Diet‐induced obesity causes metabolic impairment independent of alterations in gut barrier integrity

SCOPE: The causal relationship between diet‐induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high‐fat diet per se affects intestinal barrier function provoking metabolic comorbidities. METHODS AND RESULTS: In three independent experiments with AK...

Full description

Saved in:
Bibliographic Details
Published inMolecular nutrition & food research Vol. 59; no. 5; pp. 968 - 978
Main Authors Kless, Caroline, Müller, Veronika Maria, Schüppel, Valentina Luise, Lichtenegger, Martina, Rychlik, Michael, Daniel, Hannelore, Klingenspor, Martin, Haller, Dirk
Format Journal Article
LanguageEnglish
Published Germany Wiley-VCH 01.05.2015
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN1613-4125
1613-4133
1613-4133
DOI10.1002/mnfr.201400840

Cover

Abstract SCOPE: The causal relationship between diet‐induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high‐fat diet per se affects intestinal barrier function provoking metabolic comorbidities. METHODS AND RESULTS: In three independent experiments with AKR/J, SWR/J, or BL/6J mice, we addressed the impact of genetic background, excess body fat storage, duration of high‐fat feeding, and quality/quantity of dietary fat on glucose tolerance and gut barrier integrity in vivo and ex vivo. Impaired glucose tolerance in diet‐induced obese BL/6J and AKR/J mice was not accompanied by an altered intestinal barrier function. Enforced dietary challenge by prolonged feeding and increasing fat quantity in BL/6J mice still failed to aggravate metabolic and intestinal deterioration. Despite a low‐grade inflammatory status in adipose tissue, barrier function of BL/6J mice fed lard high‐fat diet revealed no evidence for a diet‐induced loss in barrier integrity. CONCLUSION: None of our results provided any evidence that gut barrier function is a subject to dietary regulation and obesity per se seems not to cause gut barrier impairment.
AbstractList SCOPE: The causal relationship between diet‐induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high‐fat diet per se affects intestinal barrier function provoking metabolic comorbidities. METHODS AND RESULTS: In three independent experiments with AKR/J, SWR/J, or BL/6J mice, we addressed the impact of genetic background, excess body fat storage, duration of high‐fat feeding, and quality/quantity of dietary fat on glucose tolerance and gut barrier integrity in vivo and ex vivo. Impaired glucose tolerance in diet‐induced obese BL/6J and AKR/J mice was not accompanied by an altered intestinal barrier function. Enforced dietary challenge by prolonged feeding and increasing fat quantity in BL/6J mice still failed to aggravate metabolic and intestinal deterioration. Despite a low‐grade inflammatory status in adipose tissue, barrier function of BL/6J mice fed lard high‐fat diet revealed no evidence for a diet‐induced loss in barrier integrity. CONCLUSION: None of our results provided any evidence that gut barrier function is a subject to dietary regulation and obesity per se seems not to cause gut barrier impairment.
The causal relationship between diet-induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high-fat diet per se affects intestinal barrier function provoking metabolic comorbidities.SCOPEThe causal relationship between diet-induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high-fat diet per se affects intestinal barrier function provoking metabolic comorbidities.In three independent experiments with AKR/J, SWR/J, or BL/6J mice, we addressed the impact of genetic background, excess body fat storage, duration of high-fat feeding, and quality/quantity of dietary fat on glucose tolerance and gut barrier integrity in vivo and ex vivo. Impaired glucose tolerance in diet-induced obese BL/6J and AKR/J mice was not accompanied by an altered intestinal barrier function. Enforced dietary challenge by prolonged feeding and increasing fat quantity in BL/6J mice still failed to aggravate metabolic and intestinal deterioration. Despite a low-grade inflammatory status in adipose tissue, barrier function of BL/6J mice fed lard high-fat diet revealed no evidence for a diet-induced loss in barrier integrity.METHODS AND RESULTSIn three independent experiments with AKR/J, SWR/J, or BL/6J mice, we addressed the impact of genetic background, excess body fat storage, duration of high-fat feeding, and quality/quantity of dietary fat on glucose tolerance and gut barrier integrity in vivo and ex vivo. Impaired glucose tolerance in diet-induced obese BL/6J and AKR/J mice was not accompanied by an altered intestinal barrier function. Enforced dietary challenge by prolonged feeding and increasing fat quantity in BL/6J mice still failed to aggravate metabolic and intestinal deterioration. Despite a low-grade inflammatory status in adipose tissue, barrier function of BL/6J mice fed lard high-fat diet revealed no evidence for a diet-induced loss in barrier integrity.None of our results provided any evidence that gut barrier function is a subject to dietary regulation and obesity per se seems not to cause gut barrier impairment.CONCLUSIONNone of our results provided any evidence that gut barrier function is a subject to dietary regulation and obesity per se seems not to cause gut barrier impairment.
Scope The causal relationship between diet‐induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high‐fat diet per se affects intestinal barrier function provoking metabolic comorbidities. Methods and results In three independent experiments with AKR/J, SWR/J, or BL/6J mice, we addressed the impact of genetic background, excess body fat storage, duration of high‐fat feeding, and quality/quantity of dietary fat on glucose tolerance and gut barrier integrity in vivo and ex vivo. Impaired glucose tolerance in diet‐induced obese BL/6J and AKR/J mice was not accompanied by an altered intestinal barrier function. Enforced dietary challenge by prolonged feeding and increasing fat quantity in BL/6J mice still failed to aggravate metabolic and intestinal deterioration. Despite a low‐grade inflammatory status in adipose tissue, barrier function of BL/6J mice fed lard high‐fat diet revealed no evidence for a diet‐induced loss in barrier integrity. Conclusion None of our results provided any evidence that gut barrier function is a subject to dietary regulation and obesity per se seems not to cause gut barrier impairment.
The causal relationship between diet-induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high-fat diet per se affects intestinal barrier function provoking metabolic comorbidities. In three independent experiments with AKR/J, SWR/J, or BL/6J mice, we addressed the impact of genetic background, excess body fat storage, duration of high-fat feeding, and quality/quantity of dietary fat on glucose tolerance and gut barrier integrity in vivo and ex vivo. Impaired glucose tolerance in diet-induced obese BL/6J and AKR/J mice was not accompanied by an altered intestinal barrier function. Enforced dietary challenge by prolonged feeding and increasing fat quantity in BL/6J mice still failed to aggravate metabolic and intestinal deterioration. Despite a low-grade inflammatory status in adipose tissue, barrier function of BL/6J mice fed lard high-fat diet revealed no evidence for a diet-induced loss in barrier integrity. None of our results provided any evidence that gut barrier function is a subject to dietary regulation and obesity per se seems not to cause gut barrier impairment.
SCOPE: The causal relationship between diet‐induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high‐fat diet per se affects intestinal barrier function provoking metabolic comorbidities. METHODS AND RESULTS: In three independent experiments with AKR/J, SWR/J, or BL/6J mice, we addressed the impact of genetic background, excess body fat storage, duration of high‐fat feeding, and quality/quantity of dietary fat on glucose tolerance and gut barrier integrity in vivo and ex vivo. Impaired glucose tolerance in diet‐induced obese BL/6J and AKR/J mice was not accompanied by an altered intestinal barrier function. Enforced dietary challenge by prolonged feeding and increasing fat quantity in BL/6J mice still failed to aggravate metabolic and intestinal deterioration. Despite a low‐grade inflammatory status in adipose tissue, barrier function of BL/6J mice fed lard high‐fat diet revealed no evidence for a diet‐induced loss in barrier integrity. CONCLUSION: None of our results provided any evidence that gut barrier function is a subject to dietary regulation and obesity per se seems not to cause gut barrier impairment.
Author Lichtenegger, Martina
Kless, Caroline
Schüppel, Valentina Luise
Daniel, Hannelore
Haller, Dirk
Klingenspor, Martin
Rychlik, Michael
Müller, Veronika Maria
Author_xml – sequence: 1
  fullname: Kless, Caroline
– sequence: 2
  fullname: Müller, Veronika Maria
– sequence: 3
  fullname: Schüppel, Valentina Luise
– sequence: 4
  fullname: Lichtenegger, Martina
– sequence: 5
  fullname: Rychlik, Michael
– sequence: 6
  fullname: Daniel, Hannelore
– sequence: 7
  fullname: Klingenspor, Martin
– sequence: 8
  fullname: Haller, Dirk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25676872$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URH9gyxKyZJPB_3aWUNoBaSgSbcXSspObypDEg-2Izo5H4Bl5EjxMmQWb2djXut85ls45RUdTmACh5wQvCMb09Tj1cUEx4Rhrjh-hEyIJqzlh7Gg_U3GMTlP6ijEjlLMn6JgKqaRW9AT17zzk3z9_-ambW-iq4CD5vKlaOydI1QjZujD4tvLj2vo4wpSrwsIaylHm0Fd2yBBt9mFKZVXdzblyNkYPsTwz3MXi9xQ97u2Q4NnDfYZuLy9uzt_Xq0_LD-dvVnUruBA1aCaVa6ATynWAFXZKNk46hlUjtbXElT0hxHVaKgZOdly0WjfM8a7RrGdn6NXOdx3D9xlSNqNPLQyDnSDMyRC9zQArJQ-jUmOiKea0oC8e0NmN0Jl19KONG_MvxgIsdkAbQ0oR-j1CsNn2ZLY9mX1PRcD_E7Q-_80wR-uHg7IffoDNgU_Mx6vLz5QJUWT1TuZThvu9zMZvpsSohPlytTTLG8ZWUrw114V_ueN7G4wtBSZze118JS7GUlLB_gBsK8BR
CitedBy_id crossref_primary_10_1007_s10620_015_3935_y
crossref_primary_10_1002_mnfr_201500775
crossref_primary_10_3390_nu8040202
crossref_primary_10_1152_ajpgi_00098_2016
crossref_primary_10_1007_s11428_016_0124_3
crossref_primary_10_1038_nrendo_2017_161
crossref_primary_10_3389_fimmu_2019_01404
crossref_primary_10_1016_j_lfs_2020_118974
crossref_primary_10_1016_j_molmet_2016_10_001
crossref_primary_10_1152_ajpendo_00372_2016
crossref_primary_10_3389_fimmu_2017_00023
crossref_primary_10_1093_nutrit_nuy064
crossref_primary_10_1002_mnfr_201500406
crossref_primary_10_1002_mnfr_201500249
crossref_primary_10_1002_mnfr_202000681
crossref_primary_10_1016_j_celrep_2023_112713
crossref_primary_10_1016_j_addr_2016_07_007
crossref_primary_10_1016_j_tifs_2016_08_012
crossref_primary_10_1128_mSphere_00833_19
crossref_primary_10_1038_srep17704
crossref_primary_10_1016_j_jnutbio_2019_03_008
crossref_primary_10_14814_phy2_12988
crossref_primary_10_1007_s11428_016_0130_5
crossref_primary_10_1093_jn_nxx020
crossref_primary_10_1152_ajpendo_00134_2021
crossref_primary_10_1080_09540105_2020_1761302
Cites_doi 10.1371/journal.pone.0034233
10.1172/JCI200319451
10.1152/ajpendo.00361.2010
10.1136/gutjnl-2014-306928
10.1038/nrendo.2012.199
10.1186/1743-7075-9-69
10.2337/diabetes.53.suppl_3.S215
10.1136/gutjnl-2011-301012
10.1097/MED.0b013e32833c3026
10.1016/j.physbeh.2009.12.001
10.1172/JCI29069
10.1038/nature11450
10.1126/science.1241214
10.1113/expphysiol.2009.051102
10.1073/pnas.1220180110
10.1007/s00125-013-2846-8
10.1111/j.1530-0277.2011.01673.x
10.1152/ajpendo.00357.2009
10.1371/journal.pone.0047713
10.1097/00005082-200607000-00011
10.1016/j.amjmed.2009.01.003
10.1371/journal.pone.0071661
10.2337/dc10-0556
10.1152/ajpgi.00024.2006
10.1152/ajpgi.00098.2010
10.1007/s003359900554
10.2337/db06-1491
10.3748/wjg.v18.i9.923
10.1186/1743-7075-7-19
10.1371/journal.pone.0012191
10.1073/pnas.0504978102
10.1196/annals.1326.023
10.2337/db11-0194
10.1186/1755-8794-1-14
10.1007/s00125-013-2913-1
10.1371/journal.pone.0047416
10.1016/S0168-8278(00)80242-1
10.2337/db07-1403
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1002/mnfr.201400840
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 1613-4133
EndPage 978
ExternalDocumentID 25676872
10_1002_mnfr_201400840
MNFR2355
ark_67375_WNG_GT33L65B_S
US201600086625
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Microbiome Influence on Energy Balance and Brain Development/Function Put into Action to Tackle Diet‐Related Diseases and Behaviour
  funderid: 613979
– fundername: Federal Ministry of Education and Research Germany
  funderid: 0315674
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABCVL
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
1OB
AAFWJ
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c5455-e8367b9ed57bde070b769b6b307968aa1b367111bd8673eb6d45c8893b4d983f3
IEDL.DBID DR2
ISSN 1613-4125
1613-4133
IngestDate Fri Sep 05 17:18:11 EDT 2025
Thu Sep 04 17:34:27 EDT 2025
Mon Jul 21 05:27:42 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Tue Jul 01 01:51:39 EDT 2025
Tue Sep 09 05:09:24 EDT 2025
Wed Oct 30 09:56:37 EDT 2024
Wed Dec 27 19:14:51 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Glucose tolerance
Gut barrier integrity
Mouse strains
Diet-induced obesity
High-fat diet
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5455-e8367b9ed57bde070b769b6b307968aa1b367111bd8673eb6d45c8893b4d983f3
Notes http://dx.doi.org/10.1002/mnfr.201400840
istex:D62289EC7835E0FAC2D1148F6E7BE7762E361F62
ark:/67375/WNG-GT33L65B-S
Microbiome Influence on Energy Balance and Brain Development/Function Put into Action to Tackle Diet-Related Diseases and Behaviour - No. 613979
ArticleID:MNFR2355
Federal Ministry of Education and Research Germany - No. 0315674
These authors contributed equally to this work and are joint senior authors.
These authors contributed equally to this work and are joint first authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://mediatum.ub.tum.de/node?id=1346669
PMID 25676872
PQID 1680182042
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1803120776
proquest_miscellaneous_1680182042
pubmed_primary_25676872
crossref_primary_10_1002_mnfr_201400840
crossref_citationtrail_10_1002_mnfr_201400840
wiley_primary_10_1002_mnfr_201400840_MNFR2355
istex_primary_ark_67375_WNG_GT33L65B_S
fao_agris_US201600086625
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2015
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: May 2015
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Molecular nutrition & food research
PublicationTitleAlternate Mol. Nutr. Food Res
PublicationYear 2015
Publisher Wiley-VCH
Blackwell Publishing Ltd
Publisher_xml – name: Wiley-VCH
– name: Blackwell Publishing Ltd
References Serino, M., Luche, E., Gres, S., Baylac, A. et al., Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 2012, 61, 543-553.
Kirpich, I. A., Feng, W., Wang, Y., Liu, Y. et al., The type of dietary fat modulates intestinal tight junction integrity, gut permeability, and hepatic toll-like receptor expression in a mouse model of alcoholic liver disease. Alcohol Clin. Exp. Res. 2012, 36, 835-846.
Kim, K. A., Gu, W., Lee, I. A., Joh, E. H. et al., High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PloS One 2012, 7, e47713.
Cani, P. D., Bibiloni, R., Knauf, C., Waget, A. et al., Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008, 57, 1470-1481.
deWit, N. J., Bosch-Vermeulen, H., deGroot, P. J., Hooiveld, G. J. et al., The role of the small intestine in the development of dietary fat-induced obesity and insulin resistance in C57BL/6J mice. BMC Med. Genomics 2008, 1, 14.
Malik, V. S., Willett, W. C., Hu, F. B., Global obesity: trends, risk factors and policy implications. Nat. Rev. Endocrinology 2013, 9, 13-27.
Gruber, L., Kisling, S., Lichti, P., Martin, F. P. et al., High fat diet accelerates pathogenesis of murine Crohn's disease-like ileitis independently of obesity. PloS One 2013, 8, e71661.
Jornayvaz, F. R., Jurczak, M. J., Lee, H. Y., Birkenfeld, A. L. et al., A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E808-815.
Xu, H., Barnes, G. T., Yang, Q., Tan, G. et al., Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821-1830.
Ding, S., Chi, M. M., Scull, B. P., Rigby, R. et al., High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PloS One 2010, 5, e12191.
deLa Serre, C. B., Ellis, C. L., Lee, J., Hartman, A. L. et al., Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G440-448.
Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M. et al., Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761-1772.
Lam, Y. Y., Ha, C. W., Campbell, C. R., Mitchell, A. J. et al., Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PloS One 2012, 7, e34233.
Montgomery, M. K., Hallahan, N. L., Brown, S. H., Liu, M. et al., Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 2013, 56, 1129-1139.
Ruiz, P. A., Shkoda, A., Kim, S. C., Sartor, R. B. et al., IL-10 gene-deficient mice lack TGF-beta/Smad-mediated TLR2 degradation and fail to inhibit proinflammatory gene expression in intestinal epithelial cells under conditions of chronic inflammation. Ann. N. Y. Acad. Sci. 2006, 1072, 389-394.
Lee, Y. S., Li, P., Huh, J. Y., Hwang, I. J. et al., Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance. Diabetes 2011, 60, 2474-2483.
Shoelson, S. E., Lee, J., Goldfine, A. B., Inflammation and insulin resistance. J. Clin. Invest. 2006, 116, 1793-1801.
Hesse, D., Dunn, M., Heldmaier, G., Klingenspor, M. et al., Behavioural mechanisms affecting energy regulation in mice prone or resistant to diet-induced obesity. Physiol. Behav. 2010, 99, 370-380.
West, D. B., Waguespack, J., McCollister, S., Dietary obesity in the mouse: interaction of strain with diet composition. Am. J. Physiol. 1995, 268, R658-665.
Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J. et al., Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013, 341, 1241214.
Badman, M. K., Kennedy, A. R., Adams, A. C., Pissios, P. et al., A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss. Am. J. Physio. Endocrinol. Metab. 2009, 297, E1197-1204.
Winzell, M. S., Ahren, B., The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 2004, 53(Suppl 3), S215-219.
Tilg, H., Moschen, A. R., Microbiota and diabetes: an evolving relationship. Gut  2014, 63, 1513-1521.
West, D. B., Boozer, C. N., Moody, D. L., Atkinson, R. L. et al., Dietary obesity in nine inbred mouse strains. Am. J. Physiol. 1992, 262, R1025-1032.
Stenman, L. K., Holma, R., Korpela, R., High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids. World J. Gastroenterol. 2012, 18, 923-929.
Bhatheja, R., Bhatt, D. L., Clinical outcomes in metabolic syndrome. J. Cardiovasc. Nurs. 2006, 21, 298-305.
Suzuki, T., Hara, H., Dietary fat and bile juice, but not obesity, are responsible for the increase in small intestinal permeability induced through the suppression of tight junction protein expression in LETO and OLETF rats. Nutr. Metab. 2010, 7, 19.
Ley, R. E., Backhed, F., Turnbaugh, P., Lozupone, C. A. et al., Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070-11075.
Korner, J., Woods, S. C., Woodworth, K. A., Regulation of energy homeostasis and health consequences in obesity. Am. J. Med. 2009, 122, S12-18.
Turner, N., Kowalski, G. M., Leslie, S. J., Risis, S. et al., Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 2013, 56, 1638-1648.
York, B., Lei, K., West, D. B., Inherited non-autosomal effects on body fat in F2 mice derived from an AKR/J x SWR/J cross. Mamm. Genome 1997, 8, 726-730.
Borghjid, S., Feinman, R. D., Response of C57Bl/6 mice to a carbohydrate-free diet. Nutr. Metab. 2012, 9, 69.
Bournat, J. C., Brown, C. W., Mitochondrial dysfunction in obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 446-452.
Musso, G., Gambino, R., Cassader, M., Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care 2010, 33, 2277-2284.
Kaliannan, K., Hamarneh, S. R., Economopoulos, K. P., Nasrin Alam, S. et al., Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc. Natl. Acad. Sci. USA 2013, 110, 7003-7008.
Brun, P., Castagliuolo, I., di Leo, V., Buda, A. et al., Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G518-525.
Qin, J., Li, Y., Cai, Z., Li, S. et al., A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55-60.
Flores, C. A., Cid, L. P., Sepulveda, F. V., Strain-dependent differences in electrogenic secretion of electrolytes across mouse colon epithelium. Exp. Physiol. 2010, 95, 686-698.
Ma, B. W., Bokulich, N. A., Castillo, P. A., Kananurak, A. et al., Routine habitat change: a source of unrecognized transient alteration of intestinal microbiota in laboratory mice. PloS One 2012, 7, e47416.
Parlesak, A., Schafer, C., Schutz, T., Bode, J. C. et al., Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J. Hepatol. 2000, 32, 742-747.
2012; 61
2010; 33
2010; 99
1992; 262
2010; 17
2011; 60
2009; 297
2008; 57
2012; 18
2013; 341
2012; 36
2008; 1
2006; 116
2014; 63
2013; 8
2003; 112
2007; 56
2013; 9
1997; 8
2004; 53
2006; 21
2007; 292
2013; 56
2005; 102
2000; 32
2010; 299
2012; 490
2009; 122
1995; 268
2013; 110
2012; 7
2010; 5
2010; 7
2010; 95
2006; 1072
2012; 9
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_38_1
e_1_2_6_37_1
West D. B. (e_1_2_6_15_1) 1992; 262
West D. B. (e_1_2_6_16_1) 1995; 268
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Parlesak, A., Schafer, C., Schutz, T., Bode, J. C. et al., Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J. Hepatol. 2000, 32, 742-747.
– reference: Turner, N., Kowalski, G. M., Leslie, S. J., Risis, S. et al., Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 2013, 56, 1638-1648.
– reference: Stenman, L. K., Holma, R., Korpela, R., High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids. World J. Gastroenterol. 2012, 18, 923-929.
– reference: Ruiz, P. A., Shkoda, A., Kim, S. C., Sartor, R. B. et al., IL-10 gene-deficient mice lack TGF-beta/Smad-mediated TLR2 degradation and fail to inhibit proinflammatory gene expression in intestinal epithelial cells under conditions of chronic inflammation. Ann. N. Y. Acad. Sci. 2006, 1072, 389-394.
– reference: Jornayvaz, F. R., Jurczak, M. J., Lee, H. Y., Birkenfeld, A. L. et al., A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E808-815.
– reference: Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M. et al., Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761-1772.
– reference: West, D. B., Waguespack, J., McCollister, S., Dietary obesity in the mouse: interaction of strain with diet composition. Am. J. Physiol. 1995, 268, R658-665.
– reference: Qin, J., Li, Y., Cai, Z., Li, S. et al., A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55-60.
– reference: Xu, H., Barnes, G. T., Yang, Q., Tan, G. et al., Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821-1830.
– reference: deLa Serre, C. B., Ellis, C. L., Lee, J., Hartman, A. L. et al., Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G440-448.
– reference: Gruber, L., Kisling, S., Lichti, P., Martin, F. P. et al., High fat diet accelerates pathogenesis of murine Crohn's disease-like ileitis independently of obesity. PloS One 2013, 8, e71661.
– reference: Flores, C. A., Cid, L. P., Sepulveda, F. V., Strain-dependent differences in electrogenic secretion of electrolytes across mouse colon epithelium. Exp. Physiol. 2010, 95, 686-698.
– reference: Korner, J., Woods, S. C., Woodworth, K. A., Regulation of energy homeostasis and health consequences in obesity. Am. J. Med. 2009, 122, S12-18.
– reference: Ding, S., Chi, M. M., Scull, B. P., Rigby, R. et al., High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PloS One 2010, 5, e12191.
– reference: Tilg, H., Moschen, A. R., Microbiota and diabetes: an evolving relationship. Gut  2014, 63, 1513-1521.
– reference: Brun, P., Castagliuolo, I., di Leo, V., Buda, A. et al., Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G518-525.
– reference: Suzuki, T., Hara, H., Dietary fat and bile juice, but not obesity, are responsible for the increase in small intestinal permeability induced through the suppression of tight junction protein expression in LETO and OLETF rats. Nutr. Metab. 2010, 7, 19.
– reference: York, B., Lei, K., West, D. B., Inherited non-autosomal effects on body fat in F2 mice derived from an AKR/J x SWR/J cross. Mamm. Genome 1997, 8, 726-730.
– reference: Shoelson, S. E., Lee, J., Goldfine, A. B., Inflammation and insulin resistance. J. Clin. Invest. 2006, 116, 1793-1801.
– reference: West, D. B., Boozer, C. N., Moody, D. L., Atkinson, R. L. et al., Dietary obesity in nine inbred mouse strains. Am. J. Physiol. 1992, 262, R1025-1032.
– reference: Badman, M. K., Kennedy, A. R., Adams, A. C., Pissios, P. et al., A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss. Am. J. Physio. Endocrinol. Metab. 2009, 297, E1197-1204.
– reference: deWit, N. J., Bosch-Vermeulen, H., deGroot, P. J., Hooiveld, G. J. et al., The role of the small intestine in the development of dietary fat-induced obesity and insulin resistance in C57BL/6J mice. BMC Med. Genomics 2008, 1, 14.
– reference: Ma, B. W., Bokulich, N. A., Castillo, P. A., Kananurak, A. et al., Routine habitat change: a source of unrecognized transient alteration of intestinal microbiota in laboratory mice. PloS One 2012, 7, e47416.
– reference: Kaliannan, K., Hamarneh, S. R., Economopoulos, K. P., Nasrin Alam, S. et al., Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc. Natl. Acad. Sci. USA 2013, 110, 7003-7008.
– reference: Malik, V. S., Willett, W. C., Hu, F. B., Global obesity: trends, risk factors and policy implications. Nat. Rev. Endocrinology 2013, 9, 13-27.
– reference: Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J. et al., Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013, 341, 1241214.
– reference: Borghjid, S., Feinman, R. D., Response of C57Bl/6 mice to a carbohydrate-free diet. Nutr. Metab. 2012, 9, 69.
– reference: Lam, Y. Y., Ha, C. W., Campbell, C. R., Mitchell, A. J. et al., Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PloS One 2012, 7, e34233.
– reference: Ley, R. E., Backhed, F., Turnbaugh, P., Lozupone, C. A. et al., Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070-11075.
– reference: Hesse, D., Dunn, M., Heldmaier, G., Klingenspor, M. et al., Behavioural mechanisms affecting energy regulation in mice prone or resistant to diet-induced obesity. Physiol. Behav. 2010, 99, 370-380.
– reference: Lee, Y. S., Li, P., Huh, J. Y., Hwang, I. J. et al., Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance. Diabetes 2011, 60, 2474-2483.
– reference: Montgomery, M. K., Hallahan, N. L., Brown, S. H., Liu, M. et al., Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 2013, 56, 1129-1139.
– reference: Kirpich, I. A., Feng, W., Wang, Y., Liu, Y. et al., The type of dietary fat modulates intestinal tight junction integrity, gut permeability, and hepatic toll-like receptor expression in a mouse model of alcoholic liver disease. Alcohol Clin. Exp. Res. 2012, 36, 835-846.
– reference: Musso, G., Gambino, R., Cassader, M., Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care 2010, 33, 2277-2284.
– reference: Winzell, M. S., Ahren, B., The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 2004, 53(Suppl 3), S215-219.
– reference: Bhatheja, R., Bhatt, D. L., Clinical outcomes in metabolic syndrome. J. Cardiovasc. Nurs. 2006, 21, 298-305.
– reference: Cani, P. D., Bibiloni, R., Knauf, C., Waget, A. et al., Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008, 57, 1470-1481.
– reference: Kim, K. A., Gu, W., Lee, I. A., Joh, E. H. et al., High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PloS One 2012, 7, e47713.
– reference: Bournat, J. C., Brown, C. W., Mitochondrial dysfunction in obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 446-452.
– reference: Serino, M., Luche, E., Gres, S., Baylac, A. et al., Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 2012, 61, 543-553.
– volume: 268
  start-page: R658
  year: 1995
  end-page: 665
  article-title: Dietary obesity in the mouse: interaction of strain with diet composition
  publication-title: Am. J. Physiol.
– volume: 7
  start-page: 19
  year: 2010
  article-title: Dietary fat and bile juice, but not obesity, are responsible for the increase in small intestinal permeability induced through the suppression of tight junction protein expression in LETO and OLETF rats
  publication-title: Nutr. Metab.
– volume: 60
  start-page: 2474
  year: 2011
  end-page: 2483
  article-title: Inflammation is necessary for long‐term but not short‐term high‐fat diet‐induced insulin resistance
  publication-title: Diabetes
– volume: 9
  start-page: 69
  year: 2012
  article-title: Response of C57Bl/6 mice to a carbohydrate‐free diet
  publication-title: Nutr. Metab.
– volume: 1
  start-page: 14
  year: 2008
  article-title: The role of the small intestine in the development of dietary fat‐induced obesity and insulin resistance in C57BL/6J mice
  publication-title: BMC Med. Genomics
– volume: 8
  start-page: e71661
  year: 2013
  article-title: High fat diet accelerates pathogenesis of murine Crohn's disease‐like ileitis independently of obesity
  publication-title: PloS One
– volume: 17
  start-page: 446
  year: 2010
  end-page: 452
  article-title: Mitochondrial dysfunction in obesity
  publication-title: Curr. Opin. Endocrinol. Diabetes Obes.
– volume: 56
  start-page: 1129
  year: 2013
  end-page: 1139
  article-title: Mouse strain‐dependent variation in obesity and glucose homeostasis in response to high‐fat feeding
  publication-title: Diabetologia
– volume: 116
  start-page: 1793
  year: 2006
  end-page: 1801
  article-title: Inflammation and insulin resistance
  publication-title: J. Clin. Invest.
– volume: 36
  start-page: 835
  year: 2012
  end-page: 846
  article-title: The type of dietary fat modulates intestinal tight junction integrity, gut permeability, and hepatic toll‐like receptor expression in a mouse model of alcoholic liver disease
  publication-title: Alcohol Clin. Exp. Res.
– volume: 63
  start-page: 1513
  year: 2014
  end-page: 1521
  article-title: Microbiota and diabetes: an evolving relationship
  publication-title: Gut
– volume: 110
  start-page: 7003
  year: 2013
  end-page: 7008
  article-title: Intestinal alkaline phosphatase prevents metabolic syndrome in mice
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 21
  start-page: 298
  year: 2006
  end-page: 305
  article-title: Clinical outcomes in metabolic syndrome
  publication-title: J. Cardiovasc. Nurs.
– volume: 299
  start-page: E808
  year: 2010
  end-page: 815
  article-title: A high‐fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 57
  start-page: 1470
  year: 2008
  end-page: 1481
  article-title: Changes in gut microbiota control metabolic endotoxemia‐induced inflammation in high‐fat diet‐induced obesity and diabetes in mice
  publication-title: Diabetes
– volume: 102
  start-page: 11070
  year: 2005
  end-page: 11075
  article-title: Obesity alters gut microbial ecology
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 112
  start-page: 1821
  year: 2003
  end-page: 1830
  article-title: Chronic inflammation in fat plays a crucial role in the development of obesity‐related insulin resistance
  publication-title: J. Clin. Investig.
– volume: 297
  start-page: E1197
  year: 2009
  end-page: 1204
  article-title: A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss
  publication-title: Am. J. Physio. Endocrinol. Metab.
– volume: 56
  start-page: 1761
  year: 2007
  end-page: 1772
  article-title: Metabolic endotoxemia initiates obesity and insulin resistance
  publication-title: Diabetes
– volume: 95
  start-page: 686
  year: 2010
  end-page: 698
  article-title: Strain‐dependent differences in electrogenic secretion of electrolytes across mouse colon epithelium
  publication-title: Exp. Physiol.
– volume: 9
  start-page: 13
  year: 2013
  end-page: 27
  article-title: Global obesity: trends, risk factors and policy implications
  publication-title: Nat. Rev. Endocrinology
– volume: 33
  start-page: 2277
  year: 2010
  end-page: 2284
  article-title: Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded?
  publication-title: Diabetes Care
– volume: 341
  start-page: 1241214
  year: 2013
  article-title: Gut microbiota from twins discordant for obesity modulate metabolism in mice
  publication-title: Science
– volume: 56
  start-page: 1638
  year: 2013
  end-page: 1648
  article-title: Distinct patterns of tissue‐specific lipid accumulation during the induction of insulin resistance in mice by high‐fat feeding
  publication-title: Diabetologia
– volume: 7
  start-page: e34233
  year: 2012
  article-title: Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet‐induced obese mice
  publication-title: PloS One
– volume: 18
  start-page: 923
  year: 2012
  end-page: 929
  article-title: High‐fat‐induced intestinal permeability dysfunction associated with altered fecal bile acids
  publication-title: World J. Gastroenterol.
– volume: 7
  start-page: e47416
  year: 2012
  article-title: Routine habitat change: a source of unrecognized transient alteration of intestinal microbiota in laboratory mice
  publication-title: PloS One
– volume: 7
  start-page: e47713
  year: 2012
  article-title: High fat diet‐induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway
  publication-title: PloS One
– volume: 1072
  start-page: 389
  year: 2006
  end-page: 394
  article-title: IL‐10 gene‐deficient mice lack TGF‐beta/Smad‐mediated TLR2 degradation and fail to inhibit proinflammatory gene expression in intestinal epithelial cells under conditions of chronic inflammation
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 5
  start-page: e12191
  year: 2010
  article-title: High‐fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse
  publication-title: PloS One
– volume: 299
  start-page: G440
  year: 2010
  end-page: 448
  article-title: Propensity to high‐fat diet‐induced obesity in rats is associated with changes in the gut microbiota and gut inflammation
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 61
  start-page: 543
  year: 2012
  end-page: 553
  article-title: Metabolic adaptation to a high‐fat diet is associated with a change in the gut microbiota
  publication-title: Gut
– volume: 53
  start-page: S215
  issue: Suppl 3
  year: 2004
  end-page: 219
  article-title: The high‐fat diet‐fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes
  publication-title: Diabetes
– volume: 99
  start-page: 370
  year: 2010
  end-page: 380
  article-title: Behavioural mechanisms affecting energy regulation in mice prone or resistant to diet‐induced obesity
  publication-title: Physiol. Behav.
– volume: 8
  start-page: 726
  year: 1997
  end-page: 730
  article-title: Inherited non‐autosomal effects on body fat in F2 mice derived from an AKR/J x SWR/J cross
  publication-title: Mamm. Genome
– volume: 490
  start-page: 55
  year: 2012
  end-page: 60
  article-title: A metagenome‐wide association study of gut microbiota in type 2 diabetes
  publication-title: Nature
– volume: 262
  start-page: R1025
  year: 1992
  end-page: 1032
  article-title: Dietary obesity in nine inbred mouse strains
  publication-title: Am. J. Physiol.
– volume: 32
  start-page: 742
  year: 2000
  end-page: 747
  article-title: Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol‐induced liver disease
  publication-title: J. Hepatol.
– volume: 292
  start-page: G518
  year: 2007
  end-page: 525
  article-title: Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 122
  start-page: S12
  year: 2009
  end-page: 18
  article-title: Regulation of energy homeostasis and health consequences in obesity
  publication-title: Am. J. Med.
– ident: e_1_2_6_27_1
  doi: 10.1371/journal.pone.0034233
– ident: e_1_2_6_5_1
  doi: 10.1172/JCI200319451
– ident: e_1_2_6_34_1
  doi: 10.1152/ajpendo.00361.2010
– ident: e_1_2_6_38_1
  doi: 10.1136/gutjnl-2014-306928
– ident: e_1_2_6_4_1
  doi: 10.1038/nrendo.2012.199
– ident: e_1_2_6_33_1
  doi: 10.1186/1743-7075-9-69
– ident: e_1_2_6_18_1
  doi: 10.2337/diabetes.53.suppl_3.S215
– ident: e_1_2_6_21_1
  doi: 10.1136/gutjnl-2011-301012
– volume: 268
  start-page: R658
  year: 1995
  ident: e_1_2_6_16_1
  article-title: Dietary obesity in the mouse: interaction of strain with diet composition
  publication-title: Am. J. Physiol.
– ident: e_1_2_6_6_1
  doi: 10.1097/MED.0b013e32833c3026
– ident: e_1_2_6_20_1
  doi: 10.1016/j.physbeh.2009.12.001
– ident: e_1_2_6_37_1
  doi: 10.1172/JCI29069
– ident: e_1_2_6_40_1
  doi: 10.1038/nature11450
– ident: e_1_2_6_8_1
  doi: 10.1126/science.1241214
– ident: e_1_2_6_28_1
  doi: 10.1113/expphysiol.2009.051102
– ident: e_1_2_6_11_1
  doi: 10.1073/pnas.1220180110
– ident: e_1_2_6_17_1
  doi: 10.1007/s00125-013-2846-8
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1530-0277.2011.01673.x
– ident: e_1_2_6_32_1
  doi: 10.1152/ajpendo.00357.2009
– ident: e_1_2_6_23_1
  doi: 10.1371/journal.pone.0047713
– ident: e_1_2_6_2_1
  doi: 10.1097/00005082-200607000-00011
– ident: e_1_2_6_3_1
  doi: 10.1016/j.amjmed.2009.01.003
– ident: e_1_2_6_25_1
  doi: 10.1371/journal.pone.0071661
– ident: e_1_2_6_7_1
  doi: 10.2337/dc10-0556
– ident: e_1_2_6_10_1
  doi: 10.1152/ajpgi.00024.2006
– ident: e_1_2_6_13_1
  doi: 10.1152/ajpgi.00098.2010
– ident: e_1_2_6_19_1
  doi: 10.1007/s003359900554
– ident: e_1_2_6_9_1
  doi: 10.2337/db06-1491
– ident: e_1_2_6_31_1
  doi: 10.3748/wjg.v18.i9.923
– ident: e_1_2_6_14_1
  doi: 10.1186/1743-7075-7-19
– ident: e_1_2_6_36_1
  doi: 10.1371/journal.pone.0012191
– ident: e_1_2_6_39_1
  doi: 10.1073/pnas.0504978102
– volume: 262
  start-page: R1025
  year: 1992
  ident: e_1_2_6_15_1
  article-title: Dietary obesity in nine inbred mouse strains
  publication-title: Am. J. Physiol.
– ident: e_1_2_6_24_1
  doi: 10.1196/annals.1326.023
– ident: e_1_2_6_29_1
  doi: 10.2337/db11-0194
– ident: e_1_2_6_35_1
  doi: 10.1186/1755-8794-1-14
– ident: e_1_2_6_30_1
  doi: 10.1007/s00125-013-2913-1
– ident: e_1_2_6_41_1
  doi: 10.1371/journal.pone.0047416
– ident: e_1_2_6_26_1
  doi: 10.1016/S0168-8278(00)80242-1
– ident: e_1_2_6_12_1
  doi: 10.2337/db07-1403
SSID ssj0031243
Score 2.2726076
Snippet SCOPE: The causal relationship between diet‐induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high‐fat...
Scope The causal relationship between diet‐induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high‐fat diet...
The causal relationship between diet-induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high-fat diet per...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 968
SubjectTerms adipose tissue
Adipose Tissue - metabolism
Animals
body fat
Colon - metabolism
comorbidity
Diet, High-Fat
Diet-induced obesity
dietary fat
digestive system
Endotoxemia - etiology
genetic background
Glucose - metabolism
Glucose tolerance
Gut barrier integrity
High-fat diet
Homeostasis
lard
Liver - immunology
Male
metabolic diseases
Mice
Mice, Inbred AKR
Mice, Inbred C57BL
Mouse strains
obesity
Obesity - metabolism
Species Specificity
Title Diet‐induced obesity causes metabolic impairment independent of alterations in gut barrier integrity
URI https://api.istex.fr/ark:/67375/WNG-GT33L65B-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.201400840
https://www.ncbi.nlm.nih.gov/pubmed/25676872
https://www.proquest.com/docview/1680182042
https://www.proquest.com/docview/1803120776
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgKzZQng0FZCRUVm5nEttxlkCZVojOou2I7ixfx0GjTpNqkkhVV_0EvpEv4TqeBAbxEGKTRewksnN877l-nEvIK65yqyQA4447xnlmmLLOMpWBECpLc5H5885HU3k44x_OxNkPp_iDPsQw4eZHRmev_QA3UO99Fw29KAuv54kBwgiDFDTC40R68fz940E_KkHn1e2wR5_FOLryXrVxFO-tP77mlW4XpkKu6rv56lfEc53Hdo5oco-Yvglh_8n5btvArr3-Sd3xf9q4Se6uWCp9E2B1n9xy5QMS7c9dQ3foSkp0Qae9kv9DUviyrzdfMMJHrOS0CvkGqDVt7Wp64RoE22JuqT-VOV_6KUk6HzLwNrQqaLduH-YPsYh-bhsKZukT6tGgaYHve0Rmk_en7w7ZKoUDs0jNBHMqkSlkLhcp5A7NC6QyAwloWTKpjBkDlqO5hVzJNHEgcy6sQg4FPM9UUiSPyUZZlW6L0CKWwkJqkZMAL3KAEVojvFolMMQHExHW_0JtV_rmPs3GQgdl5lj73tRDb0bk9VD_Mih7_LbmFiJCG2xorWcnsRfl86Egho4R2elgMrzBLM_9VrlU6E_TA31wmiQfpXirTyLysseRxgHsV2VM6aq21mOJJAF5GI__UEd5LHvlpYg8CSAcvoicFUPGFJ9mHZT-0hh9NJ0cx8gyn_5j_W1yB2-KsNnzGdlolq17joSsgRfdoPsGDnMtOg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoOcCFN23Ky0ionNJuE9txjkDZLrCbQ7sruFkex0GrbpNqN5EQJ34Cv5FfwjjeBC3iIcQlF48T2RnPfGOPvyHkGZO5kQIgZJbZkLFUh9JYE8oUOJdpkvPU3XeeZGI0Y28_8C6b0N2F8fwQ_YabWxmtvXYL3G1IH_5gDb0oC0foiRHCAKOULXKVIdpw8dfxac8gFaP7anPs0WuFDJ15x9s4iA43-2_4pa1CV4hW3UR_-hX03ESyrSsa3iTQDcJnoJwfNDUcmM8_8Tv-1yhvkRtroEpfeM26Ta7Y8g4Jjue2pvt0zSa6oFlH5n-XFK7t25evGOSjuuS08iUHqNHNyq7oha1R3xZzQ93FzPnS7UrSeV-Et6ZVQduje7-FiE30Y1NT0EtXU496Wgt83z0yG76evhqF6yoOoUF0xkMrY5FAanOeQG7RwkAiUhCAxiUVUusjwHa0uJBLkcQWRM64kQijgOWpjIv4Ptkuq9LuElpEghtIDMISYEUOMECDhE8jOUb5oAMSdv9QmTXFuau0sVCenDlSbjZVP5sBed7LX3pyj99K7qJKKI0DXanZWeR4-Vw0iNFjQPZbPenfoJfnLlsu4ep9dqJOpnE8FvylOgvI006RFK5hdzCjS1s1K3UkECcgFGPRH2SkU2ZHvhSQHa-F_RcRtmLUmGDvsNWlvwxGTbLhaYRAc-8f5Z-Qa6PpZKzGb7J3D8h1FOA-9_Mh2a6XjX2E-KyGx-0K_A7bJDFZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVokRAbyrNNeRkJlZXbaWI7zhIo0wLtCLUd0Z3l6zho1GlSzSQSYsUn8I18CdfxJDCIhxCbbGwnsnN877l-nEvIU65yqyQA4447xnlmmLLOMpWBECpLc5H5-85HI3kw5m_OxNkPt_iDPkS_4OZnRmuv_QS_zIud76KhF2Xh9TwxQBhgkLJCrnKJdMLTouNeQCpB79UesUenxTj68k62cRDvLLdfcksrhamQrPpx_vgr5rlMZFtPNFwjputDOIByvt3UsG0__STv-D-dvEluLGgqfR5wdYtcceVtEu1NXE236EJLdEpHnZT_HVL4sq-fv2CIj2DJaRUSDlBrmrmb0wtXI9qmE0v9tczJzK9J0kmfgremVUHbjfuwgIhF9ENTUzAzn1GPBlELfN9dMh6-On15wBY5HJhFbiaYU4lMIXO5SCF3aF8glRlIQNOSSWXMLmA52lvIlUwTBzLnwiokUcDzTCVFco-sllXpNggtYikspBZJCfAiBxigOcKnVQJjfDARYd0v1HYhcO7zbEx1kGaOtR9N3Y9mRJ719S-DtMdva24gIrTBjs71-CT2qnw-FsTYMSJbLUz6N5jZuT8rlwr9frSv90-T5FCKF_okIk86HGmcwX5bxpSuauZ6VyJLQCLG4z_UUR7LXnopIusBhP0XkbRizJhia9ZC6S-d0Uej4XGMNHPzH-s_Jtfe7Q314evR2_vkOpaLcPDzAVmtZ417iOSshkft_PsGG4IwCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diet%E2%80%90induced+obesity+causes+metabolic+impairment+independent+of+alterations+in+gut+barrier+integrity&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=Kless%2C+Caroline&rft.au=M%C3%BCller%2C+Veronika+Maria&rft.au=Sch%C3%BCppel%2C+Valentina+Luise&rft.au=Lichtenegger%2C+Martina&rft.date=2015-05-01&rft.issn=1613-4125&rft.eissn=1613-4133&rft.volume=59&rft.issue=5&rft.spage=968&rft.epage=978&rft_id=info:doi/10.1002%2Fmnfr.201400840&rft.externalDBID=10.1002%252Fmnfr.201400840&rft.externalDocID=MNFR2355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon