Joint Charge Storage for High‐Rate Aqueous Zinc–Manganese Dioxide Batteries

Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO2 have...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 29; pp. e1900567 - n/a
Main Authors Jin, Yan, Zou, Lianfeng, Liu, Lili, Engelhard, Mark H., Patel, Rajankumar L., Nie, Zimin, Han, Kee Sung, Shao, Yuyan, Wang, Chongmin, Zhu, Jia, Pan, Huilin, Liu, Jun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2019
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO2 have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ‐MnO2 cathode is reported. An electrolyte‐dependent reaction mechanism in δ‐MnO2 is identified. Nondiffusion controlled Zn2+ intercalation in bulky δ‐MnO2 and control of H+ conversion reaction pathways over a wide C‐rate charge–discharge range facilitate high rate performance of the δ‐MnO2 cathode without sacrificing the energy density in optimal electrolytes. The Zn‐δ‐MnO2 system delivers a discharge capacity of 136.9 mAh g−1 at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high‐rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries. Rational manipulation of the charge‐storage mechanism of aqueous rechargeable Zn–MnO2 batteries is demonstrated through the use of a layered δ‐MnO2 cathode. Nondiffusion control of pseudocapacitance‐like Zn2+ intercalation in bulky δ‐MnO2, followed by control of the H+ conversion reaction pathway over a wide C‐rate charge–discharge range facilitates high rate and a long lifetime of δ‐MnO2 cathodes.
AbstractList Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO2 have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ‐MnO2 cathode is reported. An electrolyte‐dependent reaction mechanism in δ‐MnO2 is identified. Nondiffusion controlled Zn2+ intercalation in bulky δ‐MnO2 and control of H+ conversion reaction pathways over a wide C‐rate charge–discharge range facilitate high rate performance of the δ‐MnO2 cathode without sacrificing the energy density in optimal electrolytes. The Zn‐δ‐MnO2 system delivers a discharge capacity of 136.9 mAh g−1 at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high‐rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries.
Aqueous rechargeable zinc-manganese dioxide batteries show great promise for large-scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO2 have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ-MnO2 cathode is reported. An electrolyte-dependent reaction mechanism in δ-MnO2 is identified. Nondiffusion controlled Zn2+ intercalation in bulky δ-MnO2 and control of H+ conversion reaction pathways over a wide C-rate charge-discharge range facilitate high rate performance of the δ-MnO2 cathode without sacrificing the energy density in optimal electrolytes. The Zn-δ-MnO2 system delivers a discharge capacity of 136.9 mAh g-1 at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high-rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries.Aqueous rechargeable zinc-manganese dioxide batteries show great promise for large-scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO2 have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ-MnO2 cathode is reported. An electrolyte-dependent reaction mechanism in δ-MnO2 is identified. Nondiffusion controlled Zn2+ intercalation in bulky δ-MnO2 and control of H+ conversion reaction pathways over a wide C-rate charge-discharge range facilitate high rate performance of the δ-MnO2 cathode without sacrificing the energy density in optimal electrolytes. The Zn-δ-MnO2 system delivers a discharge capacity of 136.9 mAh g-1 at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high-rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries.
Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO2 have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ‐MnO2 cathode is reported. An electrolyte‐dependent reaction mechanism in δ‐MnO2 is identified. Nondiffusion controlled Zn2+ intercalation in bulky δ‐MnO2 and control of H+ conversion reaction pathways over a wide C‐rate charge–discharge range facilitate high rate performance of the δ‐MnO2 cathode without sacrificing the energy density in optimal electrolytes. The Zn‐δ‐MnO2 system delivers a discharge capacity of 136.9 mAh g−1 at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high‐rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries. Rational manipulation of the charge‐storage mechanism of aqueous rechargeable Zn–MnO2 batteries is demonstrated through the use of a layered δ‐MnO2 cathode. Nondiffusion control of pseudocapacitance‐like Zn2+ intercalation in bulky δ‐MnO2, followed by control of the H+ conversion reaction pathway over a wide C‐rate charge–discharge range facilitates high rate and a long lifetime of δ‐MnO2 cathodes.
Aqueous rechargeable zinc-manganese dioxide batteries show great promise for large-scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ-MnO cathode is reported. An electrolyte-dependent reaction mechanism in δ-MnO is identified. Nondiffusion controlled Zn intercalation in bulky δ-MnO and control of H conversion reaction pathways over a wide C-rate charge-discharge range facilitate high rate performance of the δ-MnO cathode without sacrificing the energy density in optimal electrolytes. The Zn-δ-MnO system delivers a discharge capacity of 136.9 mAh g at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high-rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries.
Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO 2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO 2 have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ‐MnO 2 cathode is reported. An electrolyte‐dependent reaction mechanism in δ‐MnO 2 is identified. Nondiffusion controlled Zn 2+ intercalation in bulky δ‐MnO 2 and control of H + conversion reaction pathways over a wide C‐rate charge–discharge range facilitate high rate performance of the δ‐MnO 2 cathode without sacrificing the energy density in optimal electrolytes. The Zn‐δ‐MnO 2 system delivers a discharge capacity of 136.9 mAh g −1 at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high‐rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries.
Abstract Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO 2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO 2 have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ‐MnO 2 cathode is reported. An electrolyte‐dependent reaction mechanism in δ‐MnO 2 is identified. Nondiffusion controlled Zn 2+ intercalation in bulky δ‐MnO 2 and control of H + conversion reaction pathways over a wide C‐rate charge–discharge range facilitate high rate performance of the δ‐MnO 2 cathode without sacrificing the energy density in optimal electrolytes. The Zn‐δ‐MnO 2 system delivers a discharge capacity of 136.9 mAh g −1 at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high‐rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries.
Author Zou, Lianfeng
Zhu, Jia
Han, Kee Sung
Jin, Yan
Shao, Yuyan
Liu, Lili
Patel, Rajankumar L.
Pan, Huilin
Engelhard, Mark H.
Wang, Chongmin
Liu, Jun
Nie, Zimin
Author_xml – sequence: 1
  givenname: Yan
  surname: Jin
  fullname: Jin, Yan
  organization: Nanjing University
– sequence: 2
  givenname: Lianfeng
  surname: Zou
  fullname: Zou, Lianfeng
  organization: Pacific Northwest National Laboratory
– sequence: 3
  givenname: Lili
  surname: Liu
  fullname: Liu, Lili
  organization: Pacific Northwest National Laboratory
– sequence: 4
  givenname: Mark H.
  surname: Engelhard
  fullname: Engelhard, Mark H.
  organization: Pacific Northwest National Laboratory
– sequence: 5
  givenname: Rajankumar L.
  surname: Patel
  fullname: Patel, Rajankumar L.
  organization: Pacific Northwest National Laboratory
– sequence: 6
  givenname: Zimin
  surname: Nie
  fullname: Nie, Zimin
  organization: Pacific Northwest National Laboratory
– sequence: 7
  givenname: Kee Sung
  surname: Han
  fullname: Han, Kee Sung
  organization: Pacific Northwest National Laboratory
– sequence: 8
  givenname: Yuyan
  surname: Shao
  fullname: Shao, Yuyan
  organization: Pacific Northwest National Laboratory
– sequence: 9
  givenname: Chongmin
  surname: Wang
  fullname: Wang, Chongmin
  organization: Pacific Northwest National Laboratory
– sequence: 10
  givenname: Jia
  surname: Zhu
  fullname: Zhu, Jia
  organization: Nanjing University
– sequence: 11
  givenname: Huilin
  surname: Pan
  fullname: Pan, Huilin
  email: huilin.pan@pnnl.gov
  organization: Pacific Northwest National Laboratory
– sequence: 12
  givenname: Jun
  orcidid: 0000-0001-7991-1015
  surname: Liu
  fullname: Liu, Jun
  email: jun.liu@pnnl.gov
  organization: Pacific Northwest National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31157468$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1545406$$D View this record in Osti.gov
BookMark eNqFkbFOHDEURS1EBAuhTYlG0KSZje2xvXa5WZIQBEIK0KSxPJ43u0azNrG9InR8QqT8IV8SowUiIUWpXnOOn--7O2jTBw8IvSN4TDCmH0y3NGOKicKYi8kGGhFOSc2w4ptohFXDayWY3EY7KV1jjJXAYgttN4TwCRNyhM5PgvO5mi1MnEN1kUM0ZfYhVsduvni4__XNZKimP1YQVqn67rx9uP99ZvzceEhQHbnw03VQfTQ5Q3SQ3qI3vRkS7D3NXXT1-dPl7Lg-Pf_ydTY9rS1nfFIbSUSvjLLMAOta1gnbAFhOADOQklJoZU-ZbGSvgEqKuxZaImxPpJkI1ja76GD9bkjZ6WRdBruwwXuwWZOyg2FRoPdr6CaGkiBlvXTJwjCUz5c4mtKGMSkkIQU9fIVeh1X0JUKhBBdUCKYKtf9ErdoldPomuqWJd_r5ngUYrwEbQ0oR-heEYP1YmH4sTL8UVgT2SihRTHbB52jc8G9NrbVbN8Ddf5bo6dHZ9K_7B7WXqlw
CitedBy_id crossref_primary_10_1002_cssc_202201034
crossref_primary_10_1002_smll_202008043
crossref_primary_10_1002_tcr_202200201
crossref_primary_10_1002_asia_202200067
crossref_primary_10_1016_j_carbpol_2023_121075
crossref_primary_10_1021_acsnano_1c01389
crossref_primary_10_1021_acsami_1c05150
crossref_primary_10_1002_batt_202300132
crossref_primary_10_1039_C9QM00675C
crossref_primary_10_1016_j_carbon_2022_11_080
crossref_primary_10_1002_anie_202116289
crossref_primary_10_1002_aenm_202101287
crossref_primary_10_1016_j_jcis_2023_06_124
crossref_primary_10_1016_j_nanoen_2020_104869
crossref_primary_10_1021_acsnano_4c06672
crossref_primary_10_1016_j_jechem_2021_08_020
crossref_primary_10_1002_aenm_202202419
crossref_primary_10_1016_j_ensm_2023_102913
crossref_primary_10_1002_smll_202403050
crossref_primary_10_1016_j_cej_2021_132992
crossref_primary_10_1002_adfm_202002711
crossref_primary_10_1002_advs_202417323
crossref_primary_10_1038_s41578_020_00241_4
crossref_primary_10_1016_j_nanoen_2024_109524
crossref_primary_10_1002_smll_202410036
crossref_primary_10_1007_s40820_020_00546_7
crossref_primary_10_1016_j_jpowsour_2025_236691
crossref_primary_10_1021_acsami_1c06131
crossref_primary_10_1021_acsanm_3c04375
crossref_primary_10_1039_D3TA05714C
crossref_primary_10_1002_advs_202205794
crossref_primary_10_1002_ange_201916529
crossref_primary_10_1016_j_ensm_2021_03_005
crossref_primary_10_1039_D3TA01586F
crossref_primary_10_1016_j_cej_2023_141336
crossref_primary_10_1021_jacs_0c09794
crossref_primary_10_1016_j_ensm_2024_103283
crossref_primary_10_1002_smll_202207517
crossref_primary_10_1021_acsnano_0c09205
crossref_primary_10_1016_j_enchem_2022_100076
crossref_primary_10_1039_D1QM00998B
crossref_primary_10_1002_anie_202401996
crossref_primary_10_1021_acs_nanolett_1c03455
crossref_primary_10_1016_j_colsurfa_2025_136357
crossref_primary_10_1021_acsenergylett_1c00625
crossref_primary_10_1002_aenm_201904163
crossref_primary_10_1039_D0RA02556A
crossref_primary_10_1002_adfm_202003932
crossref_primary_10_1134_S1023193523120066
crossref_primary_10_1002_adfm_202105736
crossref_primary_10_1016_j_jpowsour_2020_228758
crossref_primary_10_1016_j_mtener_2021_100824
crossref_primary_10_1016_j_apsusc_2023_159005
crossref_primary_10_1016_j_ccr_2022_215009
crossref_primary_10_1016_j_electacta_2023_143261
crossref_primary_10_1016_j_jallcom_2022_164944
crossref_primary_10_1016_j_surfin_2023_103421
crossref_primary_10_31613_ceramist_2021_24_1_03
crossref_primary_10_1021_acsnano_4c05561
crossref_primary_10_1002_ange_202318444
crossref_primary_10_1002_aenm_202406139
crossref_primary_10_1002_anie_202410900
crossref_primary_10_1016_j_cej_2022_139324
crossref_primary_10_1021_acsenergylett_0c02028
crossref_primary_10_1016_j_cej_2024_157079
crossref_primary_10_1016_j_jcis_2023_06_141
crossref_primary_10_1039_D3NR04996E
crossref_primary_10_1016_j_apsusc_2023_157060
crossref_primary_10_1002_batt_202400757
crossref_primary_10_1016_j_electacta_2021_139432
crossref_primary_10_1002_adfm_202303763
crossref_primary_10_1088_1361_6528_ac197d
crossref_primary_10_1039_D2SC01818G
crossref_primary_10_1002_smll_202104557
crossref_primary_10_1016_j_mattod_2020_08_021
crossref_primary_10_1002_aenm_202304357
crossref_primary_10_1016_j_cej_2025_160086
crossref_primary_10_1016_j_ensm_2021_07_044
crossref_primary_10_1021_acsomega_4c08749
crossref_primary_10_1016_j_cej_2023_147411
crossref_primary_10_1021_acs_nanolett_0c00732
crossref_primary_10_1039_D4SC00510D
crossref_primary_10_1007_s40843_023_2448_0
crossref_primary_10_1016_j_jallcom_2023_168813
crossref_primary_10_1039_D4NR03100H
crossref_primary_10_1016_j_isci_2020_100995
crossref_primary_10_1016_j_enchem_2025_100152
crossref_primary_10_1021_acsami_1c18256
crossref_primary_10_1002_ange_202320075
crossref_primary_10_1557_s43581_022_00044_w
crossref_primary_10_1002_adfm_202007397
crossref_primary_10_1021_acsami_1c22504
crossref_primary_10_1002_chem_202303917
crossref_primary_10_1021_acsaem_1c00224
crossref_primary_10_1007_s10008_024_06050_x
crossref_primary_10_1007_s40820_021_00783_4
crossref_primary_10_1002_adma_202003021
crossref_primary_10_1016_j_ensm_2022_08_016
crossref_primary_10_1021_acsami_3c14020
crossref_primary_10_1016_j_carbon_2021_08_084
crossref_primary_10_3390_en16073221
crossref_primary_10_1002_smll_202205544
crossref_primary_10_1021_acsami_0c15621
crossref_primary_10_1002_eem2_12142
crossref_primary_10_1039_D1TA03708K
crossref_primary_10_1002_smtd_202300699
crossref_primary_10_1002_ange_202401996
crossref_primary_10_1016_j_est_2024_111789
crossref_primary_10_1016_j_jpowsour_2022_231194
crossref_primary_10_1002_bte2_20220065
crossref_primary_10_1016_j_cej_2024_150890
crossref_primary_10_1016_j_ensm_2020_12_001
crossref_primary_10_1002_advs_202310319
crossref_primary_10_1002_ange_202410900
crossref_primary_10_1016_j_ensm_2020_06_010
crossref_primary_10_31857_S042485702312006X
crossref_primary_10_1002_adfm_202413711
crossref_primary_10_1002_admi_202200174
crossref_primary_10_1039_D0QM01105C
crossref_primary_10_1016_j_vacuum_2019_108926
crossref_primary_10_1039_D1TA03994F
crossref_primary_10_1021_jacs_4c17458
crossref_primary_10_1016_j_ensm_2020_06_014
crossref_primary_10_1021_acs_iecr_4c00969
crossref_primary_10_1016_j_jpowsour_2025_236518
crossref_primary_10_1002_adfm_202405401
crossref_primary_10_1002_ange_202116289
crossref_primary_10_1002_smll_202204683
crossref_primary_10_1016_j_jpowsour_2024_236114
crossref_primary_10_1002_ange_202313163
crossref_primary_10_1002_adma_202501538
crossref_primary_10_1016_j_vacuum_2021_110353
crossref_primary_10_1039_D0CC06076C
crossref_primary_10_1002_anie_202313163
crossref_primary_10_1016_j_jpowsour_2022_232385
crossref_primary_10_1063_5_0146094
crossref_primary_10_1002_inf2_12382
crossref_primary_10_1016_j_ensm_2020_01_028
crossref_primary_10_1007_s12274_023_6279_5
crossref_primary_10_1002_anie_202216136
crossref_primary_10_1021_acsami_1c04279
crossref_primary_10_1016_j_nanoen_2021_106621
crossref_primary_10_1039_D4TA00920G
crossref_primary_10_1021_acsaem_2c03621
crossref_primary_10_1039_D2TA01621D
crossref_primary_10_1021_acsami_1c03194
crossref_primary_10_1016_j_jcis_2024_03_059
crossref_primary_10_1002_smtd_202300799
crossref_primary_10_1002_aenm_202303739
crossref_primary_10_1039_C9NJ05433B
crossref_primary_10_1039_D3EE00211J
crossref_primary_10_1002_cssc_202002493
crossref_primary_10_1016_j_cej_2020_126969
crossref_primary_10_1016_j_jallcom_2022_165278
crossref_primary_10_1002_smll_202401379
crossref_primary_10_1016_j_jcis_2022_03_017
crossref_primary_10_1002_anie_202010073
crossref_primary_10_1039_D0TA02791J
crossref_primary_10_1002_celc_202100282
crossref_primary_10_1088_2053_1583_ac7e58
crossref_primary_10_1002_ange_202216136
crossref_primary_10_1007_s12274_022_5020_0
crossref_primary_10_1002_adfm_202306675
crossref_primary_10_1016_j_electacta_2022_141447
crossref_primary_10_1039_D3EE00018D
crossref_primary_10_1002_smll_202107743
crossref_primary_10_1016_j_cej_2022_138953
crossref_primary_10_1016_j_compositesb_2023_110770
crossref_primary_10_1002_adfm_201905228
crossref_primary_10_1016_j_ijoes_2024_100583
crossref_primary_10_1016_j_jpowsour_2024_235368
crossref_primary_10_1016_j_apsusc_2021_149041
crossref_primary_10_1016_j_mtener_2020_100396
crossref_primary_10_3390_nano15030194
crossref_primary_10_1016_j_cej_2023_146098
crossref_primary_10_1002_aenm_202302655
crossref_primary_10_1016_j_cej_2020_127247
crossref_primary_10_1016_j_enchem_2022_100092
crossref_primary_10_1093_ooenergy_oiab003
crossref_primary_10_1016_j_rser_2021_111288
crossref_primary_10_1002_advs_202003714
crossref_primary_10_1002_ange_202010073
crossref_primary_10_1016_j_gee_2021_10_006
crossref_primary_10_1002_adma_202303509
crossref_primary_10_1002_smll_202000597
crossref_primary_10_1016_j_jpowsour_2022_231198
crossref_primary_10_1016_j_ensm_2020_12_015
crossref_primary_10_1039_D4EE00313F
crossref_primary_10_1002_adma_202105611
crossref_primary_10_1002_cssc_202100299
crossref_primary_10_1016_j_ensm_2024_103736
crossref_primary_10_1039_D3TA05364D
crossref_primary_10_1007_s41918_023_00194_6
crossref_primary_10_1002_adma_202108206
crossref_primary_10_1016_j_cej_2022_140360
crossref_primary_10_1021_acsaem_4c02090
crossref_primary_10_1039_D2TA01014C
crossref_primary_10_1016_j_nanoen_2024_110114
crossref_primary_10_1002_bte2_20220029
crossref_primary_10_1002_smll_202309154
crossref_primary_10_1021_acsami_3c03437
crossref_primary_10_1021_acssuschemeng_9b06798
crossref_primary_10_1016_j_ensm_2020_07_011
crossref_primary_10_3390_molecules27217446
crossref_primary_10_1016_j_jelechem_2024_118125
crossref_primary_10_1002_cjoc_202100791
crossref_primary_10_1016_j_cej_2021_133687
crossref_primary_10_1016_j_est_2021_103729
crossref_primary_10_1002_adfm_202308834
crossref_primary_10_1002_smtd_202101060
crossref_primary_10_1016_j_ensm_2024_103206
crossref_primary_10_1016_j_jpowsour_2023_232915
crossref_primary_10_1002_adma_202304040
crossref_primary_10_1016_j_ensm_2021_10_039
crossref_primary_10_1021_acssuschemeng_3c00986
crossref_primary_10_1039_D3SC04545E
crossref_primary_10_1002_smll_202201011
crossref_primary_10_1021_acsnano_2c00557
crossref_primary_10_1002_aenm_202003203
crossref_primary_10_1021_jacs_3c08677
crossref_primary_10_1002_ange_202011588
crossref_primary_10_1149_1945_7111_acabec
crossref_primary_10_1002_eem2_12575
crossref_primary_10_1016_j_ensm_2020_11_001
crossref_primary_10_1016_j_jtice_2021_104172
crossref_primary_10_1016_j_mtcomm_2022_103578
crossref_primary_10_1002_smtd_202301081
crossref_primary_10_1002_chem_202002202
crossref_primary_10_1002_adfm_202302293
crossref_primary_10_1016_j_ensm_2022_11_006
crossref_primary_10_1002_advs_201902795
crossref_primary_10_1002_smll_201904545
crossref_primary_10_1021_acsaem_3c00828
crossref_primary_10_1016_j_apmt_2021_101027
crossref_primary_10_1016_j_electacta_2021_137740
crossref_primary_10_1039_D1EE03547A
crossref_primary_10_1149_1945_7111_ab75c2
crossref_primary_10_1016_j_ensm_2022_12_036
crossref_primary_10_1093_nsr_nwac051
crossref_primary_10_1039_D4DT00044G
crossref_primary_10_1002_anie_202116560
crossref_primary_10_1002_ente_202200502
crossref_primary_10_1021_acsami_9b09252
crossref_primary_10_1039_D3CC00728F
crossref_primary_10_1016_j_nanoen_2020_104583
crossref_primary_10_1002_adma_202007480
crossref_primary_10_1002_ange_202502279
crossref_primary_10_3390_batteries8120267
crossref_primary_10_1039_D0TA08916H
crossref_primary_10_1016_j_mtphys_2021_100425
crossref_primary_10_1002_anie_202008634
crossref_primary_10_1002_batt_202100181
crossref_primary_10_1002_pssa_202100789
crossref_primary_10_1039_D3SE01334K
crossref_primary_10_1016_j_jechem_2022_08_038
crossref_primary_10_1016_j_chempr_2022_03_019
crossref_primary_10_1016_j_electacta_2019_135137
crossref_primary_10_1002_adfm_202211711
crossref_primary_10_1016_j_est_2025_116271
crossref_primary_10_1002_anie_202502279
crossref_primary_10_1002_adfm_202211274
crossref_primary_10_1016_j_est_2025_115741
crossref_primary_10_1007_s40820_021_00764_7
crossref_primary_10_1039_D3TA05251F
crossref_primary_10_1039_D2TA00982J
crossref_primary_10_1021_acsnano_2c11469
crossref_primary_10_1002_ange_202113487
crossref_primary_10_1002_sstr_202000113
crossref_primary_10_1002_adfm_202305659
crossref_primary_10_1002_adfm_202003511
crossref_primary_10_1002_aenm_202100939
crossref_primary_10_1039_D0EE02620D
crossref_primary_10_1039_D0SE00843E
crossref_primary_10_1016_j_jechem_2023_03_052
crossref_primary_10_1021_acsami_2c15924
crossref_primary_10_1002_smll_202305030
crossref_primary_10_1016_j_mtchem_2022_101294
crossref_primary_10_1016_j_jechem_2021_04_046
crossref_primary_10_1002_sus2_265
crossref_primary_10_1002_anie_201916529
crossref_primary_10_1002_anie_202011588
crossref_primary_10_1002_smll_202301906
crossref_primary_10_1016_j_est_2022_106350
crossref_primary_10_1021_acsaem_1c02064
crossref_primary_10_1021_acsenergylett_0c00740
crossref_primary_10_1016_j_ensm_2023_103015
crossref_primary_10_1002_admi_202101924
crossref_primary_10_1016_j_cej_2022_139621
crossref_primary_10_1002_smll_202403136
crossref_primary_10_1002_anie_202318444
crossref_primary_10_1016_j_cej_2022_138776
crossref_primary_10_1016_j_est_2023_109583
crossref_primary_10_1039_D2NR07282C
crossref_primary_10_1016_j_jpowsour_2022_232553
crossref_primary_10_1088_1361_6528_ab5b38
crossref_primary_10_1002_ange_202008634
crossref_primary_10_1002_adfm_202205874
crossref_primary_10_1016_j_joule_2024_02_002
crossref_primary_10_1002_anie_202320075
crossref_primary_10_1021_acsenergylett_3c01821
crossref_primary_10_1039_D3TA05814J
crossref_primary_10_1039_D2TA01672A
crossref_primary_10_1002_adma_202419582
crossref_primary_10_1021_acsami_0c08812
crossref_primary_10_1002_ange_202116560
crossref_primary_10_1016_j_jechem_2020_10_044
crossref_primary_10_3390_ma17133327
crossref_primary_10_1016_j_est_2023_110208
crossref_primary_10_1016_j_est_2022_105397
crossref_primary_10_1002_adfm_202102011
crossref_primary_10_1002_anie_202113487
crossref_primary_10_1002_ange_202314411
crossref_primary_10_1002_inf2_12306
crossref_primary_10_1007_s11706_021_0551_y
crossref_primary_10_1039_D2EE00004K
crossref_primary_10_1002_adma_202205206
crossref_primary_10_1002_smll_202403380
crossref_primary_10_1149_1945_7111_ac1cc7
crossref_primary_10_3389_fenrg_2020_00182
crossref_primary_10_1002_adma_202300053
crossref_primary_10_1002_cey2_63
crossref_primary_10_1002_adfm_202001317
crossref_primary_10_1016_j_ensm_2023_103150
crossref_primary_10_1039_D0TA01553A
crossref_primary_10_1002_batt_202100380
crossref_primary_10_1016_j_nanoen_2020_105739
crossref_primary_10_1016_j_ensm_2020_03_011
crossref_primary_10_1002_anie_202314411
crossref_primary_10_1039_D1TA00263E
crossref_primary_10_1002_chem_202403425
crossref_primary_10_1002_aesr_202000026
crossref_primary_10_1016_j_cej_2024_155257
crossref_primary_10_1016_j_jechem_2020_08_038
crossref_primary_10_1016_j_jpowsour_2023_232854
crossref_primary_10_1002_cey2_177
crossref_primary_10_1016_j_jallcom_2024_173780
crossref_primary_10_1002_cmt2_70000
crossref_primary_10_1016_j_nanoen_2022_107274
crossref_primary_10_1021_jacs_0c07992
crossref_primary_10_1016_j_ensm_2022_03_042
crossref_primary_10_1039_C9TA08418E
crossref_primary_10_1002_adma_202306294
crossref_primary_10_1002_smll_202107115
crossref_primary_10_1021_acsnano_4c06737
crossref_primary_10_1016_j_jcis_2022_05_018
crossref_primary_10_1039_D3EE03661H
crossref_primary_10_1016_j_jmrt_2020_05_130
crossref_primary_10_1016_j_jpowsour_2021_230643
crossref_primary_10_1016_j_jallcom_2025_178843
crossref_primary_10_1016_j_mtener_2020_100443
Cites_doi 10.1002/aenm.201400930
10.1039/C0CS00127A
10.1002/adfm.201100058
10.1038/nenergy.2016.119
10.1002/cssc.201403143
10.1038/nature11475
10.1016/j.electacta.2016.03.031
10.1039/c2ee02542f
10.1016/j.elecom.2015.08.019
10.1038/s41467-017-00467-x
10.1038/ncomms14424
10.1002/adfm.201200690
10.1038/nmat2297
10.1039/C5CC02585K
10.1149/1.1838571
10.1016/j.matlet.2011.01.073
10.1002/ange.201106307
10.1038/ncomms3487
10.1021/jacs.7b04471
10.1021/acs.chemmater.7b00852
10.1039/c3ee44164d
10.1021/cm504717p
10.1038/nchem.2085
10.1038/nmat4834
10.1038/nmat3601
10.1038/s41467-018-04949-4
10.1038/nenergy.2016.39
10.1002/adma.201800762
10.1021/jacs.6b05958
10.1021/ja953943i
10.1149/1.2197667
10.1002/adfm.201802564
10.1016/j.nanoen.2016.04.051
10.1021/jp207616s
10.1039/b813846j
10.1126/science.1212741
10.1038/s41467-018-04060-8
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OTOTI
DOI 10.1002/adma.201900567
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1545406
31157468
10_1002_adma_201900567
ADMA201900567
Genre article
Journal Article
GrantInformation_xml – fundername: U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering
  funderid: KC020105‐FWP12152
– fundername: U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering
  grantid: KC020105-FWP12152
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c5457-a816f9a9c4ae4db4d6c3eec51e04e8822eb8f24838f9e2820dbeb16cf18a764b3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Mon Sep 11 05:25:29 EDT 2023
Fri Jul 11 12:17:28 EDT 2025
Fri Jul 25 07:26:30 EDT 2025
Thu Apr 03 07:04:47 EDT 2025
Tue Jul 01 00:44:53 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
Wed Jan 22 16:39:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords joint charge storage
battery reaction mechanisms
Aqueous Zn-MnO2 batteries
high-rate batteries
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5457-a816f9a9c4ae4db4d6c3eec51e04e8822eb8f24838f9e2820dbeb16cf18a764b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
ORCID 0000-0001-7991-1015
0000000179911015
OpenAccessLink https://www.osti.gov/biblio/1545406
PMID 31157468
PQID 2265626649
PQPubID 2045203
PageCount 8
ParticipantIDs osti_scitechconnect_1545406
proquest_miscellaneous_2234486811
proquest_journals_2265626649
pubmed_primary_31157468
crossref_primary_10_1002_adma_201900567
crossref_citationtrail_10_1002_adma_201900567
wiley_primary_10_1002_adma_201900567_ADMA201900567
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2011; 334
2018; 28
2017; 8
2013; 4
2015; 5
2012; 124
2015; 51
2013; 23
2011; 40
2008; 7
2006; 153
2017; 29
2012; 488
2015; 8
2015; 7
2017; 139
2018; 9
2016; 1
2015; 27
2015; 60
2017; 16
2013; 12
2011; 21
2011; 65
2018; 30
2016; 138
2014; 7
2012; 116
2012; 5
1998; 145
2009; 38
2016; 25
1996; 118
2016; 196
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 5
  start-page: 1400930
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 488
  start-page: 294
  year: 2012
  publication-title: Nature
– volume: 4
  start-page: 2487
  year: 2013
  publication-title: Nat. Commun.
– volume: 27
  start-page: 3609
  year: 2015
  publication-title: Chem. Mater.
– volume: 116
  start-page: 1450
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 124
  start-page: 957
  year: 2012
  publication-title: Angew. Chem.
– volume: 30
  start-page: 1800762
  year: 2018
  publication-title: Adv. Mater.
– volume: 1
  start-page: 16119
  year: 2016
  publication-title: Nat. Energy
– volume: 196
  start-page: 587
  year: 2016
  publication-title: Electrochim. Acta
– volume: 65
  start-page: 1319
  year: 2011
  publication-title: Mater. Lett.
– volume: 9
  start-page: 1656
  year: 2018
  publication-title: Nat. Commun.
– volume: 8
  start-page: 481
  year: 2015
  publication-title: ChemSusChem
– volume: 25
  start-page: 211
  year: 2016
  publication-title: Nano Energy
– volume: 60
  start-page: 121
  year: 2015
  publication-title: Electrochem. Commun.
– volume: 145
  start-page: 1882
  year: 1998
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 845
  year: 2008
  publication-title: Nat. Mater.
– volume: 29
  start-page: 4874
  year: 2017
  publication-title: Chem. Mater.
– volume: 153
  start-page: A1317
  year: 2006
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 405
  year: 2017
  publication-title: Nat. Commun.
– volume: 23
  start-page: 929
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 16
  year: 2017
  publication-title: Nat. Mater.
– volume: 7
  start-page: 1597
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 1802564
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 51
  start-page: 9265
  year: 2015
  publication-title: Chem. Commun.
– volume: 8
  start-page: 14424
  year: 2017
  publication-title: Nat. Commun.
– volume: 9
  start-page: 2906
  year: 2018
  publication-title: Nat. Commun.
– volume: 138
  start-page: 12894
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 40
  start-page: 1697
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 118
  start-page: 5752
  year: 1996
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 9775
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 19
  year: 2015
  publication-title: Nat. Chem.
– volume: 38
  start-page: 2520
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 518
  year: 2013
  publication-title: Nat. Mater.
– volume: 21
  start-page: 2366
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 16039
  year: 2016
  publication-title: Nat. Energy
– volume: 5
  start-page: 7151
  year: 2012
  publication-title: Energy Environ. Sci.
– ident: e_1_2_5_24_1
  doi: 10.1002/aenm.201400930
– ident: e_1_2_5_7_1
  doi: 10.1039/C0CS00127A
– ident: e_1_2_5_12_1
  doi: 10.1002/adfm.201100058
– ident: e_1_2_5_21_1
  doi: 10.1038/nenergy.2016.119
– ident: e_1_2_5_23_1
  doi: 10.1002/cssc.201403143
– ident: e_1_2_5_2_1
  doi: 10.1038/nature11475
– ident: e_1_2_5_37_1
  doi: 10.1016/j.electacta.2016.03.031
– ident: e_1_2_5_6_1
  doi: 10.1039/c2ee02542f
– ident: e_1_2_5_28_1
  doi: 10.1016/j.elecom.2015.08.019
– ident: e_1_2_5_18_1
  doi: 10.1038/s41467-017-00467-x
– ident: e_1_2_5_31_1
  doi: 10.1038/ncomms14424
– ident: e_1_2_5_3_1
  doi: 10.1002/adfm.201200690
– ident: e_1_2_5_9_1
  doi: 10.1038/nmat2297
– ident: e_1_2_5_29_1
  doi: 10.1039/C5CC02585K
– ident: e_1_2_5_34_1
  doi: 10.1149/1.1838571
– ident: e_1_2_5_32_1
  doi: 10.1016/j.matlet.2011.01.073
– ident: e_1_2_5_27_1
  doi: 10.1002/ange.201106307
– ident: e_1_2_5_13_1
  doi: 10.1038/ncomms3487
– ident: e_1_2_5_17_1
  doi: 10.1021/jacs.7b04471
– ident: e_1_2_5_19_1
  doi: 10.1021/acs.chemmater.7b00852
– ident: e_1_2_5_10_1
  doi: 10.1039/c3ee44164d
– ident: e_1_2_5_30_1
  doi: 10.1021/cm504717p
– ident: e_1_2_5_4_1
  doi: 10.1038/nchem.2085
– ident: e_1_2_5_5_1
  doi: 10.1038/nmat4834
– ident: e_1_2_5_33_1
  doi: 10.1038/nmat3601
– ident: e_1_2_5_15_1
  doi: 10.1038/s41467-018-04949-4
– ident: e_1_2_5_16_1
  doi: 10.1038/nenergy.2016.39
– ident: e_1_2_5_20_1
  doi: 10.1002/adma.201800762
– ident: e_1_2_5_25_1
  doi: 10.1021/jacs.6b05958
– ident: e_1_2_5_36_1
  doi: 10.1021/ja953943i
– ident: e_1_2_5_11_1
  doi: 10.1149/1.2197667
– ident: e_1_2_5_14_1
  doi: 10.1002/adfm.201802564
– ident: e_1_2_5_26_1
  doi: 10.1016/j.nanoen.2016.04.051
– ident: e_1_2_5_35_1
  doi: 10.1021/jp207616s
– ident: e_1_2_5_8_1
  doi: 10.1039/b813846j
– ident: e_1_2_5_1_1
  doi: 10.1126/science.1212741
– ident: e_1_2_5_22_1
  doi: 10.1038/s41467-018-04060-8
SSID ssj0009606
Score 2.6802914
Snippet Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly, abundant,...
Aqueous rechargeable zinc-manganese dioxide batteries show great promise for large-scale energy storage due to their use of environmentally friendly, abundant,...
Abstract Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly,...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1900567
SubjectTerms Aqueous Zn‐MnO2 batteries
Batteries
battery reaction mechanisms
Cathodes
Charge transport
Conversion
Discharge
Electrode materials
Electrodes
Electrolytes
Energy storage
Flux density
high‐rate batteries
Intercalation
joint charge storage
Lithium
Manganese dioxide
Materials science
Reaction mechanisms
Rechargeable batteries
Redox reactions
Storage batteries
Transport properties
Zinc
Title Joint Charge Storage for High‐Rate Aqueous Zinc–Manganese Dioxide Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201900567
https://www.ncbi.nlm.nih.gov/pubmed/31157468
https://www.proquest.com/docview/2265626649
https://www.proquest.com/docview/2234486811
https://www.osti.gov/biblio/1545406
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7KntJDm_TpJikqFHpysrZlWT4uSUMIbAtpA6EXocc4LCl26Xoh9JSfUOg_zC_pjL3rZEtLob3ZWAJpHppP1ugbgNeBrERaHeI0k55LmMm4TF0Vk08iYl6Q0fAF5-k7dXwmT87z8zu3-Ht-iOGHG3tGt16zg1s3378lDbWh4w2igEYxnK-Tc8IWo6LTW_4ohucd2V6Wx6WSesXaOE7317uvRaVRQ971O8S5DmC7CHT0EOxq7H3iyeXeonV7_tsvtI7_M7lNeLCEp2LS29MW3MP6Edy_Q1r4GN6fNLO6FXxOf4HiA-3ZaUkShH0F54zcXH8_JfgqJjSnZjEXn2a1v7n-MbX1heVil-Jw1lzNAoqe2JP26U_g7Ojtx4PjeFmWIfYEt4rY6kRVpS29tCiDk0H5DNHnCY4lEmBP0ekqlTrTVYm0oxsHRwFB-SrRtlDSZU9hVDc1PgcRqsKX0iWZJ1PRWOjgHBYVhko7X-UygnilFuOXnOVcOuOz6dmWU8OCMoOgIngztP_Ss3X8seU2a9kQzmCyXM9ZRb41DCgJ4kSws1K-Wfr03BBQJbColCwjeDV8Jm_kIxYSIQmV2mS031U6SSJ41hvNMJCO10gqHUHaqf4vIzSTw-lkeHvxL522YYOf--ziHRi1Xxe4SxiqdS87P_kJdysTdw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V5QAceD9CCxgJxCntJnEc58BhxVJtH1uk0koVFxM7kypqlSA2Kx6n_gQkfgl_hZ_QX8I4r7IIhITUA6coiRM545nxN874G4AnKWkJT2Tq-gE3toQZd2NfZy7ZJCKGESmN3eA83RGTfb55EB4swbduL0zDD9EvuFnLqP21NXC7IL12xhqapDVxEM1oNIlHbV7lFn76QFHb7PnGmIb4qe-vv9x7MXHbwgKuIcAQuYn0RBYnseEJ8lTzVJgA0YQeDjkS5PRRy8znMpBZjBSTDFNNLk2YzJNJJLgO6L0X4KItI27p-se7Z4xVNiCo6f2C0I0Flx1P5NBfW-zvwjw4KMmef4dxFyFzPeetX4PvnbSaVJej1XmlV83nX4gk_ytxXoerLQJno8ZkbsASFjfhyk-8jLfg1WaZFxWzqQiHyF5XZCZ0JHjPbFrM6cmXXULobERCLOcz9iYvzOnJ12lSHCa2nicb5-XHPEXWcJfmOLsN--fyRXdgUJQF3gOWZpGJufYCQ9YgMZKp1hhlmGZSmyzkDridHijT0rLb6iDHqiGU9pUdGNUPjAPP-vbvGkKSP7ZctmqlCEpZPmBjE6dMpSxmJhTnwEqnbap1WzNFWJzwsBA8duBxf5scjv2LRCIkoVKbgEJ6IT3PgbuNlvYdqambuJAO-LWu_aWHajSejvqz-__y0CO4NNmbbqvtjZ2tZbhsrzfJ1CswqN7P8QFBxko_rI2UwdvzVuMfmBZzJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb5RAFD6pa2L0wbsWW3VMND7RLjAMw4MPG3HTi1tNtUnjy8jcGmIDjcvGy1N_gol_xL_iX-gv8Qws1DUaE5M--ESAgQxnzuU7cPgOwEONWkJzrv0wosq1MKN-Gkrro00aY-IElcb94DzZYRt7dGs_3l-Cb92_MC0_RP_CzVlG46-dgR9pu35KGprrhjcIAxrG8GReVrltPn3ApG36ZDPDFX4UhuNnr59u-PO-Ar5CvJD4OQ-YTfNU0dxQLalmKjJGxYEZUoOIMzSS25DyiNvUYEoy1BI9GlM24HnCqIzwvufgPGXD1DWLyHZPCatcPtCw-0WxnzLKO5rIYbi-ON-FMDio0Jx_B3EXEXMT8sZX4HsnrLbS5d3arJZr6vMvPJL_kzSvwuU5_iaj1mCuwZIpr8Oln1gZb8CLraooa-IKEQ4MeVWjkeAWwT1xRTEnx192EZ-TEcqwmk3Jm6JUJ8dfJ3l5kLtuniQrqo-FNqRlLi3M9CbsnckT3YJBWZVmGYi2iUqpDCKFtsBNwrWUJrFGWy6VjakHfqcGQs1J2V1vkEPR0kmHwi2M6BfGg8f9-KOWjuSPI1ecVgkEUo4NWLmyKVULh5gRw3mw2imbmDutqUAkjmiYMZp68KA_je7GfUNCEaJQcUyECT3jQeDB7VZJ-4k0xE2UcQ_CRtX-MkMxyiajfu_Ov1x0Hy68zMbi-ebO9gpcdIfbSupVGNTvZ-Yu4sVa3mtMlMDbs9biH7XucdY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Charge+Storage+for+High%E2%80%90Rate+Aqueous+Zinc%E2%80%93Manganese+Dioxide+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jin%2C+Yan&rft.au=Zou%2C+Lianfeng&rft.au=Liu%2C+Lili&rft.au=Engelhard%2C+Mark+H&rft.date=2019-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=29&rft_id=info:doi/10.1002%2Fadma.201900567&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon