Hippocampal hyperactivation in presymptomatic familial Alzheimer's disease
Objective The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structura...
Saved in:
Published in | Annals of neurology Vol. 68; no. 6; pp. 865 - 875 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.12.2010
Wiley-Liss |
Subjects | |
Online Access | Get full text |
ISSN | 0364-5134 1531-8249 1531-8249 |
DOI | 10.1002/ana.22105 |
Cover
Abstract | Objective
The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively‐intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin‐1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms.
Methods
Twenty carriers of the Alzheimer's‐associated E280A PS1 mutation and 19 PS1‐negative control subjects participated. Both groups were matched for age, sex, education level, and neuropsychological test performance. All participants performed a face‐name associative encoding task while in a Phillips 1.5T fMRI scanner. Analysis focused on the hippocampal system.
Results
Despite identical behavioral performance, presymptomatic PS1 mutation carriers exhibited increased activation of the right anterior hippocampus during encoding of novel face‐name associations compared to matched controls.
Interpretation
Our results demonstrate that functional changes within the hippocampal memory system occur years before cognitive decline in FAD. These presymptomatic changes in hippocampal physiology in FAD suggest that hippocampal fMRI patterns during associative encoding may also provide a preclinical biomarker in sporadic AD. ANN NEUROL 2010 |
---|---|
AbstractList | The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively-intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin-1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms.
Twenty carriers of the Alzheimer's-associated E280A PS1 mutation and 19 PS1-negative control subjects participated. Both groups were matched for age, sex, education level, and neuropsychological test performance. All participants performed a face-name associative encoding task while in a Phillips 1.5T fMRI scanner. Analysis focused on the hippocampal system.
Despite identical behavioral performance, presymptomatic PS1 mutation carriers exhibited increased activation of the right anterior hippocampus during encoding of novel face-name associations compared to matched controls.
Our results demonstrate that functional changes within the hippocampal memory system occur years before cognitive decline in FAD. These presymptomatic changes in hippocampal physiology in FAD suggest that hippocampal fMRI patterns during associative encoding may also provide a preclinical biomarker in sporadic AD. Objective The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively-intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin-1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms. Methods Twenty carriers of the Alzheimer's-associated E280A PS1 mutation and 19 PS1-negative control subjects participated. Both groups were matched for age, sex, education level, and neuropsychological test performance. All participants performed a face-name associative encoding task while in a Phillips 1.5T fMRI scanner. Analysis focused on the hippocampal system. Results Despite identical behavioral performance, presymptomatic PS1 mutation carriers exhibited increased activation of the right anterior hippocampus during encoding of novel face-name associations compared to matched controls. Interpretation Our results demonstrate that functional changes within the hippocampal memory system occur years before cognitive decline in FAD. These presymptomatic changes in hippocampal physiology in FAD suggest that hippocampal fMRI patterns during associative encoding may also provide a preclinical biomarker in sporadic AD. ANN NEUROL 2010 Objective The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively‐intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin‐1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms. Methods Twenty carriers of the Alzheimer's‐associated E280A PS1 mutation and 19 PS1‐negative control subjects participated. Both groups were matched for age, sex, education level, and neuropsychological test performance. All participants performed a face‐name associative encoding task while in a Phillips 1.5T fMRI scanner. Analysis focused on the hippocampal system. Results Despite identical behavioral performance, presymptomatic PS1 mutation carriers exhibited increased activation of the right anterior hippocampus during encoding of novel face‐name associations compared to matched controls. Interpretation Our results demonstrate that functional changes within the hippocampal memory system occur years before cognitive decline in FAD. These presymptomatic changes in hippocampal physiology in FAD suggest that hippocampal fMRI patterns during associative encoding may also provide a preclinical biomarker in sporadic AD. ANN NEUROL 2010 The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively-intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin-1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms.OBJECTIVEThe examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively-intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin-1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms.Twenty carriers of the Alzheimer's-associated E280A PS1 mutation and 19 PS1-negative control subjects participated. Both groups were matched for age, sex, education level, and neuropsychological test performance. All participants performed a face-name associative encoding task while in a Phillips 1.5T fMRI scanner. Analysis focused on the hippocampal system.METHODSTwenty carriers of the Alzheimer's-associated E280A PS1 mutation and 19 PS1-negative control subjects participated. Both groups were matched for age, sex, education level, and neuropsychological test performance. All participants performed a face-name associative encoding task while in a Phillips 1.5T fMRI scanner. Analysis focused on the hippocampal system.Despite identical behavioral performance, presymptomatic PS1 mutation carriers exhibited increased activation of the right anterior hippocampus during encoding of novel face-name associations compared to matched controls.RESULTSDespite identical behavioral performance, presymptomatic PS1 mutation carriers exhibited increased activation of the right anterior hippocampus during encoding of novel face-name associations compared to matched controls.Our results demonstrate that functional changes within the hippocampal memory system occur years before cognitive decline in FAD. These presymptomatic changes in hippocampal physiology in FAD suggest that hippocampal fMRI patterns during associative encoding may also provide a preclinical biomarker in sporadic AD.INTERPRETATIONOur results demonstrate that functional changes within the hippocampal memory system occur years before cognitive decline in FAD. These presymptomatic changes in hippocampal physiology in FAD suggest that hippocampal fMRI patterns during associative encoding may also provide a preclinical biomarker in sporadic AD. |
Author | Newmark, Randall Castrillón, Gabriel Quiroz, Yakeel T. Lopera, Francisco Celone, Kim Budson, Andrew E. Stern, Chantal E. Ruiz, Adriana |
AuthorAffiliation | 4 Center for Translational Cognitive Neuroscience, Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 5 Instituto de Alta Tecnología Médica (IATM), Medellín, Colombia 3 Department of Neurology, Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA 2 Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia 1 Department of Psychology, Center for Memory and Brain, Boston University, Boston, MA |
AuthorAffiliation_xml | – name: 3 Department of Neurology, Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA – name: 1 Department of Psychology, Center for Memory and Brain, Boston University, Boston, MA – name: 4 Center for Translational Cognitive Neuroscience, Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA – name: 5 Instituto de Alta Tecnología Médica (IATM), Medellín, Colombia – name: 2 Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia |
Author_xml | – sequence: 1 givenname: Yakeel T. surname: Quiroz fullname: Quiroz, Yakeel T. email: yquiroz@bu.edu organization: From the Department of Psychology, Center for Memory and Brain, Boston University, Boston, MA – sequence: 2 givenname: Andrew E. surname: Budson fullname: Budson, Andrew E. organization: Department of Neurology, Boston University Alzheimer's Disease Center, Boston University School of Medicine, Bedford, MA – sequence: 3 givenname: Kim surname: Celone fullname: Celone, Kim organization: From the Department of Psychology, Center for Memory and Brain, Boston University, Boston, MA – sequence: 4 givenname: Adriana surname: Ruiz fullname: Ruiz, Adriana organization: Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia – sequence: 5 givenname: Randall surname: Newmark fullname: Newmark, Randall organization: From the Department of Psychology, Center for Memory and Brain, Boston University, Boston, MA – sequence: 6 givenname: Gabriel surname: Castrillón fullname: Castrillón, Gabriel organization: Instituto de Alta Tecnología Médica (IATM), Medellín, Colombia – sequence: 7 givenname: Francisco surname: Lopera fullname: Lopera, Francisco organization: Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia – sequence: 8 givenname: Chantal E. surname: Stern fullname: Stern, Chantal E. organization: From the Department of Psychology, Center for Memory and Brain, Boston University, Boston, MA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23725815$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21194156$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEURi1URNPAgj-AZoMqFtP6PZ4NUlRBS18ICUTFxrrx2MTgeWBPCuHX1zRJeQjEypJ9vqN7_e2hna7vLEKPCT4gGNND6OCAUoLFPTQhgpFSUV7voAlmkpeCML6L9lL6hDGuJcEP0C4lpOZEyAk6PfHD0BtoBwjFYjXYCGb01zD6vit8VwzRplU7jH2br0zhoPXBZ3QWvi-sb23cT0Xjk4VkH6L7DkKyjzbnFL17-eLt0Ul5_vr41dHsvDSCC1E2c-FqohjD4BopnSQNY8JZqIigruGCAZO4VgSkyxTwRikpFMVYzXEFmE3R87V3WM5b2xjbjRGCHqJvIa50D17__tL5hf7YX2tGKkE4y4L9jSD2X5Y2jbr1ydgQoLP9MmmlFK4rKfn_SUqZqBWvMvnk16Huptn-dAaebgBIBoKL0BmffnKsokLl8qbocM2Z2KcUrdPGj7d15F180ATrH53r3Lm-7Twnnv2R2Er_xm7sX32wq3-DenY52ybKdcKn0X67S0D8rGXFKqHfXx7rsyty9QG_IfqC3QDxEcnD |
CODEN | ANNED3 |
CitedBy_id | crossref_primary_10_1016_j_semcdb_2022_03_013 crossref_primary_10_3233_ADR_190139 crossref_primary_10_1038_s41583_023_00731_8 crossref_primary_10_1017_S0317167100013949 crossref_primary_10_1126_science_aac8128 crossref_primary_10_1016_j_bbadis_2011_07_002 crossref_primary_10_3389_fnagi_2022_903269 crossref_primary_10_1016_j_neurobiolaging_2011_09_009 crossref_primary_10_3389_fnins_2021_734001 crossref_primary_10_1212_WNL_0000000000004829 crossref_primary_10_1111_jnc_13230 crossref_primary_10_1186_s13024_017_0228_2 crossref_primary_10_3389_fnsyn_2022_826601 crossref_primary_10_1016_j_jalz_2016_09_010 crossref_primary_10_1016_j_neurobiolaging_2021_03_009 crossref_primary_10_1111_jnc_16066 crossref_primary_10_1186_s13195_019_0572_2 crossref_primary_10_3389_fnagi_2022_1062519 crossref_primary_10_1038_s41380_024_02463_2 crossref_primary_10_1016_j_arr_2017_03_004 crossref_primary_10_1016_j_neuron_2014_10_038 crossref_primary_10_3233_JAD_160803 crossref_primary_10_1002_acn3_50940 crossref_primary_10_7554_eLife_50333 crossref_primary_10_3390_biom13030453 crossref_primary_10_1523_JNEUROSCI_4740_11_2011 crossref_primary_10_1016_j_nicl_2019_101972 crossref_primary_10_1016_j_phrs_2020_104819 crossref_primary_10_3233_ADR_190121 crossref_primary_10_1038_s41598_022_11582_1 crossref_primary_10_3233_JAD_161291 crossref_primary_10_1016_j_neuron_2017_11_028 crossref_primary_10_1523_JNEUROSCI_1397_18_2018 crossref_primary_10_1254_fpj_139_157 crossref_primary_10_1523_JNEUROSCI_2092_14_2015 crossref_primary_10_3390_ijms25010578 crossref_primary_10_1007_s11357_023_01036_5 crossref_primary_10_1016_j_neuropharm_2017_06_021 crossref_primary_10_1016_S1474_4422_12_70228_4 crossref_primary_10_3389_fnmol_2019_00229 crossref_primary_10_1016_j_tjpad_2024_100030 crossref_primary_10_1038_nrn_2016_141 crossref_primary_10_1002_hbm_23357 crossref_primary_10_3389_fphar_2019_01282 crossref_primary_10_1515_joepi_2015_0035 crossref_primary_10_1093_brain_awv048 crossref_primary_10_2217_nmt_13_68 crossref_primary_10_3389_fnagi_2022_913693 crossref_primary_10_3233_JAD_210397 crossref_primary_10_1016_j_jns_2016_01_008 crossref_primary_10_1186_s40478_019_0810_7 crossref_primary_10_1074_mcp_RA119_001737 crossref_primary_10_1002_bies_201500004 crossref_primary_10_1111_jnc_12967 crossref_primary_10_1186_s40478_024_01876_y crossref_primary_10_1186_s40478_018_0642_x crossref_primary_10_3389_fnagi_2024_1399098 crossref_primary_10_1111_ejn_15494 crossref_primary_10_3233_JAD_180078 crossref_primary_10_1038_s44319_024_00090_0 crossref_primary_10_1016_j_trci_2018_04_007 crossref_primary_10_1007_s11910_014_0498_9 crossref_primary_10_1016_j_neuroimage_2011_11_075 crossref_primary_10_18231_j_ijpca_2024_019 crossref_primary_10_3390_biom11010051 crossref_primary_10_1007_s12264_022_00985_9 crossref_primary_10_1016_j_celrep_2021_110268 crossref_primary_10_1016_j_jare_2023_01_006 crossref_primary_10_1002_hipo_22395 crossref_primary_10_1007_s00115_015_0041_5 crossref_primary_10_1016_j_jbc_2024_107433 crossref_primary_10_3233_JAD_150214 crossref_primary_10_1038_s41598_020_71587_6 crossref_primary_10_1016_j_jad_2012_11_019 crossref_primary_10_3389_fnagi_2021_720990 crossref_primary_10_1097_WCO_0b013e3283557b36 crossref_primary_10_1016_j_neurobiolaging_2018_05_023 crossref_primary_10_1080_13803395_2012_666230 crossref_primary_10_1186_s13195_020_00702_6 crossref_primary_10_1089_neu_2016_4599 crossref_primary_10_1016_j_bbr_2021_113387 crossref_primary_10_1038_s41598_018_26888_2 crossref_primary_10_3233_JAD_240360 crossref_primary_10_1002_alz_12202 crossref_primary_10_1016_j_paid_2013_10_032 crossref_primary_10_1093_braincomms_fcad245 crossref_primary_10_1098_rstb_2015_0429 crossref_primary_10_1016_j_neuron_2023_08_012 crossref_primary_10_7554_eLife_75316 crossref_primary_10_1007_s00401_019_01976_3 crossref_primary_10_2217_fnl_12_47 crossref_primary_10_1007_s11682_016_9660_0 crossref_primary_10_1016_j_heliyon_2019_e02074 crossref_primary_10_1002_hipo_23676 crossref_primary_10_1016_j_nbd_2013_01_010 crossref_primary_10_1124_molpharm_122_000563 crossref_primary_10_3390_biomedicines11020355 crossref_primary_10_1002_alz_13464 crossref_primary_10_1002_alz_14392 crossref_primary_10_3389_fnmol_2017_00148 crossref_primary_10_1016_j_intell_2014_05_001 crossref_primary_10_1186_s13195_019_0530_z crossref_primary_10_14336_AD_2022_0219 crossref_primary_10_1038_s41467_024_47028_7 crossref_primary_10_1007_s12035_016_0018_9 crossref_primary_10_1016_j_neuron_2020_07_011 crossref_primary_10_3389_fncir_2017_00102 crossref_primary_10_3390_ijms24087196 crossref_primary_10_1016_j_neurobiolaging_2018_01_022 crossref_primary_10_1007_s12035_017_0540_4 crossref_primary_10_1016_j_isci_2020_101468 crossref_primary_10_3233_JAD_150757 crossref_primary_10_1523_JNEUROSCI_3266_15_2016 crossref_primary_10_3389_fnmol_2020_600084 crossref_primary_10_1002_trc2_12234 crossref_primary_10_1038_s41598_020_60894_7 crossref_primary_10_3389_fncir_2023_1099467 crossref_primary_10_1007_s11357_023_01031_w crossref_primary_10_1002_jmri_24150 crossref_primary_10_3390_ijms222111637 crossref_primary_10_1016_j_neurobiolaging_2015_08_016 crossref_primary_10_1016_j_neubiorev_2020_12_022 crossref_primary_10_1093_brain_awv007 crossref_primary_10_18632_oncotarget_11353 crossref_primary_10_3389_fninf_2021_630172 crossref_primary_10_1371_journal_pone_0114569 crossref_primary_10_1002_hbm_22141 crossref_primary_10_1523_ENEURO_0426_17_2018 crossref_primary_10_1002_hipo_22080 crossref_primary_10_1038_nrneurol_2012_241 crossref_primary_10_1111_joim_13329 crossref_primary_10_1186_s13195_022_01041_4 crossref_primary_10_1007_s13311_021_01026_5 crossref_primary_10_1586_ern_11_162 crossref_primary_10_1146_annurev_neuro_080317_061725 crossref_primary_10_3390_ijms23116079 crossref_primary_10_1080_14656566_2016_1258060 crossref_primary_10_1016_j_neurol_2012_07_006 crossref_primary_10_1111_ejn_16268 crossref_primary_10_1016_j_conb_2011_10_021 crossref_primary_10_1186_1471_244X_13_76 crossref_primary_10_1016_j_neuron_2014_08_005 crossref_primary_10_1016_j_neuron_2012_03_023 crossref_primary_10_1088_1741_2552_ab71e9 crossref_primary_10_1111_ner_13305 crossref_primary_10_1016_j_cub_2021_05_039 crossref_primary_10_1038_s41386_025_02077_4 crossref_primary_10_1038_s41593_024_01713_4 crossref_primary_10_1111_jnc_12127 crossref_primary_10_1016_j_cub_2020_08_042 crossref_primary_10_1093_brain_awac096 crossref_primary_10_3390_medicina61030547 crossref_primary_10_1212_WNL_0b013e318227b1b0 crossref_primary_10_1016_j_ebiom_2015_09_024 crossref_primary_10_1038_s41380_020_0776_7 crossref_primary_10_1111_acel_13592 crossref_primary_10_3233_JAD_170405 crossref_primary_10_1038_s41467_017_01444_0 crossref_primary_10_1523_ENEURO_0418_20_2020 crossref_primary_10_1016_j_nbd_2024_106473 crossref_primary_10_1016_j_nbd_2022_105980 crossref_primary_10_1038_s43587_023_00402_4 crossref_primary_10_1016_j_nbd_2019_04_010 crossref_primary_10_1016_j_neuron_2020_06_005 crossref_primary_10_1093_jnen_nlae033 crossref_primary_10_3233_JAD_181013 crossref_primary_10_1016_j_arr_2024_102468 crossref_primary_10_1093_cercor_bhab516 crossref_primary_10_1177_10738584211069897 crossref_primary_10_1016_j_neurobiolaging_2014_08_014 crossref_primary_10_1016_j_isci_2024_110629 crossref_primary_10_3390_ijms21239318 crossref_primary_10_1093_braincomms_fcae376 |
Cites_doi | 10.1016/j.neuroimage.2007.07.007 10.1002/(SICI)1098-1004(1997)10:3<186::AID-HUMU2>3.0.CO;2-H 10.1002/1531-8249(20010201)49:2<202::AID-ANA40>3.0.CO;2-3 10.1002/hipo.1048 10.1016/0197-4580(95)00021-6 10.1016/j.pneurobio.2009.07.009 10.1056/NEJM200008173430701 10.1002/ana.410410618 10.1093/arclin/15.6.515 10.1002/hbm.20861 10.1038/349704a0 10.1186/1741-7015-4-1 10.1001/jama.1997.03540340027028 10.1212/01.wnl.0000171450.97464.49 10.1016/S1053-8119(03)00169-1 10.1148/radiol.2401050739 10.1126/science.7638622 10.1093/brain/124.2.399 10.1093/cercor/10.4.433 10.1109/TMI.2002.1009383 10.1016/j.neurobiolaging.2006.08.008 10.1016/j.neuroimage.2006.01.015 10.1155/2009/610392 10.1076/1380-3395(200008)22:4;1-0;FT483 10.1016/j.neuroimage.2004.10.045 10.1002/ana.20163 10.1038/nrn1433 10.1038/ng1095-219 10.1212/WNL.44.5.867 10.1177/153331750301800306 10.1007/b138576 10.1523/JNEUROSCI.2250-06.2006 10.1097/00002093-199809000-00006 10.1016/j.ceca.2005.06.021 10.1136/jnnp.74.1.44 10.1212/01.WNL.0000079052.01016.78 10.1111/j.1749-6632.1993.tb23023.x 10.1038/nature07767 10.1093/brain/awl266 10.1002/hbm.1047 10.1523/JNEUROSCI.3807-04.2004 10.1002/hipo.20338 10.1016/j.neuron.2005.07.013 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Neurological Association 2015 INIST-CNRS 2010 American Neurological Association 2010 |
Copyright_xml | – notice: Copyright © 2010 American Neurological Association – notice: 2015 INIST-CNRS – notice: 2010 American Neurological Association 2010 |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1002/ana.22105 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE Neurosciences Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1531-8249 |
EndPage | 875 |
ExternalDocumentID | PMC3175143 21194156 23725815 10_1002_ana_22105 ANA22105 ark_67375_WNG_KX1XZ0Q1_M |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P30 AG13846 – fundername: NIA NIH HHS grantid: P30 AG013846 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1L6 1OB 1OC 1ZS 23M 2QL 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEJM AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBMB ACBWZ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFAZI AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AI. AIACR AIAGR AIDQK AIDYY AITYG AIURR AJJEV ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN F00 F01 F04 F5P F8P FEDTE FUBAC FYBCS G-S G.N GNP GODZA GOZPB GRPMH H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KBYEO KD1 KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LXL LXN LXY LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.- Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TEORI UB1 V2E V8K V9Y VH1 W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XJT XPP XSW XV2 YOC YQJ ZGI ZRF ZRR ZXP ZZTAW ~IA ~WT ~X8 AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION ACRZS IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c5455-db5f918330afd66f61d335fea7152fd453a360981a6f833a4d886582008b07a03 |
IEDL.DBID | DR2 |
ISSN | 0364-5134 1531-8249 |
IngestDate | Thu Aug 21 13:38:37 EDT 2025 Fri Sep 05 02:54:00 EDT 2025 Thu Sep 04 22:09:46 EDT 2025 Mon Jul 21 06:06:55 EDT 2025 Wed Apr 02 07:17:09 EDT 2025 Tue Jul 01 02:24:01 EDT 2025 Thu Apr 24 23:10:39 EDT 2025 Wed Aug 20 07:25:12 EDT 2025 Tue Sep 09 05:31:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Familial disease Nervous system diseases Alzheimer disease Central nervous system disease Central nervous system Degenerative disease Hippocampus Encephalon Cerebral disorder |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5455-db5f918330afd66f61d335fea7152fd453a360981a6f833a4d886582008b07a03 |
Notes | istex:19ECB9DC40F20B68C6DD6896E845E2DF401AA443 ark:/67375/WNG-KX1XZ0Q1-M ArticleID:ANA22105 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 21194156 |
PQID | 822359847 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3175143 proquest_miscellaneous_888097664 proquest_miscellaneous_822359847 pubmed_primary_21194156 pascalfrancis_primary_23725815 crossref_citationtrail_10_1002_ana_22105 crossref_primary_10_1002_ana_22105 wiley_primary_10_1002_ana_22105_ANA22105 istex_primary_ark_67375_WNG_KX1XZ0Q1_M |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2010 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: December 2010 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: United States |
PublicationTitle | Annals of neurology |
PublicationTitleAlternate | Ann Neurol |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
References | Trivedi MA, Schmitz TW, Ries ML, et al. Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer's disease: a cross-sectional study. BMC Med 2006; 4: 1. Dickerson BC, Salat D, Bates J, et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol 2004; 56: 27-35. Aguirre-Acevedo DC, Gómez RD, Moreno S, et al. [Validity and reliability of the CERAD-Col neuropsychological battery]. Rev Neurol 2007; 45: 655-660. [Spanish]. Gonsalves BD, Kahn I, Curran T, et al. Memory strength and repetition suppression: multimodal imaging of medial temporal cortical contributions to recognition. Neuron 2005; 47: 751-761. Remy F, Mirrashed F, Campbell B, Richter W. Verbal episodic memory impairment in Alzheimer's disease: a combined structural and functional MRI study Neuroimage 2005; 25: 253-266. Hämäläinen A, Pihlajamäki M, Tanila H, et al. Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol Aging 2007; 28: 1889-1903. Gainotti G, Marra C, Villa G, et al. Sensitivity and specificity of some neuropsychological markers of Alzheimer dementia. Alzheimer Dis Assoc Disord 1998; 12: 152-162. Ardila A, Lopera F, Rosselli M, et al. Neuropsychological profile of a large kindred with familial Alzheimer's disease caused by the E280A single presenilin-1 mutation. Arch Clin Neuropsychol 2000; 15: 515-528. Nestor PJ, Scheltens P, Hodges JR. Advances in the early detection of Alzheimer's disease (Review). Nat Med 2004; 10: S34-S41. Alzheimer's Disease Collaborative Group. The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nat Genet 1995; 11: 219-222. Saitoh T, Horsburgh K, Masliah E. Hyperactivation of signal transduction systems in Alzheimer's disease. Ann N Y Acad Sci 1993; 695: 34-41. Yu JT, Chang RC, Tan L. Calcium dysregulation in Alzheimer's disease: From mechanisms to therapeutic opportunities. (Review). Prog Neurobiol 2009; 89: 240-255. Rosselli MC, Ardila AC, Moreno SC, et al. Cognitive decline in patients with familial Alzheimer's disease associated with E280A presenilin-1 mutation: a longitudinal study. J Clin Exp Neuropsychol 2000; 22: 483-495. Celone K, Calhoun VD, Dickerson BC, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: an independent component analysis. J Neurosci 2006; 26: 10222-10231. Duvernoy HM. The human hippocampus, functional anatomy, vascularization and serial sections with MRI. 3rd ed. Springer, 2005. Smith IF, Green KN, LaFerla FM. Calcium dysregulation in Alzheimer's disease: recent advances gained from genetically modified animals. Cell Calcium 2005; 38: 427-437. Hasselmo ME. A computational model of the progression of Alzheimer's disease. MD Comput 1997; 14: 181-189. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 2003; 19: 1233-1239. Schon K, Hasselmo ME, LoPresti ML, et al. Persistence of parahippocampal representation in the absence of stimulus input enhances long-term encoding: a functional magnetic resonance imaging study of subsequent memory after a delayed match-to-sample task. J Neurosci 2004; 24: 11088-11097. Bobes MA, García YF, Lopera F, et al. ERP generator anomalies in presymptomatic carriers of the Alzheimer's disease E280A PS-1 mutation. Hum Brain Mapp 2010; 31: 247-265. Gómez-Isla T, Wasco W, Pettingell WP, et al. A novel presenilin-1 mutation: increased beta-amyloid and neurofibrillary changes. Ann Neurol 1997; 41: 809-813. Braak H, Braak E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging 1995; 16: 271-278. Nikolaev A, McLaughlin T, O'Leary DD, Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 2009; 457: 981-989. Lendon CL, Martinez A, Behrens IM, et al. E280A PS1 mutation causes Alzheimer's disease but age of onset is not modified by ApoE alleles. Hum Mutat 1997; 10: 186-195. Dickerson BC, Miller SL, Greve DN, et al. Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: an event-related functional-anatomic MRI study. Hippocampus 2007; 17: 1060-1070. Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer's disease. N Engl J Med 2000; 343: 450-456. Otten LJ, Henson RN, Rugg MD. Depth of processing effects on neural correlates of memory encoding: relationship between findings from across- and within-task comparisons. Brain 2001; 124: 399-412. Pruessner JC, Li LM, Serles W, et al. Volumetry of hippocampus and amygdala with high-resolution MRI and three dimensional analysis software: minimizing the discrepancies between laboratories. Cerebral Cortex 2000; 10: 433-442. Petersen RC, Smith GE, Ivnik RJ, et al. Memory function in very early Alzheimer's disease. Neurology 1994; 44: 867-872. Lopera F, Ardilla A, Martínez A, et al. Clinical features of early-onset Alzheimer disease in a large kindred with an E280A presenilin-1 mutation. JAMA 1997; 277: 793-799. Arango-Lasprilla JC, Iglesias J, Lopera F. Neuropsychological study of familial Alzheimer's disease caused by mutation E280A in the presenilin 1 gene. Am J Alzheimers Dis Other Demen 2003; 18: 137-146. Dickerson BC, Sperling RA. Large-scale functional brain network abnormalities in Alzheimer's disease: insights from functional neuroimaging. Behav Neurol 2009; 21: 63-75. Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006; 31: 1116-1128. Dickerson BC, Salat DH, Greve DN, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005; 65: 404-411. Sperling RA, Bates JF, Cocchiarella AJ, et al. Encoding novel face name associations: a functional MRI study. Hum Brain Mapp 2001; 14: 129-139. Sperling RA, Bates JF, Chua EF, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease. J Neurol Neurosurg Psychiatry 2003; 74: 44-50. Kordower, JH, Chu YP, Stebbins GT, et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 2001; 49: 202-213. Freire L, Roche A, Mangin J-Fr. What is the best similarity measure for motion correction in fMRI? IEEE Trans Med Imaging 2002; 21: 470-484. Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 1991; 349: 704-706. Stern CE, Sherman SJ, Kirchhoff BA, Hasselmo ME. Medial temporal and prefrontal contributions to working memory tasks with novel and familiar stimuli. Hippocampus 2001; 11: 337-346. Machulda MM, Ward HA, Borowski B, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer's patients. Neurology 2003; 61: 500-506. Petrella JR, Krishnan S, Slavin MJ, et al. Mild cognitive impairment: evaluation with 4-T functional MR imaging. Radiology 2006; 240: 177-186. Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 1995; 18: 973-977. Mondadori CR, Buchmann A, Mustovic H, et al. Enhanced brain activity may precede the diagnosis of Alzheimer's disease by 30 years. Brain 2006; 129: 2908-2922. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007; 38: 95-113. 2007; 17 2009; 89 2001; 124 2010; 31 2006; 31 2009; 21 1995; 16 1997; 41 2000; 22 1995; 11 1997; 277 2004; 24 1994; 44 2005; 65 2005 2003; 18 2001; 49 2006; 4 2003; 19 1995; 18 2003; 74 2009; 457 2005; 25 2007; 38 2005; 47 2004; 10 2007; 28 2000; 15 1997; 10 2000; 10 1997; 14 2004; 56 2002; 21 2006; 26 2006; 240 2000; 343 1991; 349 2001; 11 2003; 61 2005; 38 2006; 129 2007; 45 2001; 14 1998; 12 1993; 695 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_12_2 Aguirre‐Acevedo DC (e_1_2_7_28_2) 2007; 45 e_1_2_7_42_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_45_2 e_1_2_7_46_2 Hasselmo ME (e_1_2_7_47_2) 1997; 14 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 e_1_2_7_38_2 e_1_2_7_39_2 Ann Neurol. 2011 Jul;70(1):187 |
References_xml | – reference: Duvernoy HM. The human hippocampus, functional anatomy, vascularization and serial sections with MRI. 3rd ed. Springer, 2005. – reference: Sperling RA, Bates JF, Chua EF, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease. J Neurol Neurosurg Psychiatry 2003; 74: 44-50. – reference: Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 2003; 19: 1233-1239. – reference: Saitoh T, Horsburgh K, Masliah E. Hyperactivation of signal transduction systems in Alzheimer's disease. Ann N Y Acad Sci 1993; 695: 34-41. – reference: Lopera F, Ardilla A, Martínez A, et al. Clinical features of early-onset Alzheimer disease in a large kindred with an E280A presenilin-1 mutation. JAMA 1997; 277: 793-799. – reference: Petrella JR, Krishnan S, Slavin MJ, et al. Mild cognitive impairment: evaluation with 4-T functional MR imaging. Radiology 2006; 240: 177-186. – reference: Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006; 31: 1116-1128. – reference: Trivedi MA, Schmitz TW, Ries ML, et al. Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer's disease: a cross-sectional study. BMC Med 2006; 4: 1. – reference: Freire L, Roche A, Mangin J-Fr. What is the best similarity measure for motion correction in fMRI? IEEE Trans Med Imaging 2002; 21: 470-484. – reference: Remy F, Mirrashed F, Campbell B, Richter W. Verbal episodic memory impairment in Alzheimer's disease: a combined structural and functional MRI study Neuroimage 2005; 25: 253-266. – reference: Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 1995; 18: 973-977. – reference: Petersen RC, Smith GE, Ivnik RJ, et al. Memory function in very early Alzheimer's disease. Neurology 1994; 44: 867-872. – reference: Lendon CL, Martinez A, Behrens IM, et al. E280A PS1 mutation causes Alzheimer's disease but age of onset is not modified by ApoE alleles. Hum Mutat 1997; 10: 186-195. – reference: Yu JT, Chang RC, Tan L. Calcium dysregulation in Alzheimer's disease: From mechanisms to therapeutic opportunities. (Review). Prog Neurobiol 2009; 89: 240-255. – reference: Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007; 38: 95-113. – reference: Aguirre-Acevedo DC, Gómez RD, Moreno S, et al. [Validity and reliability of the CERAD-Col neuropsychological battery]. Rev Neurol 2007; 45: 655-660. [Spanish]. – reference: Otten LJ, Henson RN, Rugg MD. Depth of processing effects on neural correlates of memory encoding: relationship between findings from across- and within-task comparisons. Brain 2001; 124: 399-412. – reference: Dickerson BC, Sperling RA. Large-scale functional brain network abnormalities in Alzheimer's disease: insights from functional neuroimaging. Behav Neurol 2009; 21: 63-75. – reference: Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 1991; 349: 704-706. – reference: Gómez-Isla T, Wasco W, Pettingell WP, et al. A novel presenilin-1 mutation: increased beta-amyloid and neurofibrillary changes. Ann Neurol 1997; 41: 809-813. – reference: Celone K, Calhoun VD, Dickerson BC, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: an independent component analysis. J Neurosci 2006; 26: 10222-10231. – reference: Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer's disease. N Engl J Med 2000; 343: 450-456. – reference: Pruessner JC, Li LM, Serles W, et al. Volumetry of hippocampus and amygdala with high-resolution MRI and three dimensional analysis software: minimizing the discrepancies between laboratories. Cerebral Cortex 2000; 10: 433-442. – reference: Schon K, Hasselmo ME, LoPresti ML, et al. Persistence of parahippocampal representation in the absence of stimulus input enhances long-term encoding: a functional magnetic resonance imaging study of subsequent memory after a delayed match-to-sample task. J Neurosci 2004; 24: 11088-11097. – reference: Gonsalves BD, Kahn I, Curran T, et al. Memory strength and repetition suppression: multimodal imaging of medial temporal cortical contributions to recognition. Neuron 2005; 47: 751-761. – reference: Machulda MM, Ward HA, Borowski B, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer's patients. Neurology 2003; 61: 500-506. – reference: Mondadori CR, Buchmann A, Mustovic H, et al. Enhanced brain activity may precede the diagnosis of Alzheimer's disease by 30 years. Brain 2006; 129: 2908-2922. – reference: Rosselli MC, Ardila AC, Moreno SC, et al. Cognitive decline in patients with familial Alzheimer's disease associated with E280A presenilin-1 mutation: a longitudinal study. J Clin Exp Neuropsychol 2000; 22: 483-495. – reference: Hämäläinen A, Pihlajamäki M, Tanila H, et al. Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol Aging 2007; 28: 1889-1903. – reference: Bobes MA, García YF, Lopera F, et al. ERP generator anomalies in presymptomatic carriers of the Alzheimer's disease E280A PS-1 mutation. Hum Brain Mapp 2010; 31: 247-265. – reference: Sperling RA, Bates JF, Cocchiarella AJ, et al. Encoding novel face name associations: a functional MRI study. Hum Brain Mapp 2001; 14: 129-139. – reference: Braak H, Braak E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging 1995; 16: 271-278. – reference: Nestor PJ, Scheltens P, Hodges JR. Advances in the early detection of Alzheimer's disease (Review). Nat Med 2004; 10: S34-S41. – reference: Dickerson BC, Miller SL, Greve DN, et al. Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: an event-related functional-anatomic MRI study. Hippocampus 2007; 17: 1060-1070. – reference: Alzheimer's Disease Collaborative Group. The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nat Genet 1995; 11: 219-222. – reference: Stern CE, Sherman SJ, Kirchhoff BA, Hasselmo ME. Medial temporal and prefrontal contributions to working memory tasks with novel and familiar stimuli. Hippocampus 2001; 11: 337-346. – reference: Gainotti G, Marra C, Villa G, et al. Sensitivity and specificity of some neuropsychological markers of Alzheimer dementia. Alzheimer Dis Assoc Disord 1998; 12: 152-162. – reference: Smith IF, Green KN, LaFerla FM. Calcium dysregulation in Alzheimer's disease: recent advances gained from genetically modified animals. Cell Calcium 2005; 38: 427-437. – reference: Arango-Lasprilla JC, Iglesias J, Lopera F. Neuropsychological study of familial Alzheimer's disease caused by mutation E280A in the presenilin 1 gene. Am J Alzheimers Dis Other Demen 2003; 18: 137-146. – reference: Nikolaev A, McLaughlin T, O'Leary DD, Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 2009; 457: 981-989. – reference: Hasselmo ME. A computational model of the progression of Alzheimer's disease. MD Comput 1997; 14: 181-189. – reference: Dickerson BC, Salat DH, Greve DN, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005; 65: 404-411. – reference: Ardila A, Lopera F, Rosselli M, et al. Neuropsychological profile of a large kindred with familial Alzheimer's disease caused by the E280A single presenilin-1 mutation. Arch Clin Neuropsychol 2000; 15: 515-528. – reference: Kordower, JH, Chu YP, Stebbins GT, et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 2001; 49: 202-213. – reference: Dickerson BC, Salat D, Bates J, et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol 2004; 56: 27-35. – volume: 44 start-page: 867 year: 1994 end-page: 872 article-title: Memory function in very early Alzheimer's disease publication-title: Neurology – volume: 61 start-page: 500 year: 2003 end-page: 506 article-title: Comparison of memory fMRI response among normal, MCI, and Alzheimer's patients publication-title: Neurology – volume: 41 start-page: 809 year: 1997 end-page: 813 article-title: A novel presenilin‐1 mutation: increased beta‐amyloid and neurofibrillary changes publication-title: Ann Neurol – volume: 10 start-page: 433 year: 2000 end-page: 442 article-title: Volumetry of hippocampus and amygdala with high‐resolution MRI and three dimensional analysis software: minimizing the discrepancies between laboratories publication-title: Cerebral Cortex – volume: 21 start-page: 470 year: 2002 end-page: 484 article-title: What is the best similarity measure for motion correction in fMRI? publication-title: IEEE Trans Med Imaging – volume: 349 start-page: 704 year: 1991 end-page: 706 article-title: Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease publication-title: Nature – year: 2005 – volume: 11 start-page: 337 year: 2001 end-page: 346 article-title: Medial temporal and prefrontal contributions to working memory tasks with novel and familiar stimuli publication-title: Hippocampus – volume: 89 start-page: 240 year: 2009 end-page: 255 article-title: Calcium dysregulation in Alzheimer's disease: From mechanisms to therapeutic opportunities publication-title: (Review). Prog Neurobiol – volume: 26 start-page: 10222 year: 2006 end-page: 10231 article-title: Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: an independent component analysis publication-title: J Neurosci – volume: 49 start-page: 202 year: 2001 end-page: 213 article-title: Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment publication-title: Ann Neurol – volume: 24 start-page: 11088 year: 2004 end-page: 11097 article-title: Persistence of parahippocampal representation in the absence of stimulus input enhances long‐term encoding: a functional magnetic resonance imaging study of subsequent memory after a delayed match‐to‐sample task publication-title: J Neurosci – volume: 38 start-page: 427 year: 2005 end-page: 437 article-title: Calcium dysregulation in Alzheimer's disease: recent advances gained from genetically modified animals publication-title: Cell Calcium – volume: 74 start-page: 44 year: 2003 end-page: 50 article-title: fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease publication-title: J Neurol Neurosurg Psychiatry – volume: 38 start-page: 95 year: 2007 end-page: 113 article-title: A fast diffeomorphic image registration algorithm publication-title: Neuroimage – volume: 47 start-page: 751 year: 2005 end-page: 761 article-title: Memory strength and repetition suppression: multimodal imaging of medial temporal cortical contributions to recognition publication-title: Neuron – volume: 22 start-page: 483 year: 2000 end-page: 495 article-title: Cognitive decline in patients with familial Alzheimer's disease associated with E280A presenilin‐1 mutation: a longitudinal study publication-title: J Clin Exp Neuropsychol – volume: 10 start-page: S34 year: 2004 end-page: S41 article-title: Advances in the early detection of Alzheimer's disease (Review) publication-title: Nat Med – volume: 19 start-page: 1233 year: 2003 end-page: 1239 article-title: An automated method for neuroanatomic and cytoarchitectonic atlas‐based interrogation of fMRI data sets publication-title: Neuroimage – volume: 10 start-page: 186 year: 1997 end-page: 195 article-title: E280A PS1 mutation causes Alzheimer's disease but age of onset is not modified by ApoE alleles publication-title: Hum Mutat – volume: 4 start-page: 1 year: 2006 article-title: Reduced hippocampal activation during episodic encoding in middle‐aged individuals at genetic risk of Alzheimer's disease: a cross‐sectional study publication-title: BMC Med – volume: 65 start-page: 404 year: 2005 end-page: 411 article-title: Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD publication-title: Neurology – volume: 56 start-page: 27 year: 2004 end-page: 35 article-title: Medial temporal lobe function and structure in mild cognitive impairment publication-title: Ann Neurol – volume: 21 start-page: 63 year: 2009 end-page: 75 article-title: Large‐scale functional brain network abnormalities in Alzheimer's disease: insights from functional neuroimaging publication-title: Behav Neurol – volume: 457 start-page: 981 year: 2009 end-page: 989 article-title: APP binds DR6 to trigger axon pruning and neuron death via distinct caspases publication-title: Nature – volume: 15 start-page: 515 year: 2000 end-page: 528 article-title: Neuropsychological profile of a large kindred with familial Alzheimer's disease caused by the E280A single presenilin‐1 mutation publication-title: Arch Clin Neuropsychol – volume: 12 start-page: 152 year: 1998 end-page: 162 article-title: Sensitivity and specificity of some neuropsychological markers of Alzheimer dementia publication-title: Alzheimer Dis Assoc Disord – volume: 240 start-page: 177 year: 2006 end-page: 186 article-title: Mild cognitive impairment: evaluation with 4‐T functional MR imaging publication-title: Radiology – volume: 28 start-page: 1889 year: 2007 end-page: 1903 article-title: Increased fMRI responses during encoding in mild cognitive impairment publication-title: Neurobiol Aging – volume: 11 start-page: 219 year: 1995 end-page: 222 article-title: The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families publication-title: Nat Genet – volume: 18 start-page: 137 year: 2003 end-page: 146 article-title: Neuropsychological study of familial Alzheimer's disease caused by mutation E280A in the presenilin 1 gene publication-title: Am J Alzheimers Dis Other Demen – volume: 14 start-page: 129 year: 2001 end-page: 139 article-title: Encoding novel face name associations: a functional MRI study publication-title: Hum Brain Mapp – volume: 25 start-page: 253 year: 2005 end-page: 266 article-title: Verbal episodic memory impairment in Alzheimer's disease: a combined structural and functional MRI study publication-title: Neuroimage – volume: 129 start-page: 2908 year: 2006 end-page: 2922 article-title: Enhanced brain activity may precede the diagnosis of Alzheimer's disease by 30 years publication-title: Brain – volume: 17 start-page: 1060 year: 2007 end-page: 1070 article-title: Prefrontal‐hippocampal‐fusiform activity during encoding predicts intraindividual differences in free recall ability: an event‐related functional‐anatomic MRI study publication-title: Hippocampus – volume: 695 start-page: 34 year: 1993 end-page: 41 article-title: Hyperactivation of signal transduction systems in Alzheimer's disease publication-title: Ann N Y Acad Sci – volume: 31 start-page: 247 year: 2010 end-page: 265 article-title: ERP generator anomalies in presymptomatic carriers of the Alzheimer's disease E280A PS‐1 mutation publication-title: Hum Brain Mapp – volume: 14 start-page: 181 year: 1997 end-page: 189 article-title: A computational model of the progression of Alzheimer's disease publication-title: MD Comput – volume: 31 start-page: 1116 year: 2006 end-page: 1128 article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage – volume: 45 start-page: 655 year: 2007 end-page: 660 article-title: [Validity and reliability of the CERAD‐Col neuropsychological battery] publication-title: Rev Neurol – volume: 16 start-page: 271 year: 1995 end-page: 278 article-title: Staging of Alzheimer's disease‐related neurofibrillary changes publication-title: Neurobiol Aging – volume: 124 start-page: 399 year: 2001 end-page: 412 article-title: Depth of processing effects on neural correlates of memory encoding: relationship between findings from across‐ and within‐task comparisons publication-title: Brain – volume: 343 start-page: 450 year: 2000 end-page: 456 article-title: Patterns of brain activation in people at risk for Alzheimer's disease publication-title: N Engl J Med – volume: 277 start-page: 793 year: 1997 end-page: 799 article-title: Clinical features of early‐onset Alzheimer disease in a large kindred with an E280A presenilin‐1 mutation publication-title: JAMA – volume: 18 start-page: 973 year: 1995 end-page: 977 article-title: Candidate gene for the chromosome 1 familial Alzheimer's disease locus publication-title: Science – ident: e_1_2_7_31_2 doi: 10.1016/j.neuroimage.2007.07.007 – ident: e_1_2_7_2_2 – ident: e_1_2_7_27_2 doi: 10.1002/(SICI)1098-1004(1997)10:3<186::AID-HUMU2>3.0.CO;2-H – ident: e_1_2_7_15_2 doi: 10.1002/1531-8249(20010201)49:2<202::AID-ANA40>3.0.CO;2-3 – ident: e_1_2_7_39_2 doi: 10.1002/hipo.1048 – ident: e_1_2_7_38_2 doi: 10.1016/0197-4580(95)00021-6 – ident: e_1_2_7_43_2 doi: 10.1016/j.pneurobio.2009.07.009 – ident: e_1_2_7_25_2 doi: 10.1056/NEJM200008173430701 – ident: e_1_2_7_9_2 doi: 10.1002/ana.410410618 – ident: e_1_2_7_10_2 doi: 10.1093/arclin/15.6.515 – ident: e_1_2_7_8_2 doi: 10.1002/hbm.20861 – ident: e_1_2_7_3_2 doi: 10.1038/349704a0 – ident: e_1_2_7_32_2 doi: 10.1186/1741-7015-4-1 – volume: 14 start-page: 181 year: 1997 ident: e_1_2_7_47_2 article-title: A computational model of the progression of Alzheimer's disease publication-title: MD Comput – ident: e_1_2_7_6_2 doi: 10.1001/jama.1997.03540340027028 – ident: e_1_2_7_23_2 doi: 10.1212/01.wnl.0000171450.97464.49 – ident: e_1_2_7_34_2 doi: 10.1016/S1053-8119(03)00169-1 – ident: e_1_2_7_22_2 doi: 10.1148/radiol.2401050739 – ident: e_1_2_7_4_2 doi: 10.1126/science.7638622 – ident: e_1_2_7_42_2 doi: 10.1093/brain/124.2.399 – ident: e_1_2_7_36_2 doi: 10.1093/cercor/10.4.433 – volume: 45 start-page: 655 year: 2007 ident: e_1_2_7_28_2 article-title: [Validity and reliability of the CERAD‐Col neuropsychological battery] publication-title: Rev Neurol – ident: e_1_2_7_30_2 doi: 10.1109/TMI.2002.1009383 – ident: e_1_2_7_24_2 doi: 10.1016/j.neurobiolaging.2006.08.008 – ident: e_1_2_7_35_2 doi: 10.1016/j.neuroimage.2006.01.015 – ident: e_1_2_7_18_2 doi: 10.1155/2009/610392 – ident: e_1_2_7_11_2 doi: 10.1076/1380-3395(200008)22:4;1-0;FT483 – ident: e_1_2_7_14_2 doi: 10.1016/j.neuroimage.2004.10.045 – ident: e_1_2_7_19_2 doi: 10.1002/ana.20163 – ident: e_1_2_7_20_2 doi: 10.1038/nrn1433 – ident: e_1_2_7_5_2 doi: 10.1038/ng1095-219 – ident: e_1_2_7_12_2 doi: 10.1212/WNL.44.5.867 – ident: e_1_2_7_7_2 doi: 10.1177/153331750301800306 – ident: e_1_2_7_37_2 doi: 10.1007/b138576 – ident: e_1_2_7_17_2 doi: 10.1523/JNEUROSCI.2250-06.2006 – ident: e_1_2_7_13_2 doi: 10.1097/00002093-199809000-00006 – ident: e_1_2_7_44_2 doi: 10.1016/j.ceca.2005.06.021 – ident: e_1_2_7_16_2 doi: 10.1136/jnnp.74.1.44 – ident: e_1_2_7_21_2 doi: 10.1212/01.WNL.0000079052.01016.78 – ident: e_1_2_7_45_2 doi: 10.1111/j.1749-6632.1993.tb23023.x – ident: e_1_2_7_46_2 doi: 10.1038/nature07767 – ident: e_1_2_7_26_2 doi: 10.1093/brain/awl266 – ident: e_1_2_7_29_2 doi: 10.1002/hbm.1047 – ident: e_1_2_7_40_2 doi: 10.1523/JNEUROSCI.3807-04.2004 – ident: e_1_2_7_33_2 doi: 10.1002/hipo.20338 – ident: e_1_2_7_41_2 doi: 10.1016/j.neuron.2005.07.013 – reference: - Ann Neurol. 2011 Jul;70(1):187 |
SSID | ssj0009610 |
Score | 2.4447477 |
Snippet | Objective
The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique... The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for... Objective The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 865 |
SubjectTerms | Adult Alzheimer Disease - genetics Alzheimer Disease - pathology Alzheimer Disease - physiopathology Association Learning - physiology Biological and medical sciences Brain Mapping Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Disease Progression Female Functional Laterality - physiology Hippocampus - blood supply Hippocampus - physiopathology Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male Medical sciences Middle Aged Mutation - genetics Neurology Neuropsychological Tests Oxygen - blood Presenilin-1 - genetics Recognition, Psychology Young Adult |
Title | Hippocampal hyperactivation in presymptomatic familial Alzheimer's disease |
URI | https://api.istex.fr/ark:/67375/WNG-KX1XZ0Q1-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.22105 https://www.ncbi.nlm.nih.gov/pubmed/21194156 https://www.proquest.com/docview/822359847 https://www.proquest.com/docview/888097664 https://pubmed.ncbi.nlm.nih.gov/PMC3175143 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lheKL1vp1rZZFRH3Z62azyW7w6bDWo3IHisVDhDC7m3BLr3vHfUDbv95J9uN6WkV8C-xsIJPJ5JfM5DeEvOIZukaTBL4BGfkRYAsynvkyk1pTxoPUVWsYDEX_PDob8dEWede8han4IdoLN7synL-2CxzSxfGaNBRK6IZ4YLEPzCkTljf_5MuaOkoKx0Rgw2w-pyxqWIWC8Lj9c2Mv2rFqvbK5kbBA9ZiqrsVdwPP3_MnbuNZtTKcPyI9mSFU-ykV3tUy72c0vbI__OeY9cr8GrF6vsrCHZEuX-2R3UIfkH5GzfjGb4YaIbmXijfFU655dVRe9XlF6NtH2-nK2nDpuWM9dqBS2w8nNWBeXev5m4dVRosfk_PTD1_d9vy7Q4GcIvLifp9xI9AksAJMLYQTNGeNGQ4yowOQRZ8BEIBMKwqAURHmSIOKxKRdpEEPAnpDtclrqZ8QLc6MzE0qQSYpiVPIURM4RjGA7ZlGHvG2mSmU1e7ktojFRFe9yqFA3yummQ162orOKsuMuodduvlsJmF_YHLeYq2_Dj-rTiI6-B5-pGnTI0YZBtD-ELA55QrEnr7EQhUvTxlug1NPVQiH2svyIUfwXEXSfCAgFju9pZVPr_imV9nTdIfGGtbUClhh880tZjB1BuMWEiINRZ86Y_qwF1Rv2XOPg30UPyb2wTel5TraX85V-gcBsmR65FfgTddkztg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NTQK-8H6Ux4gQAr6ki-PYiSW-VMAo21oJtIlqErKcxFajdWnVhwT76zk7j1IYCPHNUi6WfL47_84-_wzwgmUYGk0S-EaJyI8UtlTGMl9kQmtCWZC61xoGQ94_iQ5GbLQFb5q7MBU_RLvhZj3DxWvr4HZDem_NGqpK1Q0xY2FXYCdCoGFTr3ef1-RRgjsuAnvQ5jNCo4ZXKAj32l83VqMdq9hvtjpSLVBBpnrZ4jLo-XsF5c_I1i1N-zfhazOoqiLlrLtapt3s4he-x_8d9S24UWNWr1cZ2W3Y0uUduDqoT-XvwkG_mM1wTcTIMvHGmNi6m1fVXq9XlJ6ttf1-PltOHT2s5_ZUCtvh5GKsi3M9f7Xw6oOie3Cy__74bd-v32jwM8RezM9TZgSGBRook3NuOMkpZUarGIGBySNGFeWBSIjiBqVUlCcJgh5bdZEGsQrofdgup6V-CF6YG52ZUCiRpChGBEsVzxniEWzHNOrA62auZFYTmNt3NCayol4OJepGOt104HkrOqtYOy4TeukmvJVQ8zNb5hYz-WX4QR6OyOg0-ETkoAO7GxbR_hDSOGQJwZ68xkQkeqc9clGlnq4WEuGXpUiM4r-IYARFTMhxfA8qo1r3T4iwCXYH4g1zawUsN_jml7IYO45wCwsRCqPOnDX9WQuyN-y5xqN_F30G1_rHgyN59HF4-Biuh22FzxPYXs5X-initGW669zxB5hSN9U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NTZr4wvtRHiNCCPiSLo5jJxafKqCUjVaAmKgQkuUkthqtS6M-JNhfz9lpUgoDIb5ZysWSz-fzz77z7wCesAxdo0kC3ygR-ZHClspY5otMaE0oC1JXrWE44oOT6GjMxjvwonkLU_NDtBdudmU4f20XeJWbww1pqCpVN8QDC7sEexFHJGER0ccNd5TgjorAxtl8RmjU0AoF4WH769ZmtGf1-s0mR6oF6sfUhS0uQp6_J1D-DGzdztS_Cl-bMdUJKafd1TLtZue_0D3-56CvwZU1YvV6tYldhx1d3oD94TomfxOOBkVV4Y6IfmXqTfBY695d1Te9XlF6NtP2-1m1nDlyWM_dqBS2w-n5RBdnev5s4a3DRLfgpP_608uBv67Q4GeIvJifp8wIdAo0UCbn3HCSU8qMVjHCApNHjCrKA5EQxQ1KqShPEoQ8NuciDWIV0NuwW85KfRe8MDc6M6FQIklRjAiWKp4zRCPYjmnUgefNVMlsTV9uq2hMZU28HErUjXS66cDjVrSqOTsuEnrq5ruVUPNTm-QWM_l59EYej8n4S_CByGEHDrYMov0hpHHIEoI9eY2FSFybNuCiSj1bLSSCL0uQGMV_EUH_iYiQ4_ju1Da16Z8QYY_XHYi3rK0VsMzg21_KYuIYwi0oRCCMOnPG9GctyN6o5xr3_l30Eey_f9WX796Oju_D5bBN73kAu8v5Sj9EkLZMD9xi_AHLuTaE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hippocampal+hyperactivation+in+presymptomatic+familial+Alzheimer%27s+disease&rft.jtitle=Annals+of+neurology&rft.au=Quiroz%2C+Yakeel+T.&rft.au=Budson%2C+Andrew+E.&rft.au=Celone%2C+Kim&rft.au=Ruiz%2C+Adriana&rft.date=2010-12-01&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=68&rft.issue=6&rft.spage=865&rft.epage=875&rft_id=info:doi/10.1002%2Fana.22105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ana_22105 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon |