Hippocampal hyperactivation in presymptomatic familial Alzheimer's disease

Objective The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structura...

Full description

Saved in:
Bibliographic Details
Published inAnnals of neurology Vol. 68; no. 6; pp. 865 - 875
Main Authors Quiroz, Yakeel T., Budson, Andrew E., Celone, Kim, Ruiz, Adriana, Newmark, Randall, Castrillón, Gabriel, Lopera, Francisco, Stern, Chantal E.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.12.2010
Wiley-Liss
Subjects
Online AccessGet full text
ISSN0364-5134
1531-8249
1531-8249
DOI10.1002/ana.22105

Cover

Abstract Objective The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively‐intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin‐1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms. Methods Twenty carriers of the Alzheimer's‐associated E280A PS1 mutation and 19 PS1‐negative control subjects participated. Both groups were matched for age, sex, education level, and neuropsychological test performance. All participants performed a face‐name associative encoding task while in a Phillips 1.5T fMRI scanner. Analysis focused on the hippocampal system. Results Despite identical behavioral performance, presymptomatic PS1 mutation carriers exhibited increased activation of the right anterior hippocampus during encoding of novel face‐name associations compared to matched controls. Interpretation Our results demonstrate that functional changes within the hippocampal memory system occur years before cognitive decline in FAD. These presymptomatic changes in hippocampal physiology in FAD suggest that hippocampal fMRI patterns during associative encoding may also provide a preclinical biomarker in sporadic AD. ANN NEUROL 2010
AbstractList The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively-intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin-1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms. Twenty carriers of the Alzheimer's-associated E280A PS1 mutation and 19 PS1-negative control subjects participated. Both groups were matched for age, sex, education level, and neuropsychological test performance. All participants performed a face-name associative encoding task while in a Phillips 1.5T fMRI scanner. Analysis focused on the hippocampal system. Despite identical behavioral performance, presymptomatic PS1 mutation carriers exhibited increased activation of the right anterior hippocampus during encoding of novel face-name associations compared to matched controls. Our results demonstrate that functional changes within the hippocampal memory system occur years before cognitive decline in FAD. These presymptomatic changes in hippocampal physiology in FAD suggest that hippocampal fMRI patterns during associative encoding may also provide a preclinical biomarker in sporadic AD.
Objective The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively-intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin-1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms. Methods Twenty carriers of the Alzheimer's-associated E280A PS1 mutation and 19 PS1-negative control subjects participated. Both groups were matched for age, sex, education level, and neuropsychological test performance. All participants performed a face-name associative encoding task while in a Phillips 1.5T fMRI scanner. Analysis focused on the hippocampal system. Results Despite identical behavioral performance, presymptomatic PS1 mutation carriers exhibited increased activation of the right anterior hippocampus during encoding of novel face-name associations compared to matched controls. Interpretation Our results demonstrate that functional changes within the hippocampal memory system occur years before cognitive decline in FAD. These presymptomatic changes in hippocampal physiology in FAD suggest that hippocampal fMRI patterns during associative encoding may also provide a preclinical biomarker in sporadic AD. ANN NEUROL 2010
Objective The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively‐intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin‐1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms. Methods Twenty carriers of the Alzheimer's‐associated E280A PS1 mutation and 19 PS1‐negative control subjects participated. Both groups were matched for age, sex, education level, and neuropsychological test performance. All participants performed a face‐name associative encoding task while in a Phillips 1.5T fMRI scanner. Analysis focused on the hippocampal system. Results Despite identical behavioral performance, presymptomatic PS1 mutation carriers exhibited increased activation of the right anterior hippocampus during encoding of novel face‐name associations compared to matched controls. Interpretation Our results demonstrate that functional changes within the hippocampal memory system occur years before cognitive decline in FAD. These presymptomatic changes in hippocampal physiology in FAD suggest that hippocampal fMRI patterns during associative encoding may also provide a preclinical biomarker in sporadic AD. ANN NEUROL 2010
The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively-intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin-1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms.OBJECTIVEThe examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively-intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin-1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms.Twenty carriers of the Alzheimer's-associated E280A PS1 mutation and 19 PS1-negative control subjects participated. Both groups were matched for age, sex, education level, and neuropsychological test performance. All participants performed a face-name associative encoding task while in a Phillips 1.5T fMRI scanner. Analysis focused on the hippocampal system.METHODSTwenty carriers of the Alzheimer's-associated E280A PS1 mutation and 19 PS1-negative control subjects participated. Both groups were matched for age, sex, education level, and neuropsychological test performance. All participants performed a face-name associative encoding task while in a Phillips 1.5T fMRI scanner. Analysis focused on the hippocampal system.Despite identical behavioral performance, presymptomatic PS1 mutation carriers exhibited increased activation of the right anterior hippocampus during encoding of novel face-name associations compared to matched controls.RESULTSDespite identical behavioral performance, presymptomatic PS1 mutation carriers exhibited increased activation of the right anterior hippocampus during encoding of novel face-name associations compared to matched controls.Our results demonstrate that functional changes within the hippocampal memory system occur years before cognitive decline in FAD. These presymptomatic changes in hippocampal physiology in FAD suggest that hippocampal fMRI patterns during associative encoding may also provide a preclinical biomarker in sporadic AD.INTERPRETATIONOur results demonstrate that functional changes within the hippocampal memory system occur years before cognitive decline in FAD. These presymptomatic changes in hippocampal physiology in FAD suggest that hippocampal fMRI patterns during associative encoding may also provide a preclinical biomarker in sporadic AD.
Author Newmark, Randall
Castrillón, Gabriel
Quiroz, Yakeel T.
Lopera, Francisco
Celone, Kim
Budson, Andrew E.
Stern, Chantal E.
Ruiz, Adriana
AuthorAffiliation 4 Center for Translational Cognitive Neuroscience, Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA
5 Instituto de Alta Tecnología Médica (IATM), Medellín, Colombia
3 Department of Neurology, Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA
2 Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
1 Department of Psychology, Center for Memory and Brain, Boston University, Boston, MA
AuthorAffiliation_xml – name: 3 Department of Neurology, Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA
– name: 1 Department of Psychology, Center for Memory and Brain, Boston University, Boston, MA
– name: 4 Center for Translational Cognitive Neuroscience, Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA
– name: 5 Instituto de Alta Tecnología Médica (IATM), Medellín, Colombia
– name: 2 Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
Author_xml – sequence: 1
  givenname: Yakeel T.
  surname: Quiroz
  fullname: Quiroz, Yakeel T.
  email: yquiroz@bu.edu
  organization: From the Department of Psychology, Center for Memory and Brain, Boston University, Boston, MA
– sequence: 2
  givenname: Andrew E.
  surname: Budson
  fullname: Budson, Andrew E.
  organization: Department of Neurology, Boston University Alzheimer's Disease Center, Boston University School of Medicine, Bedford, MA
– sequence: 3
  givenname: Kim
  surname: Celone
  fullname: Celone, Kim
  organization: From the Department of Psychology, Center for Memory and Brain, Boston University, Boston, MA
– sequence: 4
  givenname: Adriana
  surname: Ruiz
  fullname: Ruiz, Adriana
  organization: Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
– sequence: 5
  givenname: Randall
  surname: Newmark
  fullname: Newmark, Randall
  organization: From the Department of Psychology, Center for Memory and Brain, Boston University, Boston, MA
– sequence: 6
  givenname: Gabriel
  surname: Castrillón
  fullname: Castrillón, Gabriel
  organization: Instituto de Alta Tecnología Médica (IATM), Medellín, Colombia
– sequence: 7
  givenname: Francisco
  surname: Lopera
  fullname: Lopera, Francisco
  organization: Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
– sequence: 8
  givenname: Chantal E.
  surname: Stern
  fullname: Stern, Chantal E.
  organization: From the Department of Psychology, Center for Memory and Brain, Boston University, Boston, MA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23725815$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21194156$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEURi1URNPAgj-AZoMqFtP6PZ4NUlRBS18ICUTFxrrx2MTgeWBPCuHX1zRJeQjEypJ9vqN7_e2hna7vLEKPCT4gGNND6OCAUoLFPTQhgpFSUV7voAlmkpeCML6L9lL6hDGuJcEP0C4lpOZEyAk6PfHD0BtoBwjFYjXYCGb01zD6vit8VwzRplU7jH2br0zhoPXBZ3QWvi-sb23cT0Xjk4VkH6L7DkKyjzbnFL17-eLt0Ul5_vr41dHsvDSCC1E2c-FqohjD4BopnSQNY8JZqIigruGCAZO4VgSkyxTwRikpFMVYzXEFmE3R87V3WM5b2xjbjRGCHqJvIa50D17__tL5hf7YX2tGKkE4y4L9jSD2X5Y2jbr1ydgQoLP9MmmlFK4rKfn_SUqZqBWvMvnk16Huptn-dAaebgBIBoKL0BmffnKsokLl8qbocM2Z2KcUrdPGj7d15F180ATrH53r3Lm-7Twnnv2R2Er_xm7sX32wq3-DenY52ybKdcKn0X67S0D8rGXFKqHfXx7rsyty9QG_IfqC3QDxEcnD
CODEN ANNED3
CitedBy_id crossref_primary_10_1016_j_semcdb_2022_03_013
crossref_primary_10_3233_ADR_190139
crossref_primary_10_1038_s41583_023_00731_8
crossref_primary_10_1017_S0317167100013949
crossref_primary_10_1126_science_aac8128
crossref_primary_10_1016_j_bbadis_2011_07_002
crossref_primary_10_3389_fnagi_2022_903269
crossref_primary_10_1016_j_neurobiolaging_2011_09_009
crossref_primary_10_3389_fnins_2021_734001
crossref_primary_10_1212_WNL_0000000000004829
crossref_primary_10_1111_jnc_13230
crossref_primary_10_1186_s13024_017_0228_2
crossref_primary_10_3389_fnsyn_2022_826601
crossref_primary_10_1016_j_jalz_2016_09_010
crossref_primary_10_1016_j_neurobiolaging_2021_03_009
crossref_primary_10_1111_jnc_16066
crossref_primary_10_1186_s13195_019_0572_2
crossref_primary_10_3389_fnagi_2022_1062519
crossref_primary_10_1038_s41380_024_02463_2
crossref_primary_10_1016_j_arr_2017_03_004
crossref_primary_10_1016_j_neuron_2014_10_038
crossref_primary_10_3233_JAD_160803
crossref_primary_10_1002_acn3_50940
crossref_primary_10_7554_eLife_50333
crossref_primary_10_3390_biom13030453
crossref_primary_10_1523_JNEUROSCI_4740_11_2011
crossref_primary_10_1016_j_nicl_2019_101972
crossref_primary_10_1016_j_phrs_2020_104819
crossref_primary_10_3233_ADR_190121
crossref_primary_10_1038_s41598_022_11582_1
crossref_primary_10_3233_JAD_161291
crossref_primary_10_1016_j_neuron_2017_11_028
crossref_primary_10_1523_JNEUROSCI_1397_18_2018
crossref_primary_10_1254_fpj_139_157
crossref_primary_10_1523_JNEUROSCI_2092_14_2015
crossref_primary_10_3390_ijms25010578
crossref_primary_10_1007_s11357_023_01036_5
crossref_primary_10_1016_j_neuropharm_2017_06_021
crossref_primary_10_1016_S1474_4422_12_70228_4
crossref_primary_10_3389_fnmol_2019_00229
crossref_primary_10_1016_j_tjpad_2024_100030
crossref_primary_10_1038_nrn_2016_141
crossref_primary_10_1002_hbm_23357
crossref_primary_10_3389_fphar_2019_01282
crossref_primary_10_1515_joepi_2015_0035
crossref_primary_10_1093_brain_awv048
crossref_primary_10_2217_nmt_13_68
crossref_primary_10_3389_fnagi_2022_913693
crossref_primary_10_3233_JAD_210397
crossref_primary_10_1016_j_jns_2016_01_008
crossref_primary_10_1186_s40478_019_0810_7
crossref_primary_10_1074_mcp_RA119_001737
crossref_primary_10_1002_bies_201500004
crossref_primary_10_1111_jnc_12967
crossref_primary_10_1186_s40478_024_01876_y
crossref_primary_10_1186_s40478_018_0642_x
crossref_primary_10_3389_fnagi_2024_1399098
crossref_primary_10_1111_ejn_15494
crossref_primary_10_3233_JAD_180078
crossref_primary_10_1038_s44319_024_00090_0
crossref_primary_10_1016_j_trci_2018_04_007
crossref_primary_10_1007_s11910_014_0498_9
crossref_primary_10_1016_j_neuroimage_2011_11_075
crossref_primary_10_18231_j_ijpca_2024_019
crossref_primary_10_3390_biom11010051
crossref_primary_10_1007_s12264_022_00985_9
crossref_primary_10_1016_j_celrep_2021_110268
crossref_primary_10_1016_j_jare_2023_01_006
crossref_primary_10_1002_hipo_22395
crossref_primary_10_1007_s00115_015_0041_5
crossref_primary_10_1016_j_jbc_2024_107433
crossref_primary_10_3233_JAD_150214
crossref_primary_10_1038_s41598_020_71587_6
crossref_primary_10_1016_j_jad_2012_11_019
crossref_primary_10_3389_fnagi_2021_720990
crossref_primary_10_1097_WCO_0b013e3283557b36
crossref_primary_10_1016_j_neurobiolaging_2018_05_023
crossref_primary_10_1080_13803395_2012_666230
crossref_primary_10_1186_s13195_020_00702_6
crossref_primary_10_1089_neu_2016_4599
crossref_primary_10_1016_j_bbr_2021_113387
crossref_primary_10_1038_s41598_018_26888_2
crossref_primary_10_3233_JAD_240360
crossref_primary_10_1002_alz_12202
crossref_primary_10_1016_j_paid_2013_10_032
crossref_primary_10_1093_braincomms_fcad245
crossref_primary_10_1098_rstb_2015_0429
crossref_primary_10_1016_j_neuron_2023_08_012
crossref_primary_10_7554_eLife_75316
crossref_primary_10_1007_s00401_019_01976_3
crossref_primary_10_2217_fnl_12_47
crossref_primary_10_1007_s11682_016_9660_0
crossref_primary_10_1016_j_heliyon_2019_e02074
crossref_primary_10_1002_hipo_23676
crossref_primary_10_1016_j_nbd_2013_01_010
crossref_primary_10_1124_molpharm_122_000563
crossref_primary_10_3390_biomedicines11020355
crossref_primary_10_1002_alz_13464
crossref_primary_10_1002_alz_14392
crossref_primary_10_3389_fnmol_2017_00148
crossref_primary_10_1016_j_intell_2014_05_001
crossref_primary_10_1186_s13195_019_0530_z
crossref_primary_10_14336_AD_2022_0219
crossref_primary_10_1038_s41467_024_47028_7
crossref_primary_10_1007_s12035_016_0018_9
crossref_primary_10_1016_j_neuron_2020_07_011
crossref_primary_10_3389_fncir_2017_00102
crossref_primary_10_3390_ijms24087196
crossref_primary_10_1016_j_neurobiolaging_2018_01_022
crossref_primary_10_1007_s12035_017_0540_4
crossref_primary_10_1016_j_isci_2020_101468
crossref_primary_10_3233_JAD_150757
crossref_primary_10_1523_JNEUROSCI_3266_15_2016
crossref_primary_10_3389_fnmol_2020_600084
crossref_primary_10_1002_trc2_12234
crossref_primary_10_1038_s41598_020_60894_7
crossref_primary_10_3389_fncir_2023_1099467
crossref_primary_10_1007_s11357_023_01031_w
crossref_primary_10_1002_jmri_24150
crossref_primary_10_3390_ijms222111637
crossref_primary_10_1016_j_neurobiolaging_2015_08_016
crossref_primary_10_1016_j_neubiorev_2020_12_022
crossref_primary_10_1093_brain_awv007
crossref_primary_10_18632_oncotarget_11353
crossref_primary_10_3389_fninf_2021_630172
crossref_primary_10_1371_journal_pone_0114569
crossref_primary_10_1002_hbm_22141
crossref_primary_10_1523_ENEURO_0426_17_2018
crossref_primary_10_1002_hipo_22080
crossref_primary_10_1038_nrneurol_2012_241
crossref_primary_10_1111_joim_13329
crossref_primary_10_1186_s13195_022_01041_4
crossref_primary_10_1007_s13311_021_01026_5
crossref_primary_10_1586_ern_11_162
crossref_primary_10_1146_annurev_neuro_080317_061725
crossref_primary_10_3390_ijms23116079
crossref_primary_10_1080_14656566_2016_1258060
crossref_primary_10_1016_j_neurol_2012_07_006
crossref_primary_10_1111_ejn_16268
crossref_primary_10_1016_j_conb_2011_10_021
crossref_primary_10_1186_1471_244X_13_76
crossref_primary_10_1016_j_neuron_2014_08_005
crossref_primary_10_1016_j_neuron_2012_03_023
crossref_primary_10_1088_1741_2552_ab71e9
crossref_primary_10_1111_ner_13305
crossref_primary_10_1016_j_cub_2021_05_039
crossref_primary_10_1038_s41386_025_02077_4
crossref_primary_10_1038_s41593_024_01713_4
crossref_primary_10_1111_jnc_12127
crossref_primary_10_1016_j_cub_2020_08_042
crossref_primary_10_1093_brain_awac096
crossref_primary_10_3390_medicina61030547
crossref_primary_10_1212_WNL_0b013e318227b1b0
crossref_primary_10_1016_j_ebiom_2015_09_024
crossref_primary_10_1038_s41380_020_0776_7
crossref_primary_10_1111_acel_13592
crossref_primary_10_3233_JAD_170405
crossref_primary_10_1038_s41467_017_01444_0
crossref_primary_10_1523_ENEURO_0418_20_2020
crossref_primary_10_1016_j_nbd_2024_106473
crossref_primary_10_1016_j_nbd_2022_105980
crossref_primary_10_1038_s43587_023_00402_4
crossref_primary_10_1016_j_nbd_2019_04_010
crossref_primary_10_1016_j_neuron_2020_06_005
crossref_primary_10_1093_jnen_nlae033
crossref_primary_10_3233_JAD_181013
crossref_primary_10_1016_j_arr_2024_102468
crossref_primary_10_1093_cercor_bhab516
crossref_primary_10_1177_10738584211069897
crossref_primary_10_1016_j_neurobiolaging_2014_08_014
crossref_primary_10_1016_j_isci_2024_110629
crossref_primary_10_3390_ijms21239318
crossref_primary_10_1093_braincomms_fcae376
Cites_doi 10.1016/j.neuroimage.2007.07.007
10.1002/(SICI)1098-1004(1997)10:3<186::AID-HUMU2>3.0.CO;2-H
10.1002/1531-8249(20010201)49:2<202::AID-ANA40>3.0.CO;2-3
10.1002/hipo.1048
10.1016/0197-4580(95)00021-6
10.1016/j.pneurobio.2009.07.009
10.1056/NEJM200008173430701
10.1002/ana.410410618
10.1093/arclin/15.6.515
10.1002/hbm.20861
10.1038/349704a0
10.1186/1741-7015-4-1
10.1001/jama.1997.03540340027028
10.1212/01.wnl.0000171450.97464.49
10.1016/S1053-8119(03)00169-1
10.1148/radiol.2401050739
10.1126/science.7638622
10.1093/brain/124.2.399
10.1093/cercor/10.4.433
10.1109/TMI.2002.1009383
10.1016/j.neurobiolaging.2006.08.008
10.1016/j.neuroimage.2006.01.015
10.1155/2009/610392
10.1076/1380-3395(200008)22:4;1-0;FT483
10.1016/j.neuroimage.2004.10.045
10.1002/ana.20163
10.1038/nrn1433
10.1038/ng1095-219
10.1212/WNL.44.5.867
10.1177/153331750301800306
10.1007/b138576
10.1523/JNEUROSCI.2250-06.2006
10.1097/00002093-199809000-00006
10.1016/j.ceca.2005.06.021
10.1136/jnnp.74.1.44
10.1212/01.WNL.0000079052.01016.78
10.1111/j.1749-6632.1993.tb23023.x
10.1038/nature07767
10.1093/brain/awl266
10.1002/hbm.1047
10.1523/JNEUROSCI.3807-04.2004
10.1002/hipo.20338
10.1016/j.neuron.2005.07.013
ContentType Journal Article
Copyright Copyright © 2010 American Neurological Association
2015 INIST-CNRS
2010 American Neurological Association 2010
Copyright_xml – notice: Copyright © 2010 American Neurological Association
– notice: 2015 INIST-CNRS
– notice: 2010 American Neurological Association 2010
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1002/ana.22105
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE
Neurosciences Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8249
EndPage 875
ExternalDocumentID PMC3175143
21194156
23725815
10_1002_ana_22105
ANA22105
ark_67375_WNG_KX1XZ0Q1_M
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P30 AG13846
– fundername: NIA NIH HHS
  grantid: P30 AG013846
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OB
1OC
1ZS
23M
2QL
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEJM
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBMB
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFAZI
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AI.
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJJEV
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
F8P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
GOZPB
GRPMH
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LXL
LXN
LXY
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.-
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TEORI
UB1
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XJT
XPP
XSW
XV2
YOC
YQJ
ZGI
ZRF
ZRR
ZXP
ZZTAW
~IA
~WT
~X8
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
ACRZS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c5455-db5f918330afd66f61d335fea7152fd453a360981a6f833a4d886582008b07a03
IEDL.DBID DR2
ISSN 0364-5134
1531-8249
IngestDate Thu Aug 21 13:38:37 EDT 2025
Fri Sep 05 02:54:00 EDT 2025
Thu Sep 04 22:09:46 EDT 2025
Mon Jul 21 06:06:55 EDT 2025
Wed Apr 02 07:17:09 EDT 2025
Tue Jul 01 02:24:01 EDT 2025
Thu Apr 24 23:10:39 EDT 2025
Wed Aug 20 07:25:12 EDT 2025
Tue Sep 09 05:31:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Familial disease
Nervous system diseases
Alzheimer disease
Central nervous system disease
Central nervous system
Degenerative disease
Hippocampus
Encephalon
Cerebral disorder
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5455-db5f918330afd66f61d335fea7152fd453a360981a6f833a4d886582008b07a03
Notes istex:19ECB9DC40F20B68C6DD6896E845E2DF401AA443
ark:/67375/WNG-KX1XZ0Q1-M
ArticleID:ANA22105
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 21194156
PQID 822359847
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3175143
proquest_miscellaneous_888097664
proquest_miscellaneous_822359847
pubmed_primary_21194156
pascalfrancis_primary_23725815
crossref_citationtrail_10_1002_ana_22105
crossref_primary_10_1002_ana_22105
wiley_primary_10_1002_ana_22105_ANA22105
istex_primary_ark_67375_WNG_KX1XZ0Q1_M
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2010
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: December 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
PublicationTitle Annals of neurology
PublicationTitleAlternate Ann Neurol
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Trivedi MA, Schmitz TW, Ries ML, et al. Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer's disease: a cross-sectional study. BMC Med 2006; 4: 1.
Dickerson BC, Salat D, Bates J, et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol 2004; 56: 27-35.
Aguirre-Acevedo DC, Gómez RD, Moreno S, et al. [Validity and reliability of the CERAD-Col neuropsychological battery]. Rev Neurol 2007; 45: 655-660. [Spanish].
Gonsalves BD, Kahn I, Curran T, et al. Memory strength and repetition suppression: multimodal imaging of medial temporal cortical contributions to recognition. Neuron 2005; 47: 751-761.
Remy F, Mirrashed F, Campbell B, Richter W. Verbal episodic memory impairment in Alzheimer's disease: a combined structural and functional MRI study Neuroimage 2005; 25: 253-266.
Hämäläinen A, Pihlajamäki M, Tanila H, et al. Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol Aging 2007; 28: 1889-1903.
Gainotti G, Marra C, Villa G, et al. Sensitivity and specificity of some neuropsychological markers of Alzheimer dementia. Alzheimer Dis Assoc Disord 1998; 12: 152-162.
Ardila A, Lopera F, Rosselli M, et al. Neuropsychological profile of a large kindred with familial Alzheimer's disease caused by the E280A single presenilin-1 mutation. Arch Clin Neuropsychol 2000; 15: 515-528.
Nestor PJ, Scheltens P, Hodges JR. Advances in the early detection of Alzheimer's disease (Review). Nat Med 2004; 10: S34-S41.
Alzheimer's Disease Collaborative Group. The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nat Genet 1995; 11: 219-222.
Saitoh T, Horsburgh K, Masliah E. Hyperactivation of signal transduction systems in Alzheimer's disease. Ann N Y Acad Sci 1993; 695: 34-41.
Yu JT, Chang RC, Tan L. Calcium dysregulation in Alzheimer's disease: From mechanisms to therapeutic opportunities. (Review). Prog Neurobiol 2009; 89: 240-255.
Rosselli MC, Ardila AC, Moreno SC, et al. Cognitive decline in patients with familial Alzheimer's disease associated with E280A presenilin-1 mutation: a longitudinal study. J Clin Exp Neuropsychol 2000; 22: 483-495.
Celone K, Calhoun VD, Dickerson BC, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: an independent component analysis. J Neurosci 2006; 26: 10222-10231.
Duvernoy HM. The human hippocampus, functional anatomy, vascularization and serial sections with MRI. 3rd ed. Springer, 2005.
Smith IF, Green KN, LaFerla FM. Calcium dysregulation in Alzheimer's disease: recent advances gained from genetically modified animals. Cell Calcium 2005; 38: 427-437.
Hasselmo ME. A computational model of the progression of Alzheimer's disease. MD Comput 1997; 14: 181-189.
Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 2003; 19: 1233-1239.
Schon K, Hasselmo ME, LoPresti ML, et al. Persistence of parahippocampal representation in the absence of stimulus input enhances long-term encoding: a functional magnetic resonance imaging study of subsequent memory after a delayed match-to-sample task. J Neurosci 2004; 24: 11088-11097.
Bobes MA, García YF, Lopera F, et al. ERP generator anomalies in presymptomatic carriers of the Alzheimer's disease E280A PS-1 mutation. Hum Brain Mapp 2010; 31: 247-265.
Gómez-Isla T, Wasco W, Pettingell WP, et al. A novel presenilin-1 mutation: increased beta-amyloid and neurofibrillary changes. Ann Neurol 1997; 41: 809-813.
Braak H, Braak E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging 1995; 16: 271-278.
Nikolaev A, McLaughlin T, O'Leary DD, Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 2009; 457: 981-989.
Lendon CL, Martinez A, Behrens IM, et al. E280A PS1 mutation causes Alzheimer's disease but age of onset is not modified by ApoE alleles. Hum Mutat 1997; 10: 186-195.
Dickerson BC, Miller SL, Greve DN, et al. Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: an event-related functional-anatomic MRI study. Hippocampus 2007; 17: 1060-1070.
Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer's disease. N Engl J Med 2000; 343: 450-456.
Otten LJ, Henson RN, Rugg MD. Depth of processing effects on neural correlates of memory encoding: relationship between findings from across- and within-task comparisons. Brain 2001; 124: 399-412.
Pruessner JC, Li LM, Serles W, et al. Volumetry of hippocampus and amygdala with high-resolution MRI and three dimensional analysis software: minimizing the discrepancies between laboratories. Cerebral Cortex 2000; 10: 433-442.
Petersen RC, Smith GE, Ivnik RJ, et al. Memory function in very early Alzheimer's disease. Neurology 1994; 44: 867-872.
Lopera F, Ardilla A, Martínez A, et al. Clinical features of early-onset Alzheimer disease in a large kindred with an E280A presenilin-1 mutation. JAMA 1997; 277: 793-799.
Arango-Lasprilla JC, Iglesias J, Lopera F. Neuropsychological study of familial Alzheimer's disease caused by mutation E280A in the presenilin 1 gene. Am J Alzheimers Dis Other Demen 2003; 18: 137-146.
Dickerson BC, Sperling RA. Large-scale functional brain network abnormalities in Alzheimer's disease: insights from functional neuroimaging. Behav Neurol 2009; 21: 63-75.
Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006; 31: 1116-1128.
Dickerson BC, Salat DH, Greve DN, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005; 65: 404-411.
Sperling RA, Bates JF, Cocchiarella AJ, et al. Encoding novel face name associations: a functional MRI study. Hum Brain Mapp 2001; 14: 129-139.
Sperling RA, Bates JF, Chua EF, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease. J Neurol Neurosurg Psychiatry 2003; 74: 44-50.
Kordower, JH, Chu YP, Stebbins GT, et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 2001; 49: 202-213.
Freire L, Roche A, Mangin J-Fr. What is the best similarity measure for motion correction in fMRI? IEEE Trans Med Imaging 2002; 21: 470-484.
Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 1991; 349: 704-706.
Stern CE, Sherman SJ, Kirchhoff BA, Hasselmo ME. Medial temporal and prefrontal contributions to working memory tasks with novel and familiar stimuli. Hippocampus 2001; 11: 337-346.
Machulda MM, Ward HA, Borowski B, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer's patients. Neurology 2003; 61: 500-506.
Petrella JR, Krishnan S, Slavin MJ, et al. Mild cognitive impairment: evaluation with 4-T functional MR imaging. Radiology 2006; 240: 177-186.
Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 1995; 18: 973-977.
Mondadori CR, Buchmann A, Mustovic H, et al. Enhanced brain activity may precede the diagnosis of Alzheimer's disease by 30 years. Brain 2006; 129: 2908-2922.
Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007; 38: 95-113.
2007; 17
2009; 89
2001; 124
2010; 31
2006; 31
2009; 21
1995; 16
1997; 41
2000; 22
1995; 11
1997; 277
2004; 24
1994; 44
2005; 65
2005
2003; 18
2001; 49
2006; 4
2003; 19
1995; 18
2003; 74
2009; 457
2005; 25
2007; 38
2005; 47
2004; 10
2007; 28
2000; 15
1997; 10
2000; 10
1997; 14
2004; 56
2002; 21
2006; 26
2006; 240
2000; 343
1991; 349
2001; 11
2003; 61
2005; 38
2006; 129
2007; 45
2001; 14
1998; 12
1993; 695
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_12_2
Aguirre‐Acevedo DC (e_1_2_7_28_2) 2007; 45
e_1_2_7_42_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_45_2
e_1_2_7_46_2
Hasselmo ME (e_1_2_7_47_2) 1997; 14
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
e_1_2_7_39_2
Ann Neurol. 2011 Jul;70(1):187
References_xml – reference: Duvernoy HM. The human hippocampus, functional anatomy, vascularization and serial sections with MRI. 3rd ed. Springer, 2005.
– reference: Sperling RA, Bates JF, Chua EF, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease. J Neurol Neurosurg Psychiatry 2003; 74: 44-50.
– reference: Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 2003; 19: 1233-1239.
– reference: Saitoh T, Horsburgh K, Masliah E. Hyperactivation of signal transduction systems in Alzheimer's disease. Ann N Y Acad Sci 1993; 695: 34-41.
– reference: Lopera F, Ardilla A, Martínez A, et al. Clinical features of early-onset Alzheimer disease in a large kindred with an E280A presenilin-1 mutation. JAMA 1997; 277: 793-799.
– reference: Petrella JR, Krishnan S, Slavin MJ, et al. Mild cognitive impairment: evaluation with 4-T functional MR imaging. Radiology 2006; 240: 177-186.
– reference: Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006; 31: 1116-1128.
– reference: Trivedi MA, Schmitz TW, Ries ML, et al. Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer's disease: a cross-sectional study. BMC Med 2006; 4: 1.
– reference: Freire L, Roche A, Mangin J-Fr. What is the best similarity measure for motion correction in fMRI? IEEE Trans Med Imaging 2002; 21: 470-484.
– reference: Remy F, Mirrashed F, Campbell B, Richter W. Verbal episodic memory impairment in Alzheimer's disease: a combined structural and functional MRI study Neuroimage 2005; 25: 253-266.
– reference: Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 1995; 18: 973-977.
– reference: Petersen RC, Smith GE, Ivnik RJ, et al. Memory function in very early Alzheimer's disease. Neurology 1994; 44: 867-872.
– reference: Lendon CL, Martinez A, Behrens IM, et al. E280A PS1 mutation causes Alzheimer's disease but age of onset is not modified by ApoE alleles. Hum Mutat 1997; 10: 186-195.
– reference: Yu JT, Chang RC, Tan L. Calcium dysregulation in Alzheimer's disease: From mechanisms to therapeutic opportunities. (Review). Prog Neurobiol 2009; 89: 240-255.
– reference: Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007; 38: 95-113.
– reference: Aguirre-Acevedo DC, Gómez RD, Moreno S, et al. [Validity and reliability of the CERAD-Col neuropsychological battery]. Rev Neurol 2007; 45: 655-660. [Spanish].
– reference: Otten LJ, Henson RN, Rugg MD. Depth of processing effects on neural correlates of memory encoding: relationship between findings from across- and within-task comparisons. Brain 2001; 124: 399-412.
– reference: Dickerson BC, Sperling RA. Large-scale functional brain network abnormalities in Alzheimer's disease: insights from functional neuroimaging. Behav Neurol 2009; 21: 63-75.
– reference: Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 1991; 349: 704-706.
– reference: Gómez-Isla T, Wasco W, Pettingell WP, et al. A novel presenilin-1 mutation: increased beta-amyloid and neurofibrillary changes. Ann Neurol 1997; 41: 809-813.
– reference: Celone K, Calhoun VD, Dickerson BC, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: an independent component analysis. J Neurosci 2006; 26: 10222-10231.
– reference: Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer's disease. N Engl J Med 2000; 343: 450-456.
– reference: Pruessner JC, Li LM, Serles W, et al. Volumetry of hippocampus and amygdala with high-resolution MRI and three dimensional analysis software: minimizing the discrepancies between laboratories. Cerebral Cortex 2000; 10: 433-442.
– reference: Schon K, Hasselmo ME, LoPresti ML, et al. Persistence of parahippocampal representation in the absence of stimulus input enhances long-term encoding: a functional magnetic resonance imaging study of subsequent memory after a delayed match-to-sample task. J Neurosci 2004; 24: 11088-11097.
– reference: Gonsalves BD, Kahn I, Curran T, et al. Memory strength and repetition suppression: multimodal imaging of medial temporal cortical contributions to recognition. Neuron 2005; 47: 751-761.
– reference: Machulda MM, Ward HA, Borowski B, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer's patients. Neurology 2003; 61: 500-506.
– reference: Mondadori CR, Buchmann A, Mustovic H, et al. Enhanced brain activity may precede the diagnosis of Alzheimer's disease by 30 years. Brain 2006; 129: 2908-2922.
– reference: Rosselli MC, Ardila AC, Moreno SC, et al. Cognitive decline in patients with familial Alzheimer's disease associated with E280A presenilin-1 mutation: a longitudinal study. J Clin Exp Neuropsychol 2000; 22: 483-495.
– reference: Hämäläinen A, Pihlajamäki M, Tanila H, et al. Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol Aging 2007; 28: 1889-1903.
– reference: Bobes MA, García YF, Lopera F, et al. ERP generator anomalies in presymptomatic carriers of the Alzheimer's disease E280A PS-1 mutation. Hum Brain Mapp 2010; 31: 247-265.
– reference: Sperling RA, Bates JF, Cocchiarella AJ, et al. Encoding novel face name associations: a functional MRI study. Hum Brain Mapp 2001; 14: 129-139.
– reference: Braak H, Braak E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging 1995; 16: 271-278.
– reference: Nestor PJ, Scheltens P, Hodges JR. Advances in the early detection of Alzheimer's disease (Review). Nat Med 2004; 10: S34-S41.
– reference: Dickerson BC, Miller SL, Greve DN, et al. Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: an event-related functional-anatomic MRI study. Hippocampus 2007; 17: 1060-1070.
– reference: Alzheimer's Disease Collaborative Group. The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nat Genet 1995; 11: 219-222.
– reference: Stern CE, Sherman SJ, Kirchhoff BA, Hasselmo ME. Medial temporal and prefrontal contributions to working memory tasks with novel and familiar stimuli. Hippocampus 2001; 11: 337-346.
– reference: Gainotti G, Marra C, Villa G, et al. Sensitivity and specificity of some neuropsychological markers of Alzheimer dementia. Alzheimer Dis Assoc Disord 1998; 12: 152-162.
– reference: Smith IF, Green KN, LaFerla FM. Calcium dysregulation in Alzheimer's disease: recent advances gained from genetically modified animals. Cell Calcium 2005; 38: 427-437.
– reference: Arango-Lasprilla JC, Iglesias J, Lopera F. Neuropsychological study of familial Alzheimer's disease caused by mutation E280A in the presenilin 1 gene. Am J Alzheimers Dis Other Demen 2003; 18: 137-146.
– reference: Nikolaev A, McLaughlin T, O'Leary DD, Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 2009; 457: 981-989.
– reference: Hasselmo ME. A computational model of the progression of Alzheimer's disease. MD Comput 1997; 14: 181-189.
– reference: Dickerson BC, Salat DH, Greve DN, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005; 65: 404-411.
– reference: Ardila A, Lopera F, Rosselli M, et al. Neuropsychological profile of a large kindred with familial Alzheimer's disease caused by the E280A single presenilin-1 mutation. Arch Clin Neuropsychol 2000; 15: 515-528.
– reference: Kordower, JH, Chu YP, Stebbins GT, et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 2001; 49: 202-213.
– reference: Dickerson BC, Salat D, Bates J, et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol 2004; 56: 27-35.
– volume: 44
  start-page: 867
  year: 1994
  end-page: 872
  article-title: Memory function in very early Alzheimer's disease
  publication-title: Neurology
– volume: 61
  start-page: 500
  year: 2003
  end-page: 506
  article-title: Comparison of memory fMRI response among normal, MCI, and Alzheimer's patients
  publication-title: Neurology
– volume: 41
  start-page: 809
  year: 1997
  end-page: 813
  article-title: A novel presenilin‐1 mutation: increased beta‐amyloid and neurofibrillary changes
  publication-title: Ann Neurol
– volume: 10
  start-page: 433
  year: 2000
  end-page: 442
  article-title: Volumetry of hippocampus and amygdala with high‐resolution MRI and three dimensional analysis software: minimizing the discrepancies between laboratories
  publication-title: Cerebral Cortex
– volume: 21
  start-page: 470
  year: 2002
  end-page: 484
  article-title: What is the best similarity measure for motion correction in fMRI?
  publication-title: IEEE Trans Med Imaging
– volume: 349
  start-page: 704
  year: 1991
  end-page: 706
  article-title: Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease
  publication-title: Nature
– year: 2005
– volume: 11
  start-page: 337
  year: 2001
  end-page: 346
  article-title: Medial temporal and prefrontal contributions to working memory tasks with novel and familiar stimuli
  publication-title: Hippocampus
– volume: 89
  start-page: 240
  year: 2009
  end-page: 255
  article-title: Calcium dysregulation in Alzheimer's disease: From mechanisms to therapeutic opportunities
  publication-title: (Review). Prog Neurobiol
– volume: 26
  start-page: 10222
  year: 2006
  end-page: 10231
  article-title: Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: an independent component analysis
  publication-title: J Neurosci
– volume: 49
  start-page: 202
  year: 2001
  end-page: 213
  article-title: Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment
  publication-title: Ann Neurol
– volume: 24
  start-page: 11088
  year: 2004
  end-page: 11097
  article-title: Persistence of parahippocampal representation in the absence of stimulus input enhances long‐term encoding: a functional magnetic resonance imaging study of subsequent memory after a delayed match‐to‐sample task
  publication-title: J Neurosci
– volume: 38
  start-page: 427
  year: 2005
  end-page: 437
  article-title: Calcium dysregulation in Alzheimer's disease: recent advances gained from genetically modified animals
  publication-title: Cell Calcium
– volume: 74
  start-page: 44
  year: 2003
  end-page: 50
  article-title: fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 38
  start-page: 95
  year: 2007
  end-page: 113
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
– volume: 47
  start-page: 751
  year: 2005
  end-page: 761
  article-title: Memory strength and repetition suppression: multimodal imaging of medial temporal cortical contributions to recognition
  publication-title: Neuron
– volume: 22
  start-page: 483
  year: 2000
  end-page: 495
  article-title: Cognitive decline in patients with familial Alzheimer's disease associated with E280A presenilin‐1 mutation: a longitudinal study
  publication-title: J Clin Exp Neuropsychol
– volume: 10
  start-page: S34
  year: 2004
  end-page: S41
  article-title: Advances in the early detection of Alzheimer's disease (Review)
  publication-title: Nat Med
– volume: 19
  start-page: 1233
  year: 2003
  end-page: 1239
  article-title: An automated method for neuroanatomic and cytoarchitectonic atlas‐based interrogation of fMRI data sets
  publication-title: Neuroimage
– volume: 10
  start-page: 186
  year: 1997
  end-page: 195
  article-title: E280A PS1 mutation causes Alzheimer's disease but age of onset is not modified by ApoE alleles
  publication-title: Hum Mutat
– volume: 4
  start-page: 1
  year: 2006
  article-title: Reduced hippocampal activation during episodic encoding in middle‐aged individuals at genetic risk of Alzheimer's disease: a cross‐sectional study
  publication-title: BMC Med
– volume: 65
  start-page: 404
  year: 2005
  end-page: 411
  article-title: Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD
  publication-title: Neurology
– volume: 56
  start-page: 27
  year: 2004
  end-page: 35
  article-title: Medial temporal lobe function and structure in mild cognitive impairment
  publication-title: Ann Neurol
– volume: 21
  start-page: 63
  year: 2009
  end-page: 75
  article-title: Large‐scale functional brain network abnormalities in Alzheimer's disease: insights from functional neuroimaging
  publication-title: Behav Neurol
– volume: 457
  start-page: 981
  year: 2009
  end-page: 989
  article-title: APP binds DR6 to trigger axon pruning and neuron death via distinct caspases
  publication-title: Nature
– volume: 15
  start-page: 515
  year: 2000
  end-page: 528
  article-title: Neuropsychological profile of a large kindred with familial Alzheimer's disease caused by the E280A single presenilin‐1 mutation
  publication-title: Arch Clin Neuropsychol
– volume: 12
  start-page: 152
  year: 1998
  end-page: 162
  article-title: Sensitivity and specificity of some neuropsychological markers of Alzheimer dementia
  publication-title: Alzheimer Dis Assoc Disord
– volume: 240
  start-page: 177
  year: 2006
  end-page: 186
  article-title: Mild cognitive impairment: evaluation with 4‐T functional MR imaging
  publication-title: Radiology
– volume: 28
  start-page: 1889
  year: 2007
  end-page: 1903
  article-title: Increased fMRI responses during encoding in mild cognitive impairment
  publication-title: Neurobiol Aging
– volume: 11
  start-page: 219
  year: 1995
  end-page: 222
  article-title: The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families
  publication-title: Nat Genet
– volume: 18
  start-page: 137
  year: 2003
  end-page: 146
  article-title: Neuropsychological study of familial Alzheimer's disease caused by mutation E280A in the presenilin 1 gene
  publication-title: Am J Alzheimers Dis Other Demen
– volume: 14
  start-page: 129
  year: 2001
  end-page: 139
  article-title: Encoding novel face name associations: a functional MRI study
  publication-title: Hum Brain Mapp
– volume: 25
  start-page: 253
  year: 2005
  end-page: 266
  article-title: Verbal episodic memory impairment in Alzheimer's disease: a combined structural and functional MRI study
  publication-title: Neuroimage
– volume: 129
  start-page: 2908
  year: 2006
  end-page: 2922
  article-title: Enhanced brain activity may precede the diagnosis of Alzheimer's disease by 30 years
  publication-title: Brain
– volume: 17
  start-page: 1060
  year: 2007
  end-page: 1070
  article-title: Prefrontal‐hippocampal‐fusiform activity during encoding predicts intraindividual differences in free recall ability: an event‐related functional‐anatomic MRI study
  publication-title: Hippocampus
– volume: 695
  start-page: 34
  year: 1993
  end-page: 41
  article-title: Hyperactivation of signal transduction systems in Alzheimer's disease
  publication-title: Ann N Y Acad Sci
– volume: 31
  start-page: 247
  year: 2010
  end-page: 265
  article-title: ERP generator anomalies in presymptomatic carriers of the Alzheimer's disease E280A PS‐1 mutation
  publication-title: Hum Brain Mapp
– volume: 14
  start-page: 181
  year: 1997
  end-page: 189
  article-title: A computational model of the progression of Alzheimer's disease
  publication-title: MD Comput
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
– volume: 45
  start-page: 655
  year: 2007
  end-page: 660
  article-title: [Validity and reliability of the CERAD‐Col neuropsychological battery]
  publication-title: Rev Neurol
– volume: 16
  start-page: 271
  year: 1995
  end-page: 278
  article-title: Staging of Alzheimer's disease‐related neurofibrillary changes
  publication-title: Neurobiol Aging
– volume: 124
  start-page: 399
  year: 2001
  end-page: 412
  article-title: Depth of processing effects on neural correlates of memory encoding: relationship between findings from across‐ and within‐task comparisons
  publication-title: Brain
– volume: 343
  start-page: 450
  year: 2000
  end-page: 456
  article-title: Patterns of brain activation in people at risk for Alzheimer's disease
  publication-title: N Engl J Med
– volume: 277
  start-page: 793
  year: 1997
  end-page: 799
  article-title: Clinical features of early‐onset Alzheimer disease in a large kindred with an E280A presenilin‐1 mutation
  publication-title: JAMA
– volume: 18
  start-page: 973
  year: 1995
  end-page: 977
  article-title: Candidate gene for the chromosome 1 familial Alzheimer's disease locus
  publication-title: Science
– ident: e_1_2_7_31_2
  doi: 10.1016/j.neuroimage.2007.07.007
– ident: e_1_2_7_2_2
– ident: e_1_2_7_27_2
  doi: 10.1002/(SICI)1098-1004(1997)10:3<186::AID-HUMU2>3.0.CO;2-H
– ident: e_1_2_7_15_2
  doi: 10.1002/1531-8249(20010201)49:2<202::AID-ANA40>3.0.CO;2-3
– ident: e_1_2_7_39_2
  doi: 10.1002/hipo.1048
– ident: e_1_2_7_38_2
  doi: 10.1016/0197-4580(95)00021-6
– ident: e_1_2_7_43_2
  doi: 10.1016/j.pneurobio.2009.07.009
– ident: e_1_2_7_25_2
  doi: 10.1056/NEJM200008173430701
– ident: e_1_2_7_9_2
  doi: 10.1002/ana.410410618
– ident: e_1_2_7_10_2
  doi: 10.1093/arclin/15.6.515
– ident: e_1_2_7_8_2
  doi: 10.1002/hbm.20861
– ident: e_1_2_7_3_2
  doi: 10.1038/349704a0
– ident: e_1_2_7_32_2
  doi: 10.1186/1741-7015-4-1
– volume: 14
  start-page: 181
  year: 1997
  ident: e_1_2_7_47_2
  article-title: A computational model of the progression of Alzheimer's disease
  publication-title: MD Comput
– ident: e_1_2_7_6_2
  doi: 10.1001/jama.1997.03540340027028
– ident: e_1_2_7_23_2
  doi: 10.1212/01.wnl.0000171450.97464.49
– ident: e_1_2_7_34_2
  doi: 10.1016/S1053-8119(03)00169-1
– ident: e_1_2_7_22_2
  doi: 10.1148/radiol.2401050739
– ident: e_1_2_7_4_2
  doi: 10.1126/science.7638622
– ident: e_1_2_7_42_2
  doi: 10.1093/brain/124.2.399
– ident: e_1_2_7_36_2
  doi: 10.1093/cercor/10.4.433
– volume: 45
  start-page: 655
  year: 2007
  ident: e_1_2_7_28_2
  article-title: [Validity and reliability of the CERAD‐Col neuropsychological battery]
  publication-title: Rev Neurol
– ident: e_1_2_7_30_2
  doi: 10.1109/TMI.2002.1009383
– ident: e_1_2_7_24_2
  doi: 10.1016/j.neurobiolaging.2006.08.008
– ident: e_1_2_7_35_2
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: e_1_2_7_18_2
  doi: 10.1155/2009/610392
– ident: e_1_2_7_11_2
  doi: 10.1076/1380-3395(200008)22:4;1-0;FT483
– ident: e_1_2_7_14_2
  doi: 10.1016/j.neuroimage.2004.10.045
– ident: e_1_2_7_19_2
  doi: 10.1002/ana.20163
– ident: e_1_2_7_20_2
  doi: 10.1038/nrn1433
– ident: e_1_2_7_5_2
  doi: 10.1038/ng1095-219
– ident: e_1_2_7_12_2
  doi: 10.1212/WNL.44.5.867
– ident: e_1_2_7_7_2
  doi: 10.1177/153331750301800306
– ident: e_1_2_7_37_2
  doi: 10.1007/b138576
– ident: e_1_2_7_17_2
  doi: 10.1523/JNEUROSCI.2250-06.2006
– ident: e_1_2_7_13_2
  doi: 10.1097/00002093-199809000-00006
– ident: e_1_2_7_44_2
  doi: 10.1016/j.ceca.2005.06.021
– ident: e_1_2_7_16_2
  doi: 10.1136/jnnp.74.1.44
– ident: e_1_2_7_21_2
  doi: 10.1212/01.WNL.0000079052.01016.78
– ident: e_1_2_7_45_2
  doi: 10.1111/j.1749-6632.1993.tb23023.x
– ident: e_1_2_7_46_2
  doi: 10.1038/nature07767
– ident: e_1_2_7_26_2
  doi: 10.1093/brain/awl266
– ident: e_1_2_7_29_2
  doi: 10.1002/hbm.1047
– ident: e_1_2_7_40_2
  doi: 10.1523/JNEUROSCI.3807-04.2004
– ident: e_1_2_7_33_2
  doi: 10.1002/hipo.20338
– ident: e_1_2_7_41_2
  doi: 10.1016/j.neuron.2005.07.013
– reference: - Ann Neurol. 2011 Jul;70(1):187
SSID ssj0009610
Score 2.4447477
Snippet Objective The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique...
The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for...
Objective The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 865
SubjectTerms Adult
Alzheimer Disease - genetics
Alzheimer Disease - pathology
Alzheimer Disease - physiopathology
Association Learning - physiology
Biological and medical sciences
Brain Mapping
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Disease Progression
Female
Functional Laterality - physiology
Hippocampus - blood supply
Hippocampus - physiopathology
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Medical sciences
Middle Aged
Mutation - genetics
Neurology
Neuropsychological Tests
Oxygen - blood
Presenilin-1 - genetics
Recognition, Psychology
Young Adult
Title Hippocampal hyperactivation in presymptomatic familial Alzheimer's disease
URI https://api.istex.fr/ark:/67375/WNG-KX1XZ0Q1-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.22105
https://www.ncbi.nlm.nih.gov/pubmed/21194156
https://www.proquest.com/docview/822359847
https://www.proquest.com/docview/888097664
https://pubmed.ncbi.nlm.nih.gov/PMC3175143
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lheKL1vp1rZZFRH3Z62azyW7w6bDWo3IHisVDhDC7m3BLr3vHfUDbv95J9uN6WkV8C-xsIJPJ5JfM5DeEvOIZukaTBL4BGfkRYAsynvkyk1pTxoPUVWsYDEX_PDob8dEWede8han4IdoLN7synL-2CxzSxfGaNBRK6IZ4YLEPzCkTljf_5MuaOkoKx0Rgw2w-pyxqWIWC8Lj9c2Mv2rFqvbK5kbBA9ZiqrsVdwPP3_MnbuNZtTKcPyI9mSFU-ykV3tUy72c0vbI__OeY9cr8GrF6vsrCHZEuX-2R3UIfkH5GzfjGb4YaIbmXijfFU655dVRe9XlF6NtH2-nK2nDpuWM9dqBS2w8nNWBeXev5m4dVRosfk_PTD1_d9vy7Q4GcIvLifp9xI9AksAJMLYQTNGeNGQ4yowOQRZ8BEIBMKwqAURHmSIOKxKRdpEEPAnpDtclrqZ8QLc6MzE0qQSYpiVPIURM4RjGA7ZlGHvG2mSmU1e7ktojFRFe9yqFA3yummQ162orOKsuMuodduvlsJmF_YHLeYq2_Dj-rTiI6-B5-pGnTI0YZBtD-ELA55QrEnr7EQhUvTxlug1NPVQiH2svyIUfwXEXSfCAgFju9pZVPr_imV9nTdIfGGtbUClhh880tZjB1BuMWEiINRZ86Y_qwF1Rv2XOPg30UPyb2wTel5TraX85V-gcBsmR65FfgTddkztg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NTQK-8H6Ux4gQAr6ki-PYiSW-VMAo21oJtIlqErKcxFajdWnVhwT76zk7j1IYCPHNUi6WfL47_84-_wzwgmUYGk0S-EaJyI8UtlTGMl9kQmtCWZC61xoGQ94_iQ5GbLQFb5q7MBU_RLvhZj3DxWvr4HZDem_NGqpK1Q0xY2FXYCdCoGFTr3ef1-RRgjsuAnvQ5jNCo4ZXKAj32l83VqMdq9hvtjpSLVBBpnrZ4jLo-XsF5c_I1i1N-zfhazOoqiLlrLtapt3s4he-x_8d9S24UWNWr1cZ2W3Y0uUduDqoT-XvwkG_mM1wTcTIMvHGmNi6m1fVXq9XlJ6ttf1-PltOHT2s5_ZUCtvh5GKsi3M9f7Xw6oOie3Cy__74bd-v32jwM8RezM9TZgSGBRook3NuOMkpZUarGIGBySNGFeWBSIjiBqVUlCcJgh5bdZEGsQrofdgup6V-CF6YG52ZUCiRpChGBEsVzxniEWzHNOrA62auZFYTmNt3NCayol4OJepGOt104HkrOqtYOy4TeukmvJVQ8zNb5hYz-WX4QR6OyOg0-ETkoAO7GxbR_hDSOGQJwZ68xkQkeqc9clGlnq4WEuGXpUiM4r-IYARFTMhxfA8qo1r3T4iwCXYH4g1zawUsN_jml7IYO45wCwsRCqPOnDX9WQuyN-y5xqN_F30G1_rHgyN59HF4-Biuh22FzxPYXs5X-initGW669zxB5hSN9U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NTZr4wvtRHiNCCPiSLo5jJxafKqCUjVaAmKgQkuUkthqtS6M-JNhfz9lpUgoDIb5ZysWSz-fzz77z7wCesAxdo0kC3ygR-ZHClspY5otMaE0oC1JXrWE44oOT6GjMxjvwonkLU_NDtBdudmU4f20XeJWbww1pqCpVN8QDC7sEexFHJGER0ccNd5TgjorAxtl8RmjU0AoF4WH769ZmtGf1-s0mR6oF6sfUhS0uQp6_J1D-DGzdztS_Cl-bMdUJKafd1TLtZue_0D3-56CvwZU1YvV6tYldhx1d3oD94TomfxOOBkVV4Y6IfmXqTfBY695d1Te9XlF6NtP2-1m1nDlyWM_dqBS2w-n5RBdnev5s4a3DRLfgpP_608uBv67Q4GeIvJifp8wIdAo0UCbn3HCSU8qMVjHCApNHjCrKA5EQxQ1KqShPEoQ8NuciDWIV0NuwW85KfRe8MDc6M6FQIklRjAiWKp4zRCPYjmnUgefNVMlsTV9uq2hMZU28HErUjXS66cDjVrSqOTsuEnrq5ruVUPNTm-QWM_l59EYej8n4S_CByGEHDrYMov0hpHHIEoI9eY2FSFybNuCiSj1bLSSCL0uQGMV_EUH_iYiQ4_ju1Da16Z8QYY_XHYi3rK0VsMzg21_KYuIYwi0oRCCMOnPG9GctyN6o5xr3_l30Eey_f9WX796Oju_D5bBN73kAu8v5Sj9EkLZMD9xi_AHLuTaE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hippocampal+hyperactivation+in+presymptomatic+familial+Alzheimer%27s+disease&rft.jtitle=Annals+of+neurology&rft.au=Quiroz%2C+Yakeel+T.&rft.au=Budson%2C+Andrew+E.&rft.au=Celone%2C+Kim&rft.au=Ruiz%2C+Adriana&rft.date=2010-12-01&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=68&rft.issue=6&rft.spage=865&rft.epage=875&rft_id=info:doi/10.1002%2Fana.22105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ana_22105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon