Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures
Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stag...
Saved in:
Published in | Epidemiology (Cambridge, Mass.) Vol. 28; no. 3; p. 338 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.05.2017
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data.
We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap.
Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35).
This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight. |
---|---|
AbstractList | Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data.
We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap.
Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35).
This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight. |
Author | Keller, Joshua P Strickland, Matthew J Chang, Howard H Szpiro, Adam A |
Author_xml | – sequence: 1 givenname: Joshua P surname: Keller fullname: Keller, Joshua P organization: From the aDepartment of Biostatistics, University of Washington, Seattle, WA; bDepartment of Biostatistics and Bioinformatics, Emory University, Atlanta, GA; and cSchool of Community Health Sciences, University of Nevada Reno, Reno, NV – sequence: 2 givenname: Howard H surname: Chang fullname: Chang, Howard H – sequence: 3 givenname: Matthew J surname: Strickland fullname: Strickland, Matthew J – sequence: 4 givenname: Adam A surname: Szpiro fullname: Szpiro, Adam A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28099267$$D View this record in MEDLINE/PubMed |
BookMark | eNpNT9tKxDAUDKK4F_0Dkf5A19ybPC61q8KKivq8nDYnUGmbkragf2-9gfMyzIWBWZHjLnRIyAWjG0ZtdlVcFxv6H5qLI7JkSrBUSZMtyGoY3ihlmWDqlCy4odZynS3J0z3CMEVssRuTIsYQkzzEiNVYhy7xs3yM6OpqRJc89zC7I7Z9iNAk23oOQ9NM39XivQ9fQ8MZOfHQDHj-y2vyuite8tt0_3Bzl2_3aaWkEilzVHIGAM4aDdpKZ5RFLL3WyCkzrgQJCLZi3igtrXaiFJn3TEgEVSJfk8uf3X4qW3SHPtYtxI_D3zf-CaTlUzo |
CitedBy_id | crossref_primary_10_1021_acs_est_0c06451 crossref_primary_10_1093_aje_kwz063 crossref_primary_10_1016_j_envint_2021_106378 crossref_primary_10_1016_j_envpol_2024_125405 crossref_primary_10_1016_j_apr_2019_01_016 crossref_primary_10_1007_s11869_020_00826_6 crossref_primary_10_1164_rccm_201706_1267OC crossref_primary_10_1289_EHP11277 crossref_primary_10_3390_ijerph14121580 crossref_primary_10_1161_CIRCRESAHA_124_323673 crossref_primary_10_1002_env_2573 crossref_primary_10_1016_j_atmosenv_2020_117523 crossref_primary_10_3390_app9245360 crossref_primary_10_1080_02664763_2023_2252208 crossref_primary_10_1093_biostatistics_kxae038 crossref_primary_10_1016_j_envint_2023_108382 crossref_primary_10_1038_s41370_022_00471_4 crossref_primary_10_1093_aje_kwz010 crossref_primary_10_1007_s10661_019_7421_4 crossref_primary_10_1097_EE9_0000000000000031 crossref_primary_10_1007_s40572_017_0160_1 crossref_primary_10_1121_10_0005949 crossref_primary_10_3390_ijerph18115806 crossref_primary_10_1016_j_rse_2024_113995 crossref_primary_10_3390_ijerph18042194 crossref_primary_10_1016_j_scitotenv_2021_150744 crossref_primary_10_1265_ehpm_24_00209 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1097/EDE.0000000000000623 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1531-5487 |
ExternalDocumentID | 28099267 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R01 ES020871 – fundername: NIAID NIH HHS grantid: R01 AI112339 – fundername: NIEHS NIH HHS grantid: T32 ES015459 – fundername: NIEHS NIH HHS grantid: R21 ES022795 – fundername: NIEHS NIH HHS grantid: R01 ES009411 – fundername: NIEHS NIH HHS grantid: R21 ES024894 |
GroupedDBID | --- .-D .55 .Z2 01R 0R~ 1J1 40H 4Q1 4Q2 4Q3 53G 5GY 5VS 71W 77Y 7O~ 8L- AAAAV AAAXR AACGO AAGIX AAHPQ AAIKC AAIQE AAMNW AAMOA AAMTA AANCE AAQKA AARTV AASCR AASOK AAXQO AAYEP ABASU ABBHK ABBUW ABDIG ABJNI ABPLY ABTLG ABVCZ ABXSQ ABXVJ ABZAD ABZZY ACCJW ACDDN ACEWG ACGFO ACGFS ACHIC ACHQT ACIJW ACILI ACLDA ACWDW ACWRI ACXJB ACXNZ ACZKN ADFPA ADGGA ADHPY ADNKB ADQXQ ADULT AE3 AE6 AEETU AENEX AEUPB AEXZC AFBFQ AFDTB AFFNX AFUWQ AGINI AHOMT AHQNM AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI ANHSF AOHHW AOQMC AQVQM BOYCO BQLVK BS7 BYPQX C45 CGR CS3 CUY CVF DCCCD DIWNM DU5 DUNZO E.X EBS ECM EEVPB EIF EJD ERAAH EX3 F2M F2N F5P FCALG FL- FW0 GNXGY GQDEL H0~ HGD HLJTE HQ3 HTVGU HZ~ IKREB IKYAY IN~ IPNFZ IPSME JAAYA JBMMH JENOY JF9 JG8 JHFFW JK3 JK8 JKQEH JLS JLXEF JPM JSG JST K8S KD2 L-C N9A NPM N~7 N~B N~M O9- OAG OAH OCUKA ODA OLG OLH OLU OLY OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P R58 RIG RLZ S4R S4S SA0 T8P TEORI TSPGW V2I VVN W3M WOQ WOW X3V X3W X7M XXN XYM YCJ YOC ZFV ZGI ZZMQN |
ID | FETCH-LOGICAL-c5453-1d0421aaad986a694d859eebf66e2018dba4aea9c1f856496d3b37ff134ea5be2 |
IngestDate | Thu Apr 03 06:57:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5453-1d0421aaad986a694d859eebf66e2018dba4aea9c1f856496d3b37ff134ea5be2 |
OpenAccessLink | http://doi.org/10.1097/EDE.0000000000000623 |
PMID | 28099267 |
ParticipantIDs | pubmed_primary_28099267 |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Epidemiology (Cambridge, Mass.) |
PublicationTitleAlternate | Epidemiology |
PublicationYear | 2017 |
SSID | ssj0017315 |
Score | 2.3700838 |
Snippet | Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 338 |
SubjectTerms | Air Pollution - statistics & numerical data Birth Weight Environmental Exposure - statistics & numerical data Female Georgia Humans Infant, Newborn Linear Models Male Particulate Matter Spatio-Temporal Analysis |
Title | Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28099267 |
Volume | 28 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5avQgivt-yB6-pTfaR7FG0IpWKooXeyibZYBHbkurFf-E_dvaRh1pFzSGELCwh35fJ7Ox8Mwgd-0KyiKfU8xMmPcrC0JOEKy8E10D_ARNh4h29a37Zp90BGzQab7WspZfnuJW8ztWV_AdVuAe4apXsH5AtJ4UbcA34whkQhvOvMO5VAT4waPkkh887NybM5Q_e5HofxjiVJnPaFaICVEa5Tn2zD6frHU_0RLMPcfqqd6zJCCjVXVbiM5u1alGEK1VICruT2cOLrGRjZ0VE2iboVmKIO90b4LFIrHR9x2u7VK_TkdPgpPLJhVxdeAJ-eWUyYEsVJtX39LqobnODqMYtUjOgxNZ6-WLYbcHgznnHFpwsDm7FyjWsp08G7CAC1zewnT5-Hv1UbrsYaqImLDx0J1Ud_nHbUiHxWaG_FOHJvMfR1aXdFJ9WKsZjuV9FK26pgU8tb9ZQQ43X0bKN02IrP9tAtzUOYcMhXHEIA4dwySH8kUMYOIRLDuGSQ5uof9G5P7v0XJsNLwH3mXh-Cobbl1KmIuKSC5pGTCgVZ5wrQDRKY0mlkiLxs4hxKnhKYhJmmU-okixWwRZaGE_GagfhNknjtlKZIDGjGQwGUZKwhLepBL9H0V20bd_IcGprqQyLd7X37cg-Wqp4dYAWM_h41SF4gs_xkUHnHYN-XHs |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+Error+Correction+for+Predicted+Spatiotemporal+Air+Pollution+Exposures&rft.jtitle=Epidemiology+%28Cambridge%2C+Mass.%29&rft.au=Keller%2C+Joshua+P&rft.au=Chang%2C+Howard+H&rft.au=Strickland%2C+Matthew+J&rft.au=Szpiro%2C+Adam+A&rft.date=2017-05-01&rft.eissn=1531-5487&rft.volume=28&rft.issue=3&rft.spage=338&rft_id=info:doi/10.1097%2FEDE.0000000000000623&rft_id=info%3Apmid%2F28099267&rft_id=info%3Apmid%2F28099267&rft.externalDocID=28099267 |