Diet‐induced obesity causes metabolic impairment independent of alterations in gut barrier integrity
SCOPE: The causal relationship between diet‐induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high‐fat diet per se affects intestinal barrier function provoking metabolic comorbidities. METHODS AND RESULTS: In three independent experiments with AK...
Saved in:
Published in | Molecular nutrition & food research Vol. 59; no. 5; pp. 968 - 978 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley-VCH
01.05.2015
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1613-4125 1613-4133 1613-4133 |
DOI | 10.1002/mnfr.201400840 |
Cover
Abstract | SCOPE: The causal relationship between diet‐induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high‐fat diet per se affects intestinal barrier function provoking metabolic comorbidities. METHODS AND RESULTS: In three independent experiments with AKR/J, SWR/J, or BL/6J mice, we addressed the impact of genetic background, excess body fat storage, duration of high‐fat feeding, and quality/quantity of dietary fat on glucose tolerance and gut barrier integrity in vivo and ex vivo. Impaired glucose tolerance in diet‐induced obese BL/6J and AKR/J mice was not accompanied by an altered intestinal barrier function. Enforced dietary challenge by prolonged feeding and increasing fat quantity in BL/6J mice still failed to aggravate metabolic and intestinal deterioration. Despite a low‐grade inflammatory status in adipose tissue, barrier function of BL/6J mice fed lard high‐fat diet revealed no evidence for a diet‐induced loss in barrier integrity. CONCLUSION: None of our results provided any evidence that gut barrier function is a subject to dietary regulation and obesity per se seems not to cause gut barrier impairment. |
---|---|
AbstractList | SCOPE: The causal relationship between diet‐induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high‐fat diet per se affects intestinal barrier function provoking metabolic comorbidities. METHODS AND RESULTS: In three independent experiments with AKR/J, SWR/J, or BL/6J mice, we addressed the impact of genetic background, excess body fat storage, duration of high‐fat feeding, and quality/quantity of dietary fat on glucose tolerance and gut barrier integrity in vivo and ex vivo. Impaired glucose tolerance in diet‐induced obese BL/6J and AKR/J mice was not accompanied by an altered intestinal barrier function. Enforced dietary challenge by prolonged feeding and increasing fat quantity in BL/6J mice still failed to aggravate metabolic and intestinal deterioration. Despite a low‐grade inflammatory status in adipose tissue, barrier function of BL/6J mice fed lard high‐fat diet revealed no evidence for a diet‐induced loss in barrier integrity. CONCLUSION: None of our results provided any evidence that gut barrier function is a subject to dietary regulation and obesity per se seems not to cause gut barrier impairment. The causal relationship between diet-induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high-fat diet per se affects intestinal barrier function provoking metabolic comorbidities.SCOPEThe causal relationship between diet-induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high-fat diet per se affects intestinal barrier function provoking metabolic comorbidities.In three independent experiments with AKR/J, SWR/J, or BL/6J mice, we addressed the impact of genetic background, excess body fat storage, duration of high-fat feeding, and quality/quantity of dietary fat on glucose tolerance and gut barrier integrity in vivo and ex vivo. Impaired glucose tolerance in diet-induced obese BL/6J and AKR/J mice was not accompanied by an altered intestinal barrier function. Enforced dietary challenge by prolonged feeding and increasing fat quantity in BL/6J mice still failed to aggravate metabolic and intestinal deterioration. Despite a low-grade inflammatory status in adipose tissue, barrier function of BL/6J mice fed lard high-fat diet revealed no evidence for a diet-induced loss in barrier integrity.METHODS AND RESULTSIn three independent experiments with AKR/J, SWR/J, or BL/6J mice, we addressed the impact of genetic background, excess body fat storage, duration of high-fat feeding, and quality/quantity of dietary fat on glucose tolerance and gut barrier integrity in vivo and ex vivo. Impaired glucose tolerance in diet-induced obese BL/6J and AKR/J mice was not accompanied by an altered intestinal barrier function. Enforced dietary challenge by prolonged feeding and increasing fat quantity in BL/6J mice still failed to aggravate metabolic and intestinal deterioration. Despite a low-grade inflammatory status in adipose tissue, barrier function of BL/6J mice fed lard high-fat diet revealed no evidence for a diet-induced loss in barrier integrity.None of our results provided any evidence that gut barrier function is a subject to dietary regulation and obesity per se seems not to cause gut barrier impairment.CONCLUSIONNone of our results provided any evidence that gut barrier function is a subject to dietary regulation and obesity per se seems not to cause gut barrier impairment. Scope The causal relationship between diet‐induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high‐fat diet per se affects intestinal barrier function provoking metabolic comorbidities. Methods and results In three independent experiments with AKR/J, SWR/J, or BL/6J mice, we addressed the impact of genetic background, excess body fat storage, duration of high‐fat feeding, and quality/quantity of dietary fat on glucose tolerance and gut barrier integrity in vivo and ex vivo. Impaired glucose tolerance in diet‐induced obese BL/6J and AKR/J mice was not accompanied by an altered intestinal barrier function. Enforced dietary challenge by prolonged feeding and increasing fat quantity in BL/6J mice still failed to aggravate metabolic and intestinal deterioration. Despite a low‐grade inflammatory status in adipose tissue, barrier function of BL/6J mice fed lard high‐fat diet revealed no evidence for a diet‐induced loss in barrier integrity. Conclusion None of our results provided any evidence that gut barrier function is a subject to dietary regulation and obesity per se seems not to cause gut barrier impairment. The causal relationship between diet-induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high-fat diet per se affects intestinal barrier function provoking metabolic comorbidities. In three independent experiments with AKR/J, SWR/J, or BL/6J mice, we addressed the impact of genetic background, excess body fat storage, duration of high-fat feeding, and quality/quantity of dietary fat on glucose tolerance and gut barrier integrity in vivo and ex vivo. Impaired glucose tolerance in diet-induced obese BL/6J and AKR/J mice was not accompanied by an altered intestinal barrier function. Enforced dietary challenge by prolonged feeding and increasing fat quantity in BL/6J mice still failed to aggravate metabolic and intestinal deterioration. Despite a low-grade inflammatory status in adipose tissue, barrier function of BL/6J mice fed lard high-fat diet revealed no evidence for a diet-induced loss in barrier integrity. None of our results provided any evidence that gut barrier function is a subject to dietary regulation and obesity per se seems not to cause gut barrier impairment. SCOPE: The causal relationship between diet‐induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high‐fat diet per se affects intestinal barrier function provoking metabolic comorbidities. METHODS AND RESULTS: In three independent experiments with AKR/J, SWR/J, or BL/6J mice, we addressed the impact of genetic background, excess body fat storage, duration of high‐fat feeding, and quality/quantity of dietary fat on glucose tolerance and gut barrier integrity in vivo and ex vivo. Impaired glucose tolerance in diet‐induced obese BL/6J and AKR/J mice was not accompanied by an altered intestinal barrier function. Enforced dietary challenge by prolonged feeding and increasing fat quantity in BL/6J mice still failed to aggravate metabolic and intestinal deterioration. Despite a low‐grade inflammatory status in adipose tissue, barrier function of BL/6J mice fed lard high‐fat diet revealed no evidence for a diet‐induced loss in barrier integrity. CONCLUSION: None of our results provided any evidence that gut barrier function is a subject to dietary regulation and obesity per se seems not to cause gut barrier impairment. |
Author | Lichtenegger, Martina Kless, Caroline Schüppel, Valentina Luise Daniel, Hannelore Haller, Dirk Klingenspor, Martin Rychlik, Michael Müller, Veronika Maria |
Author_xml | – sequence: 1 fullname: Kless, Caroline – sequence: 2 fullname: Müller, Veronika Maria – sequence: 3 fullname: Schüppel, Valentina Luise – sequence: 4 fullname: Lichtenegger, Martina – sequence: 5 fullname: Rychlik, Michael – sequence: 6 fullname: Daniel, Hannelore – sequence: 7 fullname: Klingenspor, Martin – sequence: 8 fullname: Haller, Dirk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25676872$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URH9gyxKyZJPB_3aWUNoBaSgSbcXSspObypDEg-2Izo5H4Bl5EjxMmQWb2djXut85ls45RUdTmACh5wQvCMb09Tj1cUEx4Rhrjh-hEyIJqzlh7Gg_U3GMTlP6ijEjlLMn6JgKqaRW9AT17zzk3z9_-ambW-iq4CD5vKlaOydI1QjZujD4tvLj2vo4wpSrwsIaylHm0Fd2yBBt9mFKZVXdzblyNkYPsTwz3MXi9xQ97u2Q4NnDfYZuLy9uzt_Xq0_LD-dvVnUruBA1aCaVa6ATynWAFXZKNk46hlUjtbXElT0hxHVaKgZOdly0WjfM8a7RrGdn6NXOdx3D9xlSNqNPLQyDnSDMyRC9zQArJQ-jUmOiKea0oC8e0NmN0Jl19KONG_MvxgIsdkAbQ0oR-j1CsNn2ZLY9mX1PRcD_E7Q-_80wR-uHg7IffoDNgU_Mx6vLz5QJUWT1TuZThvu9zMZvpsSohPlytTTLG8ZWUrw114V_ueN7G4wtBSZze118JS7GUlLB_gBsK8BR |
CitedBy_id | crossref_primary_10_1007_s10620_015_3935_y crossref_primary_10_1002_mnfr_201500775 crossref_primary_10_3390_nu8040202 crossref_primary_10_1152_ajpgi_00098_2016 crossref_primary_10_1007_s11428_016_0124_3 crossref_primary_10_1038_nrendo_2017_161 crossref_primary_10_3389_fimmu_2019_01404 crossref_primary_10_1016_j_lfs_2020_118974 crossref_primary_10_1016_j_molmet_2016_10_001 crossref_primary_10_1152_ajpendo_00372_2016 crossref_primary_10_3389_fimmu_2017_00023 crossref_primary_10_1093_nutrit_nuy064 crossref_primary_10_1002_mnfr_201500406 crossref_primary_10_1002_mnfr_201500249 crossref_primary_10_1002_mnfr_202000681 crossref_primary_10_1016_j_celrep_2023_112713 crossref_primary_10_1016_j_addr_2016_07_007 crossref_primary_10_1016_j_tifs_2016_08_012 crossref_primary_10_1128_mSphere_00833_19 crossref_primary_10_1038_srep17704 crossref_primary_10_1016_j_jnutbio_2019_03_008 crossref_primary_10_14814_phy2_12988 crossref_primary_10_1007_s11428_016_0130_5 crossref_primary_10_1093_jn_nxx020 crossref_primary_10_1152_ajpendo_00134_2021 crossref_primary_10_1080_09540105_2020_1761302 |
Cites_doi | 10.1371/journal.pone.0034233 10.1172/JCI200319451 10.1152/ajpendo.00361.2010 10.1136/gutjnl-2014-306928 10.1038/nrendo.2012.199 10.1186/1743-7075-9-69 10.2337/diabetes.53.suppl_3.S215 10.1136/gutjnl-2011-301012 10.1097/MED.0b013e32833c3026 10.1016/j.physbeh.2009.12.001 10.1172/JCI29069 10.1038/nature11450 10.1126/science.1241214 10.1113/expphysiol.2009.051102 10.1073/pnas.1220180110 10.1007/s00125-013-2846-8 10.1111/j.1530-0277.2011.01673.x 10.1152/ajpendo.00357.2009 10.1371/journal.pone.0047713 10.1097/00005082-200607000-00011 10.1016/j.amjmed.2009.01.003 10.1371/journal.pone.0071661 10.2337/dc10-0556 10.1152/ajpgi.00024.2006 10.1152/ajpgi.00098.2010 10.1007/s003359900554 10.2337/db06-1491 10.3748/wjg.v18.i9.923 10.1186/1743-7075-7-19 10.1371/journal.pone.0012191 10.1073/pnas.0504978102 10.1196/annals.1326.023 10.2337/db11-0194 10.1186/1755-8794-1-14 10.1007/s00125-013-2913-1 10.1371/journal.pone.0047416 10.1016/S0168-8278(00)80242-1 10.2337/db07-1403 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1002/mnfr.201400840 |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 1613-4133 |
EndPage | 978 |
ExternalDocumentID | 25676872 10_1002_mnfr_201400840 MNFR2355 ark_67375_WNG_GT33L65B_S US201600086625 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Microbiome Influence on Energy Balance and Brain Development/Function Put into Action to Tackle Diet‐Related Diseases and Behaviour funderid: 613979 – fundername: Federal Ministry of Education and Research Germany funderid: 0315674 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABCVL ABHUG ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FBQ FEDTE G-S G.N GNP GODZA H.T H.X HF~ HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OVD P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TEORI UB1 V8K W8V W99 WBKPD WIH WIK WJL WNSPC WOHZO WRC WXSBR WYISQ XG1 XV2 Y6R ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG 1OB AAFWJ AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c5455-e8367b9ed57bde070b769b6b307968aa1b367111bd8673eb6d45c8893b4d983f3 |
IEDL.DBID | DR2 |
ISSN | 1613-4125 1613-4133 |
IngestDate | Fri Sep 05 17:18:11 EDT 2025 Thu Sep 04 17:34:27 EDT 2025 Mon Jul 21 05:27:42 EDT 2025 Thu Apr 24 23:04:08 EDT 2025 Tue Jul 01 01:51:39 EDT 2025 Tue Sep 09 05:09:24 EDT 2025 Wed Oct 30 09:56:37 EDT 2024 Wed Dec 27 19:14:51 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Glucose tolerance Gut barrier integrity Mouse strains Diet-induced obesity High-fat diet |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5455-e8367b9ed57bde070b769b6b307968aa1b367111bd8673eb6d45c8893b4d983f3 |
Notes | http://dx.doi.org/10.1002/mnfr.201400840 istex:D62289EC7835E0FAC2D1148F6E7BE7762E361F62 ark:/67375/WNG-GT33L65B-S Microbiome Influence on Energy Balance and Brain Development/Function Put into Action to Tackle Diet-Related Diseases and Behaviour - No. 613979 ArticleID:MNFR2355 Federal Ministry of Education and Research Germany - No. 0315674 These authors contributed equally to this work and are joint senior authors. These authors contributed equally to this work and are joint first authors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://mediatum.ub.tum.de/node?id=1346669 |
PMID | 25676872 |
PQID | 1680182042 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1803120776 proquest_miscellaneous_1680182042 pubmed_primary_25676872 crossref_primary_10_1002_mnfr_201400840 crossref_citationtrail_10_1002_mnfr_201400840 wiley_primary_10_1002_mnfr_201400840_MNFR2355 istex_primary_ark_67375_WNG_GT33L65B_S fao_agris_US201600086625 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2015 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: May 2015 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Molecular nutrition & food research |
PublicationTitleAlternate | Mol. Nutr. Food Res |
PublicationYear | 2015 |
Publisher | Wiley-VCH Blackwell Publishing Ltd |
Publisher_xml | – name: Wiley-VCH – name: Blackwell Publishing Ltd |
References | Serino, M., Luche, E., Gres, S., Baylac, A. et al., Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 2012, 61, 543-553. Kirpich, I. A., Feng, W., Wang, Y., Liu, Y. et al., The type of dietary fat modulates intestinal tight junction integrity, gut permeability, and hepatic toll-like receptor expression in a mouse model of alcoholic liver disease. Alcohol Clin. Exp. Res. 2012, 36, 835-846. Kim, K. A., Gu, W., Lee, I. A., Joh, E. H. et al., High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PloS One 2012, 7, e47713. Cani, P. D., Bibiloni, R., Knauf, C., Waget, A. et al., Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008, 57, 1470-1481. deWit, N. J., Bosch-Vermeulen, H., deGroot, P. J., Hooiveld, G. J. et al., The role of the small intestine in the development of dietary fat-induced obesity and insulin resistance in C57BL/6J mice. BMC Med. Genomics 2008, 1, 14. Malik, V. S., Willett, W. C., Hu, F. B., Global obesity: trends, risk factors and policy implications. Nat. Rev. Endocrinology 2013, 9, 13-27. Gruber, L., Kisling, S., Lichti, P., Martin, F. P. et al., High fat diet accelerates pathogenesis of murine Crohn's disease-like ileitis independently of obesity. PloS One 2013, 8, e71661. Jornayvaz, F. R., Jurczak, M. J., Lee, H. Y., Birkenfeld, A. L. et al., A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E808-815. Xu, H., Barnes, G. T., Yang, Q., Tan, G. et al., Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821-1830. Ding, S., Chi, M. M., Scull, B. P., Rigby, R. et al., High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PloS One 2010, 5, e12191. deLa Serre, C. B., Ellis, C. L., Lee, J., Hartman, A. L. et al., Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G440-448. Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M. et al., Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761-1772. Lam, Y. Y., Ha, C. W., Campbell, C. R., Mitchell, A. J. et al., Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PloS One 2012, 7, e34233. Montgomery, M. K., Hallahan, N. L., Brown, S. H., Liu, M. et al., Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 2013, 56, 1129-1139. Ruiz, P. A., Shkoda, A., Kim, S. C., Sartor, R. B. et al., IL-10 gene-deficient mice lack TGF-beta/Smad-mediated TLR2 degradation and fail to inhibit proinflammatory gene expression in intestinal epithelial cells under conditions of chronic inflammation. Ann. N. Y. Acad. Sci. 2006, 1072, 389-394. Lee, Y. S., Li, P., Huh, J. Y., Hwang, I. J. et al., Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance. Diabetes 2011, 60, 2474-2483. Shoelson, S. E., Lee, J., Goldfine, A. B., Inflammation and insulin resistance. J. Clin. Invest. 2006, 116, 1793-1801. Hesse, D., Dunn, M., Heldmaier, G., Klingenspor, M. et al., Behavioural mechanisms affecting energy regulation in mice prone or resistant to diet-induced obesity. Physiol. Behav. 2010, 99, 370-380. West, D. B., Waguespack, J., McCollister, S., Dietary obesity in the mouse: interaction of strain with diet composition. Am. J. Physiol. 1995, 268, R658-665. Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J. et al., Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013, 341, 1241214. Badman, M. K., Kennedy, A. R., Adams, A. C., Pissios, P. et al., A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss. Am. J. Physio. Endocrinol. Metab. 2009, 297, E1197-1204. Winzell, M. S., Ahren, B., The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 2004, 53(Suppl 3), S215-219. Tilg, H., Moschen, A. R., Microbiota and diabetes: an evolving relationship. Gut 2014, 63, 1513-1521. West, D. B., Boozer, C. N., Moody, D. L., Atkinson, R. L. et al., Dietary obesity in nine inbred mouse strains. Am. J. Physiol. 1992, 262, R1025-1032. Stenman, L. K., Holma, R., Korpela, R., High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids. World J. Gastroenterol. 2012, 18, 923-929. Bhatheja, R., Bhatt, D. L., Clinical outcomes in metabolic syndrome. J. Cardiovasc. Nurs. 2006, 21, 298-305. Suzuki, T., Hara, H., Dietary fat and bile juice, but not obesity, are responsible for the increase in small intestinal permeability induced through the suppression of tight junction protein expression in LETO and OLETF rats. Nutr. Metab. 2010, 7, 19. Ley, R. E., Backhed, F., Turnbaugh, P., Lozupone, C. A. et al., Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070-11075. Korner, J., Woods, S. C., Woodworth, K. A., Regulation of energy homeostasis and health consequences in obesity. Am. J. Med. 2009, 122, S12-18. Turner, N., Kowalski, G. M., Leslie, S. J., Risis, S. et al., Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 2013, 56, 1638-1648. York, B., Lei, K., West, D. B., Inherited non-autosomal effects on body fat in F2 mice derived from an AKR/J x SWR/J cross. Mamm. Genome 1997, 8, 726-730. Borghjid, S., Feinman, R. D., Response of C57Bl/6 mice to a carbohydrate-free diet. Nutr. Metab. 2012, 9, 69. Bournat, J. C., Brown, C. W., Mitochondrial dysfunction in obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 446-452. Musso, G., Gambino, R., Cassader, M., Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care 2010, 33, 2277-2284. Kaliannan, K., Hamarneh, S. R., Economopoulos, K. P., Nasrin Alam, S. et al., Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc. Natl. Acad. Sci. USA 2013, 110, 7003-7008. Brun, P., Castagliuolo, I., di Leo, V., Buda, A. et al., Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G518-525. Qin, J., Li, Y., Cai, Z., Li, S. et al., A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55-60. Flores, C. A., Cid, L. P., Sepulveda, F. V., Strain-dependent differences in electrogenic secretion of electrolytes across mouse colon epithelium. Exp. Physiol. 2010, 95, 686-698. Ma, B. W., Bokulich, N. A., Castillo, P. A., Kananurak, A. et al., Routine habitat change: a source of unrecognized transient alteration of intestinal microbiota in laboratory mice. PloS One 2012, 7, e47416. Parlesak, A., Schafer, C., Schutz, T., Bode, J. C. et al., Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J. Hepatol. 2000, 32, 742-747. 2012; 61 2010; 33 2010; 99 1992; 262 2010; 17 2011; 60 2009; 297 2008; 57 2012; 18 2013; 341 2012; 36 2008; 1 2006; 116 2014; 63 2013; 8 2003; 112 2007; 56 2013; 9 1997; 8 2004; 53 2006; 21 2007; 292 2013; 56 2005; 102 2000; 32 2010; 299 2012; 490 2009; 122 1995; 268 2013; 110 2012; 7 2010; 5 2010; 7 2010; 95 2006; 1072 2012; 9 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_38_1 e_1_2_6_37_1 West D. B. (e_1_2_6_15_1) 1992; 262 West D. B. (e_1_2_6_16_1) 1995; 268 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Parlesak, A., Schafer, C., Schutz, T., Bode, J. C. et al., Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J. Hepatol. 2000, 32, 742-747. – reference: Turner, N., Kowalski, G. M., Leslie, S. J., Risis, S. et al., Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 2013, 56, 1638-1648. – reference: Stenman, L. K., Holma, R., Korpela, R., High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids. World J. Gastroenterol. 2012, 18, 923-929. – reference: Ruiz, P. A., Shkoda, A., Kim, S. C., Sartor, R. B. et al., IL-10 gene-deficient mice lack TGF-beta/Smad-mediated TLR2 degradation and fail to inhibit proinflammatory gene expression in intestinal epithelial cells under conditions of chronic inflammation. Ann. N. Y. Acad. Sci. 2006, 1072, 389-394. – reference: Jornayvaz, F. R., Jurczak, M. J., Lee, H. Y., Birkenfeld, A. L. et al., A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E808-815. – reference: Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M. et al., Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761-1772. – reference: West, D. B., Waguespack, J., McCollister, S., Dietary obesity in the mouse: interaction of strain with diet composition. Am. J. Physiol. 1995, 268, R658-665. – reference: Qin, J., Li, Y., Cai, Z., Li, S. et al., A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55-60. – reference: Xu, H., Barnes, G. T., Yang, Q., Tan, G. et al., Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821-1830. – reference: deLa Serre, C. B., Ellis, C. L., Lee, J., Hartman, A. L. et al., Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G440-448. – reference: Gruber, L., Kisling, S., Lichti, P., Martin, F. P. et al., High fat diet accelerates pathogenesis of murine Crohn's disease-like ileitis independently of obesity. PloS One 2013, 8, e71661. – reference: Flores, C. A., Cid, L. P., Sepulveda, F. V., Strain-dependent differences in electrogenic secretion of electrolytes across mouse colon epithelium. Exp. Physiol. 2010, 95, 686-698. – reference: Korner, J., Woods, S. C., Woodworth, K. A., Regulation of energy homeostasis and health consequences in obesity. Am. J. Med. 2009, 122, S12-18. – reference: Ding, S., Chi, M. M., Scull, B. P., Rigby, R. et al., High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PloS One 2010, 5, e12191. – reference: Tilg, H., Moschen, A. R., Microbiota and diabetes: an evolving relationship. Gut 2014, 63, 1513-1521. – reference: Brun, P., Castagliuolo, I., di Leo, V., Buda, A. et al., Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G518-525. – reference: Suzuki, T., Hara, H., Dietary fat and bile juice, but not obesity, are responsible for the increase in small intestinal permeability induced through the suppression of tight junction protein expression in LETO and OLETF rats. Nutr. Metab. 2010, 7, 19. – reference: York, B., Lei, K., West, D. B., Inherited non-autosomal effects on body fat in F2 mice derived from an AKR/J x SWR/J cross. Mamm. Genome 1997, 8, 726-730. – reference: Shoelson, S. E., Lee, J., Goldfine, A. B., Inflammation and insulin resistance. J. Clin. Invest. 2006, 116, 1793-1801. – reference: West, D. B., Boozer, C. N., Moody, D. L., Atkinson, R. L. et al., Dietary obesity in nine inbred mouse strains. Am. J. Physiol. 1992, 262, R1025-1032. – reference: Badman, M. K., Kennedy, A. R., Adams, A. C., Pissios, P. et al., A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss. Am. J. Physio. Endocrinol. Metab. 2009, 297, E1197-1204. – reference: deWit, N. J., Bosch-Vermeulen, H., deGroot, P. J., Hooiveld, G. J. et al., The role of the small intestine in the development of dietary fat-induced obesity and insulin resistance in C57BL/6J mice. BMC Med. Genomics 2008, 1, 14. – reference: Ma, B. W., Bokulich, N. A., Castillo, P. A., Kananurak, A. et al., Routine habitat change: a source of unrecognized transient alteration of intestinal microbiota in laboratory mice. PloS One 2012, 7, e47416. – reference: Kaliannan, K., Hamarneh, S. R., Economopoulos, K. P., Nasrin Alam, S. et al., Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc. Natl. Acad. Sci. USA 2013, 110, 7003-7008. – reference: Malik, V. S., Willett, W. C., Hu, F. B., Global obesity: trends, risk factors and policy implications. Nat. Rev. Endocrinology 2013, 9, 13-27. – reference: Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J. et al., Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013, 341, 1241214. – reference: Borghjid, S., Feinman, R. D., Response of C57Bl/6 mice to a carbohydrate-free diet. Nutr. Metab. 2012, 9, 69. – reference: Lam, Y. Y., Ha, C. W., Campbell, C. R., Mitchell, A. J. et al., Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PloS One 2012, 7, e34233. – reference: Ley, R. E., Backhed, F., Turnbaugh, P., Lozupone, C. A. et al., Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070-11075. – reference: Hesse, D., Dunn, M., Heldmaier, G., Klingenspor, M. et al., Behavioural mechanisms affecting energy regulation in mice prone or resistant to diet-induced obesity. Physiol. Behav. 2010, 99, 370-380. – reference: Lee, Y. S., Li, P., Huh, J. Y., Hwang, I. J. et al., Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance. Diabetes 2011, 60, 2474-2483. – reference: Montgomery, M. K., Hallahan, N. L., Brown, S. H., Liu, M. et al., Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 2013, 56, 1129-1139. – reference: Kirpich, I. A., Feng, W., Wang, Y., Liu, Y. et al., The type of dietary fat modulates intestinal tight junction integrity, gut permeability, and hepatic toll-like receptor expression in a mouse model of alcoholic liver disease. Alcohol Clin. Exp. Res. 2012, 36, 835-846. – reference: Musso, G., Gambino, R., Cassader, M., Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care 2010, 33, 2277-2284. – reference: Winzell, M. S., Ahren, B., The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 2004, 53(Suppl 3), S215-219. – reference: Bhatheja, R., Bhatt, D. L., Clinical outcomes in metabolic syndrome. J. Cardiovasc. Nurs. 2006, 21, 298-305. – reference: Cani, P. D., Bibiloni, R., Knauf, C., Waget, A. et al., Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008, 57, 1470-1481. – reference: Kim, K. A., Gu, W., Lee, I. A., Joh, E. H. et al., High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PloS One 2012, 7, e47713. – reference: Bournat, J. C., Brown, C. W., Mitochondrial dysfunction in obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 446-452. – reference: Serino, M., Luche, E., Gres, S., Baylac, A. et al., Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 2012, 61, 543-553. – volume: 268 start-page: R658 year: 1995 end-page: 665 article-title: Dietary obesity in the mouse: interaction of strain with diet composition publication-title: Am. J. Physiol. – volume: 7 start-page: 19 year: 2010 article-title: Dietary fat and bile juice, but not obesity, are responsible for the increase in small intestinal permeability induced through the suppression of tight junction protein expression in LETO and OLETF rats publication-title: Nutr. Metab. – volume: 60 start-page: 2474 year: 2011 end-page: 2483 article-title: Inflammation is necessary for long‐term but not short‐term high‐fat diet‐induced insulin resistance publication-title: Diabetes – volume: 9 start-page: 69 year: 2012 article-title: Response of C57Bl/6 mice to a carbohydrate‐free diet publication-title: Nutr. Metab. – volume: 1 start-page: 14 year: 2008 article-title: The role of the small intestine in the development of dietary fat‐induced obesity and insulin resistance in C57BL/6J mice publication-title: BMC Med. Genomics – volume: 8 start-page: e71661 year: 2013 article-title: High fat diet accelerates pathogenesis of murine Crohn's disease‐like ileitis independently of obesity publication-title: PloS One – volume: 17 start-page: 446 year: 2010 end-page: 452 article-title: Mitochondrial dysfunction in obesity publication-title: Curr. Opin. Endocrinol. Diabetes Obes. – volume: 56 start-page: 1129 year: 2013 end-page: 1139 article-title: Mouse strain‐dependent variation in obesity and glucose homeostasis in response to high‐fat feeding publication-title: Diabetologia – volume: 116 start-page: 1793 year: 2006 end-page: 1801 article-title: Inflammation and insulin resistance publication-title: J. Clin. Invest. – volume: 36 start-page: 835 year: 2012 end-page: 846 article-title: The type of dietary fat modulates intestinal tight junction integrity, gut permeability, and hepatic toll‐like receptor expression in a mouse model of alcoholic liver disease publication-title: Alcohol Clin. Exp. Res. – volume: 63 start-page: 1513 year: 2014 end-page: 1521 article-title: Microbiota and diabetes: an evolving relationship publication-title: Gut – volume: 110 start-page: 7003 year: 2013 end-page: 7008 article-title: Intestinal alkaline phosphatase prevents metabolic syndrome in mice publication-title: Proc. Natl. Acad. Sci. USA – volume: 21 start-page: 298 year: 2006 end-page: 305 article-title: Clinical outcomes in metabolic syndrome publication-title: J. Cardiovasc. Nurs. – volume: 299 start-page: E808 year: 2010 end-page: 815 article-title: A high‐fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 57 start-page: 1470 year: 2008 end-page: 1481 article-title: Changes in gut microbiota control metabolic endotoxemia‐induced inflammation in high‐fat diet‐induced obesity and diabetes in mice publication-title: Diabetes – volume: 102 start-page: 11070 year: 2005 end-page: 11075 article-title: Obesity alters gut microbial ecology publication-title: Proc. Natl. Acad. Sci. USA – volume: 112 start-page: 1821 year: 2003 end-page: 1830 article-title: Chronic inflammation in fat plays a crucial role in the development of obesity‐related insulin resistance publication-title: J. Clin. Investig. – volume: 297 start-page: E1197 year: 2009 end-page: 1204 article-title: A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss publication-title: Am. J. Physio. Endocrinol. Metab. – volume: 56 start-page: 1761 year: 2007 end-page: 1772 article-title: Metabolic endotoxemia initiates obesity and insulin resistance publication-title: Diabetes – volume: 95 start-page: 686 year: 2010 end-page: 698 article-title: Strain‐dependent differences in electrogenic secretion of electrolytes across mouse colon epithelium publication-title: Exp. Physiol. – volume: 9 start-page: 13 year: 2013 end-page: 27 article-title: Global obesity: trends, risk factors and policy implications publication-title: Nat. Rev. Endocrinology – volume: 33 start-page: 2277 year: 2010 end-page: 2284 article-title: Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? publication-title: Diabetes Care – volume: 341 start-page: 1241214 year: 2013 article-title: Gut microbiota from twins discordant for obesity modulate metabolism in mice publication-title: Science – volume: 56 start-page: 1638 year: 2013 end-page: 1648 article-title: Distinct patterns of tissue‐specific lipid accumulation during the induction of insulin resistance in mice by high‐fat feeding publication-title: Diabetologia – volume: 7 start-page: e34233 year: 2012 article-title: Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet‐induced obese mice publication-title: PloS One – volume: 18 start-page: 923 year: 2012 end-page: 929 article-title: High‐fat‐induced intestinal permeability dysfunction associated with altered fecal bile acids publication-title: World J. Gastroenterol. – volume: 7 start-page: e47416 year: 2012 article-title: Routine habitat change: a source of unrecognized transient alteration of intestinal microbiota in laboratory mice publication-title: PloS One – volume: 7 start-page: e47713 year: 2012 article-title: High fat diet‐induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway publication-title: PloS One – volume: 1072 start-page: 389 year: 2006 end-page: 394 article-title: IL‐10 gene‐deficient mice lack TGF‐beta/Smad‐mediated TLR2 degradation and fail to inhibit proinflammatory gene expression in intestinal epithelial cells under conditions of chronic inflammation publication-title: Ann. N. Y. Acad. Sci. – volume: 5 start-page: e12191 year: 2010 article-title: High‐fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse publication-title: PloS One – volume: 299 start-page: G440 year: 2010 end-page: 448 article-title: Propensity to high‐fat diet‐induced obesity in rats is associated with changes in the gut microbiota and gut inflammation publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 61 start-page: 543 year: 2012 end-page: 553 article-title: Metabolic adaptation to a high‐fat diet is associated with a change in the gut microbiota publication-title: Gut – volume: 53 start-page: S215 issue: Suppl 3 year: 2004 end-page: 219 article-title: The high‐fat diet‐fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes publication-title: Diabetes – volume: 99 start-page: 370 year: 2010 end-page: 380 article-title: Behavioural mechanisms affecting energy regulation in mice prone or resistant to diet‐induced obesity publication-title: Physiol. Behav. – volume: 8 start-page: 726 year: 1997 end-page: 730 article-title: Inherited non‐autosomal effects on body fat in F2 mice derived from an AKR/J x SWR/J cross publication-title: Mamm. Genome – volume: 490 start-page: 55 year: 2012 end-page: 60 article-title: A metagenome‐wide association study of gut microbiota in type 2 diabetes publication-title: Nature – volume: 262 start-page: R1025 year: 1992 end-page: 1032 article-title: Dietary obesity in nine inbred mouse strains publication-title: Am. J. Physiol. – volume: 32 start-page: 742 year: 2000 end-page: 747 article-title: Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol‐induced liver disease publication-title: J. Hepatol. – volume: 292 start-page: G518 year: 2007 end-page: 525 article-title: Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 122 start-page: S12 year: 2009 end-page: 18 article-title: Regulation of energy homeostasis and health consequences in obesity publication-title: Am. J. Med. – ident: e_1_2_6_27_1 doi: 10.1371/journal.pone.0034233 – ident: e_1_2_6_5_1 doi: 10.1172/JCI200319451 – ident: e_1_2_6_34_1 doi: 10.1152/ajpendo.00361.2010 – ident: e_1_2_6_38_1 doi: 10.1136/gutjnl-2014-306928 – ident: e_1_2_6_4_1 doi: 10.1038/nrendo.2012.199 – ident: e_1_2_6_33_1 doi: 10.1186/1743-7075-9-69 – ident: e_1_2_6_18_1 doi: 10.2337/diabetes.53.suppl_3.S215 – ident: e_1_2_6_21_1 doi: 10.1136/gutjnl-2011-301012 – volume: 268 start-page: R658 year: 1995 ident: e_1_2_6_16_1 article-title: Dietary obesity in the mouse: interaction of strain with diet composition publication-title: Am. J. Physiol. – ident: e_1_2_6_6_1 doi: 10.1097/MED.0b013e32833c3026 – ident: e_1_2_6_20_1 doi: 10.1016/j.physbeh.2009.12.001 – ident: e_1_2_6_37_1 doi: 10.1172/JCI29069 – ident: e_1_2_6_40_1 doi: 10.1038/nature11450 – ident: e_1_2_6_8_1 doi: 10.1126/science.1241214 – ident: e_1_2_6_28_1 doi: 10.1113/expphysiol.2009.051102 – ident: e_1_2_6_11_1 doi: 10.1073/pnas.1220180110 – ident: e_1_2_6_17_1 doi: 10.1007/s00125-013-2846-8 – ident: e_1_2_6_22_1 doi: 10.1111/j.1530-0277.2011.01673.x – ident: e_1_2_6_32_1 doi: 10.1152/ajpendo.00357.2009 – ident: e_1_2_6_23_1 doi: 10.1371/journal.pone.0047713 – ident: e_1_2_6_2_1 doi: 10.1097/00005082-200607000-00011 – ident: e_1_2_6_3_1 doi: 10.1016/j.amjmed.2009.01.003 – ident: e_1_2_6_25_1 doi: 10.1371/journal.pone.0071661 – ident: e_1_2_6_7_1 doi: 10.2337/dc10-0556 – ident: e_1_2_6_10_1 doi: 10.1152/ajpgi.00024.2006 – ident: e_1_2_6_13_1 doi: 10.1152/ajpgi.00098.2010 – ident: e_1_2_6_19_1 doi: 10.1007/s003359900554 – ident: e_1_2_6_9_1 doi: 10.2337/db06-1491 – ident: e_1_2_6_31_1 doi: 10.3748/wjg.v18.i9.923 – ident: e_1_2_6_14_1 doi: 10.1186/1743-7075-7-19 – ident: e_1_2_6_36_1 doi: 10.1371/journal.pone.0012191 – ident: e_1_2_6_39_1 doi: 10.1073/pnas.0504978102 – volume: 262 start-page: R1025 year: 1992 ident: e_1_2_6_15_1 article-title: Dietary obesity in nine inbred mouse strains publication-title: Am. J. Physiol. – ident: e_1_2_6_24_1 doi: 10.1196/annals.1326.023 – ident: e_1_2_6_29_1 doi: 10.2337/db11-0194 – ident: e_1_2_6_35_1 doi: 10.1186/1755-8794-1-14 – ident: e_1_2_6_30_1 doi: 10.1007/s00125-013-2913-1 – ident: e_1_2_6_41_1 doi: 10.1371/journal.pone.0047416 – ident: e_1_2_6_26_1 doi: 10.1016/S0168-8278(00)80242-1 – ident: e_1_2_6_12_1 doi: 10.2337/db07-1403 |
SSID | ssj0031243 |
Score | 2.2726076 |
Snippet | SCOPE: The causal relationship between diet‐induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high‐fat... Scope The causal relationship between diet‐induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high‐fat diet... The causal relationship between diet-induced obesity and metabolic disorders is not clear yet. One hypothesis is whether the obese state or high-fat diet per... |
SourceID | proquest pubmed crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 968 |
SubjectTerms | adipose tissue Adipose Tissue - metabolism Animals body fat Colon - metabolism comorbidity Diet, High-Fat Diet-induced obesity dietary fat digestive system Endotoxemia - etiology genetic background Glucose - metabolism Glucose tolerance Gut barrier integrity High-fat diet Homeostasis lard Liver - immunology Male metabolic diseases Mice Mice, Inbred AKR Mice, Inbred C57BL Mouse strains obesity Obesity - metabolism Species Specificity |
Title | Diet‐induced obesity causes metabolic impairment independent of alterations in gut barrier integrity |
URI | https://api.istex.fr/ark:/67375/WNG-GT33L65B-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.201400840 https://www.ncbi.nlm.nih.gov/pubmed/25676872 https://www.proquest.com/docview/1680182042 https://www.proquest.com/docview/1803120776 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgKzZQng0FZCRUVm5nEttxlkCZVojOou2I7ixfx0GjTpNqkkhVV_0EvpEv4TqeBAbxEGKTRewksnN877l-nEvIK65yqyQA4447xnlmmLLOMpWBECpLc5H5885HU3k44x_OxNkPp_iDPsQw4eZHRmev_QA3UO99Fw29KAuv54kBwgiDFDTC40R68fz940E_KkHn1e2wR5_FOLryXrVxFO-tP77mlW4XpkKu6rv56lfEc53Hdo5oco-Yvglh_8n5btvArr3-Sd3xf9q4Se6uWCp9E2B1n9xy5QMS7c9dQ3foSkp0Qae9kv9DUviyrzdfMMJHrOS0CvkGqDVt7Wp64RoE22JuqT-VOV_6KUk6HzLwNrQqaLduH-YPsYh-bhsKZukT6tGgaYHve0Rmk_en7w7ZKoUDs0jNBHMqkSlkLhcp5A7NC6QyAwloWTKpjBkDlqO5hVzJNHEgcy6sQg4FPM9UUiSPyUZZlW6L0CKWwkJqkZMAL3KAEVojvFolMMQHExHW_0JtV_rmPs3GQgdl5lj73tRDb0bk9VD_Mih7_LbmFiJCG2xorWcnsRfl86Egho4R2elgMrzBLM_9VrlU6E_TA31wmiQfpXirTyLysseRxgHsV2VM6aq21mOJJAF5GI__UEd5LHvlpYg8CSAcvoicFUPGFJ9mHZT-0hh9NJ0cx8gyn_5j_W1yB2-KsNnzGdlolq17joSsgRfdoPsGDnMtOg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoOcCFN23Ky0ionNJuE9txjkDZLrCbQ7sruFkex0GrbpNqN5EQJ34Cv5FfwjjeBC3iIcQlF48T2RnPfGOPvyHkGZO5kQIgZJbZkLFUh9JYE8oUOJdpkvPU3XeeZGI0Y28_8C6b0N2F8fwQ_YabWxmtvXYL3G1IH_5gDb0oC0foiRHCAKOULXKVIdpw8dfxac8gFaP7anPs0WuFDJ15x9s4iA43-2_4pa1CV4hW3UR_-hX03ESyrSsa3iTQDcJnoJwfNDUcmM8_8Tv-1yhvkRtroEpfeM26Ta7Y8g4Jjue2pvt0zSa6oFlH5n-XFK7t25evGOSjuuS08iUHqNHNyq7oha1R3xZzQ93FzPnS7UrSeV-Et6ZVQduje7-FiE30Y1NT0EtXU496Wgt83z0yG76evhqF6yoOoUF0xkMrY5FAanOeQG7RwkAiUhCAxiUVUusjwHa0uJBLkcQWRM64kQijgOWpjIv4Ptkuq9LuElpEghtIDMISYEUOMECDhE8jOUb5oAMSdv9QmTXFuau0sVCenDlSbjZVP5sBed7LX3pyj99K7qJKKI0DXanZWeR4-Vw0iNFjQPZbPenfoJfnLlsu4ep9dqJOpnE8FvylOgvI006RFK5hdzCjS1s1K3UkECcgFGPRH2SkU2ZHvhSQHa-F_RcRtmLUmGDvsNWlvwxGTbLhaYRAc-8f5Z-Qa6PpZKzGb7J3D8h1FOA-9_Mh2a6XjX2E-KyGx-0K_A7bJDFZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVokRAbyrNNeRkJlZXbaWI7zhIo0wLtCLUd0Z3l6zho1GlSzSQSYsUn8I18CdfxJDCIhxCbbGwnsnN877l-nEvIU65yqyQA4447xnlmmLLOMpWBECpLc5H5-85HI3kw5m_OxNkPt_iDPkS_4OZnRmuv_QS_zIud76KhF2Xh9TwxQBhgkLJCrnKJdMLTouNeQCpB79UesUenxTj68k62cRDvLLdfcksrhamQrPpx_vgr5rlMZFtPNFwjputDOIByvt3UsG0__STv-D-dvEluLGgqfR5wdYtcceVtEu1NXE236EJLdEpHnZT_HVL4sq-fv2CIj2DJaRUSDlBrmrmb0wtXI9qmE0v9tczJzK9J0kmfgremVUHbjfuwgIhF9ENTUzAzn1GPBlELfN9dMh6-On15wBY5HJhFbiaYU4lMIXO5SCF3aF8glRlIQNOSSWXMLmA52lvIlUwTBzLnwiokUcDzTCVFco-sllXpNggtYikspBZJCfAiBxigOcKnVQJjfDARYd0v1HYhcO7zbEx1kGaOtR9N3Y9mRJ719S-DtMdva24gIrTBjs71-CT2qnw-FsTYMSJbLUz6N5jZuT8rlwr9frSv90-T5FCKF_okIk86HGmcwX5bxpSuauZ6VyJLQCLG4z_UUR7LXnopIusBhP0XkbRizJhia9ZC6S-d0Uej4XGMNHPzH-s_Jtfe7Q314evR2_vkOpaLcPDzAVmtZ417iOSshkft_PsGG4IwCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diet%E2%80%90induced+obesity+causes+metabolic+impairment+independent+of+alterations+in+gut+barrier+integrity&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=Kless%2C+Caroline&rft.au=M%C3%BCller%2C+Veronika+Maria&rft.au=Sch%C3%BCppel%2C+Valentina+Luise&rft.au=Lichtenegger%2C+Martina&rft.date=2015-05-01&rft.issn=1613-4125&rft.eissn=1613-4133&rft.volume=59&rft.issue=5&rft.spage=968&rft.epage=978&rft_id=info:doi/10.1002%2Fmnfr.201400840&rft.externalDBID=10.1002%252Fmnfr.201400840&rft.externalDocID=MNFR2355 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon |