Joint Charge Storage for High‐Rate Aqueous Zinc–Manganese Dioxide Batteries
Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO2 have...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 29; pp. e1900567 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2019
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO2 have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ‐MnO2 cathode is reported. An electrolyte‐dependent reaction mechanism in δ‐MnO2 is identified. Nondiffusion controlled Zn2+ intercalation in bulky δ‐MnO2 and control of H+ conversion reaction pathways over a wide C‐rate charge–discharge range facilitate high rate performance of the δ‐MnO2 cathode without sacrificing the energy density in optimal electrolytes. The Zn‐δ‐MnO2 system delivers a discharge capacity of 136.9 mAh g−1 at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high‐rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries.
Rational manipulation of the charge‐storage mechanism of aqueous rechargeable Zn–MnO2 batteries is demonstrated through the use of a layered δ‐MnO2 cathode. Nondiffusion control of pseudocapacitance‐like Zn2+ intercalation in bulky δ‐MnO2, followed by control of the H+ conversion reaction pathway over a wide C‐rate charge–discharge range facilitates high rate and a long lifetime of δ‐MnO2 cathodes. |
---|---|
AbstractList | Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO2 have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ‐MnO2 cathode is reported. An electrolyte‐dependent reaction mechanism in δ‐MnO2 is identified. Nondiffusion controlled Zn2+ intercalation in bulky δ‐MnO2 and control of H+ conversion reaction pathways over a wide C‐rate charge–discharge range facilitate high rate performance of the δ‐MnO2 cathode without sacrificing the energy density in optimal electrolytes. The Zn‐δ‐MnO2 system delivers a discharge capacity of 136.9 mAh g−1 at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high‐rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries. Aqueous rechargeable zinc-manganese dioxide batteries show great promise for large-scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO2 have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ-MnO2 cathode is reported. An electrolyte-dependent reaction mechanism in δ-MnO2 is identified. Nondiffusion controlled Zn2+ intercalation in bulky δ-MnO2 and control of H+ conversion reaction pathways over a wide C-rate charge-discharge range facilitate high rate performance of the δ-MnO2 cathode without sacrificing the energy density in optimal electrolytes. The Zn-δ-MnO2 system delivers a discharge capacity of 136.9 mAh g-1 at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high-rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries.Aqueous rechargeable zinc-manganese dioxide batteries show great promise for large-scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO2 have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ-MnO2 cathode is reported. An electrolyte-dependent reaction mechanism in δ-MnO2 is identified. Nondiffusion controlled Zn2+ intercalation in bulky δ-MnO2 and control of H+ conversion reaction pathways over a wide C-rate charge-discharge range facilitate high rate performance of the δ-MnO2 cathode without sacrificing the energy density in optimal electrolytes. The Zn-δ-MnO2 system delivers a discharge capacity of 136.9 mAh g-1 at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high-rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries. Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO2 have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ‐MnO2 cathode is reported. An electrolyte‐dependent reaction mechanism in δ‐MnO2 is identified. Nondiffusion controlled Zn2+ intercalation in bulky δ‐MnO2 and control of H+ conversion reaction pathways over a wide C‐rate charge–discharge range facilitate high rate performance of the δ‐MnO2 cathode without sacrificing the energy density in optimal electrolytes. The Zn‐δ‐MnO2 system delivers a discharge capacity of 136.9 mAh g−1 at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high‐rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries. Rational manipulation of the charge‐storage mechanism of aqueous rechargeable Zn–MnO2 batteries is demonstrated through the use of a layered δ‐MnO2 cathode. Nondiffusion control of pseudocapacitance‐like Zn2+ intercalation in bulky δ‐MnO2, followed by control of the H+ conversion reaction pathway over a wide C‐rate charge–discharge range facilitates high rate and a long lifetime of δ‐MnO2 cathodes. Aqueous rechargeable zinc-manganese dioxide batteries show great promise for large-scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ-MnO cathode is reported. An electrolyte-dependent reaction mechanism in δ-MnO is identified. Nondiffusion controlled Zn intercalation in bulky δ-MnO and control of H conversion reaction pathways over a wide C-rate charge-discharge range facilitate high rate performance of the δ-MnO cathode without sacrificing the energy density in optimal electrolytes. The Zn-δ-MnO system delivers a discharge capacity of 136.9 mAh g at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high-rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries. Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO 2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO 2 have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ‐MnO 2 cathode is reported. An electrolyte‐dependent reaction mechanism in δ‐MnO 2 is identified. Nondiffusion controlled Zn 2+ intercalation in bulky δ‐MnO 2 and control of H + conversion reaction pathways over a wide C‐rate charge–discharge range facilitate high rate performance of the δ‐MnO 2 cathode without sacrificing the energy density in optimal electrolytes. The Zn‐δ‐MnO 2 system delivers a discharge capacity of 136.9 mAh g −1 at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high‐rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries. Abstract Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO 2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO 2 have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ‐MnO 2 cathode is reported. An electrolyte‐dependent reaction mechanism in δ‐MnO 2 is identified. Nondiffusion controlled Zn 2+ intercalation in bulky δ‐MnO 2 and control of H + conversion reaction pathways over a wide C‐rate charge–discharge range facilitate high rate performance of the δ‐MnO 2 cathode without sacrificing the energy density in optimal electrolytes. The Zn‐δ‐MnO 2 system delivers a discharge capacity of 136.9 mAh g −1 at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high‐rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries. |
Author | Zou, Lianfeng Zhu, Jia Han, Kee Sung Jin, Yan Shao, Yuyan Liu, Lili Patel, Rajankumar L. Pan, Huilin Engelhard, Mark H. Wang, Chongmin Liu, Jun Nie, Zimin |
Author_xml | – sequence: 1 givenname: Yan surname: Jin fullname: Jin, Yan organization: Nanjing University – sequence: 2 givenname: Lianfeng surname: Zou fullname: Zou, Lianfeng organization: Pacific Northwest National Laboratory – sequence: 3 givenname: Lili surname: Liu fullname: Liu, Lili organization: Pacific Northwest National Laboratory – sequence: 4 givenname: Mark H. surname: Engelhard fullname: Engelhard, Mark H. organization: Pacific Northwest National Laboratory – sequence: 5 givenname: Rajankumar L. surname: Patel fullname: Patel, Rajankumar L. organization: Pacific Northwest National Laboratory – sequence: 6 givenname: Zimin surname: Nie fullname: Nie, Zimin organization: Pacific Northwest National Laboratory – sequence: 7 givenname: Kee Sung surname: Han fullname: Han, Kee Sung organization: Pacific Northwest National Laboratory – sequence: 8 givenname: Yuyan surname: Shao fullname: Shao, Yuyan organization: Pacific Northwest National Laboratory – sequence: 9 givenname: Chongmin surname: Wang fullname: Wang, Chongmin organization: Pacific Northwest National Laboratory – sequence: 10 givenname: Jia surname: Zhu fullname: Zhu, Jia organization: Nanjing University – sequence: 11 givenname: Huilin surname: Pan fullname: Pan, Huilin email: huilin.pan@pnnl.gov organization: Pacific Northwest National Laboratory – sequence: 12 givenname: Jun orcidid: 0000-0001-7991-1015 surname: Liu fullname: Liu, Jun email: jun.liu@pnnl.gov organization: Pacific Northwest National Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31157468$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1545406$$D View this record in Osti.gov |
BookMark | eNqFkbFOHDEURS1EBAuhTYlG0KSZje2xvXa5WZIQBEIK0KSxPJ43u0azNrG9InR8QqT8IV8SowUiIUWpXnOOn--7O2jTBw8IvSN4TDCmH0y3NGOKicKYi8kGGhFOSc2w4ptohFXDayWY3EY7KV1jjJXAYgttN4TwCRNyhM5PgvO5mi1MnEN1kUM0ZfYhVsduvni4__XNZKimP1YQVqn67rx9uP99ZvzceEhQHbnw03VQfTQ5Q3SQ3qI3vRkS7D3NXXT1-dPl7Lg-Pf_ydTY9rS1nfFIbSUSvjLLMAOta1gnbAFhOADOQklJoZU-ZbGSvgEqKuxZaImxPpJkI1ja76GD9bkjZ6WRdBruwwXuwWZOyg2FRoPdr6CaGkiBlvXTJwjCUz5c4mtKGMSkkIQU9fIVeh1X0JUKhBBdUCKYKtf9ErdoldPomuqWJd_r5ngUYrwEbQ0oR-heEYP1YmH4sTL8UVgT2SihRTHbB52jc8G9NrbVbN8Ddf5bo6dHZ9K_7B7WXqlw |
CitedBy_id | crossref_primary_10_1002_cssc_202201034 crossref_primary_10_1002_smll_202008043 crossref_primary_10_1002_tcr_202200201 crossref_primary_10_1002_asia_202200067 crossref_primary_10_1016_j_carbpol_2023_121075 crossref_primary_10_1021_acsnano_1c01389 crossref_primary_10_1021_acsami_1c05150 crossref_primary_10_1002_batt_202300132 crossref_primary_10_1039_C9QM00675C crossref_primary_10_1016_j_carbon_2022_11_080 crossref_primary_10_1002_anie_202116289 crossref_primary_10_1002_aenm_202101287 crossref_primary_10_1016_j_jcis_2023_06_124 crossref_primary_10_1016_j_nanoen_2020_104869 crossref_primary_10_1021_acsnano_4c06672 crossref_primary_10_1016_j_jechem_2021_08_020 crossref_primary_10_1002_aenm_202202419 crossref_primary_10_1016_j_ensm_2023_102913 crossref_primary_10_1002_smll_202403050 crossref_primary_10_1016_j_cej_2021_132992 crossref_primary_10_1002_adfm_202002711 crossref_primary_10_1002_advs_202417323 crossref_primary_10_1038_s41578_020_00241_4 crossref_primary_10_1016_j_nanoen_2024_109524 crossref_primary_10_1002_smll_202410036 crossref_primary_10_1007_s40820_020_00546_7 crossref_primary_10_1016_j_jpowsour_2025_236691 crossref_primary_10_1021_acsami_1c06131 crossref_primary_10_1021_acsanm_3c04375 crossref_primary_10_1039_D3TA05714C crossref_primary_10_1002_advs_202205794 crossref_primary_10_1002_ange_201916529 crossref_primary_10_1016_j_ensm_2021_03_005 crossref_primary_10_1039_D3TA01586F crossref_primary_10_1016_j_cej_2023_141336 crossref_primary_10_1021_jacs_0c09794 crossref_primary_10_1016_j_ensm_2024_103283 crossref_primary_10_1002_smll_202207517 crossref_primary_10_1021_acsnano_0c09205 crossref_primary_10_1016_j_enchem_2022_100076 crossref_primary_10_1039_D1QM00998B crossref_primary_10_1002_anie_202401996 crossref_primary_10_1021_acs_nanolett_1c03455 crossref_primary_10_1016_j_colsurfa_2025_136357 crossref_primary_10_1021_acsenergylett_1c00625 crossref_primary_10_1002_aenm_201904163 crossref_primary_10_1039_D0RA02556A crossref_primary_10_1002_adfm_202003932 crossref_primary_10_1134_S1023193523120066 crossref_primary_10_1002_adfm_202105736 crossref_primary_10_1016_j_jpowsour_2020_228758 crossref_primary_10_1016_j_mtener_2021_100824 crossref_primary_10_1016_j_apsusc_2023_159005 crossref_primary_10_1016_j_ccr_2022_215009 crossref_primary_10_1016_j_electacta_2023_143261 crossref_primary_10_1016_j_jallcom_2022_164944 crossref_primary_10_1016_j_surfin_2023_103421 crossref_primary_10_31613_ceramist_2021_24_1_03 crossref_primary_10_1021_acsnano_4c05561 crossref_primary_10_1002_ange_202318444 crossref_primary_10_1002_aenm_202406139 crossref_primary_10_1002_anie_202410900 crossref_primary_10_1016_j_cej_2022_139324 crossref_primary_10_1021_acsenergylett_0c02028 crossref_primary_10_1016_j_cej_2024_157079 crossref_primary_10_1016_j_jcis_2023_06_141 crossref_primary_10_1039_D3NR04996E crossref_primary_10_1016_j_apsusc_2023_157060 crossref_primary_10_1002_batt_202400757 crossref_primary_10_1016_j_electacta_2021_139432 crossref_primary_10_1002_adfm_202303763 crossref_primary_10_1088_1361_6528_ac197d crossref_primary_10_1039_D2SC01818G crossref_primary_10_1002_smll_202104557 crossref_primary_10_1016_j_mattod_2020_08_021 crossref_primary_10_1002_aenm_202304357 crossref_primary_10_1016_j_cej_2025_160086 crossref_primary_10_1016_j_ensm_2021_07_044 crossref_primary_10_1021_acsomega_4c08749 crossref_primary_10_1016_j_cej_2023_147411 crossref_primary_10_1021_acs_nanolett_0c00732 crossref_primary_10_1039_D4SC00510D crossref_primary_10_1007_s40843_023_2448_0 crossref_primary_10_1016_j_jallcom_2023_168813 crossref_primary_10_1039_D4NR03100H crossref_primary_10_1016_j_isci_2020_100995 crossref_primary_10_1016_j_enchem_2025_100152 crossref_primary_10_1021_acsami_1c18256 crossref_primary_10_1002_ange_202320075 crossref_primary_10_1557_s43581_022_00044_w crossref_primary_10_1002_adfm_202007397 crossref_primary_10_1021_acsami_1c22504 crossref_primary_10_1002_chem_202303917 crossref_primary_10_1021_acsaem_1c00224 crossref_primary_10_1007_s10008_024_06050_x crossref_primary_10_1007_s40820_021_00783_4 crossref_primary_10_1002_adma_202003021 crossref_primary_10_1016_j_ensm_2022_08_016 crossref_primary_10_1021_acsami_3c14020 crossref_primary_10_1016_j_carbon_2021_08_084 crossref_primary_10_3390_en16073221 crossref_primary_10_1002_smll_202205544 crossref_primary_10_1021_acsami_0c15621 crossref_primary_10_1002_eem2_12142 crossref_primary_10_1039_D1TA03708K crossref_primary_10_1002_smtd_202300699 crossref_primary_10_1002_ange_202401996 crossref_primary_10_1016_j_est_2024_111789 crossref_primary_10_1016_j_jpowsour_2022_231194 crossref_primary_10_1002_bte2_20220065 crossref_primary_10_1016_j_cej_2024_150890 crossref_primary_10_1016_j_ensm_2020_12_001 crossref_primary_10_1002_advs_202310319 crossref_primary_10_1002_ange_202410900 crossref_primary_10_1016_j_ensm_2020_06_010 crossref_primary_10_31857_S042485702312006X crossref_primary_10_1002_adfm_202413711 crossref_primary_10_1002_admi_202200174 crossref_primary_10_1039_D0QM01105C crossref_primary_10_1016_j_vacuum_2019_108926 crossref_primary_10_1039_D1TA03994F crossref_primary_10_1021_jacs_4c17458 crossref_primary_10_1016_j_ensm_2020_06_014 crossref_primary_10_1021_acs_iecr_4c00969 crossref_primary_10_1016_j_jpowsour_2025_236518 crossref_primary_10_1002_adfm_202405401 crossref_primary_10_1002_ange_202116289 crossref_primary_10_1002_smll_202204683 crossref_primary_10_1016_j_jpowsour_2024_236114 crossref_primary_10_1002_ange_202313163 crossref_primary_10_1002_adma_202501538 crossref_primary_10_1016_j_vacuum_2021_110353 crossref_primary_10_1039_D0CC06076C crossref_primary_10_1002_anie_202313163 crossref_primary_10_1016_j_jpowsour_2022_232385 crossref_primary_10_1063_5_0146094 crossref_primary_10_1002_inf2_12382 crossref_primary_10_1016_j_ensm_2020_01_028 crossref_primary_10_1007_s12274_023_6279_5 crossref_primary_10_1002_anie_202216136 crossref_primary_10_1021_acsami_1c04279 crossref_primary_10_1016_j_nanoen_2021_106621 crossref_primary_10_1039_D4TA00920G crossref_primary_10_1021_acsaem_2c03621 crossref_primary_10_1039_D2TA01621D crossref_primary_10_1021_acsami_1c03194 crossref_primary_10_1016_j_jcis_2024_03_059 crossref_primary_10_1002_smtd_202300799 crossref_primary_10_1002_aenm_202303739 crossref_primary_10_1039_C9NJ05433B crossref_primary_10_1039_D3EE00211J crossref_primary_10_1002_cssc_202002493 crossref_primary_10_1016_j_cej_2020_126969 crossref_primary_10_1016_j_jallcom_2022_165278 crossref_primary_10_1002_smll_202401379 crossref_primary_10_1016_j_jcis_2022_03_017 crossref_primary_10_1002_anie_202010073 crossref_primary_10_1039_D0TA02791J crossref_primary_10_1002_celc_202100282 crossref_primary_10_1088_2053_1583_ac7e58 crossref_primary_10_1002_ange_202216136 crossref_primary_10_1007_s12274_022_5020_0 crossref_primary_10_1002_adfm_202306675 crossref_primary_10_1016_j_electacta_2022_141447 crossref_primary_10_1039_D3EE00018D crossref_primary_10_1002_smll_202107743 crossref_primary_10_1016_j_cej_2022_138953 crossref_primary_10_1016_j_compositesb_2023_110770 crossref_primary_10_1002_adfm_201905228 crossref_primary_10_1016_j_ijoes_2024_100583 crossref_primary_10_1016_j_jpowsour_2024_235368 crossref_primary_10_1016_j_apsusc_2021_149041 crossref_primary_10_1016_j_mtener_2020_100396 crossref_primary_10_3390_nano15030194 crossref_primary_10_1016_j_cej_2023_146098 crossref_primary_10_1002_aenm_202302655 crossref_primary_10_1016_j_cej_2020_127247 crossref_primary_10_1016_j_enchem_2022_100092 crossref_primary_10_1093_ooenergy_oiab003 crossref_primary_10_1016_j_rser_2021_111288 crossref_primary_10_1002_advs_202003714 crossref_primary_10_1002_ange_202010073 crossref_primary_10_1016_j_gee_2021_10_006 crossref_primary_10_1002_adma_202303509 crossref_primary_10_1002_smll_202000597 crossref_primary_10_1016_j_jpowsour_2022_231198 crossref_primary_10_1016_j_ensm_2020_12_015 crossref_primary_10_1039_D4EE00313F crossref_primary_10_1002_adma_202105611 crossref_primary_10_1002_cssc_202100299 crossref_primary_10_1016_j_ensm_2024_103736 crossref_primary_10_1039_D3TA05364D crossref_primary_10_1007_s41918_023_00194_6 crossref_primary_10_1002_adma_202108206 crossref_primary_10_1016_j_cej_2022_140360 crossref_primary_10_1021_acsaem_4c02090 crossref_primary_10_1039_D2TA01014C crossref_primary_10_1016_j_nanoen_2024_110114 crossref_primary_10_1002_bte2_20220029 crossref_primary_10_1002_smll_202309154 crossref_primary_10_1021_acsami_3c03437 crossref_primary_10_1021_acssuschemeng_9b06798 crossref_primary_10_1016_j_ensm_2020_07_011 crossref_primary_10_3390_molecules27217446 crossref_primary_10_1016_j_jelechem_2024_118125 crossref_primary_10_1002_cjoc_202100791 crossref_primary_10_1016_j_cej_2021_133687 crossref_primary_10_1016_j_est_2021_103729 crossref_primary_10_1002_adfm_202308834 crossref_primary_10_1002_smtd_202101060 crossref_primary_10_1016_j_ensm_2024_103206 crossref_primary_10_1016_j_jpowsour_2023_232915 crossref_primary_10_1002_adma_202304040 crossref_primary_10_1016_j_ensm_2021_10_039 crossref_primary_10_1021_acssuschemeng_3c00986 crossref_primary_10_1039_D3SC04545E crossref_primary_10_1002_smll_202201011 crossref_primary_10_1021_acsnano_2c00557 crossref_primary_10_1002_aenm_202003203 crossref_primary_10_1021_jacs_3c08677 crossref_primary_10_1002_ange_202011588 crossref_primary_10_1149_1945_7111_acabec crossref_primary_10_1002_eem2_12575 crossref_primary_10_1016_j_ensm_2020_11_001 crossref_primary_10_1016_j_jtice_2021_104172 crossref_primary_10_1016_j_mtcomm_2022_103578 crossref_primary_10_1002_smtd_202301081 crossref_primary_10_1002_chem_202002202 crossref_primary_10_1002_adfm_202302293 crossref_primary_10_1016_j_ensm_2022_11_006 crossref_primary_10_1002_advs_201902795 crossref_primary_10_1002_smll_201904545 crossref_primary_10_1021_acsaem_3c00828 crossref_primary_10_1016_j_apmt_2021_101027 crossref_primary_10_1016_j_electacta_2021_137740 crossref_primary_10_1039_D1EE03547A crossref_primary_10_1149_1945_7111_ab75c2 crossref_primary_10_1016_j_ensm_2022_12_036 crossref_primary_10_1093_nsr_nwac051 crossref_primary_10_1039_D4DT00044G crossref_primary_10_1002_anie_202116560 crossref_primary_10_1002_ente_202200502 crossref_primary_10_1021_acsami_9b09252 crossref_primary_10_1039_D3CC00728F crossref_primary_10_1016_j_nanoen_2020_104583 crossref_primary_10_1002_adma_202007480 crossref_primary_10_1002_ange_202502279 crossref_primary_10_3390_batteries8120267 crossref_primary_10_1039_D0TA08916H crossref_primary_10_1016_j_mtphys_2021_100425 crossref_primary_10_1002_anie_202008634 crossref_primary_10_1002_batt_202100181 crossref_primary_10_1002_pssa_202100789 crossref_primary_10_1039_D3SE01334K crossref_primary_10_1016_j_jechem_2022_08_038 crossref_primary_10_1016_j_chempr_2022_03_019 crossref_primary_10_1016_j_electacta_2019_135137 crossref_primary_10_1002_adfm_202211711 crossref_primary_10_1016_j_est_2025_116271 crossref_primary_10_1002_anie_202502279 crossref_primary_10_1002_adfm_202211274 crossref_primary_10_1016_j_est_2025_115741 crossref_primary_10_1007_s40820_021_00764_7 crossref_primary_10_1039_D3TA05251F crossref_primary_10_1039_D2TA00982J crossref_primary_10_1021_acsnano_2c11469 crossref_primary_10_1002_ange_202113487 crossref_primary_10_1002_sstr_202000113 crossref_primary_10_1002_adfm_202305659 crossref_primary_10_1002_adfm_202003511 crossref_primary_10_1002_aenm_202100939 crossref_primary_10_1039_D0EE02620D crossref_primary_10_1039_D0SE00843E crossref_primary_10_1016_j_jechem_2023_03_052 crossref_primary_10_1021_acsami_2c15924 crossref_primary_10_1002_smll_202305030 crossref_primary_10_1016_j_mtchem_2022_101294 crossref_primary_10_1016_j_jechem_2021_04_046 crossref_primary_10_1002_sus2_265 crossref_primary_10_1002_anie_201916529 crossref_primary_10_1002_anie_202011588 crossref_primary_10_1002_smll_202301906 crossref_primary_10_1016_j_est_2022_106350 crossref_primary_10_1021_acsaem_1c02064 crossref_primary_10_1021_acsenergylett_0c00740 crossref_primary_10_1016_j_ensm_2023_103015 crossref_primary_10_1002_admi_202101924 crossref_primary_10_1016_j_cej_2022_139621 crossref_primary_10_1002_smll_202403136 crossref_primary_10_1002_anie_202318444 crossref_primary_10_1016_j_cej_2022_138776 crossref_primary_10_1016_j_est_2023_109583 crossref_primary_10_1039_D2NR07282C crossref_primary_10_1016_j_jpowsour_2022_232553 crossref_primary_10_1088_1361_6528_ab5b38 crossref_primary_10_1002_ange_202008634 crossref_primary_10_1002_adfm_202205874 crossref_primary_10_1016_j_joule_2024_02_002 crossref_primary_10_1002_anie_202320075 crossref_primary_10_1021_acsenergylett_3c01821 crossref_primary_10_1039_D3TA05814J crossref_primary_10_1039_D2TA01672A crossref_primary_10_1002_adma_202419582 crossref_primary_10_1021_acsami_0c08812 crossref_primary_10_1002_ange_202116560 crossref_primary_10_1016_j_jechem_2020_10_044 crossref_primary_10_3390_ma17133327 crossref_primary_10_1016_j_est_2023_110208 crossref_primary_10_1016_j_est_2022_105397 crossref_primary_10_1002_adfm_202102011 crossref_primary_10_1002_anie_202113487 crossref_primary_10_1002_ange_202314411 crossref_primary_10_1002_inf2_12306 crossref_primary_10_1007_s11706_021_0551_y crossref_primary_10_1039_D2EE00004K crossref_primary_10_1002_adma_202205206 crossref_primary_10_1002_smll_202403380 crossref_primary_10_1149_1945_7111_ac1cc7 crossref_primary_10_3389_fenrg_2020_00182 crossref_primary_10_1002_adma_202300053 crossref_primary_10_1002_cey2_63 crossref_primary_10_1002_adfm_202001317 crossref_primary_10_1016_j_ensm_2023_103150 crossref_primary_10_1039_D0TA01553A crossref_primary_10_1002_batt_202100380 crossref_primary_10_1016_j_nanoen_2020_105739 crossref_primary_10_1016_j_ensm_2020_03_011 crossref_primary_10_1002_anie_202314411 crossref_primary_10_1039_D1TA00263E crossref_primary_10_1002_chem_202403425 crossref_primary_10_1002_aesr_202000026 crossref_primary_10_1016_j_cej_2024_155257 crossref_primary_10_1016_j_jechem_2020_08_038 crossref_primary_10_1016_j_jpowsour_2023_232854 crossref_primary_10_1002_cey2_177 crossref_primary_10_1016_j_jallcom_2024_173780 crossref_primary_10_1002_cmt2_70000 crossref_primary_10_1016_j_nanoen_2022_107274 crossref_primary_10_1021_jacs_0c07992 crossref_primary_10_1016_j_ensm_2022_03_042 crossref_primary_10_1039_C9TA08418E crossref_primary_10_1002_adma_202306294 crossref_primary_10_1002_smll_202107115 crossref_primary_10_1021_acsnano_4c06737 crossref_primary_10_1016_j_jcis_2022_05_018 crossref_primary_10_1039_D3EE03661H crossref_primary_10_1016_j_jmrt_2020_05_130 crossref_primary_10_1016_j_jpowsour_2021_230643 crossref_primary_10_1016_j_jallcom_2025_178843 crossref_primary_10_1016_j_mtener_2020_100443 |
Cites_doi | 10.1002/aenm.201400930 10.1039/C0CS00127A 10.1002/adfm.201100058 10.1038/nenergy.2016.119 10.1002/cssc.201403143 10.1038/nature11475 10.1016/j.electacta.2016.03.031 10.1039/c2ee02542f 10.1016/j.elecom.2015.08.019 10.1038/s41467-017-00467-x 10.1038/ncomms14424 10.1002/adfm.201200690 10.1038/nmat2297 10.1039/C5CC02585K 10.1149/1.1838571 10.1016/j.matlet.2011.01.073 10.1002/ange.201106307 10.1038/ncomms3487 10.1021/jacs.7b04471 10.1021/acs.chemmater.7b00852 10.1039/c3ee44164d 10.1021/cm504717p 10.1038/nchem.2085 10.1038/nmat4834 10.1038/nmat3601 10.1038/s41467-018-04949-4 10.1038/nenergy.2016.39 10.1002/adma.201800762 10.1021/jacs.6b05958 10.1021/ja953943i 10.1149/1.2197667 10.1002/adfm.201802564 10.1016/j.nanoen.2016.04.051 10.1021/jp207616s 10.1039/b813846j 10.1126/science.1212741 10.1038/s41467-018-04060-8 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OTOTI |
DOI | 10.1002/adma.201900567 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1545406 31157468 10_1002_adma_201900567 ADMA201900567 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering funderid: KC020105‐FWP12152 – fundername: U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering grantid: KC020105-FWP12152 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c5457-a816f9a9c4ae4db4d6c3eec51e04e8822eb8f24838f9e2820dbeb16cf18a764b3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Mon Sep 11 05:25:29 EDT 2023 Fri Jul 11 12:17:28 EDT 2025 Fri Jul 25 07:26:30 EDT 2025 Thu Apr 03 07:04:47 EDT 2025 Tue Jul 01 00:44:53 EDT 2025 Thu Apr 24 23:10:38 EDT 2025 Wed Jan 22 16:39:51 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | joint charge storage battery reaction mechanisms Aqueous Zn-MnO2 batteries high-rate batteries |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5457-a816f9a9c4ae4db4d6c3eec51e04e8822eb8f24838f9e2820dbeb16cf18a764b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE |
ORCID | 0000-0001-7991-1015 0000000179911015 |
OpenAccessLink | https://www.osti.gov/biblio/1545406 |
PMID | 31157468 |
PQID | 2265626649 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1545406 proquest_miscellaneous_2234486811 proquest_journals_2265626649 pubmed_primary_31157468 crossref_primary_10_1002_adma_201900567 crossref_citationtrail_10_1002_adma_201900567 wiley_primary_10_1002_adma_201900567_ADMA201900567 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2011; 334 2018; 28 2017; 8 2013; 4 2015; 5 2012; 124 2015; 51 2013; 23 2011; 40 2008; 7 2006; 153 2017; 29 2012; 488 2015; 8 2015; 7 2017; 139 2018; 9 2016; 1 2015; 27 2015; 60 2017; 16 2013; 12 2011; 21 2011; 65 2018; 30 2016; 138 2014; 7 2012; 116 2012; 5 1998; 145 2009; 38 2016; 25 1996; 118 2016; 196 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 5 start-page: 1400930 year: 2015 publication-title: Adv. Energy Mater. – volume: 488 start-page: 294 year: 2012 publication-title: Nature – volume: 4 start-page: 2487 year: 2013 publication-title: Nat. Commun. – volume: 27 start-page: 3609 year: 2015 publication-title: Chem. Mater. – volume: 116 start-page: 1450 year: 2012 publication-title: J. Phys. Chem. C – volume: 124 start-page: 957 year: 2012 publication-title: Angew. Chem. – volume: 30 start-page: 1800762 year: 2018 publication-title: Adv. Mater. – volume: 1 start-page: 16119 year: 2016 publication-title: Nat. Energy – volume: 196 start-page: 587 year: 2016 publication-title: Electrochim. Acta – volume: 65 start-page: 1319 year: 2011 publication-title: Mater. Lett. – volume: 9 start-page: 1656 year: 2018 publication-title: Nat. Commun. – volume: 8 start-page: 481 year: 2015 publication-title: ChemSusChem – volume: 25 start-page: 211 year: 2016 publication-title: Nano Energy – volume: 60 start-page: 121 year: 2015 publication-title: Electrochem. Commun. – volume: 145 start-page: 1882 year: 1998 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 845 year: 2008 publication-title: Nat. Mater. – volume: 29 start-page: 4874 year: 2017 publication-title: Chem. Mater. – volume: 153 start-page: A1317 year: 2006 publication-title: J. Electrochem. Soc. – volume: 8 start-page: 405 year: 2017 publication-title: Nat. Commun. – volume: 23 start-page: 929 year: 2013 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 16 year: 2017 publication-title: Nat. Mater. – volume: 7 start-page: 1597 year: 2014 publication-title: Energy Environ. Sci. – volume: 28 start-page: 1802564 year: 2018 publication-title: Adv. Funct. Mater. – volume: 51 start-page: 9265 year: 2015 publication-title: Chem. Commun. – volume: 8 start-page: 14424 year: 2017 publication-title: Nat. Commun. – volume: 9 start-page: 2906 year: 2018 publication-title: Nat. Commun. – volume: 138 start-page: 12894 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 40 start-page: 1697 year: 2011 publication-title: Chem. Soc. Rev. – volume: 118 start-page: 5752 year: 1996 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 9775 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 19 year: 2015 publication-title: Nat. Chem. – volume: 38 start-page: 2520 year: 2009 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 518 year: 2013 publication-title: Nat. Mater. – volume: 21 start-page: 2366 year: 2011 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 16039 year: 2016 publication-title: Nat. Energy – volume: 5 start-page: 7151 year: 2012 publication-title: Energy Environ. Sci. – ident: e_1_2_5_24_1 doi: 10.1002/aenm.201400930 – ident: e_1_2_5_7_1 doi: 10.1039/C0CS00127A – ident: e_1_2_5_12_1 doi: 10.1002/adfm.201100058 – ident: e_1_2_5_21_1 doi: 10.1038/nenergy.2016.119 – ident: e_1_2_5_23_1 doi: 10.1002/cssc.201403143 – ident: e_1_2_5_2_1 doi: 10.1038/nature11475 – ident: e_1_2_5_37_1 doi: 10.1016/j.electacta.2016.03.031 – ident: e_1_2_5_6_1 doi: 10.1039/c2ee02542f – ident: e_1_2_5_28_1 doi: 10.1016/j.elecom.2015.08.019 – ident: e_1_2_5_18_1 doi: 10.1038/s41467-017-00467-x – ident: e_1_2_5_31_1 doi: 10.1038/ncomms14424 – ident: e_1_2_5_3_1 doi: 10.1002/adfm.201200690 – ident: e_1_2_5_9_1 doi: 10.1038/nmat2297 – ident: e_1_2_5_29_1 doi: 10.1039/C5CC02585K – ident: e_1_2_5_34_1 doi: 10.1149/1.1838571 – ident: e_1_2_5_32_1 doi: 10.1016/j.matlet.2011.01.073 – ident: e_1_2_5_27_1 doi: 10.1002/ange.201106307 – ident: e_1_2_5_13_1 doi: 10.1038/ncomms3487 – ident: e_1_2_5_17_1 doi: 10.1021/jacs.7b04471 – ident: e_1_2_5_19_1 doi: 10.1021/acs.chemmater.7b00852 – ident: e_1_2_5_10_1 doi: 10.1039/c3ee44164d – ident: e_1_2_5_30_1 doi: 10.1021/cm504717p – ident: e_1_2_5_4_1 doi: 10.1038/nchem.2085 – ident: e_1_2_5_5_1 doi: 10.1038/nmat4834 – ident: e_1_2_5_33_1 doi: 10.1038/nmat3601 – ident: e_1_2_5_15_1 doi: 10.1038/s41467-018-04949-4 – ident: e_1_2_5_16_1 doi: 10.1038/nenergy.2016.39 – ident: e_1_2_5_20_1 doi: 10.1002/adma.201800762 – ident: e_1_2_5_25_1 doi: 10.1021/jacs.6b05958 – ident: e_1_2_5_36_1 doi: 10.1021/ja953943i – ident: e_1_2_5_11_1 doi: 10.1149/1.2197667 – ident: e_1_2_5_14_1 doi: 10.1002/adfm.201802564 – ident: e_1_2_5_26_1 doi: 10.1016/j.nanoen.2016.04.051 – ident: e_1_2_5_35_1 doi: 10.1021/jp207616s – ident: e_1_2_5_8_1 doi: 10.1039/b813846j – ident: e_1_2_5_1_1 doi: 10.1126/science.1212741 – ident: e_1_2_5_22_1 doi: 10.1038/s41467-018-04060-8 |
SSID | ssj0009606 |
Score | 2.6802914 |
Snippet | Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly, abundant,... Aqueous rechargeable zinc-manganese dioxide batteries show great promise for large-scale energy storage due to their use of environmentally friendly, abundant,... Abstract Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly,... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1900567 |
SubjectTerms | Aqueous Zn‐MnO2 batteries Batteries battery reaction mechanisms Cathodes Charge transport Conversion Discharge Electrode materials Electrodes Electrolytes Energy storage Flux density high‐rate batteries Intercalation joint charge storage Lithium Manganese dioxide Materials science Reaction mechanisms Rechargeable batteries Redox reactions Storage batteries Transport properties Zinc |
Title | Joint Charge Storage for High‐Rate Aqueous Zinc–Manganese Dioxide Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201900567 https://www.ncbi.nlm.nih.gov/pubmed/31157468 https://www.proquest.com/docview/2265626649 https://www.proquest.com/docview/2234486811 https://www.osti.gov/biblio/1545406 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7KntJDm_TpJikqFHpysrZlWT4uSUMIbAtpA6EXocc4LCl26Xoh9JSfUOg_zC_pjL3rZEtLob3ZWAJpHppP1ugbgNeBrERaHeI0k55LmMm4TF0Vk08iYl6Q0fAF5-k7dXwmT87z8zu3-Ht-iOGHG3tGt16zg1s3378lDbWh4w2igEYxnK-Tc8IWo6LTW_4ohucd2V6Wx6WSesXaOE7317uvRaVRQ971O8S5DmC7CHT0EOxq7H3iyeXeonV7_tsvtI7_M7lNeLCEp2LS29MW3MP6Edy_Q1r4GN6fNLO6FXxOf4HiA-3ZaUkShH0F54zcXH8_JfgqJjSnZjEXn2a1v7n-MbX1heVil-Jw1lzNAoqe2JP26U_g7Ojtx4PjeFmWIfYEt4rY6kRVpS29tCiDk0H5DNHnCY4lEmBP0ekqlTrTVYm0oxsHRwFB-SrRtlDSZU9hVDc1PgcRqsKX0iWZJ1PRWOjgHBYVhko7X-UygnilFuOXnOVcOuOz6dmWU8OCMoOgIngztP_Ss3X8seU2a9kQzmCyXM9ZRb41DCgJ4kSws1K-Wfr03BBQJbColCwjeDV8Jm_kIxYSIQmV2mS031U6SSJ41hvNMJCO10gqHUHaqf4vIzSTw-lkeHvxL522YYOf--ziHRi1Xxe4SxiqdS87P_kJdysTdw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V5QAceD9CCxgJxCntJnEc58BhxVJtH1uk0koVFxM7kypqlSA2Kx6n_gQkfgl_hZ_QX8I4r7IIhITUA6coiRM545nxN874G4AnKWkJT2Tq-gE3toQZd2NfZy7ZJCKGESmN3eA83RGTfb55EB4swbduL0zDD9EvuFnLqP21NXC7IL12xhqapDVxEM1oNIlHbV7lFn76QFHb7PnGmIb4qe-vv9x7MXHbwgKuIcAQuYn0RBYnseEJ8lTzVJgA0YQeDjkS5PRRy8znMpBZjBSTDFNNLk2YzJNJJLgO6L0X4KItI27p-se7Z4xVNiCo6f2C0I0Flx1P5NBfW-zvwjw4KMmef4dxFyFzPeetX4PvnbSaVJej1XmlV83nX4gk_ytxXoerLQJno8ZkbsASFjfhyk-8jLfg1WaZFxWzqQiHyF5XZCZ0JHjPbFrM6cmXXULobERCLOcz9iYvzOnJ12lSHCa2nicb5-XHPEXWcJfmOLsN--fyRXdgUJQF3gOWZpGJufYCQ9YgMZKp1hhlmGZSmyzkDridHijT0rLb6iDHqiGU9pUdGNUPjAPP-vbvGkKSP7ZctmqlCEpZPmBjE6dMpSxmJhTnwEqnbap1WzNFWJzwsBA8duBxf5scjv2LRCIkoVKbgEJ6IT3PgbuNlvYdqambuJAO-LWu_aWHajSejvqz-__y0CO4NNmbbqvtjZ2tZbhsrzfJ1CswqN7P8QFBxko_rI2UwdvzVuMfmBZzJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb5RAFD6pa2L0wbsWW3VMND7RLjAMw4MPG3HTi1tNtUnjy8jcGmIDjcvGy1N_gol_xL_iX-gv8Qws1DUaE5M--ESAgQxnzuU7cPgOwEONWkJzrv0wosq1MKN-Gkrro00aY-IElcb94DzZYRt7dGs_3l-Cb92_MC0_RP_CzVlG46-dgR9pu35KGprrhjcIAxrG8GReVrltPn3ApG36ZDPDFX4UhuNnr59u-PO-Ar5CvJD4OQ-YTfNU0dxQLalmKjJGxYEZUoOIMzSS25DyiNvUYEoy1BI9GlM24HnCqIzwvufgPGXD1DWLyHZPCatcPtCw-0WxnzLKO5rIYbi-ON-FMDio0Jx_B3EXEXMT8sZX4HsnrLbS5d3arJZr6vMvPJL_kzSvwuU5_iaj1mCuwZIpr8Oln1gZb8CLraooa-IKEQ4MeVWjkeAWwT1xRTEnx192EZ-TEcqwmk3Jm6JUJ8dfJ3l5kLtuniQrqo-FNqRlLi3M9CbsnckT3YJBWZVmGYi2iUqpDCKFtsBNwrWUJrFGWy6VjakHfqcGQs1J2V1vkEPR0kmHwi2M6BfGg8f9-KOWjuSPI1ecVgkEUo4NWLmyKVULh5gRw3mw2imbmDutqUAkjmiYMZp68KA_je7GfUNCEaJQcUyECT3jQeDB7VZJ-4k0xE2UcQ_CRtX-MkMxyiajfu_Ov1x0Hy68zMbi-ebO9gpcdIfbSupVGNTvZ-Yu4sVa3mtMlMDbs9biH7XucdY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Charge+Storage+for+High%E2%80%90Rate+Aqueous+Zinc%E2%80%93Manganese+Dioxide+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jin%2C+Yan&rft.au=Zou%2C+Lianfeng&rft.au=Liu%2C+Lili&rft.au=Engelhard%2C+Mark+H&rft.date=2019-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=29&rft_id=info:doi/10.1002%2Fadma.201900567&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |