Targeting presynaptic norepinephrine transporter in brown adipose tissue: A novel imaging approach and potential treatment for diabetes and obesity
Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for 18F‐FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted‐male Sprague‐Dawley...
Saved in:
Published in | Synapse (New York, N.Y.) Vol. 67; no. 2; pp. 79 - 93 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.02.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for 18F‐FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted‐male Sprague‐Dawley rats were administered with intravenous 18F‐FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before 18F‐FDG administration. To confirm the β‐adrenergic effects, propranolol (β‐adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non‐fasted rats and on BAT temperature and blood glucose in fasted rats. In 18F‐FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the 18F‐FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average 18F‐FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine‐induced increase of 18F‐FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of β3‐adrenreceptors in non‐fasted rats with CL‐316, 243 occurred within 30 min. Atomoxetine‐induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates β3‐adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by 18F‐FDG PET/CT. Synapse, 2013. © 2012 Wiley Periodicals, Inc. |
---|---|
AbstractList | Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for 18F-FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted-male Sprague-Dawley rats were administered with intravenous 18F-FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before 18F-FDG administration. To confirm the [beta]-adrenergic effects, propranolol ([beta]-adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non-fasted rats and on BAT temperature and blood glucose in fasted rats. In 18F-FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the 18F-FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average 18F-FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine-induced increase of 18F-FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of [beta]3-adrenreceptors in non-fasted rats with CL-316, 243 occurred within 30 min. Atomoxetine-induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates [beta]3-adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by 18F-FDG PET/CT. Synapse, 2013. © 2012 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for (18)F-FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted-male Sprague-Dawley rats were administered with intravenous (18)F-FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before (18)F-FDG administration. To confirm the β-adrenergic effects, propranolol (β-adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non-fasted rats and on BAT temperature and blood glucose in fasted rats. In (18)F-FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the (18)F-FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average (18)F-FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine-induced increase of (18)F-FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of β(3)-adrenreceptors in non-fasted rats with CL-316, 243 occurred within 30 min. Atomoxetine-induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates β(3)-adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by (18)F-FDG PET/CT. Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for (18)F-FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted-male Sprague-Dawley rats were administered with intravenous (18)F-FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before (18)F-FDG administration. To confirm the β-adrenergic effects, propranolol (β-adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non-fasted rats and on BAT temperature and blood glucose in fasted rats. In (18)F-FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the (18)F-FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average (18)F-FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine-induced increase of (18)F-FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of β(3)-adrenreceptors in non-fasted rats with CL-316, 243 occurred within 30 min. Atomoxetine-induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates β(3)-adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by (18)F-FDG PET/CT.Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for (18)F-FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted-male Sprague-Dawley rats were administered with intravenous (18)F-FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before (18)F-FDG administration. To confirm the β-adrenergic effects, propranolol (β-adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non-fasted rats and on BAT temperature and blood glucose in fasted rats. In (18)F-FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the (18)F-FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average (18)F-FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine-induced increase of (18)F-FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of β(3)-adrenreceptors in non-fasted rats with CL-316, 243 occurred within 30 min. Atomoxetine-induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates β(3)-adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by (18)F-FDG PET/CT. Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for super(18)F-FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted-male Sprague-Dawley rats were administered with intravenous super(18)F-FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before super(18)F-FDG administration. To confirm the [beta]-adrenergic effects, propranolol ([beta]-adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non-fasted rats and on BAT temperature and blood glucose in fasted rats. In super(18)F-FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the super(18)F-FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average super(18)F-FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine-induced increase of super(18)F-FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of [beta] sub(3)-adrenreceptors in non-fasted rats with CL-316, 243 occurred within 30 min. Atomoxetine-induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates [beta] sub(3)-adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by super(18)F-FDG PET/CT. Synapse, 2013. [copy 2012 Wiley Periodicals, Inc. Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for 18 F-FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted-male Sprague-Dawley rats were administered with intravenous 18 F-FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before 18 F-FDG administration. To confirm the β-adrenergic effects, propranolol (β-adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non-fasted rats and on BAT temperature and blood glucose in fasted rats. In 18 F-FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the 18 F-FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average 18 F-FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine-induced increase of 18 F-FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of β 3 -adrenreceptors in non-fasted rats with CL-316, 243 occurred within 30 min. Atomoxetine-induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates β 3- adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by 18 F-FDG PET/CT. Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for 18 F‐FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted‐male Sprague‐Dawley rats were administered with intravenous 18 F‐FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before 18 F‐FDG administration. To confirm the β‐adrenergic effects, propranolol (β‐adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non‐fasted rats and on BAT temperature and blood glucose in fasted rats. In 18 F‐FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the 18 F‐FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average 18 F‐FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine‐induced increase of 18 F‐FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of β 3 ‐adrenreceptors in non‐fasted rats with CL‐316, 243 occurred within 30 min. Atomoxetine‐induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates β 3 ‐adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by 18 F‐FDG PET/CT. Synapse, 2013. © 2012 Wiley Periodicals, Inc. Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for 18F‐FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted‐male Sprague‐Dawley rats were administered with intravenous 18F‐FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before 18F‐FDG administration. To confirm the β‐adrenergic effects, propranolol (β‐adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non‐fasted rats and on BAT temperature and blood glucose in fasted rats. In 18F‐FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the 18F‐FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average 18F‐FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine‐induced increase of 18F‐FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of β3‐adrenreceptors in non‐fasted rats with CL‐316, 243 occurred within 30 min. Atomoxetine‐induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates β3‐adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by 18F‐FDG PET/CT. Synapse, 2013. © 2012 Wiley Periodicals, Inc. |
Author | Constantinescu, Cristian C. Mukherjee, Jogeshwar Mirbolooki, M. Reza Pan, Min-Liang |
Author_xml | – sequence: 1 givenname: M. Reza surname: Mirbolooki fullname: Mirbolooki, M. Reza email: rezam@uci.edu organization: Preclinical Imaging, Department of Radiological Sciences, University of California Irvine, Irvine, California – sequence: 2 givenname: Cristian C. surname: Constantinescu fullname: Constantinescu, Cristian C. organization: Preclinical Imaging, Department of Radiological Sciences, University of California Irvine, Irvine, California – sequence: 3 givenname: Min-Liang surname: Pan fullname: Pan, Min-Liang organization: Preclinical Imaging, Department of Radiological Sciences, University of California Irvine, Irvine, California – sequence: 4 givenname: Jogeshwar surname: Mukherjee fullname: Mukherjee, Jogeshwar organization: Preclinical Imaging, Department of Radiological Sciences, University of California Irvine, Irvine, California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23080264$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu1DAUhiNURKeFBS-ALLGBRVpf4ktYIFUVtKhVQbQIWFme5GTGJWMH22mZ5-CF8XTaEVQCNj6yzvf_OredYst5B0XxlOA9gjHdj0u3R4kg8kExIbhWJWW12ComWClZVpUU28VOjJcYY0Zw9ajYpgwrTEU1KX5emDCDZN0MDQGykRmSbZDzAQbrYJiH_KIUjIuDDwkCsg5Ng792yLR28DEnbYwjvEIHWXUFPbILM1v5mWEI3jRzZFyLBp_AJWv67AUmLfIHdT6g1popJIg3kJ9CtGn5uHjYmT7Ck9u4W3x6--bi8Lg8fX_07vDgtGx4xWVZK8zbloiadVwo0amOTGtpJBdVR7lSnDeGtowK2XEFHJtGMMFwpwxTDIxku8Xrte8wThfQNrmmYHo9hNxBWGpvrP4z4-xcz_yVZipPlpNs8OLWIPjvI8SkFzY20PfGgR-jJhWrMFWS4v-jVDIqaVXXGX1-D730Y3B5EplidZ0bIyxTz34vflP13Woz8HINNMHHGKDbIATr1dnovG19czaZ3b_HNjaZZP2qb9v_S3Fte1j-3Vqffz27U5RrhY0JfmwUJnzTQjLJ9eezI33-4eOXE3FyrAn7BWRR5cM |
CODEN | SYNAET |
CitedBy_id | crossref_primary_10_1177_1536012117704557 crossref_primary_10_15406_mojddt_2018_02_00057 crossref_primary_10_1124_jpet_114_217380 crossref_primary_10_3390_pharmaceutics15020690 crossref_primary_10_1152_japplphysiol_00212_2023 crossref_primary_10_1016_j_pcad_2019_08_004 crossref_primary_10_1089_jop_2021_0084 crossref_primary_10_2310_7290_2015_00028 crossref_primary_10_3389_fphar_2016_00336 crossref_primary_10_1016_j_nucmedbio_2015_04_003 crossref_primary_10_1016_j_patter_2021_100307 crossref_primary_10_1002_syn_21789 crossref_primary_10_1016_j_nucmedbio_2013_08_009 crossref_primary_10_1124_molpharm_121_000328 crossref_primary_10_1152_ajpendo_00234_2015 crossref_primary_10_4161_21623945_2014_965609 crossref_primary_10_1152_physrev_00034_2018 crossref_primary_10_1016_j_coph_2017_07_004 crossref_primary_10_1002_syn_21893 |
Cites_doi | 10.1042/0264-6021:3470643 10.1016/S0022-2275(20)37695-1 10.1055/s-0032-1306294 10.1016/j.nucmedbio.2012.04.005 10.1073/pnas.1207911109 10.1186/2191-219X-1-30 10.1016/j.cmet.2011.02.009 10.1042/bj3300397 10.2147/nedt.2006.2.4.455 10.2337/diabetes.54.12.3587 10.4088/JCP.v68n0306 10.2967/jnumed.110.075184 10.2165/00148581-200911030-00005 10.2337/db10-0004 10.1038/oby.2011.125 10.1097/WNF.0b013e3181dca948 10.1016/S0006-3223(02)01671-2 10.2337/db09-0833 10.2967/jnumed.109.068775 10.1088/0031-9155/54/9/020 10.1210/endo-52-1-57 10.1002/(SICI)1098-2396(199709)27:1<1::AID-SYN1>3.0.CO;2-9 10.1152/physrev.00015.2003 10.2147/NDT.S5421 10.2214/AJR.08.1166 10.1007/s004240050690 10.1210/endo.137.1.8536614 10.2337/diabetes.47.10.1555 10.1021/jm00094a025 10.1056/NEJMoa0810780 10.1056/NEJMoa0808949 10.1002/cncr.26630 10.1056/NEJMoa0808718 10.1038/nm.2297 10.1016/0024-3205(94)00408-0 10.4088/JCP.v66n0304 10.2337/diabetes.54.5.1385 10.2165/00003088-200544060-00002 10.1042/bj2770119 10.1002/ana.23553 10.1023/A:1006996922657 10.2337/db09-0530 10.3109/0284186X.2010.498831 10.1016/j.pbiomolbio.2010.11.008 10.1093/ilar.49.1.17 10.1016/S0893-133X(02)00346-9 10.1148/radiol.2272012051 10.3109/15622975.2010.483249 10.1001/jama.2011.1830 10.1172/JCI112785 10.1016/S0969-8051(02)00449-3 10.1007/s11307-010-0379-9 10.1111/j.1476-5381.2008.00018.x 10.1152/ajpendo.00085.2011 10.1210/en.130.2.837 10.1152/ajpendo.00691.2006 10.2967/jnumed.106.039065 10.1007/s00259-007-0670-4 10.1210/en.2003-0857 10.1007/s00259-011-1789-x 10.1007/s00259-007-0538-7 10.1210/en.2006-0242 10.1038/sj.ijo.0803223 10.1139/y86-101 10.3371/CSRP.5.1.3 10.1111/j.1749-6632.2010.05905.x 10.2165/11584800-000000000-00000 10.1210/endo.140.9.6972 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Wiley Periodicals, Inc. 2012 Wiley Periodicals, Inc. 2012 |
Copyright_xml | – notice: Copyright © 2012 Wiley Periodicals, Inc. – notice: 2012 Wiley Periodicals, Inc. 2012 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK K9. 7X8 5PM |
DOI | 10.1002/syn.21617 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic Neurosciences Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1098-2396 |
EndPage | 93 |
ExternalDocumentID | PMC3808851 2844726411 23080264 10_1002_syn_21617 SYN21617 ark_67375_WNG_SPRXK6KH_1 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R21DK092917 – fundername: NCRR NIH HHS grantid: S10 RR024546 – fundername: NIDDK NIH HHS grantid: RC1 DK087352 – fundername: NIDDK NIH HHS grantid: RC1DK087352 – fundername: NCRR NIH HHS grantid: S10 RR019269 – fundername: NIDDK NIH HHS grantid: R21 DK092917 – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: R21 DK092917 || DK – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: RC1 DK087352 || DK |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 123 1CY 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XV2 YNT ZGI ZXP ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QP 7TK K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5457-9805dd1693f5686f8f1b97a7564f258855ca2d3267f58e50ac63630f8a383ea73 |
IEDL.DBID | DR2 |
ISSN | 0887-4476 1098-2396 |
IngestDate | Thu Aug 21 18:24:58 EDT 2025 Thu Jul 10 18:17:23 EDT 2025 Fri Jul 11 10:36:31 EDT 2025 Fri Jul 25 12:15:20 EDT 2025 Mon Jul 21 06:02:09 EDT 2025 Thu Apr 24 23:04:43 EDT 2025 Tue Jul 01 01:20:09 EDT 2025 Wed Jan 22 17:05:12 EST 2025 Wed Oct 30 09:54:20 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2012 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5457-9805dd1693f5686f8f1b97a7564f258855ca2d3267f58e50ac63630f8a383ea73 |
Notes | ark:/67375/WNG-SPRXK6KH-1 istex:80EE96F6F058765A0CE342395607D1864F8FED64 ArticleID:SYN21617 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 23080264 |
PQID | 1239985513 |
PQPubID | 1046379 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3808851 proquest_miscellaneous_1434028720 proquest_miscellaneous_1273272499 proquest_journals_1239985513 pubmed_primary_23080264 crossref_primary_10_1002_syn_21617 crossref_citationtrail_10_1002_syn_21617 wiley_primary_10_1002_syn_21617_SYN21617 istex_primary_ark_67375_WNG_SPRXK6KH_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2013 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: February 2013 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Synapse (New York, N.Y.) |
PublicationTitleAlternate | Synapse |
PublicationYear | 2013 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services, Inc |
References | Scheen AJ. 2010. Cardiovascular risk-benefit profile of sibutramine. Am J Cardiovasc Drugs 10: 321-334. Garnock-Jones KP, Keating GM. 2009. Atomoxetine: A review of its use in attention-deficit hyperactivity disorder in children and adolescents. Paediatr Drugs 11: 203-226. Mukherjee J, Yang ZY, Lew R, Brown T, Kronmal S, Cooper MD, Seiden LS. 1997. Evaluation of d-amphetamine effects on the binding of dopamine D-2 receptor radioligand, 18F-fallypride in nonhuman primates using positron emission tomography. Synapse (New York, NY) 27: 1-13. Stefan N, Pfannenberg C, Haring HU. 2009. The importance of brown adipose tissue. N Engl J Med 361: 416-417; author reply 418-421. Marnane M, Merwick A, Sheehan OC, Hannon N, Foran P, Grant T, Dolan E, Moroney J, Murphy S, O'Rourke K, O'Malley K, O'Donohoe M, McDonnell C, Noone I, Barry M, Crowe M, Kavanagh E, O'Connell M, Kelly PJ. 2012. Carotid plaque inflammation on 18F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence. Ann Neurol 71: 709-718. Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW. 2002. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27: 699-711. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. 2009. Cold-activated brown adipose tissue in healthy men. N Engl J Med 360: 1500-1508. Mirbolooki MR, Constantinescu CC, Pan ML, Mukherjee J. 2011. Quantitative assessment of brown adipose tissue metabolic activity and volume using 18F-FDG PET/CT and β3-adrenergic receptor activation. EJNMMI Res 1: 30. Pfannenberg C, Werner MK, Ripkens S, Stef I, Deckert A, Schmadl M, Reimold M, Haring HU, Claussen CD, Stefan N. 2010. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59: 1789-1793. Postic C, Leturque A, Printz RL, Maulard P, Loizeau M, Granner DK, Girard J. 1994. Development and regulation of glucose transporter and hexokinase expression in rat. Am J Physiol 266( 4 Pt 1): E548-E559. Mizuma H, Shukuri M, Hayashi T, Watanabe Y, Onoe H. 2010. Establishment of in vivo brain imaging method in conscious mice. J Nucl Med 51: 1068-1075. Scherer D, Hassel D, Bloehs R, Zitron E, von Lowenstern K, Seyler C, Thomas D, Konrad F, Burgers HF, Seemann G, Rottbauer W, Katus HA, Karle CA, Scholz EP. 2009. Selective noradrenaline reuptake inhibitor atomoxetine directly blocks hERG currents. Br J Pharmacol 156: 226-236. Abrahamian H, Hofmann P, Prager R, Toplak H. 2009. Diabetes mellitus and co-morbid depression: Treatment with milnacipran results in significant improvement of both diseases (results from the Austrian MDDM study group). Neuropsychiatr Dis Treat 5: 261-266. Chernogubova E, Cannon B, Bengtsson T. 2004. Norepinephrine increases glucose transport in brown adipocytes via beta3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology 145: 269-280. Michelson D, Adler L, Spencer T, Reimherr FW, West SA, Allen AJ, Kelsey D, Wernicke J, Dietrich A, Milton D. 2003. Atomoxetine in adults with ADHD: Two randomized, placebo-controlled studies. Biol Psychiatry 53: 112-120. Yamaga LY, Thom AF, Wagner J, Baroni RH, Hidal JT, Funari MG. 2008. The effect of catecholamines on the glucose uptake in brown adipose tissue demonstrated by (18)F-FDG PET/CT in a patient with adrenal pheochromocytoma. Eur J Nucl Med Mol Imaging 35: 446-447. Sauer JM, Ring BJ, Witcher JW. 2005. Clinical pharmacokinetics of atomoxetine. Clin Pharmacokinet 44: 571-590. Mattsson CL, Csikasz RI, Chernogubova E, Yamamoto DL, Hogberg HT, Amri EZ, Hutchinson DS, Bengtsson T. 2011. Beta(1)-adrenergic receptors increase UCP1 in human MADS brown adipocytes and rescue cold-acclimated beta(3)-adrenergic receptor-knockout mice via nonshivering thermogenesis. Am J Physiol 301: E1108-E1118. Hildebrandt IJ, Su H, Weber WA. 2008. Anesthesia and other considerations for in vivo imaging of small animals. ILAR J 49: 17-26. Burrows RC, Freeman SD, Charlop AW, Wiseman RW, Adamsen TC, Krohn KA, Spence AM. 2004. [18F]-2-fluoro-2-deoxyglucose transport kinetics as a function of extracellular glucose concentration in malignant glioma, fibroblast and macrophage cells in vitro. Nucl Med Biol 31: 1-9. Rosler M, Casas M, Konofal E, Buitelaar J. 2010. Attention deficit hyperactivity disorder in adults. World J Biol Psychiatry 11: 684-698. Benz MR, Czernin J, Allen-Auerbach MS, Dry SM, Sutthiruangwong P, Spick C, Radu C, Weber WA, Tap WD, Eilber FC. 2012. 3′-Deoxy-3′-[18F]fluorothymidine positron emission tomography for response assessment in soft tissue sarcoma: A pilot study to correlate imaging findings with tissue thymidine kinase 1 and Ki-67 activity and histopathologic response. Cancer 118: 3135-3144. Weyer C, Tataranni PA, Snitker S, Danforth E,Jr, Ravussin E. 1998. Increase in insulin action and fat oxidation after treatment with CL 316, 243, a highly selective beta3-adrenoceptor agonist in humans. Diabetes 47: 1555-1561. Lee KH, Ko BH, Paik JY, Jung KH, Choe YS, Choi Y, Kim BT. 2005. Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. JNucl Med 46: 1531-1536. Vanttinen M, Nuutila P, Kuulasmaa T, Pihlajamaki J, Hallsten K, Virtanen KA, Lautamaki R, Peltoniemi P, Takala T, Viljanen AP, Knuuti J, Laakso M. 2005. Single nucleotide polymorphisms in the peroxisome proliferator-activated receptor delta gene are associated with skeletal muscle glucose uptake. Diabetes 54: 3587-3591. Ma SW, Foster DO. 1986. Uptake of glucose and release of fatty acids and glycerol by rat brown adipose tissue in vivo. Can J Physiol Pharmacol 64: 609-614. Ball MP, Warren KR, Feldman S, McMahon RP, Kelly DL, Buchanan RW. 2011. Placebo-controlled trial of atomoxetine for weight reduction in people with schizophrenia treated with clozapine or olanzapine. Clin Schizophr Relat Psychoses 5: 17-25. Constantinescu CC, Mukherjee J. 2009. Performance evaluation of an Inveon PET preclinical scanner. Phys Med Biol 54: 2885-2899. Nedergaard J, Bengtsson T, Cannon B. 2011. New powers of brown fat: Fighting the metabolic syndrome. Cell Metab 13: 238-240. Liu X, Perusse F, Bukowiecki LJ. 1998. Mechanisms of the antidiabetic effects of the beta 3-adrenergic agonist CL-316 243 in obese Zucker-ZDF rats. Am J Physiol 274( 5 Pt 2): R1212-R1219. Kim S, Krynyckyi BR, Machac J, Kim CK. 2008. Temporal relation between temperature change and FDG uptake in brown adipose tissue. Eur J Nucl Med Mol Imaging 35: 984-989. Inokuma K, Ogura-Okamatsu Y, Toda C, Kimura K, Yamashita H, Saito M. 2005. Uncoupling protein 1 is necessary for norepinephrine-induced glucose utilization in brown adipose tissue. Diabetes 54: 1385-1391. Quevedo S, Roca P, Pico C, Palou A. 1998. Sex-associated differences in cold-induced UCP1 synthesis in rodent brown adipose tissue. Pflugers Arch 436: 689-695. Yoshida T, Sakane N, Wakabayashi Y, Umekawa T, Kondo M. 1994. Anti-obesity and anti-diabetic effects of CL 316, 243, a highly specific beta 3-adrenoceptor agonist, in yellow KK mice. Life Sci 54: 491-498. Bronnikov G, Bengtsson T, Kramarova L, Golozoubova V, Cannon B, Nedergaard J. 1999. Beta1 to beta3 switch in control of cyclic adenosine monophosphate during brown adipocyte development explains distinct beta-adrenoceptor subtype mediation of proliferation and differentiation. Endocrinology 140: 4185-4197. Baba S, Jacene HA, Engles JM, Honda H, Wahl RL. 2010. CT Hounsfield units of brown adipose tissue increase with activation: Preclinical and clinical studies. J Nucl Med 51: 246-250. Kim YW, Shin JC, An YS. 2010. Treatment of chronic akinetic mutism with atomoxetine: subtraction analysis of brain f-18 fluorodeoxyglucose positron emission tomographic images before and after medication: A case report. Clin Neuropharmacol 33: 209-211. Eng J. 2003. Sample size estimation: how many individuals should be studied? Radiology 227: 309-313. Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, Phelps ME, Weber WA. 2006. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47: 999-1006. Marette A, Bukowiecki LJ. 1991. Noradrenaline stimulates glucose transport in rat brown adipocytes by activating thermogenesis. Evidence that fatty acid activation of mitochondrial respiration enhances glucose transport. Biochem J 277( Pt 1): 119-124. Baba S, Tatsumi M, Ishimori T, Lilien DL, Engles JM, Wahl RL. 2007. Effect of nicotine and ephedrine on the accumulation of 18F-FDG in brown adipose tissue. J Nucl Med 48: 981-986. Au-Yong IT, Thorn N, Ganatra R, Perkins AC, Symonds ME. 2009. Brown adipose tissue and seasonal variation in humans. Diabetes 58: 2583-2587. Nedergaard J, Bengtsson T, Cannon B. 2010. Three years with adult human brown adipose tissue. Ann N Y Acad Sci 1212: E20-E36. Roe K, Aleksandersen TB, Kristian A, Nilsen LB, Seierstad T, Qu H, Ree AH, Olsen DR, Malinen E. 2010. Preclinical dynamic 18F-FDG PET: Tumor characterization and radiotherapy response assessment by kinetic compartment analysis. Acta Oncol (Stockholm, Sweden) 49: 914-921. Jensen MD, Haymond MW, Gerich JE, Cryer PE, Miles JM. 1987. Lipolysis during fasting. Decreased suppression by insulin and increased stimulation by epinephrine. J Clin Investig 79: 207-213. Zelinka T, Petrak O, Turkova H, Holaj R, Strauch B, Krsek M, Vrankova AB, Musil Z, Duskova J, Kubinyi J, Michalsky D, Novak K, Widimsky J. 2012. High incidence of cardiovascular complications in pheochromocytoma. Horm Metab Res 44: 379-384. Lafontan M, Berlan M. 1993. Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res 34: 1057-1091. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsuji 1987; 79 2010; 11 2010; 10 2006; 30 2010; 59 1991; 277 2009; 156 2008; 35 2011; 13 1998; 436 2011; 17 2011; 19 2005; 66 2003; 53 2010; 1212 1998; 274 1998; 47 2012; 51 1994; 266 2009; 11 2012; 71 2009; 58 2004; 31 1993; 34 2009; 54 2007; 293 2009; 360 2009; 361 1996; 137 2007; 68 2003; 44 2004; 145 1998; 27 2010; 33 2004; 84 2011; 1 1999; 140 1997; 27 1992; 35 2012; 39 2006; 2 2011; 38 1998; 330 2011; 5 2005; 44 2012; 109 2005; 46 1953; 52 2002; 27 2011; 301 2010; 49 2011; 306 2003; 227 2009; 31 2011; 106 1992; 130 1986; 64 2009; 192 2000; 347 2006; 47 2008; 49 2005; 54 2009; 5 2012; 44 2012; 118 2010; 51 2007; 48 2006; 147 1994; 54 e_1_2_7_5_1 e_1_2_7_3_1 Fueger BJ (e_1_2_7_25_1) 2006; 47 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Shimizu Y (e_1_2_7_67_1) 1998; 330 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 Cheng WY (e_1_2_7_16_1) 2009; 31 e_1_2_7_4_1 e_1_2_7_8_1 Liu X (e_1_2_7_43_1) 1998; 274 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 Postic C (e_1_2_7_57_1) 1994; 266 Lee KH (e_1_2_7_40_1) 2005; 46 e_1_2_7_29_1 Letovanec I (e_1_2_7_41_1) 2012; 51 Stefan N (e_1_2_7_68_1) 2009; 361 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Cohade C (e_1_2_7_18_1) 2003; 44 20831478 - Acta Oncol. 2010 Oct;49(7):914-21 12431845 - Neuropsychopharmacology. 2002 Nov;27(5):699-711 18157529 - Eur J Nucl Med Mol Imaging. 2008 May;35(5):984-9 17473055 - Am J Physiol Endocrinol Metab. 2007 Aug;293(2):E444-52 21566561 - Obesity (Silver Spring). 2011 Sep;19(9):1755-60 12732691 - Radiology. 2003 May;227(2):309-13 1354264 - J Med Chem. 1992 Aug 7;35(16):3081-4 20357363 - Diabetes. 2010 Jul;59(7):1789-93 17504863 - J Nucl Med. 2007 Jun;48(6):981-6 16959848 - Endocrinology. 2006 Dec;147(12):5730-9 22020872 - Cancer. 2012 Jun 15;118(12):3135-44 20124047 - J Nucl Med. 2010 Feb;51(2):246-50 22584348 - Nuklearmedizin. 2012;51(5):186-93 22161946 - JAMA. 2011 Dec 28;306(24):2673-83 9461536 - Biochem J. 1998 Feb 15;330 ( Pt 1):397-403 22595487 - Nucl Med Biol. 2012 Oct;39(7):1081-6 8178975 - Am J Physiol. 1994 Apr;266(4 Pt 1):E548-59 19357407 - N Engl J Med. 2009 Apr 9;360(15):1518-25 21461734 - Eur J Nucl Med Mol Imaging. 2011 Aug;38(8):1449-58 21878665 - Am J Physiol Endocrinol Metab. 2011 Dec;301(6):E1108-18 8309351 - Life Sci. 1994;54(7):491-8 18172330 - ILAR J. 2008;49(1):17-26 17909796 - Eur J Nucl Med Mol Imaging. 2008 Feb;35(2):446-7 19696186 - Diabetes. 2009 Nov;58(11):2583-7 13021112 - Endocrinology. 1953 Jan;52(1):57-64 21163289 - Prog Biophys Mol Biol. 2011 Jul;106(1):300-6 21375707 - Ann N Y Acad Sci. 2010 Nov;1212:E20-36 19384008 - Phys Med Biol. 2009 May 7;54(9):2885-99 22461139 - Ann Neurol. 2012 May;71(5):709-18 20661027 - Clin Neuropharmacol. 2010 Jul;33(4):209-11 21356513 - Cell Metab. 2011 Mar 2;13(3):238-40 8371057 - J Lipid Res. 1993 Jul;34(7):1057-91 20860415 - Am J Cardiovasc Drugs. 2010;10(5):321-34 21140233 - Mol Imaging Biol. 2011 Dec;13(6):1278-83 22517556 - Horm Metab Res. 2012 May;44(5):379-84 20521876 - World J Biol Psychiatry. 2010 Aug;11(5):684-98 19357406 - N Engl J Med. 2009 Apr 9;360(15):1509-17 9644032 - Am J Physiol. 1998 May;274(5 Pt 2):R1212-9 19154426 - Br J Pharmacol. 2009 Jan;156(2):226-36 8536614 - Endocrinology. 1996 Jan;137(1):21-9 20554730 - J Nucl Med. 2010 Jul;51(7):1068-75 12571205 - J Nucl Med. 2003 Feb;44(2):170-6 14715917 - Physiol Rev. 2004 Jan;84(1):277-359 10659680 - J Neurocytol. 1998 Dec;27(12):877-86 1370797 - Endocrinology. 1992 Feb;130(2):837-46 15910008 - Clin Pharmacokinet. 2005;44(6):571-90 16418753 - Int J Obes (Lond). 2006 Jul;30(7):1138-42 12547466 - Biol Psychiatry. 2003 Jan 15;53(2):112-20 16306381 - Diabetes. 2005 Dec;54(12):3587-91 22214183 - EJNMMI Res. 2011 Dec 01;1(1):30 15766294 - J Clin Psychiatry. 2005 Mar;66(3):294-9 19098214 - AJR Am J Roentgenol. 2009 Jan;192(1):300-1 14741565 - Nucl Med Biol. 2004 Jan;31(1):1-9 14551227 - Endocrinology. 2004 Jan;145(1):269-80 19557120 - Neuropsychiatr Dis Treat. 2009;5:261-6 21258337 - Nat Med. 2011 Feb;17(2):200-5 17388708 - J Clin Psychiatry. 2007 Mar;68(3):390-8 22665804 - Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):10001-5 16157537 - J Nucl Med. 2005 Sep;46(9):1531-6 19401428 - Diabetes. 2009 Jul;58(7):1526-31 10769166 - Biochem J. 2000 May 1;347 Pt 3:643-51 9753292 - Diabetes. 1998 Oct;47(10):1555-61 19412494 - Neuropsychiatr Dis Treat. 2006 Dec;2(4):455-66 3730946 - Can J Physiol Pharmacol. 1986 May;64(5):609-14 21459735 - Clin Schizophr Relat Psychoses. 2011 Apr;5(1):17-25 3540009 - J Clin Invest. 1987 Jan;79(1):207-13 9268060 - Synapse. 1997 Sep;27(1):1-13 10465291 - Endocrinology. 1999 Sep;140(9):4185-97 15855324 - Diabetes. 2005 May;54(5):1385-91 9716701 - Pflugers Arch. 1998 Oct;436(5):689-95 19445548 - Paediatr Drugs. 2009;11(3):203-26 16741310 - J Nucl Med. 2006 Jun;47(6):999-1006 19357405 - N Engl J Med. 2009 Apr 9;360(15):1500-8 1713031 - Biochem J. 1991 Jul 1;277 ( Pt 1):119-24 19621528 - Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2009 Jun;31(3):370-3 19630141 - N Engl J Med. 2009 Jul 23;361(4):416-7; author reply 418-21 |
References_xml | – reference: Scheen AJ. 2010. Cardiovascular risk-benefit profile of sibutramine. Am J Cardiovasc Drugs 10: 321-334. – reference: Mirbolooki MR, Constantinescu CC, Pan ML, Mukherjee J. 2011. Quantitative assessment of brown adipose tissue metabolic activity and volume using 18F-FDG PET/CT and β3-adrenergic receptor activation. EJNMMI Res 1: 30. – reference: Benz MR, Czernin J, Allen-Auerbach MS, Dry SM, Sutthiruangwong P, Spick C, Radu C, Weber WA, Tap WD, Eilber FC. 2012. 3′-Deoxy-3′-[18F]fluorothymidine positron emission tomography for response assessment in soft tissue sarcoma: A pilot study to correlate imaging findings with tissue thymidine kinase 1 and Ki-67 activity and histopathologic response. Cancer 118: 3135-3144. – reference: Lee KH, Ko BH, Paik JY, Jung KH, Choe YS, Choi Y, Kim BT. 2005. Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. JNucl Med 46: 1531-1536. – reference: Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmuller A, Gordts PL, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J. 2011. Brown adipose tissue activity controls triglyceride clearance. Nat Med 17: 200-205. – reference: Nedergaard J, Bengtsson T, Cannon B. 2007. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol 293: E444-E452. – reference: Bloom JD, Dutia MD, Johnson BD, Wissner A, Burns MG, Largis EE, Dolan JA, Claus TH. 1992. Disodium (R,R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino] propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL-316, 243). A potent beta-adrenergic agonist virtually specific for beta 3 receptors. A promising antidiabetic and antiobesity agent. J Med Chem 35: 3081-3084. – reference: McElroy SL, Guerdjikova A, Kotwal R, Welge JA, Nelson EB, Lake KA, Keck PE,Jr., Hudson JI. 2007. Atomoxetine in the treatment of binge-eating disorder: A randomized placebo-controlled trial. J Clin Psychiatry 68: 390-398. – reference: Abrahamian H, Hofmann P, Prager R, Toplak H. 2009. Diabetes mellitus and co-morbid depression: Treatment with milnacipran results in significant improvement of both diseases (results from the Austrian MDDM study group). Neuropsychiatr Dis Treat 5: 261-266. – reference: Ball MP, Warren KR, Feldman S, McMahon RP, Kelly DL, Buchanan RW. 2011. Placebo-controlled trial of atomoxetine for weight reduction in people with schizophrenia treated with clozapine or olanzapine. Clin Schizophr Relat Psychoses 5: 17-25. – reference: Dallner OS, Chernogubova E, Brolinson KA, Bengtsson T. 2006. Beta3-adrenergic receptors stimulate glucose uptake in brown adipocytes by two mechanisms independently of glucose transporter 4 translocation. Endocrinology 147: 5730-5739. – reference: Yoshida T, Sakane N, Wakabayashi Y, Umekawa T, Kondo M. 1994. Anti-obesity and anti-diabetic effects of CL 316, 243, a highly specific beta 3-adrenoceptor agonist, in yellow KK mice. Life Sci 54: 491-498. – reference: Eng J. 2003. Sample size estimation: how many individuals should be studied? Radiology 227: 309-313. – reference: Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P. 2009. Functional brown adipose tissue in healthy adults. N Engl J Med 360: 1518-1525. – reference: Bengtsson T, Cannon B, Nedergaard J. 2000. Differential adrenergic regulation of the gene expression of the beta-adrenoceptor subtypes beta1, beta2 and beta3 in brown adipocytes. Biochem J 347( Pt 3): 643-651. – reference: Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, Phelps ME, Weber WA. 2006. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47: 999-1006. – reference: Jacene HA, Cohade CC, Zhang Z, Wahl RL. 2011. The relationship between patients' serum glucose levels and metabolically active brown adipose tissue detected by PET/CT. Mol Imaging Biol 13: 1278-1283. – reference: De Matteis R, Ricquier D, Cinti S. 1998. TH-, NPY-, SP-, and CGRP-immunoreactive nerves in interscapular brown adipose tissue of adult rats acclimated at different temperatures: An immunohistochemical study. J Neurocytol 27: 877-886. – reference: Iyer RB, Guo CC, Perrier N. 2009. Adrenal pheochromocytoma with surrounding brown fat stimulation. AJR 192: 300-301. – reference: Yoneshiro T, Aita S, Matsushita M, Okamatsu-Ogura Y, Kameya T, Kawai Y, Miyagawa M, Tsujisaki M, Saito M. 2011. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring) 19: 1755-1760. – reference: Stefan N, Pfannenberg C, Haring HU. 2009. The importance of brown adipose tissue. N Engl J Med 361: 416-417; author reply 418-421. – reference: Schinagl DA, Span PN, Oyen WJ, Kaanders JH. 2011. Can FDG PET predict radiation treatment outcome in head and neck cancer? Results of a prospective study. Eur J Nucl Med Mol Imaging 38: 1449-1458. – reference: Postic C, Leturque A, Printz RL, Maulard P, Loizeau M, Granner DK, Girard J. 1994. Development and regulation of glucose transporter and hexokinase expression in rat. Am J Physiol 266( 4 Pt 1): E548-E559. – reference: van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. 2009. Cold-activated brown adipose tissue in healthy men. N Engl J Med 360: 1500-1508. – reference: Zelinka T, Petrak O, Turkova H, Holaj R, Strauch B, Krsek M, Vrankova AB, Musil Z, Duskova J, Kubinyi J, Michalsky D, Novak K, Widimsky J. 2012. High incidence of cardiovascular complications in pheochromocytoma. Horm Metab Res 44: 379-384. – reference: Kim YW, Shin JC, An YS. 2010. Treatment of chronic akinetic mutism with atomoxetine: subtraction analysis of brain f-18 fluorodeoxyglucose positron emission tomographic images before and after medication: A case report. Clin Neuropharmacol 33: 209-211. – reference: Cheng WY, Zhu ZH, Ouyang M. 2009. Patterns and characteristics of brown adipose tissue uptake of 18F-FDG positron emission tomograph/computed tomography imaging. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 31: 370-373. – reference: Cohade C, Osman M, Pannu HK, Wahl RL. 2003. Uptake in supraclavicular area fat ("USA-Fat"): Description on 18F-FDG PET/CT. J Nucl Med 44: 170-176. – reference: Pfannenberg C, Werner MK, Ripkens S, Stef I, Deckert A, Schmadl M, Reimold M, Haring HU, Claussen CD, Stefan N. 2010. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59: 1789-1793. – reference: Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. 2009. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360: 1509-1517. – reference: Marette A, Bukowiecki LJ. 1991. Noradrenaline stimulates glucose transport in rat brown adipocytes by activating thermogenesis. Evidence that fatty acid activation of mitochondrial respiration enhances glucose transport. Biochem J 277( Pt 1): 119-124. – reference: Mizuma H, Shukuri M, Hayashi T, Watanabe Y, Onoe H. 2010. Establishment of in vivo brain imaging method in conscious mice. J Nucl Med 51: 1068-1075. – reference: Jensen MD, Haymond MW, Gerich JE, Cryer PE, Miles JM. 1987. Lipolysis during fasting. Decreased suppression by insulin and increased stimulation by epinephrine. J Clin Investig 79: 207-213. – reference: Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M. 2009. High incidence of metabolically active brown adipose tissue in healthy adult humans: Effects of cold exposure and adiposity. Diabetes 58: 1526-1531. – reference: Letovanec I, Allenbach G, Mihaescu A, Nicod Lalonde M, Schmidt S, Stupp R, Fitting JW, Boubaker A, Ris HB, Prior JO. 2012. 18F-fluorodeoxyglucose PET/CT findings in pleural effusions of patients with known cancer. A cytopathological correlation. Nuklearmedizin 51:186-193. – reference: Habel LA, Cooper WO, Sox CM, Chan KA, Fireman BH, Arbogast PG, Cheetham TC, Quinn VP, Dublin S, Boudreau DM, Andrade SE, Pawloski PA, Raebel MA, Smith DH, Achacoso N, Uratsu C, Go AS, Sidney S, Nguyen-Huynh MN, Ray WA, Selby JV. 2011. ADHD medications and risk of serious cardiovascular events in young and middle-aged adults. JAMA 306: 2673-2683. – reference: Santalucia T, Camps M, Castello A, Munoz P, Nuel A, Testar X, Palacin M, Zorzano A. 1992. Developmental regulation of GLUT-1 (erythroid/Hep G2) and GLUT-4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue. Endocrinology 130: 837-846. – reference: Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW. 2002. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27: 699-711. – reference: Ma SW, Foster DO. 1986. Uptake of glucose and release of fatty acids and glycerol by rat brown adipose tissue in vivo. Can J Physiol Pharmacol 64: 609-614. – reference: Adler LA, Spencer TJ, Milton DR, Moore RJ, Michelson D. 2005. Long-term, open-label study of the safety and efficacy of atomoxetine in adults with attention-deficit/hyperactivity disorder: An interim analysis. J Clin Psychiatry 66: 294-299. – reference: Liu X, Perusse F, Bukowiecki LJ. 1998. Mechanisms of the antidiabetic effects of the beta 3-adrenergic agonist CL-316 243 in obese Zucker-ZDF rats. Am J Physiol 274( 5 Pt 2): R1212-R1219. – reference: Sauer JM, Ring BJ, Witcher JW. 2005. Clinical pharmacokinetics of atomoxetine. Clin Pharmacokinet 44: 571-590. – reference: Hamann A, Flier JS, Lowell BB. 1996. Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. Endocrinology 137: 21-29. – reference: Bronnikov G, Bengtsson T, Kramarova L, Golozoubova V, Cannon B, Nedergaard J. 1999. Beta1 to beta3 switch in control of cyclic adenosine monophosphate during brown adipocyte development explains distinct beta-adrenoceptor subtype mediation of proliferation and differentiation. Endocrinology 140: 4185-4197. – reference: Inokuma K, Ogura-Okamatsu Y, Toda C, Kimura K, Yamashita H, Saito M. 2005. Uncoupling protein 1 is necessary for norepinephrine-induced glucose utilization in brown adipose tissue. Diabetes 54: 1385-1391. – reference: Chernogubova E, Cannon B, Bengtsson T. 2004. Norepinephrine increases glucose transport in brown adipocytes via beta3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology 145: 269-280. – reference: Nedergaard J, Bengtsson T, Cannon B. 2010. Three years with adult human brown adipose tissue. Ann N Y Acad Sci 1212: E20-E36. – reference: Nedergaard J, Bengtsson T, Cannon B. 2011. New powers of brown fat: Fighting the metabolic syndrome. Cell Metab 13: 238-240. – reference: Baba S, Tatsumi M, Ishimori T, Lilien DL, Engles JM, Wahl RL. 2007. Effect of nicotine and ephedrine on the accumulation of 18F-FDG in brown adipose tissue. J Nucl Med 48: 981-986. – reference: Rosler M, Casas M, Konofal E, Buitelaar J. 2010. Attention deficit hyperactivity disorder in adults. World J Biol Psychiatry 11: 684-698. – reference: Scherer D, Hassel D, Bloehs R, Zitron E, von Lowenstern K, Seyler C, Thomas D, Konrad F, Burgers HF, Seemann G, Rottbauer W, Katus HA, Karle CA, Scholz EP. 2009. Selective noradrenaline reuptake inhibitor atomoxetine directly blocks hERG currents. Br J Pharmacol 156: 226-236. – reference: Cannon B, Nedergaard J. 2004. Brown adipose tissue: Function and physiological significance. Physiol Rev 84: 277-359. – reference: Hildebrandt IJ, Su H, Weber WA. 2008. Anesthesia and other considerations for in vivo imaging of small animals. ILAR J 49: 17-26. – reference: Ledbetter M. 2006. Atomoxetine: A novel treatment for child and adult ADHD. Neuropsychiatr Dis Treat 2: 455-466. – reference: Burrows RC, Freeman SD, Charlop AW, Wiseman RW, Adamsen TC, Krohn KA, Spence AM. 2004. [18F]-2-fluoro-2-deoxyglucose transport kinetics as a function of extracellular glucose concentration in malignant glioma, fibroblast and macrophage cells in vitro. Nucl Med Biol 31: 1-9. – reference: Garnock-Jones KP, Keating GM. 2009. Atomoxetine: A review of its use in attention-deficit hyperactivity disorder in children and adolescents. Paediatr Drugs 11: 203-226. – reference: Marnane M, Merwick A, Sheehan OC, Hannon N, Foran P, Grant T, Dolan E, Moroney J, Murphy S, O'Rourke K, O'Malley K, O'Donohoe M, McDonnell C, Noone I, Barry M, Crowe M, Kavanagh E, O'Connell M, Kelly PJ. 2012. Carotid plaque inflammation on 18F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence. Ann Neurol 71: 709-718. – reference: Michelson D, Adler L, Spencer T, Reimherr FW, West SA, Allen AJ, Kelsey D, Wernicke J, Dietrich A, Milton D. 2003. Atomoxetine in adults with ADHD: Two randomized, placebo-controlled studies. Biol Psychiatry 53: 112-120. – reference: Mattsson CL, Csikasz RI, Chernogubova E, Yamamoto DL, Hogberg HT, Amri EZ, Hutchinson DS, Bengtsson T. 2011. Beta(1)-adrenergic receptors increase UCP1 in human MADS brown adipocytes and rescue cold-acclimated beta(3)-adrenergic receptor-knockout mice via nonshivering thermogenesis. Am J Physiol 301: E1108-E1118. – reference: Vanttinen M, Nuutila P, Kuulasmaa T, Pihlajamaki J, Hallsten K, Virtanen KA, Lautamaki R, Peltoniemi P, Takala T, Viljanen AP, Knuuti J, Laakso M. 2005. Single nucleotide polymorphisms in the peroxisome proliferator-activated receptor delta gene are associated with skeletal muscle glucose uptake. Diabetes 54: 3587-3591. – reference: Lafontan M, Berlan M. 1993. Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res 34: 1057-1091. – reference: Symonds ME, Budge H, Perkins AC, Lomax MA. 2011. Adipose tissue development: impact of the early life environment. Prog Biophys Mol Biol 106: 300-306. – reference: Lachance J, Page E. 1953. Hormonal factors influencing fat deposition in the interscapular brown adipose tissue of the white rat. Endocrinology 52: 57-64. – reference: Yamaga LY, Thom AF, Wagner J, Baroni RH, Hidal JT, Funari MG. 2008. The effect of catecholamines on the glucose uptake in brown adipose tissue demonstrated by (18)F-FDG PET/CT in a patient with adrenal pheochromocytoma. Eur J Nucl Med Mol Imaging 35: 446-447. – reference: Shimizu Y, Satoh S, Yano H, Minokoshi Y, Cushman SW, Shimazu T. 1998. Effects of noradrenaline on the cell-surface glucose transporters in cultured brown adipocytes: Novel mechanism for selective activation of GLUT1 glucose transporters. Biochem J 330( Pt 1): 397-403. – reference: Cypess AM, Chen YC, Sze C, Wang K, English J, Chan O, Holman AR, Tal I, Palmer MR, Kolodny GM, Kahn CR. 2012. Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc Natl Acad Sci USA 109: 10001-10005. – reference: Gadde KM, Yonish GM, Wagner HR,II, Foust MS, Allison DB. 2006. Atomoxetine for weight reduction in obese women: A preliminary randomised controlled trial. Int J Obes 30: 1138-1142. – reference: Mukherjee J, Yang ZY, Lew R, Brown T, Kronmal S, Cooper MD, Seiden LS. 1997. Evaluation of d-amphetamine effects on the binding of dopamine D-2 receptor radioligand, 18F-fallypride in nonhuman primates using positron emission tomography. Synapse (New York, NY) 27: 1-13. – reference: Au-Yong IT, Thorn N, Ganatra R, Perkins AC, Symonds ME. 2009. Brown adipose tissue and seasonal variation in humans. Diabetes 58: 2583-2587. – reference: Roe K, Aleksandersen TB, Kristian A, Nilsen LB, Seierstad T, Qu H, Ree AH, Olsen DR, Malinen E. 2010. Preclinical dynamic 18F-FDG PET: Tumor characterization and radiotherapy response assessment by kinetic compartment analysis. Acta Oncol (Stockholm, Sweden) 49: 914-921. – reference: Baba S, Jacene HA, Engles JM, Honda H, Wahl RL. 2010. CT Hounsfield units of brown adipose tissue increase with activation: Preclinical and clinical studies. J Nucl Med 51: 246-250. – reference: Constantinescu CC, Mukherjee J. 2009. Performance evaluation of an Inveon PET preclinical scanner. Phys Med Biol 54: 2885-2899. – reference: Weyer C, Tataranni PA, Snitker S, Danforth E,Jr, Ravussin E. 1998. Increase in insulin action and fat oxidation after treatment with CL 316, 243, a highly selective beta3-adrenoceptor agonist in humans. Diabetes 47: 1555-1561. – reference: Lin SF, Fan X, Yeckel CW, Weinzimmer D, Mulnix T, Gallezot JD, Carson RE, Sherwin RS, Ding YS. 2012. Ex vivo and in vivo Evaluation of the norepinephrine transporter ligand [(11)C]MRB for brown adipose tissue imaging. Nucl Med Biol. 39: 1081-1086 – reference: Kim S, Krynyckyi BR, Machac J, Kim CK. 2008. Temporal relation between temperature change and FDG uptake in brown adipose tissue. Eur J Nucl Med Mol Imaging 35: 984-989. – reference: Quevedo S, Roca P, Pico C, Palou A. 1998. Sex-associated differences in cold-induced UCP1 synthesis in rodent brown adipose tissue. Pflugers Arch 436: 689-695. – volume: 31 start-page: 1 year: 2004 end-page: 9 article-title: [18F]‐2‐fluoro‐2‐deoxyglucose transport kinetics as a function of extracellular glucose concentration in malignant glioma, fibroblast and macrophage cells in vitro publication-title: Nucl Med Biol – volume: 347 start-page: 643 issue: Pt 3 year: 2000 end-page: 651 article-title: Differential adrenergic regulation of the gene expression of the beta‐adrenoceptor subtypes beta1, beta2 and beta3 in brown adipocytes publication-title: Biochem J – volume: 51 start-page: 186 year: 2012 end-page: 193 article-title: 18F‐fluorodeoxyglucose PET/CT findings in pleural effusions of patients with known cancer publication-title: A cytopathological correlation. – volume: 109 start-page: 10001 year: 2012 end-page: 10005 article-title: Cold but not sympathomimetics activates human brown adipose tissue in vivo publication-title: Proc Natl Acad Sci USA – volume: 227 start-page: 309 year: 2003 end-page: 313 article-title: Sample size estimation: how many individuals should be studied? publication-title: Radiology – volume: 47 start-page: 1555 year: 1998 end-page: 1561 article-title: Increase in insulin action and fat oxidation after treatment with CL 316, 243, a highly selective beta3‐adrenoceptor agonist in humans publication-title: Diabetes – volume: 147 start-page: 5730 year: 2006 end-page: 5739 article-title: Beta3‐adrenergic receptors stimulate glucose uptake in brown adipocytes by two mechanisms independently of glucose transporter 4 translocation publication-title: Endocrinology – volume: 54 start-page: 2885 year: 2009 end-page: 2899 article-title: Performance evaluation of an Inveon PET preclinical scanner publication-title: Phys Med Biol – volume: 44 start-page: 571 year: 2005 end-page: 590 article-title: Clinical pharmacokinetics of atomoxetine publication-title: Clin Pharmacokinet – volume: 35 start-page: 446 year: 2008 end-page: 447 article-title: The effect of catecholamines on the glucose uptake in brown adipose tissue demonstrated by (18)F‐FDG PET/CT in a patient with adrenal pheochromocytoma publication-title: Eur J Nucl Med Mol Imaging – volume: 10 start-page: 321 year: 2010 end-page: 334 article-title: Cardiovascular risk‐benefit profile of sibutramine publication-title: Am J Cardiovasc Drugs – volume: 51 start-page: 246 year: 2010 end-page: 250 article-title: CT Hounsfield units of brown adipose tissue increase with activation: Preclinical and clinical studies publication-title: J Nucl Med – volume: 19 start-page: 1755 year: 2011 end-page: 1760 article-title: Age‐related decrease in cold‐activated brown adipose tissue and accumulation of body fat in healthy humans publication-title: Obesity (Silver Spring) – volume: 137 start-page: 21 year: 1996 end-page: 29 article-title: Decreased brown fat markedly enhances susceptibility to diet‐induced obesity, diabetes, and hyperlipidemia publication-title: Endocrinology – volume: 106 start-page: 300 year: 2011 end-page: 306 article-title: Adipose tissue development: impact of the early life environment publication-title: Prog Biophys Mol Biol – volume: 274 start-page: R1212 issue: 5 Pt 2 year: 1998 end-page: R1219 article-title: Mechanisms of the antidiabetic effects of the beta 3‐adrenergic agonist CL‐316 243 in obese Zucker‐ZDF rats publication-title: Am J Physiol – volume: 49 start-page: 914 year: 2010 end-page: 921 article-title: Preclinical dynamic 18F‐FDG PET: Tumor characterization and radiotherapy response assessment by kinetic compartment analysis publication-title: Acta Oncol (Stockholm, Sweden) – volume: 306 start-page: 2673 year: 2011 end-page: 2683 article-title: ADHD medications and risk of serious cardiovascular events in young and middle‐aged adults publication-title: JAMA – volume: 360 start-page: 1518 year: 2009 end-page: 1525 article-title: Functional brown adipose tissue in healthy adults publication-title: N Engl J Med – volume: 64 start-page: 609 year: 1986 end-page: 614 article-title: Uptake of glucose and release of fatty acids and glycerol by rat brown adipose tissue in vivo publication-title: Can J Physiol Pharmacol – volume: 54 start-page: 1385 year: 2005 end-page: 1391 article-title: Uncoupling protein 1 is necessary for norepinephrine‐induced glucose utilization in brown adipose tissue publication-title: Diabetes – volume: 34 start-page: 1057 year: 1993 end-page: 1091 article-title: Fat cell adrenergic receptors and the control of white and brown fat cell function publication-title: J Lipid Res – volume: 5 start-page: 17 year: 2011 end-page: 25 article-title: Placebo‐controlled trial of atomoxetine for weight reduction in people with schizophrenia treated with clozapine or olanzapine publication-title: Clin Schizophr Relat Psychoses – volume: 33 start-page: 209 year: 2010 end-page: 211 article-title: Treatment of chronic akinetic mutism with atomoxetine: subtraction analysis of brain f‐18 fluorodeoxyglucose positron emission tomographic images before and after medication: A case report publication-title: Clin Neuropharmacol – volume: 293 start-page: E444 year: 2007 end-page: E452 article-title: Unexpected evidence for active brown adipose tissue in adult humans publication-title: Am J Physiol – volume: 48 start-page: 981 year: 2007 end-page: 986 article-title: Effect of nicotine and ephedrine on the accumulation of F‐FDG in brown adipose tissue publication-title: J Nucl Med – volume: 1212 start-page: E20 year: 2010 end-page: E36 article-title: Three years with adult human brown adipose tissue publication-title: Ann N Y Acad Sci – volume: 360 start-page: 1500 year: 2009 end-page: 1508 article-title: Cold‐activated brown adipose tissue in healthy men publication-title: N Engl J Med – volume: 35 start-page: 3081 year: 1992 end-page: 3084 article-title: Disodium (R,R)‐5‐[2‐[[2‐(3‐chlorophenyl)‐2‐hydroxyethyl]‐amino] propyl]‐1,3‐benzodioxole‐2,2‐dicarboxylate (CL‐316, 243). A potent beta‐adrenergic agonist virtually specific for beta 3 receptors. A promising antidiabetic and antiobesity agent publication-title: J Med Chem – volume: 47 start-page: 999 year: 2006 end-page: 1006 article-title: Impact of animal handling on the results of 18F‐FDG PET studies in mice publication-title: J Nucl Med – volume: 38 start-page: 1449 year: 2011 end-page: 1458 article-title: Can FDG PET predict radiation treatment outcome in head and neck cancer? Results of a prospective study publication-title: Eur J Nucl Med Mol Imaging – volume: 52 start-page: 57 year: 1953 end-page: 64 article-title: Hormonal factors influencing fat deposition in the interscapular brown adipose tissue of the white rat publication-title: Endocrinology – volume: 277 start-page: 119 issue: Pt 1 year: 1991 end-page: 124 article-title: Noradrenaline stimulates glucose transport in rat brown adipocytes by activating thermogenesis. Evidence that fatty acid activation of mitochondrial respiration enhances glucose transport publication-title: Biochem J – volume: 66 start-page: 294 year: 2005 end-page: 299 article-title: Long‐term, open‐label study of the safety and efficacy of atomoxetine in adults with attention‐deficit/hyperactivity disorder: An interim analysis publication-title: J Clin Psychiatry – volume: 30 start-page: 1138 year: 2006 end-page: 1142 article-title: Atomoxetine for weight reduction in obese women: A preliminary randomised controlled trial publication-title: Int J Obes – volume: 27 start-page: 699 year: 2002 end-page: 711 article-title: Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in attention deficit/hyperactivity disorder publication-title: Neuropsychopharmacology – volume: 39 start-page: 1081 year: 2012 end-page: 1086 article-title: Ex vivo and in vivo Evaluation of the norepinephrine transporter ligand [(11)C]MRB for brown adipose tissue imaging publication-title: Nucl Med Biol – volume: 11 start-page: 203 year: 2009 end-page: 226 article-title: Atomoxetine: A review of its use in attention‐deficit hyperactivity disorder in children and adolescents publication-title: Paediatr Drugs – volume: 49 start-page: 17 year: 2008 end-page: 26 article-title: Anesthesia and other considerations for in vivo imaging of small animals publication-title: ILAR J – volume: 13 start-page: 1278 year: 2011 end-page: 1283 article-title: The relationship between patients' serum glucose levels and metabolically active brown adipose tissue detected by PET/CT publication-title: Mol Imaging Biol – volume: 13 start-page: 238 year: 2011 end-page: 240 article-title: New powers of brown fat: Fighting the metabolic syndrome publication-title: Cell Metab – volume: 44 start-page: 379 year: 2012 end-page: 384 article-title: High incidence of cardiovascular complications in pheochromocytoma publication-title: Horm Metab Res – volume: 84 start-page: 277 year: 2004 end-page: 359 article-title: Brown adipose tissue: Function and physiological significance publication-title: Physiol Rev – volume: 130 start-page: 837 year: 1992 end-page: 846 article-title: Developmental regulation of GLUT‐1 (erythroid/Hep G2) and GLUT‐4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue publication-title: Endocrinology – volume: 44 start-page: 170 year: 2003 end-page: 176 article-title: Uptake in supraclavicular area fat (“USA‐Fat”): Description on F‐FDG PET/CT publication-title: J Nucl Med – volume: 79 start-page: 207 year: 1987 end-page: 213 article-title: Lipolysis during fasting. Decreased suppression by insulin and increased stimulation by epinephrine publication-title: J Clin Investig – volume: 1 start-page: 30 year: 2011 article-title: Quantitative assessment of brown adipose tissue metabolic activity and volume using 18F‐FDG PET/CT and β3‐adrenergic receptor activation publication-title: EJNMMI Res – volume: 145 start-page: 269 year: 2004 end-page: 280 article-title: Norepinephrine increases glucose transport in brown adipocytes via beta3‐adrenoceptors through a cAMP, PKA, and PI3‐kinase‐dependent pathway stimulating conventional and novel PKCs publication-title: Endocrinology – volume: 118 start-page: 3135 year: 2012 end-page: 3144 article-title: 3′‐Deoxy‐3′‐[18F]fluorothymidine positron emission tomography for response assessment in soft tissue sarcoma: A pilot study to correlate imaging findings with tissue thymidine kinase 1 and Ki‐67 activity and histopathologic response publication-title: Cancer – volume: 54 start-page: 3587 year: 2005 end-page: 3591 article-title: Single nucleotide polymorphisms in the peroxisome proliferator‐activated receptor delta gene are associated with skeletal muscle glucose uptake publication-title: Diabetes – volume: 360 start-page: 1509 year: 2009 end-page: 1517 article-title: Identification and importance of brown adipose tissue in adult humans publication-title: N Engl J Med – volume: 27 start-page: 877 year: 1998 end-page: 886 article-title: TH‐, NPY‐, SP‐, and CGRP‐immunoreactive nerves in interscapular brown adipose tissue of adult rats acclimated at different temperatures: An immunohistochemical study publication-title: J Neurocytol – volume: 68 start-page: 390 year: 2007 end-page: 398 article-title: Atomoxetine in the treatment of binge‐eating disorder: A randomized placebo‐controlled trial publication-title: J Clin Psychiatry – volume: 436 start-page: 689 year: 1998 end-page: 695 article-title: Sex‐associated differences in cold‐induced UCP1 synthesis in rodent brown adipose tissue publication-title: Pflugers Arch – volume: 11 start-page: 684 year: 2010 end-page: 698 article-title: Attention deficit hyperactivity disorder in adults publication-title: World J Biol Psychiatry – volume: 361 start-page: 416 year: 2009 end-page: 417 article-title: The importance of brown adipose tissue publication-title: N Engl J Med – volume: 192 start-page: 300 year: 2009 end-page: 301 article-title: Adrenal pheochromocytoma with surrounding brown fat stimulation publication-title: AJR – volume: 51 start-page: 1068 year: 2010 end-page: 1075 article-title: Establishment of in vivo brain imaging method in conscious mice publication-title: J Nucl Med – volume: 71 start-page: 709 year: 2012 end-page: 718 article-title: Carotid plaque inflammation on 18F‐fluorodeoxyglucose positron emission tomography predicts early stroke recurrence publication-title: Ann Neurol – volume: 35 start-page: 984 year: 2008 end-page: 989 article-title: Temporal relation between temperature change and FDG uptake in brown adipose tissue publication-title: Eur J Nucl Med Mol Imaging – volume: 59 start-page: 1789 year: 2010 end-page: 1793 article-title: Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans publication-title: Diabetes – volume: 301 start-page: E1108 year: 2011 end-page: E1118 article-title: Beta(1)‐adrenergic receptors increase UCP1 in human MADS brown adipocytes and rescue cold‐acclimated beta(3)‐adrenergic receptor‐knockout mice via nonshivering thermogenesis publication-title: Am J Physiol – volume: 330 start-page: 397 issue: Pt 1 year: 1998 end-page: 403 article-title: Effects of noradrenaline on the cell‐surface glucose transporters in cultured brown adipocytes: Novel mechanism for selective activation of GLUT1 glucose transporters publication-title: Biochem J – volume: 27 start-page: 1 year: 1997 end-page: 13 article-title: Evaluation of d‐amphetamine effects on the binding of dopamine D‐2 receptor radioligand, 18F‐fallypride in nonhuman primates using positron emission tomography publication-title: Synapse (New York, NY) – volume: 266 start-page: E548 issue: 4 Pt 1 year: 1994 end-page: E559 article-title: Development and regulation of glucose transporter and hexokinase expression in rat publication-title: Am J Physiol – volume: 54 start-page: 491 year: 1994 end-page: 498 article-title: Anti‐obesity and anti‐diabetic effects of CL 316, 243, a highly specific beta 3‐adrenoceptor agonist, in yellow KK mice publication-title: Life Sci – volume: 46 start-page: 1531 year: 2005 end-page: 1536 article-title: Effects of anesthetic agents and fasting duration on 18F‐FDG biodistribution and insulin levels in tumor‐bearing mice publication-title: JNucl Med – volume: 17 start-page: 200 year: 2011 end-page: 205 article-title: Brown adipose tissue activity controls triglyceride clearance publication-title: Nat Med – volume: 31 start-page: 370 year: 2009 end-page: 373 article-title: Patterns and characteristics of brown adipose tissue uptake of 18F‐FDG positron emission tomograph/computed tomography imaging publication-title: Zhongguo Yi Xue Ke Xue Yuan Xue Bao – volume: 53 start-page: 112 year: 2003 end-page: 120 article-title: Atomoxetine in adults with ADHD: Two randomized, placebo‐controlled studies publication-title: Biol Psychiatry – volume: 140 start-page: 4185 year: 1999 end-page: 4197 article-title: Beta1 to beta3 switch in control of cyclic adenosine monophosphate during brown adipocyte development explains distinct beta‐adrenoceptor subtype mediation of proliferation and differentiation publication-title: Endocrinology – volume: 58 start-page: 1526 year: 2009 end-page: 1531 article-title: High incidence of metabolically active brown adipose tissue in healthy adult humans: Effects of cold exposure and adiposity publication-title: Diabetes – volume: 2 start-page: 455 year: 2006 end-page: 466 article-title: Atomoxetine: A novel treatment for child and adult ADHD publication-title: Neuropsychiatr Dis Treat – volume: 156 start-page: 226 year: 2009 end-page: 236 article-title: Selective noradrenaline reuptake inhibitor atomoxetine directly blocks hERG currents publication-title: Br J Pharmacol – volume: 5 start-page: 261 year: 2009 end-page: 266 article-title: Diabetes mellitus and co‐morbid depression: Treatment with milnacipran results in significant improvement of both diseases (results from the Austrian MDDM study group) publication-title: Neuropsychiatr Dis Treat – volume: 58 start-page: 2583 year: 2009 end-page: 2587 article-title: Brown adipose tissue and seasonal variation in humans publication-title: Diabetes – ident: e_1_2_7_9_1 doi: 10.1042/0264-6021:3470643 – ident: e_1_2_7_38_1 doi: 10.1016/S0022-2275(20)37695-1 – ident: e_1_2_7_77_1 doi: 10.1055/s-0032-1306294 – ident: e_1_2_7_42_1 doi: 10.1016/j.nucmedbio.2012.04.005 – ident: e_1_2_7_20_1 doi: 10.1073/pnas.1207911109 – ident: e_1_2_7_50_1 doi: 10.1186/2191-219X-1-30 – ident: e_1_2_7_55_1 doi: 10.1016/j.cmet.2011.02.009 – volume: 330 start-page: 397 issue: 1 year: 1998 ident: e_1_2_7_67_1 article-title: Effects of noradrenaline on the cell‐surface glucose transporters in cultured brown adipocytes: Novel mechanism for selective activation of GLUT1 glucose transporters publication-title: Biochem J doi: 10.1042/bj3300397 – ident: e_1_2_7_39_1 doi: 10.2147/nedt.2006.2.4.455 – ident: e_1_2_7_71_1 doi: 10.2337/diabetes.54.12.3587 – ident: e_1_2_7_48_1 doi: 10.4088/JCP.v68n0306 – ident: e_1_2_7_51_1 doi: 10.2967/jnumed.110.075184 – ident: e_1_2_7_27_1 doi: 10.2165/00148581-200911030-00005 – ident: e_1_2_7_56_1 doi: 10.2337/db10-0004 – ident: e_1_2_7_75_1 doi: 10.1038/oby.2011.125 – ident: e_1_2_7_36_1 doi: 10.1097/WNF.0b013e3181dca948 – ident: e_1_2_7_49_1 doi: 10.1016/S0006-3223(02)01671-2 – ident: e_1_2_7_4_1 doi: 10.2337/db09-0833 – ident: e_1_2_7_5_1 doi: 10.2967/jnumed.109.068775 – ident: e_1_2_7_19_1 doi: 10.1088/0031-9155/54/9/020 – ident: e_1_2_7_37_1 doi: 10.1210/endo-52-1-57 – ident: e_1_2_7_52_1 doi: 10.1002/(SICI)1098-2396(199709)27:1<1::AID-SYN1>3.0.CO;2-9 – ident: e_1_2_7_15_1 doi: 10.1152/physrev.00015.2003 – ident: e_1_2_7_2_1 doi: 10.2147/NDT.S5421 – ident: e_1_2_7_32_1 doi: 10.2214/AJR.08.1166 – ident: e_1_2_7_58_1 doi: 10.1007/s004240050690 – volume: 31 start-page: 370 year: 2009 ident: e_1_2_7_16_1 article-title: Patterns and characteristics of brown adipose tissue uptake of 18F‐FDG positron emission tomograph/computed tomography imaging publication-title: Zhongguo Yi Xue Ke Xue Yuan Xue Bao – ident: e_1_2_7_29_1 doi: 10.1210/endo.137.1.8536614 – ident: e_1_2_7_73_1 doi: 10.2337/diabetes.47.10.1555 – ident: e_1_2_7_11_1 doi: 10.1021/jm00094a025 – ident: e_1_2_7_21_1 doi: 10.1056/NEJMoa0810780 – ident: e_1_2_7_72_1 doi: 10.1056/NEJMoa0808949 – ident: e_1_2_7_10_1 doi: 10.1002/cncr.26630 – ident: e_1_2_7_70_1 doi: 10.1056/NEJMoa0808718 – ident: e_1_2_7_8_1 doi: 10.1038/nm.2297 – volume: 44 start-page: 170 year: 2003 ident: e_1_2_7_18_1 article-title: Uptake in supraclavicular area fat (“USA‐Fat”): Description on 18F‐FDG PET/CT publication-title: J Nucl Med – ident: e_1_2_7_76_1 doi: 10.1016/0024-3205(94)00408-0 – ident: e_1_2_7_3_1 doi: 10.4088/JCP.v66n0304 – ident: e_1_2_7_31_1 doi: 10.2337/diabetes.54.5.1385 – ident: e_1_2_7_63_1 doi: 10.2165/00003088-200544060-00002 – ident: e_1_2_7_45_1 doi: 10.1042/bj2770119 – ident: e_1_2_7_46_1 doi: 10.1002/ana.23553 – ident: e_1_2_7_23_1 doi: 10.1023/A:1006996922657 – ident: e_1_2_7_61_1 doi: 10.2337/db09-0530 – ident: e_1_2_7_59_1 doi: 10.3109/0284186X.2010.498831 – ident: e_1_2_7_69_1 doi: 10.1016/j.pbiomolbio.2010.11.008 – ident: e_1_2_7_30_1 doi: 10.1093/ilar.49.1.17 – volume: 274 start-page: R1212 issue: 5 year: 1998 ident: e_1_2_7_43_1 article-title: Mechanisms of the antidiabetic effects of the beta 3‐adrenergic agonist CL‐316 243 in obese Zucker‐ZDF rats publication-title: Am J Physiol – ident: e_1_2_7_14_1 doi: 10.1016/S0893-133X(02)00346-9 – ident: e_1_2_7_24_1 doi: 10.1148/radiol.2272012051 – ident: e_1_2_7_60_1 doi: 10.3109/15622975.2010.483249 – ident: e_1_2_7_28_1 doi: 10.1001/jama.2011.1830 – ident: e_1_2_7_34_1 doi: 10.1172/JCI112785 – ident: e_1_2_7_13_1 doi: 10.1016/S0969-8051(02)00449-3 – ident: e_1_2_7_33_1 doi: 10.1007/s11307-010-0379-9 – volume: 266 start-page: E548 issue: 4 year: 1994 ident: e_1_2_7_57_1 article-title: Development and regulation of glucose transporter and hexokinase expression in rat publication-title: Am J Physiol – ident: e_1_2_7_65_1 doi: 10.1111/j.1476-5381.2008.00018.x – ident: e_1_2_7_47_1 doi: 10.1152/ajpendo.00085.2011 – ident: e_1_2_7_62_1 doi: 10.1210/en.130.2.837 – ident: e_1_2_7_53_1 doi: 10.1152/ajpendo.00691.2006 – ident: e_1_2_7_6_1 doi: 10.2967/jnumed.106.039065 – ident: e_1_2_7_35_1 doi: 10.1007/s00259-007-0670-4 – ident: e_1_2_7_17_1 doi: 10.1210/en.2003-0857 – ident: e_1_2_7_66_1 doi: 10.1007/s00259-011-1789-x – ident: e_1_2_7_74_1 doi: 10.1007/s00259-007-0538-7 – volume: 47 start-page: 999 year: 2006 ident: e_1_2_7_25_1 article-title: Impact of animal handling on the results of 18F‐FDG PET studies in mice publication-title: J Nucl Med – volume: 51 start-page: 186 year: 2012 ident: e_1_2_7_41_1 article-title: 18F‐fluorodeoxyglucose PET/CT findings in pleural effusions of patients with known cancer publication-title: A cytopathological correlation. – ident: e_1_2_7_22_1 doi: 10.1210/en.2006-0242 – ident: e_1_2_7_26_1 doi: 10.1038/sj.ijo.0803223 – volume: 46 start-page: 1531 year: 2005 ident: e_1_2_7_40_1 article-title: Effects of anesthetic agents and fasting duration on 18F‐FDG biodistribution and insulin levels in tumor‐bearing mice publication-title: JNucl Med – ident: e_1_2_7_44_1 doi: 10.1139/y86-101 – ident: e_1_2_7_7_1 doi: 10.3371/CSRP.5.1.3 – ident: e_1_2_7_54_1 doi: 10.1111/j.1749-6632.2010.05905.x – ident: e_1_2_7_64_1 doi: 10.2165/11584800-000000000-00000 – volume: 361 start-page: 416 year: 2009 ident: e_1_2_7_68_1 article-title: The importance of brown adipose tissue publication-title: N Engl J Med – ident: e_1_2_7_12_1 doi: 10.1210/endo.140.9.6972 – reference: 16741310 - J Nucl Med. 2006 Jun;47(6):999-1006 – reference: 19154426 - Br J Pharmacol. 2009 Jan;156(2):226-36 – reference: 22214183 - EJNMMI Res. 2011 Dec 01;1(1):30 – reference: 1354264 - J Med Chem. 1992 Aug 7;35(16):3081-4 – reference: 13021112 - Endocrinology. 1953 Jan;52(1):57-64 – reference: 18157529 - Eur J Nucl Med Mol Imaging. 2008 May;35(5):984-9 – reference: 9644032 - Am J Physiol. 1998 May;274(5 Pt 2):R1212-9 – reference: 19630141 - N Engl J Med. 2009 Jul 23;361(4):416-7; author reply 418-21 – reference: 17504863 - J Nucl Med. 2007 Jun;48(6):981-6 – reference: 20860415 - Am J Cardiovasc Drugs. 2010;10(5):321-34 – reference: 15766294 - J Clin Psychiatry. 2005 Mar;66(3):294-9 – reference: 17909796 - Eur J Nucl Med Mol Imaging. 2008 Feb;35(2):446-7 – reference: 21140233 - Mol Imaging Biol. 2011 Dec;13(6):1278-83 – reference: 3540009 - J Clin Invest. 1987 Jan;79(1):207-13 – reference: 1713031 - Biochem J. 1991 Jul 1;277 ( Pt 1):119-24 – reference: 12547466 - Biol Psychiatry. 2003 Jan 15;53(2):112-20 – reference: 12732691 - Radiology. 2003 May;227(2):309-13 – reference: 21566561 - Obesity (Silver Spring). 2011 Sep;19(9):1755-60 – reference: 16418753 - Int J Obes (Lond). 2006 Jul;30(7):1138-42 – reference: 22517556 - Horm Metab Res. 2012 May;44(5):379-84 – reference: 19357407 - N Engl J Med. 2009 Apr 9;360(15):1518-25 – reference: 21375707 - Ann N Y Acad Sci. 2010 Nov;1212:E20-36 – reference: 1370797 - Endocrinology. 1992 Feb;130(2):837-46 – reference: 19384008 - Phys Med Biol. 2009 May 7;54(9):2885-99 – reference: 21258337 - Nat Med. 2011 Feb;17(2):200-5 – reference: 22665804 - Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):10001-5 – reference: 17388708 - J Clin Psychiatry. 2007 Mar;68(3):390-8 – reference: 8536614 - Endocrinology. 1996 Jan;137(1):21-9 – reference: 22584348 - Nuklearmedizin. 2012;51(5):186-93 – reference: 16959848 - Endocrinology. 2006 Dec;147(12):5730-9 – reference: 9268060 - Synapse. 1997 Sep;27(1):1-13 – reference: 19557120 - Neuropsychiatr Dis Treat. 2009;5:261-6 – reference: 14715917 - Physiol Rev. 2004 Jan;84(1):277-359 – reference: 20661027 - Clin Neuropharmacol. 2010 Jul;33(4):209-11 – reference: 15855324 - Diabetes. 2005 May;54(5):1385-91 – reference: 20521876 - World J Biol Psychiatry. 2010 Aug;11(5):684-98 – reference: 22161946 - JAMA. 2011 Dec 28;306(24):2673-83 – reference: 21878665 - Am J Physiol Endocrinol Metab. 2011 Dec;301(6):E1108-18 – reference: 12431845 - Neuropsychopharmacology. 2002 Nov;27(5):699-711 – reference: 20554730 - J Nucl Med. 2010 Jul;51(7):1068-75 – reference: 20357363 - Diabetes. 2010 Jul;59(7):1789-93 – reference: 10769166 - Biochem J. 2000 May 1;347 Pt 3:643-51 – reference: 19621528 - Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2009 Jun;31(3):370-3 – reference: 19412494 - Neuropsychiatr Dis Treat. 2006 Dec;2(4):455-66 – reference: 15910008 - Clin Pharmacokinet. 2005;44(6):571-90 – reference: 8309351 - Life Sci. 1994;54(7):491-8 – reference: 19357405 - N Engl J Med. 2009 Apr 9;360(15):1500-8 – reference: 19696186 - Diabetes. 2009 Nov;58(11):2583-7 – reference: 19357406 - N Engl J Med. 2009 Apr 9;360(15):1509-17 – reference: 21356513 - Cell Metab. 2011 Mar 2;13(3):238-40 – reference: 20124047 - J Nucl Med. 2010 Feb;51(2):246-50 – reference: 22020872 - Cancer. 2012 Jun 15;118(12):3135-44 – reference: 21163289 - Prog Biophys Mol Biol. 2011 Jul;106(1):300-6 – reference: 9753292 - Diabetes. 1998 Oct;47(10):1555-61 – reference: 10659680 - J Neurocytol. 1998 Dec;27(12):877-86 – reference: 8371057 - J Lipid Res. 1993 Jul;34(7):1057-91 – reference: 20831478 - Acta Oncol. 2010 Oct;49(7):914-21 – reference: 16157537 - J Nucl Med. 2005 Sep;46(9):1531-6 – reference: 3730946 - Can J Physiol Pharmacol. 1986 May;64(5):609-14 – reference: 9461536 - Biochem J. 1998 Feb 15;330 ( Pt 1):397-403 – reference: 12571205 - J Nucl Med. 2003 Feb;44(2):170-6 – reference: 16306381 - Diabetes. 2005 Dec;54(12):3587-91 – reference: 19098214 - AJR Am J Roentgenol. 2009 Jan;192(1):300-1 – reference: 19445548 - Paediatr Drugs. 2009;11(3):203-26 – reference: 22461139 - Ann Neurol. 2012 May;71(5):709-18 – reference: 18172330 - ILAR J. 2008;49(1):17-26 – reference: 21461734 - Eur J Nucl Med Mol Imaging. 2011 Aug;38(8):1449-58 – reference: 10465291 - Endocrinology. 1999 Sep;140(9):4185-97 – reference: 14741565 - Nucl Med Biol. 2004 Jan;31(1):1-9 – reference: 14551227 - Endocrinology. 2004 Jan;145(1):269-80 – reference: 22595487 - Nucl Med Biol. 2012 Oct;39(7):1081-6 – reference: 9716701 - Pflugers Arch. 1998 Oct;436(5):689-95 – reference: 19401428 - Diabetes. 2009 Jul;58(7):1526-31 – reference: 17473055 - Am J Physiol Endocrinol Metab. 2007 Aug;293(2):E444-52 – reference: 8178975 - Am J Physiol. 1994 Apr;266(4 Pt 1):E548-59 – reference: 21459735 - Clin Schizophr Relat Psychoses. 2011 Apr;5(1):17-25 |
SSID | ssj0003104 |
Score | 2.1411014 |
Snippet | Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 79 |
SubjectTerms | 18F-FDG PET Adipose Tissue, Brown - diagnostic imaging Adipose Tissue, Brown - drug effects Adipose Tissue, Brown - metabolism Adrenergic beta-Antagonists - pharmacology Adrenergic Uptake Inhibitors - pharmacology Animals atomoxetine Atomoxetine Hydrochloride blood glucose Blood Glucose - metabolism Brown fat Diabetes Mellitus, Type 2 - metabolism Fluorodeoxyglucose F18 - pharmacology Male Norepinephrine Plasma Membrane Transport Proteins - metabolism Obesity - metabolism Propranolol - pharmacology Propylamines - pharmacology Radionuclide Imaging Rats Rats, Sprague-Dawley |
Title | Targeting presynaptic norepinephrine transporter in brown adipose tissue: A novel imaging approach and potential treatment for diabetes and obesity |
URI | https://api.istex.fr/ark:/67375/WNG-SPRXK6KH-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsyn.21617 https://www.ncbi.nlm.nih.gov/pubmed/23080264 https://www.proquest.com/docview/1239985513 https://www.proquest.com/docview/1273272499 https://www.proquest.com/docview/1434028720 https://pubmed.ncbi.nlm.nih.gov/PMC3808851 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWm7YUXYIyPwEAGoWkv6RInjl14qhCjYqJC-xBFQrIcxxHVNqdqU0T5G_xh7nWajMJAiJcqkm9Ux77XPtc5OZeQ55EsWVEmNswTYcJU5ybUVuvQFzSOTZEbX0Xh3SgbnqVvx3y8QV6238I0-hDdgRtGhl-vMcB1Pj-4Eg2dL12PITqH9Re5WgiIjq-kowC2pK3KZ5qKrFUVithBd-faXrSFw_r1OqD5O1_yZxzrN6LDW-RT-wgN_-S8t6jznvn2i7rjfz7jbXJzBVDpoPGobbJh3R2yM3CQnF8u6R71lFF_Fr9Dvp96HjnsfhT5tEunYQEy1FUzO4X_Bj-BX1p3-ukzOnE0x8Sf6mIyrebQ6Cf-BR3AXV_sBZ1c-rJJtNU6p9oVdFrVSGqCbnW8eApgm7YHx96oakoc3CVnh69PXw3DVZWH0AB6E2FfRrwoUBOm5JnMSlnGeV9owbO0ZFxKzo1mBaBMUXJpeaRNlmRJVEoNybXVIrlHNl3l7ANCjSm5LngOi1AJU47vUPvSSM1EjLp1PCD77Xwrs5JAx0ocF6oRb2YKRkr5AQ_Is8502uh-XGe0552ms9CzcyTKCa4-jN6ok_fH46PsaKjigOy2XqVWa8RcxfhZscQCOwF52jVDdOMrG-1stUAbkTABKXL_LzZpkgJKFCwKyP3GUbsOQYIpIctOAyLWXLgzQHXx9RY3-exVxhMJscOh6_veQ_88Curk48hfPPx300fkBvN1RZAXtEs269nCPgZ0V-dPfBj_AG6HT-M |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL0a2wO8MGB8ZAwwCE17SZc4cewiXirEKHSr0NaJ8oAsx0lEtc2p-oEof4M_zLXTZBQGQrxUkXyjOva99rnOybkAzwNR0KyIcj-NuPZjlWpf5Ur5rqBxqLNUuyoKR_2kexq_G7LhGrysv4Wp9CGaAzcbGW69tgFuD6T3L1VDpwvTohaeX4MNW9HbJVTHl-JRCFziWuczjnlS6woFdL-5dWU32rAD-_UqqPk7Y_JnJOu2ooNN-FQ_RMVAOWvNZ2lLf_tF3_F_n_IW3FxiVNKpnOo2rOXmDmx1DObnFwuySxxr1B3Hb8H3gaOS4wZILKV2YRSuQZqYcpKP8c_RVfCXzBoJ9QkZGZLa3J-obDQup9jo5v4F6eBdX_JzMrpwlZNILXdOlMnIuJxZXhN2q6HGE8TbpD47dkZlVeXgLpwevB686vrLQg--RgDH_bYIWJZZWZiCJSIpRBGmba44S-KCMiEY04pmCDR5wUTOAqWTKImCQijMr3PFo3uwbkqTPwCidcFUxlJchwqcc_satS20UJSHVrqOebBXT7jUSxV0W4zjXFb6zVTiSEk34B48a0zHlfTHVUa7zmsaCzU5s1w5zuSH_ht58v542Et6XRl6sFO7lVwuE1MZ2i-Lha2x48HTphkD3L61USYv59aGR5Rjltz-i00cxQgUOQ08uF95atMhzDEFJtqxB3zFhxsDKzC-2mJGn53QeCQweBh2fc-56J9HQZ587LuL7X83fQLXu4OjQ3n4tt97CDeoKzNiaUI7sD6bzPNHCPZm6WMX0z8ALJ1T_g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am4R44TYugQEGoWkv6XJz7MJTxSiFQjXtohUJyXKcWFTbnKoXRPkb_GGOnSajMBDipYrkE9Wxz7G_43z5DsDzgOso13HhZzFTfiIz5ctCSt8VNA5VnilXReHDIO0dJ--GdLgGL-tvYSp9iObAzUaGW69tgI9zvXshGjpdmFZk0fkV2EjSgFuX3ju40I5C3JLUMp9JwtJaViiIdptbVzajDTuuXy9Dmr8TJn8Gsm4n6t6AT_UzVASU09Z8lrXUt1_kHf_zIW_C9SVCJZ3KpW7BWmFuw2bHYHZ-viDbxHFG3WH8Jnw_ckRy3P6IJdQujMQVSBFTToox_jc6Cv6SWSOgPiEjQzKb-ROZj8blFBvdzL8gHbzrS3FGRueubhKpxc6JNDkZlzPLasJuNcR4gmib1CfHzqisahzcgePu66NXPX9Z5sFXCN-Y3-YBzXMrCqNpylPNdZi1mWQ0TXREOadUyShHmMk05QUNpErjNA40l5hdF5LFd2HdlKa4D0QpTWVOM1yFNE65fYna5orLiIVWuI56sFPPt1BLDXRbiuNMVOrNkcCREm7APXjWmI4r4Y_LjLad0zQWcnJqmXKMipPBG3G4fzDsp_2eCD3Yqr1KLBeJqQjtd8XcVtjx4GnTjOFt39lIU5Rza8PiiGGO3P6LTRInCBNZFHhwr3LUpkOYYXJMsxMP2IoLNwZWXny1xYw-O5nxmGPsUOz6jvPQP4-COPw4cBcP_t30CVzd3-uK928H_YdwLXI1RixHaAvWZ5N58QiR3ix77CL6ByAnUrY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+presynaptic+norepinephrine+transporter+in+brown+adipose+tissue%3A+A+novel+imaging+approach+and+potential+treatment+for+diabetes+and+obesity&rft.jtitle=Synapse+%28New+York%2C+N.Y.%29&rft.au=Mirbolooki%2C+M.+Reza&rft.au=Constantinescu%2C+Cristian+C.&rft.au=Pan%2C+Min-Liang&rft.au=Mukherjee%2C+Jogeshwar&rft.date=2013-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0887-4476&rft.eissn=1098-2396&rft.volume=67&rft.issue=2&rft.spage=79&rft.epage=93&rft_id=info:doi/10.1002%2Fsyn.21617&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_SPRXK6KH_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-4476&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-4476&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-4476&client=summon |