mooney, Rubinstein, SHANKAR, DODD, KAPLAN, Lacombe, Verweij (CR12) 2009; 45 Lee, Newman (CR26) 2007; 87 Giordano (CR17) 2003; 8 Teicher, Herman, Holden, Wang, Pfeffer, Crawford, Frei (CR40) 1990; 247 Hockel, Vaupel (CR21) 2001; 93 Gupta, Undrill (CR19) 1995; 40 Schaafsma, Van De Giessen, Charehbili, Smit, Kroep, Lelieveldt, Liefers, Chan, Lowik, Dijkstra, Van De Velde, Wasser, Vahrmeijer (CR38) 2015; 21 Ueda, Roblyer, Cerussi, Durkin, Leproux, Santoro, Xu, O'Sullivan, Hsiang, Mehta, Butler, Tromberg (CR44) 2012; 72 Golden, Lipson, Telli, Ford, Rubin (CR18) 2013; 20 Folkman (CR14) 2002; 29 Castellano, Bonilha, Li, Cendes (CR3) 2004; 59 Intes (CR22) 2005; 12 Evans, Armstrong, Whelehan, Thomson, Rauchhaus, Purdie, Jordan, Jones, Thompson, Vinnicombe (CR13) 2013; 109 Whitman, Strom (CR46) 2009; 19 von Minckwitz, Untch, Blohmer, Costa, Eidtmann, Fasching, Gerber, Eiermann, Hilfrich, Huober, Jackisch, Kaufmann, Konecny, Denkert, Nekljudova, Mehta, Loibl (CR45) 2012; 30 Ogston, Miller, Payne, Hutcheon, Sarkar, Smith, Schofield, Heys (CR33) 2003; 12 Galmarini, Galmarini, Sarchi, Abulafia, Galmarini (CR15) 2000; 7 Cerussi, Hsiang, Shah, Mehta, Durkin, Butler, Tromberg (CR4) 2007; 104 Cance, Carey, Calvo, Sartor, Sawyer, Moore, Rosenman, Ollila, Graham (CR2) 2002; 236 Gibbs, Turnbull (CR16) 2003; 50 Jiang, Pogue, Kaufman, Gui, Jermyn, Frazee, Poplack, Diflorio-Alexander, Wells, Paulsen (CR25) 2014; 20 Provenzano, Bossuyt, Viale, Cameron, Badve, Denkert, Macgrogan, Penault-Llorca, Boughey, Curigliano, Dixon, Esserman, Fastner, Kuehn, Peintinger, von Minckwitz, White, Yang, Symmans (CR34) 2015; 28 RO Duda (BFbjc201797_CR11) 2001 MC Lee (BFbjc201797_CR26) 2007; 87 CE Desantis (BFbjc201797_CR10) 2014; 64 P Gibbs (BFbjc201797_CR16) 2003; 50 S Jiang (BFbjc201797_CR25) 2014; 20 JR Teruel (BFbjc201797_CR41) 2014; 27 BA Teicher (BFbjc201797_CR40) 1990; 247 AK Jain (BFbjc201797_CR23) 2000; 22 WG Cance (BFbjc201797_CR2) 2002; 236 BJ Tromberg (BFbjc201797_CR43) 2005; 7 S Chicklore (BFbjc201797_CR8) 2013; 40 X Yang (BFbjc201797_CR48) 2012; 39 R Gupta (BFbjc201797_CR19) 1995; 40 O Tredan (BFbjc201797_CR42) 2007; 99 A Evans (BFbjc201797_CR13) 2013; 109 KN Ogston (BFbjc201797_CR33) 2003; 12 A Cerussi (BFbjc201797_CR5) 2006; 11 M Hockel (BFbjc201797_CR21) 2001; 93 JCF de Winter (BFbjc201797_CR9) 2013; 18 G von Minckwitz (BFbjc201797_CR45) 2012; 30 EA Eisenhauer (BFbjc201797_CR12) 2009; 45 DI Golden (BFbjc201797_CR18) 2013; 20 DB Jakubowski (BFbjc201797_CR24) 2004; 9 FC Galmarini (BFbjc201797_CR15) 2000; 7 BE Schaafsma (BFbjc201797_CR38) 2015; 21 A Sadeghi-Naini (BFbjc201797_CR36) 2014; 5 GJ Whitman (BFbjc201797_CR46) 2009; 19 A Cerussi (BFbjc201797_CR4) 2007; 104 RA Lerski (BFbjc201797_CR27) 1993; 11 H Li (BFbjc201797_CR28) 2005; 12 JP O’Connor (BFbjc201797_CR32) 2017; 14 D Roblyer (BFbjc201797_CR35) 2011; 108 AE Cerussi (BFbjc201797_CR6) 2011; 369 BFbjc201797_CR31 J Mathew (BFbjc201797_CR29) 2009; 35 G Castellano (BFbjc201797_CR3) 2004; 59 J Folkman (BFbjc201797_CR14) 2002; 29 RX Xu (BFbjc201797_CR47) 2007; 4 RM Haralick (BFbjc201797_CR20) 1973; 3 A Ahmed (BFbjc201797_CR1) 2013; 38 JR Mourant (BFbjc201797_CR30) 2000; 5 W Chen (BFbjc201797_CR7) 2007; 58 X Intes (BFbjc201797_CR22) 2005; 12 A Sadeghi-Naini (BFbjc201797_CR37) 2015; 42 S Ueda (BFbjc201797_CR44) 2012; 72 E Provenzano (BFbjc201797_CR34) 2015; 28 S Siegel (BFbjc201797_CR39) 1988 SH Giordano (BFbjc201797_CR17) 2003; 8 |
References_xml | – volume: 19 start-page: 211 year: 2009 end-page: 221 ident: CR46 article-title: Workup and staging of locally advanced breast cancer publication-title: Semin Radiat Oncol doi: 10.1016/j.semradonc.2009.05.006 – volume: 20 start-page: 6006 year: 2014 end-page: 6015 ident: CR25 article-title: Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-1415 – year: 1988 ident: CR39 publication-title: Nonparametric Statistics for the Behavioral Sciences – volume: 59 start-page: 1061 year: 2004 end-page: 1069 ident: CR3 article-title: Texture analysis of medical images publication-title: Clin Radiol doi: 10.1016/j.crad.2004.07.008 – volume: 5 start-page: 131 year: 2000 end-page: 137 ident: CR30 article-title: Light scattering from cells: the contribution of the nucleus and the effects of proliferative status publication-title: J Biomed Opt doi: 10.1117/1.429979 – volume: 21 start-page: 577 year: 2015 end-page: 584 ident: CR38 article-title: Optical mammography using diffuse optical spectroscopy for monitoring tumor response to neoadjuvant chemotherapy in women with locally advanced breast cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-0736 – volume: 12 start-page: 863 year: 2005 end-page: 873 ident: CR28 article-title: Computerized texture analysis of mammographic parenchymal patterns of digitized mammograms publication-title: Acad Radiol doi: 10.1016/j.acra.2005.03.069 – volume: 236 start-page: 295 year: 2002 end-page: 302 ident: CR2 article-title: Long-term outcome of neoadjuvant therapy for locally advanced breast carcinoma: effective clinical downstaging allows breast preservation and predicts outstanding local control and survival publication-title: Ann Surg doi: 10.1097/00000658-200209000-00006 – volume: 5 start-page: 3497 year: 2014 end-page: 3511 ident: CR36 article-title: Early prediction of therapy responses and outcomes in breast cancer patients using quantitative ultrasound spectral texture publication-title: Oncotarget doi: 10.18632/oncotarget.1950 – volume: 64 start-page: 252 year: 2014 end-page: 271 ident: CR10 article-title: Cancer treatment and survivorship statistics, 2014 publication-title: CA Cancer J Clin doi: 10.3322/caac.21235 – volume: 109 start-page: 2798 year: 2013 end-page: 2802 ident: CR13 article-title: Can shear-wave elastography predict response to neoadjuvant chemotherapy in women with invasive breast cancer? publication-title: Br J Cancer doi: 10.1038/bjc.2013.660 – volume: 7 start-page: 405 year: 2000 end-page: 410 ident: CR15 article-title: Heterogeneous distribution of tumor blood supply affects the response to chemotherapy in patients with head and neck cancer publication-title: Microcirculation doi: 10.1111/j.1549-8719.2000.tb00138.x – volume: 29 start-page: 15 year: 2002 end-page: 18 ident: CR14 article-title: Role of angiogenesis in tumor growth and metastasis publication-title: Semin Oncol doi: 10.1053/sonc.2002.37263 – volume: 42 start-page: 6130 year: 2015 end-page: 6146 ident: CR37 article-title: Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images publication-title: Med Phys doi: 10.1118/1.4931603 – volume: 50 start-page: 92 year: 2003 end-page: 98 ident: CR16 article-title: Textural analysis of contrast-enhanced MR images of the breast publication-title: Magn Reson Med doi: 10.1002/mrm.10496 – volume: 9 start-page: 230 year: 2004 end-page: 238 ident: CR24 article-title: Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study publication-title: J Biomed Opt doi: 10.1117/1.1629681 – volume: 18 start-page: 1 year: 2013 end-page: 10 ident: CR9 article-title: Using the Student's -test with extremely small sample sizes publication-title: Pract Assess Res Eval – volume: 247 start-page: 1457 year: 1990 end-page: 1461 ident: CR40 article-title: Tumor resistance to alkylating agents conferred by mechanisms operative only publication-title: Science doi: 10.1126/science.2108497 – volume: 87 start-page: 379 year: 2007 end-page: 398 ident: CR26 article-title: Management of patients with locally advanced breast cancer publication-title: Surg Clin North Am doi: 10.1016/j.suc.2007.01.012 – volume: 108 start-page: 14626 year: 2011 end-page: 14631 ident: CR35 article-title: Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1013103108 – volume: 27 start-page: 887 year: 2014 end-page: 896 ident: CR41 article-title: Dynamic contrast-enhanced MRI texture analysis for pretreatment prediction of clinical and pathological response to neoadjuvant chemotherapy in patients with locally advanced breast cancer publication-title: NMR Biomed doi: 10.1002/nbm.3132 – volume: 30 start-page: 1796 year: 2012 end-page: 1804 ident: CR45 article-title: Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes publication-title: J Clin Oncol doi: 10.1200/JCO.2011.38.8595 – volume: 3 start-page: 610 year: 1973 end-page: 621 ident: CR20 article-title: Textural features for image classification publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1973.4309314 – volume: 39 start-page: 5732 year: 2012 end-page: 5739 ident: CR48 article-title: Ultrasound GLCM texture analysis of radiation-induced parotid-gland injury in head-and-neck cancer radiotherapy: an study of late toxicity publication-title: Med Phys doi: 10.1118/1.4747526 – volume: 28 start-page: 1185 year: 2015 end-page: 1201 ident: CR34 article-title: Standardization of pathologic evaluation and reporting of postneoadjuvant specimens in clinical trials of breast cancer: recommendations from an International Working Group publication-title: Mod Pathol doi: 10.1038/modpathol.2015.74 – volume: 104 start-page: 4014 year: 2007 end-page: 4019 ident: CR4 article-title: Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0611058104 – volume: 11 start-page: 873 year: 1993 end-page: 887 ident: CR27 article-title: MR image texture analysis—an approach to tissue characterization publication-title: Magn Reson Imaging doi: 10.1016/0730-725X(93)90205-R – volume: 40 start-page: 133 year: 2013 end-page: 140 ident: CR8 article-title: Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-012-2247-0 – year: 2001 ident: CR11 publication-title: Pattern Classification – volume: 40 start-page: 835 year: 1995 end-page: 855 ident: CR19 article-title: The use of texture analysis to delineate suspicious masses in mammography publication-title: Phys Med Biol doi: 10.1088/0031-9155/40/5/009 – volume: 14 start-page: 169 year: 2017 end-page: 186 ident: CR32 article-title: Imaging biomarker roadmap for cancer studies publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2016.162 – volume: 369 start-page: 4512 year: 2011 end-page: 4530 ident: CR6 article-title: Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy publication-title: Philos Trans A Math Phys Eng Sci doi: 10.1098/rsta.2011.0279 – volume: 45 start-page: 228 year: 2009 end-page: 247 ident: CR12 article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) publication-title: Eur J Cancer doi: 10.1016/j.ejca.2008.10.026 – ident: CR31 – volume: 72 start-page: 4318 year: 2012 end-page: 4328 ident: CR44 article-title: Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-0056 – volume: 12 start-page: 934 year: 2005 end-page: 947 ident: CR22 article-title: Time-domain optical mammography SoftScan: initial results publication-title: Acad Radiol doi: 10.1016/j.acra.2005.05.006 – volume: 22 start-page: 4 year: 2000 end-page: 37 ident: CR23 article-title: Statistical pattern recognition: a review publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.824819 – volume: 11 start-page: 044005 year: 2006 ident: CR5 article-title: absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy publication-title: J Biomed Opt doi: 10.1117/1.2337546 – volume: 35 start-page: 113 year: 2009 end-page: 122 ident: CR29 article-title: Neoadjuvant chemotherapy for locally advanced breast cancer: a review of the literature and future directions publication-title: Eur J Surg Oncol doi: 10.1016/j.ejso.2008.03.015 – volume: 4 start-page: 83 year: 2007 end-page: 95 ident: CR47 article-title: Diffuse optical imaging and spectroscopy for cancer publication-title: Expert Rev Med Devices doi: 10.1586/17434440.4.1.83 – volume: 93 start-page: 266 year: 2001 end-page: 276 ident: CR21 article-title: Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects publication-title: J Natl Cancer Inst doi: 10.1093/jnci/93.4.266 – volume: 58 start-page: 562 year: 2007 end-page: 571 ident: CR7 article-title: Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images publication-title: Magn Reson Med doi: 10.1002/mrm.21347 – volume: 8 start-page: 521 year: 2003 end-page: 530 ident: CR17 article-title: Update on locally advanced breast cancer publication-title: Oncologist doi: 10.1634/theoncologist.8-6-521 – volume: 99 start-page: 1441 year: 2007 end-page: 1454 ident: CR42 article-title: Drug resistance and the solid tumor microenvironment publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djm135 – volume: 38 start-page: 89 year: 2013 end-page: 101 ident: CR1 article-title: Texture analysis in assessment and prediction of chemotherapy response in breast cancer publication-title: J Magn Reson Imaging doi: 10.1002/jmri.23971 – volume: 12 start-page: 320 year: 2003 end-page: 327 ident: CR33 article-title: A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival publication-title: Breast doi: 10.1016/S0960-9776(03)00106-1 – volume: 20 start-page: 1059 year: 2013 end-page: 1066 ident: CR18 article-title: Dynamic contrast-enhanced MRI-based biomarkers of therapeutic response in triple-negative breast cancer publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2012-001460 – volume: 7 start-page: 279 year: 2005 end-page: 285 ident: CR43 article-title: Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy publication-title: Breast Cancer Res doi: 10.1186/bcr1358 – volume: 109 start-page: 2798 year: 2013 ident: BFbjc201797_CR13 publication-title: Br J Cancer doi: 10.1038/bjc.2013.660 – volume: 8 start-page: 521 year: 2003 ident: BFbjc201797_CR17 publication-title: Oncologist doi: 10.1634/theoncologist.8-6-521 – volume-title: Pattern Classification year: 2001 ident: BFbjc201797_CR11 – volume: 29 start-page: 15 year: 2002 ident: BFbjc201797_CR14 publication-title: Semin Oncol doi: 10.1053/sonc.2002.37263 – volume: 236 start-page: 295 year: 2002 ident: BFbjc201797_CR2 publication-title: Ann Surg doi: 10.1097/00000658-200209000-00006 – volume: 58 start-page: 562 year: 2007 ident: BFbjc201797_CR7 publication-title: Magn Reson Med doi: 10.1002/mrm.21347 – volume: 104 start-page: 4014 year: 2007 ident: BFbjc201797_CR4 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0611058104 – ident: BFbjc201797_CR31 – volume: 12 start-page: 934 year: 2005 ident: BFbjc201797_CR22 publication-title: Acad Radiol doi: 10.1016/j.acra.2005.05.006 – volume: 20 start-page: 6006 year: 2014 ident: BFbjc201797_CR25 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-1415 – volume: 5 start-page: 131 year: 2000 ident: BFbjc201797_CR30 publication-title: J Biomed Opt doi: 10.1117/1.429979 – volume: 27 start-page: 887 year: 2014 ident: BFbjc201797_CR41 publication-title: NMR Biomed doi: 10.1002/nbm.3132 – volume: 72 start-page: 4318 year: 2012 ident: BFbjc201797_CR44 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-0056 – volume: 369 start-page: 4512 year: 2011 ident: BFbjc201797_CR6 publication-title: Philos Trans A Math Phys Eng Sci doi: 10.1098/rsta.2011.0279 – volume: 45 start-page: 228 year: 2009 ident: BFbjc201797_CR12 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2008.10.026 – volume: 11 start-page: 873 year: 1993 ident: BFbjc201797_CR27 publication-title: Magn Reson Imaging doi: 10.1016/0730-725X(93)90205-R – volume: 93 start-page: 266 year: 2001 ident: BFbjc201797_CR21 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/93.4.266 – volume: 4 start-page: 83 year: 2007 ident: BFbjc201797_CR47 publication-title: Expert Rev Med Devices doi: 10.1586/17434440.4.1.83 – volume: 9 start-page: 230 year: 2004 ident: BFbjc201797_CR24 publication-title: J Biomed Opt doi: 10.1117/1.1629681 – volume: 18 start-page: 1 year: 2013 ident: BFbjc201797_CR9 publication-title: Pract Assess Res Eval – volume: 40 start-page: 835 year: 1995 ident: BFbjc201797_CR19 publication-title: Phys Med Biol doi: 10.1088/0031-9155/40/5/009 – volume: 42 start-page: 6130 year: 2015 ident: BFbjc201797_CR37 publication-title: Med Phys doi: 10.1118/1.4931603 – volume: 22 start-page: 4 year: 2000 ident: BFbjc201797_CR23 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.824819 – volume: 87 start-page: 379 year: 2007 ident: BFbjc201797_CR26 publication-title: Surg Clin North Am doi: 10.1016/j.suc.2007.01.012 – volume: 35 start-page: 113 year: 2009 ident: BFbjc201797_CR29 publication-title: Eur J Surg Oncol doi: 10.1016/j.ejso.2008.03.015 – volume: 28 start-page: 1185 year: 2015 ident: BFbjc201797_CR34 publication-title: Mod Pathol doi: 10.1038/modpathol.2015.74 – volume: 30 start-page: 1796 year: 2012 ident: BFbjc201797_CR45 publication-title: J Clin Oncol doi: 10.1200/JCO.2011.38.8595 – volume: 108 start-page: 14626 year: 2011 ident: BFbjc201797_CR35 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1013103108 – volume: 7 start-page: 405 year: 2000 ident: BFbjc201797_CR15 publication-title: Microcirculation doi: 10.1111/j.1549-8719.2000.tb00138.x – volume: 12 start-page: 863 year: 2005 ident: BFbjc201797_CR28 publication-title: Acad Radiol doi: 10.1016/j.acra.2005.03.069 – volume: 11 start-page: 044005 year: 2006 ident: BFbjc201797_CR5 publication-title: J Biomed Opt doi: 10.1117/1.2337546 – volume: 14 start-page: 169 year: 2017 ident: BFbjc201797_CR32 publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2016.162 – volume: 64 start-page: 252 year: 2014 ident: BFbjc201797_CR10 publication-title: CA Cancer J Clin doi: 10.3322/caac.21235 – volume: 12 start-page: 320 year: 2003 ident: BFbjc201797_CR33 publication-title: Breast doi: 10.1016/S0960-9776(03)00106-1 – volume: 20 start-page: 1059 year: 2013 ident: BFbjc201797_CR18 publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2012-001460 – volume: 59 start-page: 1061 year: 2004 ident: BFbjc201797_CR3 publication-title: Clin Radiol doi: 10.1016/j.crad.2004.07.008 – volume: 21 start-page: 577 year: 2015 ident: BFbjc201797_CR38 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-0736 – volume: 38 start-page: 89 year: 2013 ident: BFbjc201797_CR1 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.23971 – volume-title: Nonparametric Statistics for the Behavioral Sciences year: 1988 ident: BFbjc201797_CR39 – volume: 40 start-page: 133 year: 2013 ident: BFbjc201797_CR8 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-012-2247-0 – volume: 99 start-page: 1441 year: 2007 ident: BFbjc201797_CR42 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djm135 – volume: 19 start-page: 211 year: 2009 ident: BFbjc201797_CR46 publication-title: Semin Radiat Oncol doi: 10.1016/j.semradonc.2009.05.006 – volume: 247 start-page: 1457 year: 1990 ident: BFbjc201797_CR40 publication-title: Science doi: 10.1126/science.2108497 – volume: 7 start-page: 279 year: 2005 ident: BFbjc201797_CR43 publication-title: Breast Cancer Res doi: 10.1186/bcr1358 – volume: 3 start-page: 610 year: 1973 ident: BFbjc201797_CR20 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1973.4309314 – volume: 39 start-page: 5732 year: 2012 ident: BFbjc201797_CR48 publication-title: Med Phys doi: 10.1118/1.4747526 – volume: 50 start-page: 92 year: 2003 ident: BFbjc201797_CR16 publication-title: Magn Reson Med doi: 10.1002/mrm.10496 – volume: 5 start-page: 3497 year: 2014 ident: BFbjc201797_CR36 publication-title: Oncotarget doi: 10.18632/oncotarget.1950 |
SSID | ssj0009087 |
Score | 2.4254498 |
Snippet | Background:
Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced... Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer... Background:Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast... Background: Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1329 |
SubjectTerms | 631/1647/527 692/53/2423 692/699/67/1059/99 692/699/67/1347 Accuracy Anthracyclines - administration & dosage Antineoplastic Combined Chemotherapy Protocols - therapeutic use Area Under Curve Biomedical and Life Sciences Biomedicine Breast cancer Breast Neoplasms - diagnostic imaging Breast Neoplasms - drug therapy Breast Neoplasms - pathology Bridged-Ring Compounds - administration & dosage Cancer Research Cancer therapies Carcinoma, Ductal, Breast - diagnostic imaging Carcinoma, Ductal, Breast - drug therapy Carcinoma, Ductal, Breast - pathology Carcinoma, Lobular - drug therapy Carcinoma, Lobular - pathology Chemotherapy Chemotherapy, Adjuvant Drug Resistance Epidemiology Female Health sciences Hemoglobin Hemoglobins - metabolism Humans Magnetic resonance imaging Mammography Medical imaging Medical research Middle Aged Molecular Medicine Neoadjuvant Therapy Oncology Oxygen - metabolism Predictive Value of Tests Radiation ROC Curve Spectrum Analysis Taxoids - administration & dosage Tomography, Optical - methods Translational Therapeutics Trastuzumab - administration & dosage Tumor Burden Tumors |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58gHgR39YXEdaLUE232yY5yqKIsOJBwVtJuqkPtF12uwdP_nVn2nR1XRFvhUwgzUySL8k3XwBaKuhnPKO0D2ulT4jAlxpjObI6Sk3H8CymfOfeTXx137l-iB6czvbI0SprSctqmm7YYWfmhfQGA3GqxDwskmY7hXM37n4p7HJZC2TS2Ztqc5eMx0P5vfL08jODKWepkT_uR6tl53IVVhxeZOd1C9dgzubrsNRzN-Ib8HE7pG8iLzNDBPOSpeTIIRvW7FfLyoLlttD9lzGiZix-sm8u7eqdEe39kRHpsCGcM3oyZYzVikF1zM2qXEzSvCwGzykjogh2G9NOzGQT7i8v7rpXvntUwU8RLJV-kPLMSiXbQiKY0X3ccAkd4qi1mW6Tco2OrRGacJ5KuewbLWNBh6WRCsI44-EWLORFbneAdUyEnsQNjKGMKJ1qHhg6FTGGa8RVHQ9Omr5OUqc4Tg9fvCbVzXcoE3RMQo5JlPCgNTEe1EIbv5vtN05L3GgbJYFUMW60cTLx4GhSjOOELj80dvGYbPBHScu-_YcNgiNcHEIpPdiu42DSFlzGsVgoD8RUhEwMSKd7uiR_fqr0uiOSWg2x5nETS9-aPvuLu_-024Nl-qrYl2ofFsrh2B4gQirNYTUyPgG_6BJw priority: 102 providerName: Springer Nature |
Title | Predicting breast cancer response to neoadjuvant chemotherapy using pretreatment diffuse optical spectroscopic texture analysis |
URI | https://link.springer.com/article/10.1038/bjc.2017.97 https://www.ncbi.nlm.nih.gov/pubmed/28419079 https://www.proquest.com/docview/1896837196 https://www.proquest.com/docview/1889775042 https://www.proquest.com/docview/1901762388 https://pubmed.ncbi.nlm.nih.gov/PMC5482739 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-QwEB88heNexPuuX-TAeznomW63TfIkuigiKHKcsG8lSdNT8dq1tg8--a8706ar3h6-LF0yhaYzaSYzv_kNwI6K8oIXVPbhnAzJIwilRltOnE6sGRtepFTvfHqWHl-MT6bJ1Afc7jyscvgmdh_qvLIUI9-NpErxMIUGsze7DalrFGVXfQuNN7BC1GUE6RJT8US6y2XPmUnhODXivj6Px3LXXBN_YSR-EtvT8x1pwc1cREv-kzLtdqKjNVj1LiTb73X-HpZc-QHenvok-Ud4OK_pmvDMzBDmvGGWdFuzugfEOtZUrHSVzq9bdKRx-NL99ZVY94yQ8H8Y4RAHDDqjLiot3lbNusg368oziQazml1ZRtiRtnZMe36TT3BxdPh7chz6PguhRf-pCSPLCyeVHAmJ_o3O8QwmdIwL2RV6RGQ2OnVGaHL9lOUyN1qmguKniYritODxZ1guq9J9BTY2CSoXzzSGiqS01TwyFCgxhmt0tcYB_BjedWY9CTn1wrjJumR4LDNUTEaKyZQIYGcuPOu5N_4vtjkoLfML8C57MpcAvs2HcelQPkTjK25JBidK9PajV2TQX8L9IpYygC-9HcyfBXd2HBYqAPHCQuYCRN39cqS8uuwovBNiX43xzu-DLT179MUprr8-xQ14R4IdDlNtwnJTt24LfaXGbHcLAn_lJNqGlYPDs_Nf-G-STh4BzigaYA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQS9IN4EChipvSCFOm_7gBCPVlvaXVWolXoLtuPQViVZ0kSoJ_4Rv5GZPLYti3rrbSWPV3HmczyexzcAa9LLcp5T2Ye1wiWLwBUKsRxZFRkdap7HVO88mcbjg_DLYXS4BH-GWhhKqxy-ie2HOisN-cg3PCFjvEwhYN7PfrrUNYqiq0MLjQ4WO_b8F17Zzt5tf0b9rvv-1ub-p7HbdxVwDVoLtesZnlshhZ8IPM1VhjeORAUIW5srn6hbVGx1osjQkYaLTCsRJ-QtjKQXxDkP8H9vwXIY4FVmBMsfN6d7Xy9ofrnoWDrJASh93lcE8kBs6BNiTPSSt8QvdfkMXDBsF_Mz_wnStmff1j242xut7EOHsvuwZIsHcHvSh-Ufwu-9in5TBjXTlOVeM0NoqljVpeBaVpessKXKTho03XH4yP7oa7_OGeXef2eU-ThkvTPq29LgtHLW-tpZWxBKxJvl7NgwylZpKstUz6jyCA5uRAePYVSUhX0KLNQRwglvUZrKspRR3NPkmtGaKzTuQgfeDO86NT3tOXXfOE3b8HsgUlRMSopJZeLA2lx41rF9_F9sdVBa2m_5s_QCoA68ng_jZqUIjMJX3JAMLpQI9f1rZNBCwxMqEMKBJx0O5s-CtgQOJ9KB5ApC5gJEFn51pDg-aknDI-J7DXDm-oClS4--uMRn1y_xFdwZ7092093t6c5zWKFJbRaoXIVRXTX2BVpqtX7Zbw8G3256R_4FAORTbQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKqFeqr5JS1tXgkuldJ1kE9uHCiHoCkpBHIq0t9ROnAJqk21IVHHq_-qvYyZxFuhW3LitZHsVZ76Jx_P4BmBdBXnBCyr7sFb6ZBH4UiOWY6vjzIwNLxKqdz44THaPx5-n8XQJ_g61MJRWOXwTuw91XmXkIx8FUiV4mULAjAqXFnG0M9mc_fKpgxRFWod2Gj1E9u3Fb7y-nX_c20FZb4Th5NPX7V3fdRjwM7QcGj_IeGGlkqGQeLLrHG8fQkcIYVvokGhcdGKN0GT0qIzL3GiZCPIcxiqIkoJH-L_34L6I4oB0TEzFFeEvlz1fJ7kCVchdbSCP5MicEXdiID4Q09T103DBxF3M1PwnXNudgpNH8NCZr2yrx9tjWLLlE1g5cAH6p_DnqKbflEvNDOW7NywjXNWs7pNxLWsqVtpK52ctGvE4fGJ_uiqwC0ZZ-N8Z5UAO-e-MOri0uKyadV531pWGEgVnNTvNGAmorS3TjlvlGRzfiQSew3JZlXYV2NjECCy8Txkq0NKZ5oEhJ40xXKOZN_bg_fCu08wRoFMfjh9pF4iPZIqCSUkwqRIerM8nz3rej_9PWxuEljrlP0-voOrBu_kwqi3FYjS-4pbm4EaJWj-8ZQ7aanhWRVJ68KLHwfxZ0KrAYaE8EDcQMp9AtOE3R8rTk44-PCbm1whXbgxYuvboi1t8efsW38IK6mH6Ze9w_xU8oDVdOqhag-Wmbu1rNNka86bTDQbf7loZLwHpglY9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+breast+cancer+response+to+neoadjuvant+chemotherapy+using+pretreatment+diffuse+optical+spectroscopic+texture+analysis&rft.jtitle=British+journal+of+cancer&rft.au=Tran%2C+William+T&rft.au=Gangeh%2C+Mehrdad+J&rft.au=Sannachi%2C+Lakshmanan&rft.au=Chin%2C+Lee&rft.date=2017-05-09&rft.pub=Nature+Publishing+Group&rft.issn=0007-0920&rft.eissn=1532-1827&rft.volume=116&rft.issue=10&rft.spage=1329&rft_id=info:doi/10.1038%2Fbjc.2017.97&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4322269915 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-0920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-0920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-0920&client=summon |