Targeting presynaptic norepinephrine transporter in brown adipose tissue: A novel imaging approach and potential treatment for diabetes and obesity

Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for 18F‐FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted‐male Sprague‐Dawley...

Full description

Saved in:
Bibliographic Details
Published inSynapse (New York, N.Y.) Vol. 67; no. 2; pp. 79 - 93
Main Authors Mirbolooki, M. Reza, Constantinescu, Cristian C., Pan, Min-Liang, Mukherjee, Jogeshwar
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.02.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for 18F‐FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted‐male Sprague‐Dawley rats were administered with intravenous 18F‐FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before 18F‐FDG administration. To confirm the β‐adrenergic effects, propranolol (β‐adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non‐fasted rats and on BAT temperature and blood glucose in fasted rats. In 18F‐FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the 18F‐FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average 18F‐FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine‐induced increase of 18F‐FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of β3‐adrenreceptors in non‐fasted rats with CL‐316, 243 occurred within 30 min. Atomoxetine‐induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates β3‐adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by 18F‐FDG PET/CT. Synapse, 2013. © 2012 Wiley Periodicals, Inc.
AbstractList Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for 18F-FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted-male Sprague-Dawley rats were administered with intravenous 18F-FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before 18F-FDG administration. To confirm the [beta]-adrenergic effects, propranolol ([beta]-adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non-fasted rats and on BAT temperature and blood glucose in fasted rats. In 18F-FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the 18F-FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average 18F-FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine-induced increase of 18F-FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of [beta]3-adrenreceptors in non-fasted rats with CL-316, 243 occurred within 30 min. Atomoxetine-induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates [beta]3-adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by 18F-FDG PET/CT. Synapse, 2013. © 2012 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for (18)F-FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted-male Sprague-Dawley rats were administered with intravenous (18)F-FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before (18)F-FDG administration. To confirm the β-adrenergic effects, propranolol (β-adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non-fasted rats and on BAT temperature and blood glucose in fasted rats. In (18)F-FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the (18)F-FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average (18)F-FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine-induced increase of (18)F-FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of β(3)-adrenreceptors in non-fasted rats with CL-316, 243 occurred within 30 min. Atomoxetine-induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates β(3)-adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by (18)F-FDG PET/CT.
Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for (18)F-FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted-male Sprague-Dawley rats were administered with intravenous (18)F-FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before (18)F-FDG administration. To confirm the β-adrenergic effects, propranolol (β-adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non-fasted rats and on BAT temperature and blood glucose in fasted rats. In (18)F-FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the (18)F-FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average (18)F-FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine-induced increase of (18)F-FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of β(3)-adrenreceptors in non-fasted rats with CL-316, 243 occurred within 30 min. Atomoxetine-induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates β(3)-adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by (18)F-FDG PET/CT.Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for (18)F-FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted-male Sprague-Dawley rats were administered with intravenous (18)F-FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before (18)F-FDG administration. To confirm the β-adrenergic effects, propranolol (β-adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non-fasted rats and on BAT temperature and blood glucose in fasted rats. In (18)F-FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the (18)F-FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average (18)F-FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine-induced increase of (18)F-FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of β(3)-adrenreceptors in non-fasted rats with CL-316, 243 occurred within 30 min. Atomoxetine-induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates β(3)-adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by (18)F-FDG PET/CT.
Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for super(18)F-FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted-male Sprague-Dawley rats were administered with intravenous super(18)F-FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before super(18)F-FDG administration. To confirm the [beta]-adrenergic effects, propranolol ([beta]-adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non-fasted rats and on BAT temperature and blood glucose in fasted rats. In super(18)F-FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the super(18)F-FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average super(18)F-FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine-induced increase of super(18)F-FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of [beta] sub(3)-adrenreceptors in non-fasted rats with CL-316, 243 occurred within 30 min. Atomoxetine-induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates [beta] sub(3)-adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by super(18)F-FDG PET/CT. Synapse, 2013. [copy 2012 Wiley Periodicals, Inc.
Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for 18 F-FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted-male Sprague-Dawley rats were administered with intravenous 18 F-FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before 18 F-FDG administration. To confirm the β-adrenergic effects, propranolol (β-adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non-fasted rats and on BAT temperature and blood glucose in fasted rats. In 18 F-FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the 18 F-FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average 18 F-FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine-induced increase of 18 F-FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of β 3 -adrenreceptors in non-fasted rats with CL-316, 243 occurred within 30 min. Atomoxetine-induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates β 3- adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by 18 F-FDG PET/CT.
Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for 18 F‐FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted‐male Sprague‐Dawley rats were administered with intravenous 18 F‐FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before 18 F‐FDG administration. To confirm the β‐adrenergic effects, propranolol (β‐adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non‐fasted rats and on BAT temperature and blood glucose in fasted rats. In 18 F‐FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the 18 F‐FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average 18 F‐FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine‐induced increase of 18 F‐FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of β 3 ‐adrenreceptors in non‐fasted rats with CL‐316, 243 occurred within 30 min. Atomoxetine‐induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates β 3 ‐adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by 18 F‐FDG PET/CT. Synapse, 2013. © 2012 Wiley Periodicals, Inc.
Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for 18F‐FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted‐male Sprague‐Dawley rats were administered with intravenous 18F‐FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before 18F‐FDG administration. To confirm the β‐adrenergic effects, propranolol (β‐adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non‐fasted rats and on BAT temperature and blood glucose in fasted rats. In 18F‐FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the 18F‐FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average 18F‐FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine‐induced increase of 18F‐FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of β3‐adrenreceptors in non‐fasted rats with CL‐316, 243 occurred within 30 min. Atomoxetine‐induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates β3‐adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by 18F‐FDG PET/CT. Synapse, 2013. © 2012 Wiley Periodicals, Inc.
Author Constantinescu, Cristian C.
Mukherjee, Jogeshwar
Mirbolooki, M. Reza
Pan, Min-Liang
Author_xml – sequence: 1
  givenname: M. Reza
  surname: Mirbolooki
  fullname: Mirbolooki, M. Reza
  email: rezam@uci.edu
  organization: Preclinical Imaging, Department of Radiological Sciences, University of California Irvine, Irvine, California
– sequence: 2
  givenname: Cristian C.
  surname: Constantinescu
  fullname: Constantinescu, Cristian C.
  organization: Preclinical Imaging, Department of Radiological Sciences, University of California Irvine, Irvine, California
– sequence: 3
  givenname: Min-Liang
  surname: Pan
  fullname: Pan, Min-Liang
  organization: Preclinical Imaging, Department of Radiological Sciences, University of California Irvine, Irvine, California
– sequence: 4
  givenname: Jogeshwar
  surname: Mukherjee
  fullname: Mukherjee, Jogeshwar
  organization: Preclinical Imaging, Department of Radiological Sciences, University of California Irvine, Irvine, California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23080264$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAUhiNURKeFBS-ALLGBRVpf4ktYIFUVtKhVQbQIWFme5GTGJWMH22mZ5-CF8XTaEVQCNj6yzvf_OredYst5B0XxlOA9gjHdj0u3R4kg8kExIbhWJWW12ComWClZVpUU28VOjJcYY0Zw9ajYpgwrTEU1KX5emDCDZN0MDQGykRmSbZDzAQbrYJiH_KIUjIuDDwkCsg5Ng792yLR28DEnbYwjvEIHWXUFPbILM1v5mWEI3jRzZFyLBp_AJWv67AUmLfIHdT6g1popJIg3kJ9CtGn5uHjYmT7Ck9u4W3x6--bi8Lg8fX_07vDgtGx4xWVZK8zbloiadVwo0amOTGtpJBdVR7lSnDeGtowK2XEFHJtGMMFwpwxTDIxku8Xrte8wThfQNrmmYHo9hNxBWGpvrP4z4-xcz_yVZipPlpNs8OLWIPjvI8SkFzY20PfGgR-jJhWrMFWS4v-jVDIqaVXXGX1-D730Y3B5EplidZ0bIyxTz34vflP13Woz8HINNMHHGKDbIATr1dnovG19czaZ3b_HNjaZZP2qb9v_S3Fte1j-3Vqffz27U5RrhY0JfmwUJnzTQjLJ9eezI33-4eOXE3FyrAn7BWRR5cM
CODEN SYNAET
CitedBy_id crossref_primary_10_1177_1536012117704557
crossref_primary_10_15406_mojddt_2018_02_00057
crossref_primary_10_1124_jpet_114_217380
crossref_primary_10_3390_pharmaceutics15020690
crossref_primary_10_1152_japplphysiol_00212_2023
crossref_primary_10_1016_j_pcad_2019_08_004
crossref_primary_10_1089_jop_2021_0084
crossref_primary_10_2310_7290_2015_00028
crossref_primary_10_3389_fphar_2016_00336
crossref_primary_10_1016_j_nucmedbio_2015_04_003
crossref_primary_10_1016_j_patter_2021_100307
crossref_primary_10_1002_syn_21789
crossref_primary_10_1016_j_nucmedbio_2013_08_009
crossref_primary_10_1124_molpharm_121_000328
crossref_primary_10_1152_ajpendo_00234_2015
crossref_primary_10_4161_21623945_2014_965609
crossref_primary_10_1152_physrev_00034_2018
crossref_primary_10_1016_j_coph_2017_07_004
crossref_primary_10_1002_syn_21893
Cites_doi 10.1042/0264-6021:3470643
10.1016/S0022-2275(20)37695-1
10.1055/s-0032-1306294
10.1016/j.nucmedbio.2012.04.005
10.1073/pnas.1207911109
10.1186/2191-219X-1-30
10.1016/j.cmet.2011.02.009
10.1042/bj3300397
10.2147/nedt.2006.2.4.455
10.2337/diabetes.54.12.3587
10.4088/JCP.v68n0306
10.2967/jnumed.110.075184
10.2165/00148581-200911030-00005
10.2337/db10-0004
10.1038/oby.2011.125
10.1097/WNF.0b013e3181dca948
10.1016/S0006-3223(02)01671-2
10.2337/db09-0833
10.2967/jnumed.109.068775
10.1088/0031-9155/54/9/020
10.1210/endo-52-1-57
10.1002/(SICI)1098-2396(199709)27:1<1::AID-SYN1>3.0.CO;2-9
10.1152/physrev.00015.2003
10.2147/NDT.S5421
10.2214/AJR.08.1166
10.1007/s004240050690
10.1210/endo.137.1.8536614
10.2337/diabetes.47.10.1555
10.1021/jm00094a025
10.1056/NEJMoa0810780
10.1056/NEJMoa0808949
10.1002/cncr.26630
10.1056/NEJMoa0808718
10.1038/nm.2297
10.1016/0024-3205(94)00408-0
10.4088/JCP.v66n0304
10.2337/diabetes.54.5.1385
10.2165/00003088-200544060-00002
10.1042/bj2770119
10.1002/ana.23553
10.1023/A:1006996922657
10.2337/db09-0530
10.3109/0284186X.2010.498831
10.1016/j.pbiomolbio.2010.11.008
10.1093/ilar.49.1.17
10.1016/S0893-133X(02)00346-9
10.1148/radiol.2272012051
10.3109/15622975.2010.483249
10.1001/jama.2011.1830
10.1172/JCI112785
10.1016/S0969-8051(02)00449-3
10.1007/s11307-010-0379-9
10.1111/j.1476-5381.2008.00018.x
10.1152/ajpendo.00085.2011
10.1210/en.130.2.837
10.1152/ajpendo.00691.2006
10.2967/jnumed.106.039065
10.1007/s00259-007-0670-4
10.1210/en.2003-0857
10.1007/s00259-011-1789-x
10.1007/s00259-007-0538-7
10.1210/en.2006-0242
10.1038/sj.ijo.0803223
10.1139/y86-101
10.3371/CSRP.5.1.3
10.1111/j.1749-6632.2010.05905.x
10.2165/11584800-000000000-00000
10.1210/endo.140.9.6972
ContentType Journal Article
Copyright Copyright © 2012 Wiley Periodicals, Inc.
2012 Wiley Periodicals, Inc. 2012
Copyright_xml – notice: Copyright © 2012 Wiley Periodicals, Inc.
– notice: 2012 Wiley Periodicals, Inc. 2012
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
K9.
7X8
5PM
DOI 10.1002/syn.21617
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic
Neurosciences Abstracts

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1098-2396
EndPage 93
ExternalDocumentID PMC3808851
2844726411
23080264
10_1002_syn_21617
SYN21617
ark_67375_WNG_SPRXK6KH_1
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R21DK092917
– fundername: NCRR NIH HHS
  grantid: S10 RR024546
– fundername: NIDDK NIH HHS
  grantid: RC1 DK087352
– fundername: NIDDK NIH HHS
  grantid: RC1DK087352
– fundername: NCRR NIH HHS
  grantid: S10 RR019269
– fundername: NIDDK NIH HHS
  grantid: R21 DK092917
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: R21 DK092917 || DK
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: RC1 DK087352 || DK
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1CY
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XV2
YNT
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
K9.
7X8
5PM
ID FETCH-LOGICAL-c5457-9805dd1693f5686f8f1b97a7564f258855ca2d3267f58e50ac63630f8a383ea73
IEDL.DBID DR2
ISSN 0887-4476
1098-2396
IngestDate Thu Aug 21 18:24:58 EDT 2025
Thu Jul 10 18:17:23 EDT 2025
Fri Jul 11 10:36:31 EDT 2025
Fri Jul 25 12:15:20 EDT 2025
Mon Jul 21 06:02:09 EDT 2025
Thu Apr 24 23:04:43 EDT 2025
Tue Jul 01 01:20:09 EDT 2025
Wed Jan 22 17:05:12 EST 2025
Wed Oct 30 09:54:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2012 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5457-9805dd1693f5686f8f1b97a7564f258855ca2d3267f58e50ac63630f8a383ea73
Notes ark:/67375/WNG-SPRXK6KH-1
istex:80EE96F6F058765A0CE342395607D1864F8FED64
ArticleID:SYN21617
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 23080264
PQID 1239985513
PQPubID 1046379
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3808851
proquest_miscellaneous_1434028720
proquest_miscellaneous_1273272499
proquest_journals_1239985513
pubmed_primary_23080264
crossref_primary_10_1002_syn_21617
crossref_citationtrail_10_1002_syn_21617
wiley_primary_10_1002_syn_21617_SYN21617
istex_primary_ark_67375_WNG_SPRXK6KH_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2013
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: February 2013
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Synapse (New York, N.Y.)
PublicationTitleAlternate Synapse
PublicationYear 2013
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References Scheen AJ. 2010. Cardiovascular risk-benefit profile of sibutramine. Am J Cardiovasc Drugs 10: 321-334.
Garnock-Jones KP, Keating GM. 2009. Atomoxetine: A review of its use in attention-deficit hyperactivity disorder in children and adolescents. Paediatr Drugs 11: 203-226.
Mukherjee J, Yang ZY, Lew R, Brown T, Kronmal S, Cooper MD, Seiden LS. 1997. Evaluation of d-amphetamine effects on the binding of dopamine D-2 receptor radioligand, 18F-fallypride in nonhuman primates using positron emission tomography. Synapse (New York, NY) 27: 1-13.
Stefan N, Pfannenberg C, Haring HU. 2009. The importance of brown adipose tissue. N Engl J Med 361: 416-417; author reply 418-421.
Marnane M, Merwick A, Sheehan OC, Hannon N, Foran P, Grant T, Dolan E, Moroney J, Murphy S, O'Rourke K, O'Malley K, O'Donohoe M, McDonnell C, Noone I, Barry M, Crowe M, Kavanagh E, O'Connell M, Kelly PJ. 2012. Carotid plaque inflammation on 18F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence. Ann Neurol 71: 709-718.
Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW. 2002. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27: 699-711.
van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. 2009. Cold-activated brown adipose tissue in healthy men. N Engl J Med 360: 1500-1508.
Mirbolooki MR, Constantinescu CC, Pan ML, Mukherjee J. 2011. Quantitative assessment of brown adipose tissue metabolic activity and volume using 18F-FDG PET/CT and β3-adrenergic receptor activation. EJNMMI Res 1: 30.
Pfannenberg C, Werner MK, Ripkens S, Stef I, Deckert A, Schmadl M, Reimold M, Haring HU, Claussen CD, Stefan N. 2010. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59: 1789-1793.
Postic C, Leturque A, Printz RL, Maulard P, Loizeau M, Granner DK, Girard J. 1994. Development and regulation of glucose transporter and hexokinase expression in rat. Am J Physiol 266( 4 Pt 1): E548-E559.
Mizuma H, Shukuri M, Hayashi T, Watanabe Y, Onoe H. 2010. Establishment of in vivo brain imaging method in conscious mice. J Nucl Med 51: 1068-1075.
Scherer D, Hassel D, Bloehs R, Zitron E, von Lowenstern K, Seyler C, Thomas D, Konrad F, Burgers HF, Seemann G, Rottbauer W, Katus HA, Karle CA, Scholz EP. 2009. Selective noradrenaline reuptake inhibitor atomoxetine directly blocks hERG currents. Br J Pharmacol 156: 226-236.
Abrahamian H, Hofmann P, Prager R, Toplak H. 2009. Diabetes mellitus and co-morbid depression: Treatment with milnacipran results in significant improvement of both diseases (results from the Austrian MDDM study group). Neuropsychiatr Dis Treat 5: 261-266.
Chernogubova E, Cannon B, Bengtsson T. 2004. Norepinephrine increases glucose transport in brown adipocytes via beta3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology 145: 269-280.
Michelson D, Adler L, Spencer T, Reimherr FW, West SA, Allen AJ, Kelsey D, Wernicke J, Dietrich A, Milton D. 2003. Atomoxetine in adults with ADHD: Two randomized, placebo-controlled studies. Biol Psychiatry 53: 112-120.
Yamaga LY, Thom AF, Wagner J, Baroni RH, Hidal JT, Funari MG. 2008. The effect of catecholamines on the glucose uptake in brown adipose tissue demonstrated by (18)F-FDG PET/CT in a patient with adrenal pheochromocytoma. Eur J Nucl Med Mol Imaging 35: 446-447.
Sauer JM, Ring BJ, Witcher JW. 2005. Clinical pharmacokinetics of atomoxetine. Clin Pharmacokinet 44: 571-590.
Mattsson CL, Csikasz RI, Chernogubova E, Yamamoto DL, Hogberg HT, Amri EZ, Hutchinson DS, Bengtsson T. 2011. Beta(1)-adrenergic receptors increase UCP1 in human MADS brown adipocytes and rescue cold-acclimated beta(3)-adrenergic receptor-knockout mice via nonshivering thermogenesis. Am J Physiol 301: E1108-E1118.
Hildebrandt IJ, Su H, Weber WA. 2008. Anesthesia and other considerations for in vivo imaging of small animals. ILAR J 49: 17-26.
Burrows RC, Freeman SD, Charlop AW, Wiseman RW, Adamsen TC, Krohn KA, Spence AM. 2004. [18F]-2-fluoro-2-deoxyglucose transport kinetics as a function of extracellular glucose concentration in malignant glioma, fibroblast and macrophage cells in vitro. Nucl Med Biol 31: 1-9.
Rosler M, Casas M, Konofal E, Buitelaar J. 2010. Attention deficit hyperactivity disorder in adults. World J Biol Psychiatry 11: 684-698.
Benz MR, Czernin J, Allen-Auerbach MS, Dry SM, Sutthiruangwong P, Spick C, Radu C, Weber WA, Tap WD, Eilber FC. 2012. 3′-Deoxy-3′-[18F]fluorothymidine positron emission tomography for response assessment in soft tissue sarcoma: A pilot study to correlate imaging findings with tissue thymidine kinase 1 and Ki-67 activity and histopathologic response. Cancer 118: 3135-3144.
Weyer C, Tataranni PA, Snitker S, Danforth E,Jr, Ravussin E. 1998. Increase in insulin action and fat oxidation after treatment with CL 316, 243, a highly selective beta3-adrenoceptor agonist in humans. Diabetes 47: 1555-1561.
Lee KH, Ko BH, Paik JY, Jung KH, Choe YS, Choi Y, Kim BT. 2005. Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. JNucl Med 46: 1531-1536.
Vanttinen M, Nuutila P, Kuulasmaa T, Pihlajamaki J, Hallsten K, Virtanen KA, Lautamaki R, Peltoniemi P, Takala T, Viljanen AP, Knuuti J, Laakso M. 2005. Single nucleotide polymorphisms in the peroxisome proliferator-activated receptor delta gene are associated with skeletal muscle glucose uptake. Diabetes 54: 3587-3591.
Ma SW, Foster DO. 1986. Uptake of glucose and release of fatty acids and glycerol by rat brown adipose tissue in vivo. Can J Physiol Pharmacol 64: 609-614.
Ball MP, Warren KR, Feldman S, McMahon RP, Kelly DL, Buchanan RW. 2011. Placebo-controlled trial of atomoxetine for weight reduction in people with schizophrenia treated with clozapine or olanzapine. Clin Schizophr Relat Psychoses 5: 17-25.
Constantinescu CC, Mukherjee J. 2009. Performance evaluation of an Inveon PET preclinical scanner. Phys Med Biol 54: 2885-2899.
Nedergaard J, Bengtsson T, Cannon B. 2011. New powers of brown fat: Fighting the metabolic syndrome. Cell Metab 13: 238-240.
Liu X, Perusse F, Bukowiecki LJ. 1998. Mechanisms of the antidiabetic effects of the beta 3-adrenergic agonist CL-316 243 in obese Zucker-ZDF rats. Am J Physiol 274( 5 Pt 2): R1212-R1219.
Kim S, Krynyckyi BR, Machac J, Kim CK. 2008. Temporal relation between temperature change and FDG uptake in brown adipose tissue. Eur J Nucl Med Mol Imaging 35: 984-989.
Inokuma K, Ogura-Okamatsu Y, Toda C, Kimura K, Yamashita H, Saito M. 2005. Uncoupling protein 1 is necessary for norepinephrine-induced glucose utilization in brown adipose tissue. Diabetes 54: 1385-1391.
Quevedo S, Roca P, Pico C, Palou A. 1998. Sex-associated differences in cold-induced UCP1 synthesis in rodent brown adipose tissue. Pflugers Arch 436: 689-695.
Yoshida T, Sakane N, Wakabayashi Y, Umekawa T, Kondo M. 1994. Anti-obesity and anti-diabetic effects of CL 316, 243, a highly specific beta 3-adrenoceptor agonist, in yellow KK mice. Life Sci 54: 491-498.
Bronnikov G, Bengtsson T, Kramarova L, Golozoubova V, Cannon B, Nedergaard J. 1999. Beta1 to beta3 switch in control of cyclic adenosine monophosphate during brown adipocyte development explains distinct beta-adrenoceptor subtype mediation of proliferation and differentiation. Endocrinology 140: 4185-4197.
Baba S, Jacene HA, Engles JM, Honda H, Wahl RL. 2010. CT Hounsfield units of brown adipose tissue increase with activation: Preclinical and clinical studies. J Nucl Med 51: 246-250.
Kim YW, Shin JC, An YS. 2010. Treatment of chronic akinetic mutism with atomoxetine: subtraction analysis of brain f-18 fluorodeoxyglucose positron emission tomographic images before and after medication: A case report. Clin Neuropharmacol 33: 209-211.
Eng J. 2003. Sample size estimation: how many individuals should be studied? Radiology 227: 309-313.
Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, Phelps ME, Weber WA. 2006. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47: 999-1006.
Marette A, Bukowiecki LJ. 1991. Noradrenaline stimulates glucose transport in rat brown adipocytes by activating thermogenesis. Evidence that fatty acid activation of mitochondrial respiration enhances glucose transport. Biochem J 277( Pt 1): 119-124.
Baba S, Tatsumi M, Ishimori T, Lilien DL, Engles JM, Wahl RL. 2007. Effect of nicotine and ephedrine on the accumulation of 18F-FDG in brown adipose tissue. J Nucl Med 48: 981-986.
Au-Yong IT, Thorn N, Ganatra R, Perkins AC, Symonds ME. 2009. Brown adipose tissue and seasonal variation in humans. Diabetes 58: 2583-2587.
Nedergaard J, Bengtsson T, Cannon B. 2010. Three years with adult human brown adipose tissue. Ann N Y Acad Sci 1212: E20-E36.
Roe K, Aleksandersen TB, Kristian A, Nilsen LB, Seierstad T, Qu H, Ree AH, Olsen DR, Malinen E. 2010. Preclinical dynamic 18F-FDG PET: Tumor characterization and radiotherapy response assessment by kinetic compartment analysis. Acta Oncol (Stockholm, Sweden) 49: 914-921.
Jensen MD, Haymond MW, Gerich JE, Cryer PE, Miles JM. 1987. Lipolysis during fasting. Decreased suppression by insulin and increased stimulation by epinephrine. J Clin Investig 79: 207-213.
Zelinka T, Petrak O, Turkova H, Holaj R, Strauch B, Krsek M, Vrankova AB, Musil Z, Duskova J, Kubinyi J, Michalsky D, Novak K, Widimsky J. 2012. High incidence of cardiovascular complications in pheochromocytoma. Horm Metab Res 44: 379-384.
Lafontan M, Berlan M. 1993. Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res 34: 1057-1091.
Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsuji
1987; 79
2010; 11
2010; 10
2006; 30
2010; 59
1991; 277
2009; 156
2008; 35
2011; 13
1998; 436
2011; 17
2011; 19
2005; 66
2003; 53
2010; 1212
1998; 274
1998; 47
2012; 51
1994; 266
2009; 11
2012; 71
2009; 58
2004; 31
1993; 34
2009; 54
2007; 293
2009; 360
2009; 361
1996; 137
2007; 68
2003; 44
2004; 145
1998; 27
2010; 33
2004; 84
2011; 1
1999; 140
1997; 27
1992; 35
2012; 39
2006; 2
2011; 38
1998; 330
2011; 5
2005; 44
2012; 109
2005; 46
1953; 52
2002; 27
2011; 301
2010; 49
2011; 306
2003; 227
2009; 31
2011; 106
1992; 130
1986; 64
2009; 192
2000; 347
2006; 47
2008; 49
2005; 54
2009; 5
2012; 44
2012; 118
2010; 51
2007; 48
2006; 147
1994; 54
e_1_2_7_5_1
e_1_2_7_3_1
Fueger BJ (e_1_2_7_25_1) 2006; 47
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Shimizu Y (e_1_2_7_67_1) 1998; 330
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
Cheng WY (e_1_2_7_16_1) 2009; 31
e_1_2_7_4_1
e_1_2_7_8_1
Liu X (e_1_2_7_43_1) 1998; 274
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
Postic C (e_1_2_7_57_1) 1994; 266
Lee KH (e_1_2_7_40_1) 2005; 46
e_1_2_7_29_1
Letovanec I (e_1_2_7_41_1) 2012; 51
Stefan N (e_1_2_7_68_1) 2009; 361
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Cohade C (e_1_2_7_18_1) 2003; 44
20831478 - Acta Oncol. 2010 Oct;49(7):914-21
12431845 - Neuropsychopharmacology. 2002 Nov;27(5):699-711
18157529 - Eur J Nucl Med Mol Imaging. 2008 May;35(5):984-9
17473055 - Am J Physiol Endocrinol Metab. 2007 Aug;293(2):E444-52
21566561 - Obesity (Silver Spring). 2011 Sep;19(9):1755-60
12732691 - Radiology. 2003 May;227(2):309-13
1354264 - J Med Chem. 1992 Aug 7;35(16):3081-4
20357363 - Diabetes. 2010 Jul;59(7):1789-93
17504863 - J Nucl Med. 2007 Jun;48(6):981-6
16959848 - Endocrinology. 2006 Dec;147(12):5730-9
22020872 - Cancer. 2012 Jun 15;118(12):3135-44
20124047 - J Nucl Med. 2010 Feb;51(2):246-50
22584348 - Nuklearmedizin. 2012;51(5):186-93
22161946 - JAMA. 2011 Dec 28;306(24):2673-83
9461536 - Biochem J. 1998 Feb 15;330 ( Pt 1):397-403
22595487 - Nucl Med Biol. 2012 Oct;39(7):1081-6
8178975 - Am J Physiol. 1994 Apr;266(4 Pt 1):E548-59
19357407 - N Engl J Med. 2009 Apr 9;360(15):1518-25
21461734 - Eur J Nucl Med Mol Imaging. 2011 Aug;38(8):1449-58
21878665 - Am J Physiol Endocrinol Metab. 2011 Dec;301(6):E1108-18
8309351 - Life Sci. 1994;54(7):491-8
18172330 - ILAR J. 2008;49(1):17-26
17909796 - Eur J Nucl Med Mol Imaging. 2008 Feb;35(2):446-7
19696186 - Diabetes. 2009 Nov;58(11):2583-7
13021112 - Endocrinology. 1953 Jan;52(1):57-64
21163289 - Prog Biophys Mol Biol. 2011 Jul;106(1):300-6
21375707 - Ann N Y Acad Sci. 2010 Nov;1212:E20-36
19384008 - Phys Med Biol. 2009 May 7;54(9):2885-99
22461139 - Ann Neurol. 2012 May;71(5):709-18
20661027 - Clin Neuropharmacol. 2010 Jul;33(4):209-11
21356513 - Cell Metab. 2011 Mar 2;13(3):238-40
8371057 - J Lipid Res. 1993 Jul;34(7):1057-91
20860415 - Am J Cardiovasc Drugs. 2010;10(5):321-34
21140233 - Mol Imaging Biol. 2011 Dec;13(6):1278-83
22517556 - Horm Metab Res. 2012 May;44(5):379-84
20521876 - World J Biol Psychiatry. 2010 Aug;11(5):684-98
19357406 - N Engl J Med. 2009 Apr 9;360(15):1509-17
9644032 - Am J Physiol. 1998 May;274(5 Pt 2):R1212-9
19154426 - Br J Pharmacol. 2009 Jan;156(2):226-36
8536614 - Endocrinology. 1996 Jan;137(1):21-9
20554730 - J Nucl Med. 2010 Jul;51(7):1068-75
12571205 - J Nucl Med. 2003 Feb;44(2):170-6
14715917 - Physiol Rev. 2004 Jan;84(1):277-359
10659680 - J Neurocytol. 1998 Dec;27(12):877-86
1370797 - Endocrinology. 1992 Feb;130(2):837-46
15910008 - Clin Pharmacokinet. 2005;44(6):571-90
16418753 - Int J Obes (Lond). 2006 Jul;30(7):1138-42
12547466 - Biol Psychiatry. 2003 Jan 15;53(2):112-20
16306381 - Diabetes. 2005 Dec;54(12):3587-91
22214183 - EJNMMI Res. 2011 Dec 01;1(1):30
15766294 - J Clin Psychiatry. 2005 Mar;66(3):294-9
19098214 - AJR Am J Roentgenol. 2009 Jan;192(1):300-1
14741565 - Nucl Med Biol. 2004 Jan;31(1):1-9
14551227 - Endocrinology. 2004 Jan;145(1):269-80
19557120 - Neuropsychiatr Dis Treat. 2009;5:261-6
21258337 - Nat Med. 2011 Feb;17(2):200-5
17388708 - J Clin Psychiatry. 2007 Mar;68(3):390-8
22665804 - Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):10001-5
16157537 - J Nucl Med. 2005 Sep;46(9):1531-6
19401428 - Diabetes. 2009 Jul;58(7):1526-31
10769166 - Biochem J. 2000 May 1;347 Pt 3:643-51
9753292 - Diabetes. 1998 Oct;47(10):1555-61
19412494 - Neuropsychiatr Dis Treat. 2006 Dec;2(4):455-66
3730946 - Can J Physiol Pharmacol. 1986 May;64(5):609-14
21459735 - Clin Schizophr Relat Psychoses. 2011 Apr;5(1):17-25
3540009 - J Clin Invest. 1987 Jan;79(1):207-13
9268060 - Synapse. 1997 Sep;27(1):1-13
10465291 - Endocrinology. 1999 Sep;140(9):4185-97
15855324 - Diabetes. 2005 May;54(5):1385-91
9716701 - Pflugers Arch. 1998 Oct;436(5):689-95
19445548 - Paediatr Drugs. 2009;11(3):203-26
16741310 - J Nucl Med. 2006 Jun;47(6):999-1006
19357405 - N Engl J Med. 2009 Apr 9;360(15):1500-8
1713031 - Biochem J. 1991 Jul 1;277 ( Pt 1):119-24
19621528 - Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2009 Jun;31(3):370-3
19630141 - N Engl J Med. 2009 Jul 23;361(4):416-7; author reply 418-21
References_xml – reference: Scheen AJ. 2010. Cardiovascular risk-benefit profile of sibutramine. Am J Cardiovasc Drugs 10: 321-334.
– reference: Mirbolooki MR, Constantinescu CC, Pan ML, Mukherjee J. 2011. Quantitative assessment of brown adipose tissue metabolic activity and volume using 18F-FDG PET/CT and β3-adrenergic receptor activation. EJNMMI Res 1: 30.
– reference: Benz MR, Czernin J, Allen-Auerbach MS, Dry SM, Sutthiruangwong P, Spick C, Radu C, Weber WA, Tap WD, Eilber FC. 2012. 3′-Deoxy-3′-[18F]fluorothymidine positron emission tomography for response assessment in soft tissue sarcoma: A pilot study to correlate imaging findings with tissue thymidine kinase 1 and Ki-67 activity and histopathologic response. Cancer 118: 3135-3144.
– reference: Lee KH, Ko BH, Paik JY, Jung KH, Choe YS, Choi Y, Kim BT. 2005. Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. JNucl Med 46: 1531-1536.
– reference: Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmuller A, Gordts PL, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J. 2011. Brown adipose tissue activity controls triglyceride clearance. Nat Med 17: 200-205.
– reference: Nedergaard J, Bengtsson T, Cannon B. 2007. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol 293: E444-E452.
– reference: Bloom JD, Dutia MD, Johnson BD, Wissner A, Burns MG, Largis EE, Dolan JA, Claus TH. 1992. Disodium (R,R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino] propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL-316, 243). A potent beta-adrenergic agonist virtually specific for beta 3 receptors. A promising antidiabetic and antiobesity agent. J Med Chem 35: 3081-3084.
– reference: McElroy SL, Guerdjikova A, Kotwal R, Welge JA, Nelson EB, Lake KA, Keck PE,Jr., Hudson JI. 2007. Atomoxetine in the treatment of binge-eating disorder: A randomized placebo-controlled trial. J Clin Psychiatry 68: 390-398.
– reference: Abrahamian H, Hofmann P, Prager R, Toplak H. 2009. Diabetes mellitus and co-morbid depression: Treatment with milnacipran results in significant improvement of both diseases (results from the Austrian MDDM study group). Neuropsychiatr Dis Treat 5: 261-266.
– reference: Ball MP, Warren KR, Feldman S, McMahon RP, Kelly DL, Buchanan RW. 2011. Placebo-controlled trial of atomoxetine for weight reduction in people with schizophrenia treated with clozapine or olanzapine. Clin Schizophr Relat Psychoses 5: 17-25.
– reference: Dallner OS, Chernogubova E, Brolinson KA, Bengtsson T. 2006. Beta3-adrenergic receptors stimulate glucose uptake in brown adipocytes by two mechanisms independently of glucose transporter 4 translocation. Endocrinology 147: 5730-5739.
– reference: Yoshida T, Sakane N, Wakabayashi Y, Umekawa T, Kondo M. 1994. Anti-obesity and anti-diabetic effects of CL 316, 243, a highly specific beta 3-adrenoceptor agonist, in yellow KK mice. Life Sci 54: 491-498.
– reference: Eng J. 2003. Sample size estimation: how many individuals should be studied? Radiology 227: 309-313.
– reference: Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P. 2009. Functional brown adipose tissue in healthy adults. N Engl J Med 360: 1518-1525.
– reference: Bengtsson T, Cannon B, Nedergaard J. 2000. Differential adrenergic regulation of the gene expression of the beta-adrenoceptor subtypes beta1, beta2 and beta3 in brown adipocytes. Biochem J 347( Pt 3): 643-651.
– reference: Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, Phelps ME, Weber WA. 2006. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47: 999-1006.
– reference: Jacene HA, Cohade CC, Zhang Z, Wahl RL. 2011. The relationship between patients' serum glucose levels and metabolically active brown adipose tissue detected by PET/CT. Mol Imaging Biol 13: 1278-1283.
– reference: De Matteis R, Ricquier D, Cinti S. 1998. TH-, NPY-, SP-, and CGRP-immunoreactive nerves in interscapular brown adipose tissue of adult rats acclimated at different temperatures: An immunohistochemical study. J Neurocytol 27: 877-886.
– reference: Iyer RB, Guo CC, Perrier N. 2009. Adrenal pheochromocytoma with surrounding brown fat stimulation. AJR 192: 300-301.
– reference: Yoneshiro T, Aita S, Matsushita M, Okamatsu-Ogura Y, Kameya T, Kawai Y, Miyagawa M, Tsujisaki M, Saito M. 2011. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring) 19: 1755-1760.
– reference: Stefan N, Pfannenberg C, Haring HU. 2009. The importance of brown adipose tissue. N Engl J Med 361: 416-417; author reply 418-421.
– reference: Schinagl DA, Span PN, Oyen WJ, Kaanders JH. 2011. Can FDG PET predict radiation treatment outcome in head and neck cancer? Results of a prospective study. Eur J Nucl Med Mol Imaging 38: 1449-1458.
– reference: Postic C, Leturque A, Printz RL, Maulard P, Loizeau M, Granner DK, Girard J. 1994. Development and regulation of glucose transporter and hexokinase expression in rat. Am J Physiol 266( 4 Pt 1): E548-E559.
– reference: van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. 2009. Cold-activated brown adipose tissue in healthy men. N Engl J Med 360: 1500-1508.
– reference: Zelinka T, Petrak O, Turkova H, Holaj R, Strauch B, Krsek M, Vrankova AB, Musil Z, Duskova J, Kubinyi J, Michalsky D, Novak K, Widimsky J. 2012. High incidence of cardiovascular complications in pheochromocytoma. Horm Metab Res 44: 379-384.
– reference: Kim YW, Shin JC, An YS. 2010. Treatment of chronic akinetic mutism with atomoxetine: subtraction analysis of brain f-18 fluorodeoxyglucose positron emission tomographic images before and after medication: A case report. Clin Neuropharmacol 33: 209-211.
– reference: Cheng WY, Zhu ZH, Ouyang M. 2009. Patterns and characteristics of brown adipose tissue uptake of 18F-FDG positron emission tomograph/computed tomography imaging. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 31: 370-373.
– reference: Cohade C, Osman M, Pannu HK, Wahl RL. 2003. Uptake in supraclavicular area fat ("USA-Fat"): Description on 18F-FDG PET/CT. J Nucl Med 44: 170-176.
– reference: Pfannenberg C, Werner MK, Ripkens S, Stef I, Deckert A, Schmadl M, Reimold M, Haring HU, Claussen CD, Stefan N. 2010. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59: 1789-1793.
– reference: Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. 2009. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360: 1509-1517.
– reference: Marette A, Bukowiecki LJ. 1991. Noradrenaline stimulates glucose transport in rat brown adipocytes by activating thermogenesis. Evidence that fatty acid activation of mitochondrial respiration enhances glucose transport. Biochem J 277( Pt 1): 119-124.
– reference: Mizuma H, Shukuri M, Hayashi T, Watanabe Y, Onoe H. 2010. Establishment of in vivo brain imaging method in conscious mice. J Nucl Med 51: 1068-1075.
– reference: Jensen MD, Haymond MW, Gerich JE, Cryer PE, Miles JM. 1987. Lipolysis during fasting. Decreased suppression by insulin and increased stimulation by epinephrine. J Clin Investig 79: 207-213.
– reference: Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M. 2009. High incidence of metabolically active brown adipose tissue in healthy adult humans: Effects of cold exposure and adiposity. Diabetes 58: 1526-1531.
– reference: Letovanec I, Allenbach G, Mihaescu A, Nicod Lalonde M, Schmidt S, Stupp R, Fitting JW, Boubaker A, Ris HB, Prior JO. 2012. 18F-fluorodeoxyglucose PET/CT findings in pleural effusions of patients with known cancer. A cytopathological correlation. Nuklearmedizin 51:186-193.
– reference: Habel LA, Cooper WO, Sox CM, Chan KA, Fireman BH, Arbogast PG, Cheetham TC, Quinn VP, Dublin S, Boudreau DM, Andrade SE, Pawloski PA, Raebel MA, Smith DH, Achacoso N, Uratsu C, Go AS, Sidney S, Nguyen-Huynh MN, Ray WA, Selby JV. 2011. ADHD medications and risk of serious cardiovascular events in young and middle-aged adults. JAMA 306: 2673-2683.
– reference: Santalucia T, Camps M, Castello A, Munoz P, Nuel A, Testar X, Palacin M, Zorzano A. 1992. Developmental regulation of GLUT-1 (erythroid/Hep G2) and GLUT-4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue. Endocrinology 130: 837-846.
– reference: Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW. 2002. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27: 699-711.
– reference: Ma SW, Foster DO. 1986. Uptake of glucose and release of fatty acids and glycerol by rat brown adipose tissue in vivo. Can J Physiol Pharmacol 64: 609-614.
– reference: Adler LA, Spencer TJ, Milton DR, Moore RJ, Michelson D. 2005. Long-term, open-label study of the safety and efficacy of atomoxetine in adults with attention-deficit/hyperactivity disorder: An interim analysis. J Clin Psychiatry 66: 294-299.
– reference: Liu X, Perusse F, Bukowiecki LJ. 1998. Mechanisms of the antidiabetic effects of the beta 3-adrenergic agonist CL-316 243 in obese Zucker-ZDF rats. Am J Physiol 274( 5 Pt 2): R1212-R1219.
– reference: Sauer JM, Ring BJ, Witcher JW. 2005. Clinical pharmacokinetics of atomoxetine. Clin Pharmacokinet 44: 571-590.
– reference: Hamann A, Flier JS, Lowell BB. 1996. Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. Endocrinology 137: 21-29.
– reference: Bronnikov G, Bengtsson T, Kramarova L, Golozoubova V, Cannon B, Nedergaard J. 1999. Beta1 to beta3 switch in control of cyclic adenosine monophosphate during brown adipocyte development explains distinct beta-adrenoceptor subtype mediation of proliferation and differentiation. Endocrinology 140: 4185-4197.
– reference: Inokuma K, Ogura-Okamatsu Y, Toda C, Kimura K, Yamashita H, Saito M. 2005. Uncoupling protein 1 is necessary for norepinephrine-induced glucose utilization in brown adipose tissue. Diabetes 54: 1385-1391.
– reference: Chernogubova E, Cannon B, Bengtsson T. 2004. Norepinephrine increases glucose transport in brown adipocytes via beta3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology 145: 269-280.
– reference: Nedergaard J, Bengtsson T, Cannon B. 2010. Three years with adult human brown adipose tissue. Ann N Y Acad Sci 1212: E20-E36.
– reference: Nedergaard J, Bengtsson T, Cannon B. 2011. New powers of brown fat: Fighting the metabolic syndrome. Cell Metab 13: 238-240.
– reference: Baba S, Tatsumi M, Ishimori T, Lilien DL, Engles JM, Wahl RL. 2007. Effect of nicotine and ephedrine on the accumulation of 18F-FDG in brown adipose tissue. J Nucl Med 48: 981-986.
– reference: Rosler M, Casas M, Konofal E, Buitelaar J. 2010. Attention deficit hyperactivity disorder in adults. World J Biol Psychiatry 11: 684-698.
– reference: Scherer D, Hassel D, Bloehs R, Zitron E, von Lowenstern K, Seyler C, Thomas D, Konrad F, Burgers HF, Seemann G, Rottbauer W, Katus HA, Karle CA, Scholz EP. 2009. Selective noradrenaline reuptake inhibitor atomoxetine directly blocks hERG currents. Br J Pharmacol 156: 226-236.
– reference: Cannon B, Nedergaard J. 2004. Brown adipose tissue: Function and physiological significance. Physiol Rev 84: 277-359.
– reference: Hildebrandt IJ, Su H, Weber WA. 2008. Anesthesia and other considerations for in vivo imaging of small animals. ILAR J 49: 17-26.
– reference: Ledbetter M. 2006. Atomoxetine: A novel treatment for child and adult ADHD. Neuropsychiatr Dis Treat 2: 455-466.
– reference: Burrows RC, Freeman SD, Charlop AW, Wiseman RW, Adamsen TC, Krohn KA, Spence AM. 2004. [18F]-2-fluoro-2-deoxyglucose transport kinetics as a function of extracellular glucose concentration in malignant glioma, fibroblast and macrophage cells in vitro. Nucl Med Biol 31: 1-9.
– reference: Garnock-Jones KP, Keating GM. 2009. Atomoxetine: A review of its use in attention-deficit hyperactivity disorder in children and adolescents. Paediatr Drugs 11: 203-226.
– reference: Marnane M, Merwick A, Sheehan OC, Hannon N, Foran P, Grant T, Dolan E, Moroney J, Murphy S, O'Rourke K, O'Malley K, O'Donohoe M, McDonnell C, Noone I, Barry M, Crowe M, Kavanagh E, O'Connell M, Kelly PJ. 2012. Carotid plaque inflammation on 18F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence. Ann Neurol 71: 709-718.
– reference: Michelson D, Adler L, Spencer T, Reimherr FW, West SA, Allen AJ, Kelsey D, Wernicke J, Dietrich A, Milton D. 2003. Atomoxetine in adults with ADHD: Two randomized, placebo-controlled studies. Biol Psychiatry 53: 112-120.
– reference: Mattsson CL, Csikasz RI, Chernogubova E, Yamamoto DL, Hogberg HT, Amri EZ, Hutchinson DS, Bengtsson T. 2011. Beta(1)-adrenergic receptors increase UCP1 in human MADS brown adipocytes and rescue cold-acclimated beta(3)-adrenergic receptor-knockout mice via nonshivering thermogenesis. Am J Physiol 301: E1108-E1118.
– reference: Vanttinen M, Nuutila P, Kuulasmaa T, Pihlajamaki J, Hallsten K, Virtanen KA, Lautamaki R, Peltoniemi P, Takala T, Viljanen AP, Knuuti J, Laakso M. 2005. Single nucleotide polymorphisms in the peroxisome proliferator-activated receptor delta gene are associated with skeletal muscle glucose uptake. Diabetes 54: 3587-3591.
– reference: Lafontan M, Berlan M. 1993. Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res 34: 1057-1091.
– reference: Symonds ME, Budge H, Perkins AC, Lomax MA. 2011. Adipose tissue development: impact of the early life environment. Prog Biophys Mol Biol 106: 300-306.
– reference: Lachance J, Page E. 1953. Hormonal factors influencing fat deposition in the interscapular brown adipose tissue of the white rat. Endocrinology 52: 57-64.
– reference: Yamaga LY, Thom AF, Wagner J, Baroni RH, Hidal JT, Funari MG. 2008. The effect of catecholamines on the glucose uptake in brown adipose tissue demonstrated by (18)F-FDG PET/CT in a patient with adrenal pheochromocytoma. Eur J Nucl Med Mol Imaging 35: 446-447.
– reference: Shimizu Y, Satoh S, Yano H, Minokoshi Y, Cushman SW, Shimazu T. 1998. Effects of noradrenaline on the cell-surface glucose transporters in cultured brown adipocytes: Novel mechanism for selective activation of GLUT1 glucose transporters. Biochem J 330( Pt 1): 397-403.
– reference: Cypess AM, Chen YC, Sze C, Wang K, English J, Chan O, Holman AR, Tal I, Palmer MR, Kolodny GM, Kahn CR. 2012. Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc Natl Acad Sci USA 109: 10001-10005.
– reference: Gadde KM, Yonish GM, Wagner HR,II, Foust MS, Allison DB. 2006. Atomoxetine for weight reduction in obese women: A preliminary randomised controlled trial. Int J Obes 30: 1138-1142.
– reference: Mukherjee J, Yang ZY, Lew R, Brown T, Kronmal S, Cooper MD, Seiden LS. 1997. Evaluation of d-amphetamine effects on the binding of dopamine D-2 receptor radioligand, 18F-fallypride in nonhuman primates using positron emission tomography. Synapse (New York, NY) 27: 1-13.
– reference: Au-Yong IT, Thorn N, Ganatra R, Perkins AC, Symonds ME. 2009. Brown adipose tissue and seasonal variation in humans. Diabetes 58: 2583-2587.
– reference: Roe K, Aleksandersen TB, Kristian A, Nilsen LB, Seierstad T, Qu H, Ree AH, Olsen DR, Malinen E. 2010. Preclinical dynamic 18F-FDG PET: Tumor characterization and radiotherapy response assessment by kinetic compartment analysis. Acta Oncol (Stockholm, Sweden) 49: 914-921.
– reference: Baba S, Jacene HA, Engles JM, Honda H, Wahl RL. 2010. CT Hounsfield units of brown adipose tissue increase with activation: Preclinical and clinical studies. J Nucl Med 51: 246-250.
– reference: Constantinescu CC, Mukherjee J. 2009. Performance evaluation of an Inveon PET preclinical scanner. Phys Med Biol 54: 2885-2899.
– reference: Weyer C, Tataranni PA, Snitker S, Danforth E,Jr, Ravussin E. 1998. Increase in insulin action and fat oxidation after treatment with CL 316, 243, a highly selective beta3-adrenoceptor agonist in humans. Diabetes 47: 1555-1561.
– reference: Lin SF, Fan X, Yeckel CW, Weinzimmer D, Mulnix T, Gallezot JD, Carson RE, Sherwin RS, Ding YS. 2012. Ex vivo and in vivo Evaluation of the norepinephrine transporter ligand [(11)C]MRB for brown adipose tissue imaging. Nucl Med Biol. 39: 1081-1086
– reference: Kim S, Krynyckyi BR, Machac J, Kim CK. 2008. Temporal relation between temperature change and FDG uptake in brown adipose tissue. Eur J Nucl Med Mol Imaging 35: 984-989.
– reference: Quevedo S, Roca P, Pico C, Palou A. 1998. Sex-associated differences in cold-induced UCP1 synthesis in rodent brown adipose tissue. Pflugers Arch 436: 689-695.
– volume: 31
  start-page: 1
  year: 2004
  end-page: 9
  article-title: [18F]‐2‐fluoro‐2‐deoxyglucose transport kinetics as a function of extracellular glucose concentration in malignant glioma, fibroblast and macrophage cells in vitro
  publication-title: Nucl Med Biol
– volume: 347
  start-page: 643
  issue: Pt 3
  year: 2000
  end-page: 651
  article-title: Differential adrenergic regulation of the gene expression of the beta‐adrenoceptor subtypes beta1, beta2 and beta3 in brown adipocytes
  publication-title: Biochem J
– volume: 51
  start-page: 186
  year: 2012
  end-page: 193
  article-title: 18F‐fluorodeoxyglucose PET/CT findings in pleural effusions of patients with known cancer
  publication-title: A cytopathological correlation.
– volume: 109
  start-page: 10001
  year: 2012
  end-page: 10005
  article-title: Cold but not sympathomimetics activates human brown adipose tissue in vivo
  publication-title: Proc Natl Acad Sci USA
– volume: 227
  start-page: 309
  year: 2003
  end-page: 313
  article-title: Sample size estimation: how many individuals should be studied?
  publication-title: Radiology
– volume: 47
  start-page: 1555
  year: 1998
  end-page: 1561
  article-title: Increase in insulin action and fat oxidation after treatment with CL 316, 243, a highly selective beta3‐adrenoceptor agonist in humans
  publication-title: Diabetes
– volume: 147
  start-page: 5730
  year: 2006
  end-page: 5739
  article-title: Beta3‐adrenergic receptors stimulate glucose uptake in brown adipocytes by two mechanisms independently of glucose transporter 4 translocation
  publication-title: Endocrinology
– volume: 54
  start-page: 2885
  year: 2009
  end-page: 2899
  article-title: Performance evaluation of an Inveon PET preclinical scanner
  publication-title: Phys Med Biol
– volume: 44
  start-page: 571
  year: 2005
  end-page: 590
  article-title: Clinical pharmacokinetics of atomoxetine
  publication-title: Clin Pharmacokinet
– volume: 35
  start-page: 446
  year: 2008
  end-page: 447
  article-title: The effect of catecholamines on the glucose uptake in brown adipose tissue demonstrated by (18)F‐FDG PET/CT in a patient with adrenal pheochromocytoma
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 10
  start-page: 321
  year: 2010
  end-page: 334
  article-title: Cardiovascular risk‐benefit profile of sibutramine
  publication-title: Am J Cardiovasc Drugs
– volume: 51
  start-page: 246
  year: 2010
  end-page: 250
  article-title: CT Hounsfield units of brown adipose tissue increase with activation: Preclinical and clinical studies
  publication-title: J Nucl Med
– volume: 19
  start-page: 1755
  year: 2011
  end-page: 1760
  article-title: Age‐related decrease in cold‐activated brown adipose tissue and accumulation of body fat in healthy humans
  publication-title: Obesity (Silver Spring)
– volume: 137
  start-page: 21
  year: 1996
  end-page: 29
  article-title: Decreased brown fat markedly enhances susceptibility to diet‐induced obesity, diabetes, and hyperlipidemia
  publication-title: Endocrinology
– volume: 106
  start-page: 300
  year: 2011
  end-page: 306
  article-title: Adipose tissue development: impact of the early life environment
  publication-title: Prog Biophys Mol Biol
– volume: 274
  start-page: R1212
  issue: 5 Pt 2
  year: 1998
  end-page: R1219
  article-title: Mechanisms of the antidiabetic effects of the beta 3‐adrenergic agonist CL‐316 243 in obese Zucker‐ZDF rats
  publication-title: Am J Physiol
– volume: 49
  start-page: 914
  year: 2010
  end-page: 921
  article-title: Preclinical dynamic 18F‐FDG PET: Tumor characterization and radiotherapy response assessment by kinetic compartment analysis
  publication-title: Acta Oncol (Stockholm, Sweden)
– volume: 306
  start-page: 2673
  year: 2011
  end-page: 2683
  article-title: ADHD medications and risk of serious cardiovascular events in young and middle‐aged adults
  publication-title: JAMA
– volume: 360
  start-page: 1518
  year: 2009
  end-page: 1525
  article-title: Functional brown adipose tissue in healthy adults
  publication-title: N Engl J Med
– volume: 64
  start-page: 609
  year: 1986
  end-page: 614
  article-title: Uptake of glucose and release of fatty acids and glycerol by rat brown adipose tissue in vivo
  publication-title: Can J Physiol Pharmacol
– volume: 54
  start-page: 1385
  year: 2005
  end-page: 1391
  article-title: Uncoupling protein 1 is necessary for norepinephrine‐induced glucose utilization in brown adipose tissue
  publication-title: Diabetes
– volume: 34
  start-page: 1057
  year: 1993
  end-page: 1091
  article-title: Fat cell adrenergic receptors and the control of white and brown fat cell function
  publication-title: J Lipid Res
– volume: 5
  start-page: 17
  year: 2011
  end-page: 25
  article-title: Placebo‐controlled trial of atomoxetine for weight reduction in people with schizophrenia treated with clozapine or olanzapine
  publication-title: Clin Schizophr Relat Psychoses
– volume: 33
  start-page: 209
  year: 2010
  end-page: 211
  article-title: Treatment of chronic akinetic mutism with atomoxetine: subtraction analysis of brain f‐18 fluorodeoxyglucose positron emission tomographic images before and after medication: A case report
  publication-title: Clin Neuropharmacol
– volume: 293
  start-page: E444
  year: 2007
  end-page: E452
  article-title: Unexpected evidence for active brown adipose tissue in adult humans
  publication-title: Am J Physiol
– volume: 48
  start-page: 981
  year: 2007
  end-page: 986
  article-title: Effect of nicotine and ephedrine on the accumulation of F‐FDG in brown adipose tissue
  publication-title: J Nucl Med
– volume: 1212
  start-page: E20
  year: 2010
  end-page: E36
  article-title: Three years with adult human brown adipose tissue
  publication-title: Ann N Y Acad Sci
– volume: 360
  start-page: 1500
  year: 2009
  end-page: 1508
  article-title: Cold‐activated brown adipose tissue in healthy men
  publication-title: N Engl J Med
– volume: 35
  start-page: 3081
  year: 1992
  end-page: 3084
  article-title: Disodium (R,R)‐5‐[2‐[[2‐(3‐chlorophenyl)‐2‐hydroxyethyl]‐amino] propyl]‐1,3‐benzodioxole‐2,2‐dicarboxylate (CL‐316, 243). A potent beta‐adrenergic agonist virtually specific for beta 3 receptors. A promising antidiabetic and antiobesity agent
  publication-title: J Med Chem
– volume: 47
  start-page: 999
  year: 2006
  end-page: 1006
  article-title: Impact of animal handling on the results of 18F‐FDG PET studies in mice
  publication-title: J Nucl Med
– volume: 38
  start-page: 1449
  year: 2011
  end-page: 1458
  article-title: Can FDG PET predict radiation treatment outcome in head and neck cancer? Results of a prospective study
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 52
  start-page: 57
  year: 1953
  end-page: 64
  article-title: Hormonal factors influencing fat deposition in the interscapular brown adipose tissue of the white rat
  publication-title: Endocrinology
– volume: 277
  start-page: 119
  issue: Pt 1
  year: 1991
  end-page: 124
  article-title: Noradrenaline stimulates glucose transport in rat brown adipocytes by activating thermogenesis. Evidence that fatty acid activation of mitochondrial respiration enhances glucose transport
  publication-title: Biochem J
– volume: 66
  start-page: 294
  year: 2005
  end-page: 299
  article-title: Long‐term, open‐label study of the safety and efficacy of atomoxetine in adults with attention‐deficit/hyperactivity disorder: An interim analysis
  publication-title: J Clin Psychiatry
– volume: 30
  start-page: 1138
  year: 2006
  end-page: 1142
  article-title: Atomoxetine for weight reduction in obese women: A preliminary randomised controlled trial
  publication-title: Int J Obes
– volume: 27
  start-page: 699
  year: 2002
  end-page: 711
  article-title: Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in attention deficit/hyperactivity disorder
  publication-title: Neuropsychopharmacology
– volume: 39
  start-page: 1081
  year: 2012
  end-page: 1086
  article-title: Ex vivo and in vivo Evaluation of the norepinephrine transporter ligand [(11)C]MRB for brown adipose tissue imaging
  publication-title: Nucl Med Biol
– volume: 11
  start-page: 203
  year: 2009
  end-page: 226
  article-title: Atomoxetine: A review of its use in attention‐deficit hyperactivity disorder in children and adolescents
  publication-title: Paediatr Drugs
– volume: 49
  start-page: 17
  year: 2008
  end-page: 26
  article-title: Anesthesia and other considerations for in vivo imaging of small animals
  publication-title: ILAR J
– volume: 13
  start-page: 1278
  year: 2011
  end-page: 1283
  article-title: The relationship between patients' serum glucose levels and metabolically active brown adipose tissue detected by PET/CT
  publication-title: Mol Imaging Biol
– volume: 13
  start-page: 238
  year: 2011
  end-page: 240
  article-title: New powers of brown fat: Fighting the metabolic syndrome
  publication-title: Cell Metab
– volume: 44
  start-page: 379
  year: 2012
  end-page: 384
  article-title: High incidence of cardiovascular complications in pheochromocytoma
  publication-title: Horm Metab Res
– volume: 84
  start-page: 277
  year: 2004
  end-page: 359
  article-title: Brown adipose tissue: Function and physiological significance
  publication-title: Physiol Rev
– volume: 130
  start-page: 837
  year: 1992
  end-page: 846
  article-title: Developmental regulation of GLUT‐1 (erythroid/Hep G2) and GLUT‐4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue
  publication-title: Endocrinology
– volume: 44
  start-page: 170
  year: 2003
  end-page: 176
  article-title: Uptake in supraclavicular area fat (“USA‐Fat”): Description on F‐FDG PET/CT
  publication-title: J Nucl Med
– volume: 79
  start-page: 207
  year: 1987
  end-page: 213
  article-title: Lipolysis during fasting. Decreased suppression by insulin and increased stimulation by epinephrine
  publication-title: J Clin Investig
– volume: 1
  start-page: 30
  year: 2011
  article-title: Quantitative assessment of brown adipose tissue metabolic activity and volume using 18F‐FDG PET/CT and β3‐adrenergic receptor activation
  publication-title: EJNMMI Res
– volume: 145
  start-page: 269
  year: 2004
  end-page: 280
  article-title: Norepinephrine increases glucose transport in brown adipocytes via beta3‐adrenoceptors through a cAMP, PKA, and PI3‐kinase‐dependent pathway stimulating conventional and novel PKCs
  publication-title: Endocrinology
– volume: 118
  start-page: 3135
  year: 2012
  end-page: 3144
  article-title: 3′‐Deoxy‐3′‐[18F]fluorothymidine positron emission tomography for response assessment in soft tissue sarcoma: A pilot study to correlate imaging findings with tissue thymidine kinase 1 and Ki‐67 activity and histopathologic response
  publication-title: Cancer
– volume: 54
  start-page: 3587
  year: 2005
  end-page: 3591
  article-title: Single nucleotide polymorphisms in the peroxisome proliferator‐activated receptor delta gene are associated with skeletal muscle glucose uptake
  publication-title: Diabetes
– volume: 360
  start-page: 1509
  year: 2009
  end-page: 1517
  article-title: Identification and importance of brown adipose tissue in adult humans
  publication-title: N Engl J Med
– volume: 27
  start-page: 877
  year: 1998
  end-page: 886
  article-title: TH‐, NPY‐, SP‐, and CGRP‐immunoreactive nerves in interscapular brown adipose tissue of adult rats acclimated at different temperatures: An immunohistochemical study
  publication-title: J Neurocytol
– volume: 68
  start-page: 390
  year: 2007
  end-page: 398
  article-title: Atomoxetine in the treatment of binge‐eating disorder: A randomized placebo‐controlled trial
  publication-title: J Clin Psychiatry
– volume: 436
  start-page: 689
  year: 1998
  end-page: 695
  article-title: Sex‐associated differences in cold‐induced UCP1 synthesis in rodent brown adipose tissue
  publication-title: Pflugers Arch
– volume: 11
  start-page: 684
  year: 2010
  end-page: 698
  article-title: Attention deficit hyperactivity disorder in adults
  publication-title: World J Biol Psychiatry
– volume: 361
  start-page: 416
  year: 2009
  end-page: 417
  article-title: The importance of brown adipose tissue
  publication-title: N Engl J Med
– volume: 192
  start-page: 300
  year: 2009
  end-page: 301
  article-title: Adrenal pheochromocytoma with surrounding brown fat stimulation
  publication-title: AJR
– volume: 51
  start-page: 1068
  year: 2010
  end-page: 1075
  article-title: Establishment of in vivo brain imaging method in conscious mice
  publication-title: J Nucl Med
– volume: 71
  start-page: 709
  year: 2012
  end-page: 718
  article-title: Carotid plaque inflammation on 18F‐fluorodeoxyglucose positron emission tomography predicts early stroke recurrence
  publication-title: Ann Neurol
– volume: 35
  start-page: 984
  year: 2008
  end-page: 989
  article-title: Temporal relation between temperature change and FDG uptake in brown adipose tissue
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 59
  start-page: 1789
  year: 2010
  end-page: 1793
  article-title: Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans
  publication-title: Diabetes
– volume: 301
  start-page: E1108
  year: 2011
  end-page: E1118
  article-title: Beta(1)‐adrenergic receptors increase UCP1 in human MADS brown adipocytes and rescue cold‐acclimated beta(3)‐adrenergic receptor‐knockout mice via nonshivering thermogenesis
  publication-title: Am J Physiol
– volume: 330
  start-page: 397
  issue: Pt 1
  year: 1998
  end-page: 403
  article-title: Effects of noradrenaline on the cell‐surface glucose transporters in cultured brown adipocytes: Novel mechanism for selective activation of GLUT1 glucose transporters
  publication-title: Biochem J
– volume: 27
  start-page: 1
  year: 1997
  end-page: 13
  article-title: Evaluation of d‐amphetamine effects on the binding of dopamine D‐2 receptor radioligand, 18F‐fallypride in nonhuman primates using positron emission tomography
  publication-title: Synapse (New York, NY)
– volume: 266
  start-page: E548
  issue: 4 Pt 1
  year: 1994
  end-page: E559
  article-title: Development and regulation of glucose transporter and hexokinase expression in rat
  publication-title: Am J Physiol
– volume: 54
  start-page: 491
  year: 1994
  end-page: 498
  article-title: Anti‐obesity and anti‐diabetic effects of CL 316, 243, a highly specific beta 3‐adrenoceptor agonist, in yellow KK mice
  publication-title: Life Sci
– volume: 46
  start-page: 1531
  year: 2005
  end-page: 1536
  article-title: Effects of anesthetic agents and fasting duration on 18F‐FDG biodistribution and insulin levels in tumor‐bearing mice
  publication-title: JNucl Med
– volume: 17
  start-page: 200
  year: 2011
  end-page: 205
  article-title: Brown adipose tissue activity controls triglyceride clearance
  publication-title: Nat Med
– volume: 31
  start-page: 370
  year: 2009
  end-page: 373
  article-title: Patterns and characteristics of brown adipose tissue uptake of 18F‐FDG positron emission tomograph/computed tomography imaging
  publication-title: Zhongguo Yi Xue Ke Xue Yuan Xue Bao
– volume: 53
  start-page: 112
  year: 2003
  end-page: 120
  article-title: Atomoxetine in adults with ADHD: Two randomized, placebo‐controlled studies
  publication-title: Biol Psychiatry
– volume: 140
  start-page: 4185
  year: 1999
  end-page: 4197
  article-title: Beta1 to beta3 switch in control of cyclic adenosine monophosphate during brown adipocyte development explains distinct beta‐adrenoceptor subtype mediation of proliferation and differentiation
  publication-title: Endocrinology
– volume: 58
  start-page: 1526
  year: 2009
  end-page: 1531
  article-title: High incidence of metabolically active brown adipose tissue in healthy adult humans: Effects of cold exposure and adiposity
  publication-title: Diabetes
– volume: 2
  start-page: 455
  year: 2006
  end-page: 466
  article-title: Atomoxetine: A novel treatment for child and adult ADHD
  publication-title: Neuropsychiatr Dis Treat
– volume: 156
  start-page: 226
  year: 2009
  end-page: 236
  article-title: Selective noradrenaline reuptake inhibitor atomoxetine directly blocks hERG currents
  publication-title: Br J Pharmacol
– volume: 5
  start-page: 261
  year: 2009
  end-page: 266
  article-title: Diabetes mellitus and co‐morbid depression: Treatment with milnacipran results in significant improvement of both diseases (results from the Austrian MDDM study group)
  publication-title: Neuropsychiatr Dis Treat
– volume: 58
  start-page: 2583
  year: 2009
  end-page: 2587
  article-title: Brown adipose tissue and seasonal variation in humans
  publication-title: Diabetes
– ident: e_1_2_7_9_1
  doi: 10.1042/0264-6021:3470643
– ident: e_1_2_7_38_1
  doi: 10.1016/S0022-2275(20)37695-1
– ident: e_1_2_7_77_1
  doi: 10.1055/s-0032-1306294
– ident: e_1_2_7_42_1
  doi: 10.1016/j.nucmedbio.2012.04.005
– ident: e_1_2_7_20_1
  doi: 10.1073/pnas.1207911109
– ident: e_1_2_7_50_1
  doi: 10.1186/2191-219X-1-30
– ident: e_1_2_7_55_1
  doi: 10.1016/j.cmet.2011.02.009
– volume: 330
  start-page: 397
  issue: 1
  year: 1998
  ident: e_1_2_7_67_1
  article-title: Effects of noradrenaline on the cell‐surface glucose transporters in cultured brown adipocytes: Novel mechanism for selective activation of GLUT1 glucose transporters
  publication-title: Biochem J
  doi: 10.1042/bj3300397
– ident: e_1_2_7_39_1
  doi: 10.2147/nedt.2006.2.4.455
– ident: e_1_2_7_71_1
  doi: 10.2337/diabetes.54.12.3587
– ident: e_1_2_7_48_1
  doi: 10.4088/JCP.v68n0306
– ident: e_1_2_7_51_1
  doi: 10.2967/jnumed.110.075184
– ident: e_1_2_7_27_1
  doi: 10.2165/00148581-200911030-00005
– ident: e_1_2_7_56_1
  doi: 10.2337/db10-0004
– ident: e_1_2_7_75_1
  doi: 10.1038/oby.2011.125
– ident: e_1_2_7_36_1
  doi: 10.1097/WNF.0b013e3181dca948
– ident: e_1_2_7_49_1
  doi: 10.1016/S0006-3223(02)01671-2
– ident: e_1_2_7_4_1
  doi: 10.2337/db09-0833
– ident: e_1_2_7_5_1
  doi: 10.2967/jnumed.109.068775
– ident: e_1_2_7_19_1
  doi: 10.1088/0031-9155/54/9/020
– ident: e_1_2_7_37_1
  doi: 10.1210/endo-52-1-57
– ident: e_1_2_7_52_1
  doi: 10.1002/(SICI)1098-2396(199709)27:1<1::AID-SYN1>3.0.CO;2-9
– ident: e_1_2_7_15_1
  doi: 10.1152/physrev.00015.2003
– ident: e_1_2_7_2_1
  doi: 10.2147/NDT.S5421
– ident: e_1_2_7_32_1
  doi: 10.2214/AJR.08.1166
– ident: e_1_2_7_58_1
  doi: 10.1007/s004240050690
– volume: 31
  start-page: 370
  year: 2009
  ident: e_1_2_7_16_1
  article-title: Patterns and characteristics of brown adipose tissue uptake of 18F‐FDG positron emission tomograph/computed tomography imaging
  publication-title: Zhongguo Yi Xue Ke Xue Yuan Xue Bao
– ident: e_1_2_7_29_1
  doi: 10.1210/endo.137.1.8536614
– ident: e_1_2_7_73_1
  doi: 10.2337/diabetes.47.10.1555
– ident: e_1_2_7_11_1
  doi: 10.1021/jm00094a025
– ident: e_1_2_7_21_1
  doi: 10.1056/NEJMoa0810780
– ident: e_1_2_7_72_1
  doi: 10.1056/NEJMoa0808949
– ident: e_1_2_7_10_1
  doi: 10.1002/cncr.26630
– ident: e_1_2_7_70_1
  doi: 10.1056/NEJMoa0808718
– ident: e_1_2_7_8_1
  doi: 10.1038/nm.2297
– volume: 44
  start-page: 170
  year: 2003
  ident: e_1_2_7_18_1
  article-title: Uptake in supraclavicular area fat (“USA‐Fat”): Description on 18F‐FDG PET/CT
  publication-title: J Nucl Med
– ident: e_1_2_7_76_1
  doi: 10.1016/0024-3205(94)00408-0
– ident: e_1_2_7_3_1
  doi: 10.4088/JCP.v66n0304
– ident: e_1_2_7_31_1
  doi: 10.2337/diabetes.54.5.1385
– ident: e_1_2_7_63_1
  doi: 10.2165/00003088-200544060-00002
– ident: e_1_2_7_45_1
  doi: 10.1042/bj2770119
– ident: e_1_2_7_46_1
  doi: 10.1002/ana.23553
– ident: e_1_2_7_23_1
  doi: 10.1023/A:1006996922657
– ident: e_1_2_7_61_1
  doi: 10.2337/db09-0530
– ident: e_1_2_7_59_1
  doi: 10.3109/0284186X.2010.498831
– ident: e_1_2_7_69_1
  doi: 10.1016/j.pbiomolbio.2010.11.008
– ident: e_1_2_7_30_1
  doi: 10.1093/ilar.49.1.17
– volume: 274
  start-page: R1212
  issue: 5
  year: 1998
  ident: e_1_2_7_43_1
  article-title: Mechanisms of the antidiabetic effects of the beta 3‐adrenergic agonist CL‐316 243 in obese Zucker‐ZDF rats
  publication-title: Am J Physiol
– ident: e_1_2_7_14_1
  doi: 10.1016/S0893-133X(02)00346-9
– ident: e_1_2_7_24_1
  doi: 10.1148/radiol.2272012051
– ident: e_1_2_7_60_1
  doi: 10.3109/15622975.2010.483249
– ident: e_1_2_7_28_1
  doi: 10.1001/jama.2011.1830
– ident: e_1_2_7_34_1
  doi: 10.1172/JCI112785
– ident: e_1_2_7_13_1
  doi: 10.1016/S0969-8051(02)00449-3
– ident: e_1_2_7_33_1
  doi: 10.1007/s11307-010-0379-9
– volume: 266
  start-page: E548
  issue: 4
  year: 1994
  ident: e_1_2_7_57_1
  article-title: Development and regulation of glucose transporter and hexokinase expression in rat
  publication-title: Am J Physiol
– ident: e_1_2_7_65_1
  doi: 10.1111/j.1476-5381.2008.00018.x
– ident: e_1_2_7_47_1
  doi: 10.1152/ajpendo.00085.2011
– ident: e_1_2_7_62_1
  doi: 10.1210/en.130.2.837
– ident: e_1_2_7_53_1
  doi: 10.1152/ajpendo.00691.2006
– ident: e_1_2_7_6_1
  doi: 10.2967/jnumed.106.039065
– ident: e_1_2_7_35_1
  doi: 10.1007/s00259-007-0670-4
– ident: e_1_2_7_17_1
  doi: 10.1210/en.2003-0857
– ident: e_1_2_7_66_1
  doi: 10.1007/s00259-011-1789-x
– ident: e_1_2_7_74_1
  doi: 10.1007/s00259-007-0538-7
– volume: 47
  start-page: 999
  year: 2006
  ident: e_1_2_7_25_1
  article-title: Impact of animal handling on the results of 18F‐FDG PET studies in mice
  publication-title: J Nucl Med
– volume: 51
  start-page: 186
  year: 2012
  ident: e_1_2_7_41_1
  article-title: 18F‐fluorodeoxyglucose PET/CT findings in pleural effusions of patients with known cancer
  publication-title: A cytopathological correlation.
– ident: e_1_2_7_22_1
  doi: 10.1210/en.2006-0242
– ident: e_1_2_7_26_1
  doi: 10.1038/sj.ijo.0803223
– volume: 46
  start-page: 1531
  year: 2005
  ident: e_1_2_7_40_1
  article-title: Effects of anesthetic agents and fasting duration on 18F‐FDG biodistribution and insulin levels in tumor‐bearing mice
  publication-title: JNucl Med
– ident: e_1_2_7_44_1
  doi: 10.1139/y86-101
– ident: e_1_2_7_7_1
  doi: 10.3371/CSRP.5.1.3
– ident: e_1_2_7_54_1
  doi: 10.1111/j.1749-6632.2010.05905.x
– ident: e_1_2_7_64_1
  doi: 10.2165/11584800-000000000-00000
– volume: 361
  start-page: 416
  year: 2009
  ident: e_1_2_7_68_1
  article-title: The importance of brown adipose tissue
  publication-title: N Engl J Med
– ident: e_1_2_7_12_1
  doi: 10.1210/endo.140.9.6972
– reference: 16741310 - J Nucl Med. 2006 Jun;47(6):999-1006
– reference: 19154426 - Br J Pharmacol. 2009 Jan;156(2):226-36
– reference: 22214183 - EJNMMI Res. 2011 Dec 01;1(1):30
– reference: 1354264 - J Med Chem. 1992 Aug 7;35(16):3081-4
– reference: 13021112 - Endocrinology. 1953 Jan;52(1):57-64
– reference: 18157529 - Eur J Nucl Med Mol Imaging. 2008 May;35(5):984-9
– reference: 9644032 - Am J Physiol. 1998 May;274(5 Pt 2):R1212-9
– reference: 19630141 - N Engl J Med. 2009 Jul 23;361(4):416-7; author reply 418-21
– reference: 17504863 - J Nucl Med. 2007 Jun;48(6):981-6
– reference: 20860415 - Am J Cardiovasc Drugs. 2010;10(5):321-34
– reference: 15766294 - J Clin Psychiatry. 2005 Mar;66(3):294-9
– reference: 17909796 - Eur J Nucl Med Mol Imaging. 2008 Feb;35(2):446-7
– reference: 21140233 - Mol Imaging Biol. 2011 Dec;13(6):1278-83
– reference: 3540009 - J Clin Invest. 1987 Jan;79(1):207-13
– reference: 1713031 - Biochem J. 1991 Jul 1;277 ( Pt 1):119-24
– reference: 12547466 - Biol Psychiatry. 2003 Jan 15;53(2):112-20
– reference: 12732691 - Radiology. 2003 May;227(2):309-13
– reference: 21566561 - Obesity (Silver Spring). 2011 Sep;19(9):1755-60
– reference: 16418753 - Int J Obes (Lond). 2006 Jul;30(7):1138-42
– reference: 22517556 - Horm Metab Res. 2012 May;44(5):379-84
– reference: 19357407 - N Engl J Med. 2009 Apr 9;360(15):1518-25
– reference: 21375707 - Ann N Y Acad Sci. 2010 Nov;1212:E20-36
– reference: 1370797 - Endocrinology. 1992 Feb;130(2):837-46
– reference: 19384008 - Phys Med Biol. 2009 May 7;54(9):2885-99
– reference: 21258337 - Nat Med. 2011 Feb;17(2):200-5
– reference: 22665804 - Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):10001-5
– reference: 17388708 - J Clin Psychiatry. 2007 Mar;68(3):390-8
– reference: 8536614 - Endocrinology. 1996 Jan;137(1):21-9
– reference: 22584348 - Nuklearmedizin. 2012;51(5):186-93
– reference: 16959848 - Endocrinology. 2006 Dec;147(12):5730-9
– reference: 9268060 - Synapse. 1997 Sep;27(1):1-13
– reference: 19557120 - Neuropsychiatr Dis Treat. 2009;5:261-6
– reference: 14715917 - Physiol Rev. 2004 Jan;84(1):277-359
– reference: 20661027 - Clin Neuropharmacol. 2010 Jul;33(4):209-11
– reference: 15855324 - Diabetes. 2005 May;54(5):1385-91
– reference: 20521876 - World J Biol Psychiatry. 2010 Aug;11(5):684-98
– reference: 22161946 - JAMA. 2011 Dec 28;306(24):2673-83
– reference: 21878665 - Am J Physiol Endocrinol Metab. 2011 Dec;301(6):E1108-18
– reference: 12431845 - Neuropsychopharmacology. 2002 Nov;27(5):699-711
– reference: 20554730 - J Nucl Med. 2010 Jul;51(7):1068-75
– reference: 20357363 - Diabetes. 2010 Jul;59(7):1789-93
– reference: 10769166 - Biochem J. 2000 May 1;347 Pt 3:643-51
– reference: 19621528 - Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2009 Jun;31(3):370-3
– reference: 19412494 - Neuropsychiatr Dis Treat. 2006 Dec;2(4):455-66
– reference: 15910008 - Clin Pharmacokinet. 2005;44(6):571-90
– reference: 8309351 - Life Sci. 1994;54(7):491-8
– reference: 19357405 - N Engl J Med. 2009 Apr 9;360(15):1500-8
– reference: 19696186 - Diabetes. 2009 Nov;58(11):2583-7
– reference: 19357406 - N Engl J Med. 2009 Apr 9;360(15):1509-17
– reference: 21356513 - Cell Metab. 2011 Mar 2;13(3):238-40
– reference: 20124047 - J Nucl Med. 2010 Feb;51(2):246-50
– reference: 22020872 - Cancer. 2012 Jun 15;118(12):3135-44
– reference: 21163289 - Prog Biophys Mol Biol. 2011 Jul;106(1):300-6
– reference: 9753292 - Diabetes. 1998 Oct;47(10):1555-61
– reference: 10659680 - J Neurocytol. 1998 Dec;27(12):877-86
– reference: 8371057 - J Lipid Res. 1993 Jul;34(7):1057-91
– reference: 20831478 - Acta Oncol. 2010 Oct;49(7):914-21
– reference: 16157537 - J Nucl Med. 2005 Sep;46(9):1531-6
– reference: 3730946 - Can J Physiol Pharmacol. 1986 May;64(5):609-14
– reference: 9461536 - Biochem J. 1998 Feb 15;330 ( Pt 1):397-403
– reference: 12571205 - J Nucl Med. 2003 Feb;44(2):170-6
– reference: 16306381 - Diabetes. 2005 Dec;54(12):3587-91
– reference: 19098214 - AJR Am J Roentgenol. 2009 Jan;192(1):300-1
– reference: 19445548 - Paediatr Drugs. 2009;11(3):203-26
– reference: 22461139 - Ann Neurol. 2012 May;71(5):709-18
– reference: 18172330 - ILAR J. 2008;49(1):17-26
– reference: 21461734 - Eur J Nucl Med Mol Imaging. 2011 Aug;38(8):1449-58
– reference: 10465291 - Endocrinology. 1999 Sep;140(9):4185-97
– reference: 14741565 - Nucl Med Biol. 2004 Jan;31(1):1-9
– reference: 14551227 - Endocrinology. 2004 Jan;145(1):269-80
– reference: 22595487 - Nucl Med Biol. 2012 Oct;39(7):1081-6
– reference: 9716701 - Pflugers Arch. 1998 Oct;436(5):689-95
– reference: 19401428 - Diabetes. 2009 Jul;58(7):1526-31
– reference: 17473055 - Am J Physiol Endocrinol Metab. 2007 Aug;293(2):E444-52
– reference: 8178975 - Am J Physiol. 1994 Apr;266(4 Pt 1):E548-59
– reference: 21459735 - Clin Schizophr Relat Psychoses. 2011 Apr;5(1):17-25
SSID ssj0003104
Score 2.1411014
Snippet Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 79
SubjectTerms 18F-FDG PET
Adipose Tissue, Brown - diagnostic imaging
Adipose Tissue, Brown - drug effects
Adipose Tissue, Brown - metabolism
Adrenergic beta-Antagonists - pharmacology
Adrenergic Uptake Inhibitors - pharmacology
Animals
atomoxetine
Atomoxetine Hydrochloride
blood glucose
Blood Glucose - metabolism
Brown fat
Diabetes Mellitus, Type 2 - metabolism
Fluorodeoxyglucose F18 - pharmacology
Male
Norepinephrine Plasma Membrane Transport Proteins - metabolism
Obesity - metabolism
Propranolol - pharmacology
Propylamines - pharmacology
Radionuclide Imaging
Rats
Rats, Sprague-Dawley
Title Targeting presynaptic norepinephrine transporter in brown adipose tissue: A novel imaging approach and potential treatment for diabetes and obesity
URI https://api.istex.fr/ark:/67375/WNG-SPRXK6KH-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsyn.21617
https://www.ncbi.nlm.nih.gov/pubmed/23080264
https://www.proquest.com/docview/1239985513
https://www.proquest.com/docview/1273272499
https://www.proquest.com/docview/1434028720
https://pubmed.ncbi.nlm.nih.gov/PMC3808851
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWm7YUXYIyPwEAGoWkv6RInjl14qhCjYqJC-xBFQrIcxxHVNqdqU0T5G_xh7nWajMJAiJcqkm9Ux77XPtc5OZeQ55EsWVEmNswTYcJU5ybUVuvQFzSOTZEbX0Xh3SgbnqVvx3y8QV6238I0-hDdgRtGhl-vMcB1Pj-4Eg2dL12PITqH9Re5WgiIjq-kowC2pK3KZ5qKrFUVithBd-faXrSFw_r1OqD5O1_yZxzrN6LDW-RT-wgN_-S8t6jznvn2i7rjfz7jbXJzBVDpoPGobbJh3R2yM3CQnF8u6R71lFF_Fr9Dvp96HjnsfhT5tEunYQEy1FUzO4X_Bj-BX1p3-ukzOnE0x8Sf6mIyrebQ6Cf-BR3AXV_sBZ1c-rJJtNU6p9oVdFrVSGqCbnW8eApgm7YHx96oakoc3CVnh69PXw3DVZWH0AB6E2FfRrwoUBOm5JnMSlnGeV9owbO0ZFxKzo1mBaBMUXJpeaRNlmRJVEoNybXVIrlHNl3l7ANCjSm5LngOi1AJU47vUPvSSM1EjLp1PCD77Xwrs5JAx0ocF6oRb2YKRkr5AQ_Is8502uh-XGe0552ms9CzcyTKCa4-jN6ok_fH46PsaKjigOy2XqVWa8RcxfhZscQCOwF52jVDdOMrG-1stUAbkTABKXL_LzZpkgJKFCwKyP3GUbsOQYIpIctOAyLWXLgzQHXx9RY3-exVxhMJscOh6_veQ_88Curk48hfPPx300fkBvN1RZAXtEs269nCPgZ0V-dPfBj_AG6HT-M
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL0a2wO8MGB8ZAwwCE17SZc4cewiXirEKHSr0NaJ8oAsx0lEtc2p-oEof4M_zLXTZBQGQrxUkXyjOva99rnOybkAzwNR0KyIcj-NuPZjlWpf5Ur5rqBxqLNUuyoKR_2kexq_G7LhGrysv4Wp9CGaAzcbGW69tgFuD6T3L1VDpwvTohaeX4MNW9HbJVTHl-JRCFziWuczjnlS6woFdL-5dWU32rAD-_UqqPk7Y_JnJOu2ooNN-FQ_RMVAOWvNZ2lLf_tF3_F_n_IW3FxiVNKpnOo2rOXmDmx1DObnFwuySxxr1B3Hb8H3gaOS4wZILKV2YRSuQZqYcpKP8c_RVfCXzBoJ9QkZGZLa3J-obDQup9jo5v4F6eBdX_JzMrpwlZNILXdOlMnIuJxZXhN2q6HGE8TbpD47dkZlVeXgLpwevB686vrLQg--RgDH_bYIWJZZWZiCJSIpRBGmba44S-KCMiEY04pmCDR5wUTOAqWTKImCQijMr3PFo3uwbkqTPwCidcFUxlJchwqcc_satS20UJSHVrqOebBXT7jUSxV0W4zjXFb6zVTiSEk34B48a0zHlfTHVUa7zmsaCzU5s1w5zuSH_ht58v542Et6XRl6sFO7lVwuE1MZ2i-Lha2x48HTphkD3L61USYv59aGR5Rjltz-i00cxQgUOQ08uF95atMhzDEFJtqxB3zFhxsDKzC-2mJGn53QeCQweBh2fc-56J9HQZ587LuL7X83fQLXu4OjQ3n4tt97CDeoKzNiaUI7sD6bzPNHCPZm6WMX0z8ALJ1T_g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am4R44TYugQEGoWkv6XJz7MJTxSiFQjXtohUJyXKcWFTbnKoXRPkb_GGOnSajMBDipYrkE9Wxz7G_43z5DsDzgOso13HhZzFTfiIz5ctCSt8VNA5VnilXReHDIO0dJ--GdLgGL-tvYSp9iObAzUaGW69tgI9zvXshGjpdmFZk0fkV2EjSgFuX3ju40I5C3JLUMp9JwtJaViiIdptbVzajDTuuXy9Dmr8TJn8Gsm4n6t6AT_UzVASU09Z8lrXUt1_kHf_zIW_C9SVCJZ3KpW7BWmFuw2bHYHZ-viDbxHFG3WH8Jnw_ckRy3P6IJdQujMQVSBFTToox_jc6Cv6SWSOgPiEjQzKb-ROZj8blFBvdzL8gHbzrS3FGRueubhKpxc6JNDkZlzPLasJuNcR4gmib1CfHzqisahzcgePu66NXPX9Z5sFXCN-Y3-YBzXMrCqNpylPNdZi1mWQ0TXREOadUyShHmMk05QUNpErjNA40l5hdF5LFd2HdlKa4D0QpTWVOM1yFNE65fYna5orLiIVWuI56sFPPt1BLDXRbiuNMVOrNkcCREm7APXjWmI4r4Y_LjLad0zQWcnJqmXKMipPBG3G4fzDsp_2eCD3Yqr1KLBeJqQjtd8XcVtjx4GnTjOFt39lIU5Rza8PiiGGO3P6LTRInCBNZFHhwr3LUpkOYYXJMsxMP2IoLNwZWXny1xYw-O5nxmGPsUOz6jvPQP4-COPw4cBcP_t30CVzd3-uK928H_YdwLXI1RixHaAvWZ5N58QiR3ix77CL6ByAnUrY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+presynaptic+norepinephrine+transporter+in+brown+adipose+tissue%3A+A+novel+imaging+approach+and+potential+treatment+for+diabetes+and+obesity&rft.jtitle=Synapse+%28New+York%2C+N.Y.%29&rft.au=Mirbolooki%2C+M.+Reza&rft.au=Constantinescu%2C+Cristian+C.&rft.au=Pan%2C+Min-Liang&rft.au=Mukherjee%2C+Jogeshwar&rft.date=2013-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0887-4476&rft.eissn=1098-2396&rft.volume=67&rft.issue=2&rft.spage=79&rft.epage=93&rft_id=info:doi/10.1002%2Fsyn.21617&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_SPRXK6KH_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-4476&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-4476&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-4476&client=summon