Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures

Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stag...

Full description

Saved in:
Bibliographic Details
Published inEpidemiology (Cambridge, Mass.) Vol. 28; no. 3; p. 338
Main Authors Keller, Joshua P, Chang, Howard H, Strickland, Matthew J, Szpiro, Adam A
Format Journal Article
LanguageEnglish
Published United States 01.05.2017
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data. We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap. Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35). This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight.
AbstractList Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data. We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap. Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35). This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight.
Author Keller, Joshua P
Strickland, Matthew J
Chang, Howard H
Szpiro, Adam A
Author_xml – sequence: 1
  givenname: Joshua P
  surname: Keller
  fullname: Keller, Joshua P
  organization: From the aDepartment of Biostatistics, University of Washington, Seattle, WA; bDepartment of Biostatistics and Bioinformatics, Emory University, Atlanta, GA; and cSchool of Community Health Sciences, University of Nevada Reno, Reno, NV
– sequence: 2
  givenname: Howard H
  surname: Chang
  fullname: Chang, Howard H
– sequence: 3
  givenname: Matthew J
  surname: Strickland
  fullname: Strickland, Matthew J
– sequence: 4
  givenname: Adam A
  surname: Szpiro
  fullname: Szpiro, Adam A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28099267$$D View this record in MEDLINE/PubMed
BookMark eNpNT9tKxDAUDKK4F_0Dkf5A19ybPC61q8KKivq8nDYnUGmbkragf2-9gfMyzIWBWZHjLnRIyAWjG0ZtdlVcFxv6H5qLI7JkSrBUSZMtyGoY3ihlmWDqlCy4odZynS3J0z3CMEVssRuTIsYQkzzEiNVYhy7xs3yM6OpqRJc89zC7I7Z9iNAk23oOQ9NM39XivQ9fQ8MZOfHQDHj-y2vyuite8tt0_3Bzl2_3aaWkEilzVHIGAM4aDdpKZ5RFLL3WyCkzrgQJCLZi3igtrXaiFJn3TEgEVSJfk8uf3X4qW3SHPtYtxI_D3zf-CaTlUzo
CitedBy_id crossref_primary_10_1021_acs_est_0c06451
crossref_primary_10_1093_aje_kwz063
crossref_primary_10_1016_j_envint_2021_106378
crossref_primary_10_1016_j_envpol_2024_125405
crossref_primary_10_1016_j_apr_2019_01_016
crossref_primary_10_1007_s11869_020_00826_6
crossref_primary_10_1164_rccm_201706_1267OC
crossref_primary_10_1289_EHP11277
crossref_primary_10_3390_ijerph14121580
crossref_primary_10_1161_CIRCRESAHA_124_323673
crossref_primary_10_1002_env_2573
crossref_primary_10_1016_j_atmosenv_2020_117523
crossref_primary_10_3390_app9245360
crossref_primary_10_1080_02664763_2023_2252208
crossref_primary_10_1093_biostatistics_kxae038
crossref_primary_10_1016_j_envint_2023_108382
crossref_primary_10_1038_s41370_022_00471_4
crossref_primary_10_1093_aje_kwz010
crossref_primary_10_1007_s10661_019_7421_4
crossref_primary_10_1097_EE9_0000000000000031
crossref_primary_10_1007_s40572_017_0160_1
crossref_primary_10_1121_10_0005949
crossref_primary_10_3390_ijerph18115806
crossref_primary_10_1016_j_rse_2024_113995
crossref_primary_10_3390_ijerph18042194
crossref_primary_10_1016_j_scitotenv_2021_150744
crossref_primary_10_1265_ehpm_24_00209
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1097/EDE.0000000000000623
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Public Health
EISSN 1531-5487
ExternalDocumentID 28099267
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES020871
– fundername: NIAID NIH HHS
  grantid: R01 AI112339
– fundername: NIEHS NIH HHS
  grantid: T32 ES015459
– fundername: NIEHS NIH HHS
  grantid: R21 ES022795
– fundername: NIEHS NIH HHS
  grantid: R01 ES009411
– fundername: NIEHS NIH HHS
  grantid: R21 ES024894
GroupedDBID ---
.-D
.55
.Z2
01R
0R~
1J1
40H
4Q1
4Q2
4Q3
53G
5GY
5VS
71W
77Y
7O~
8L-
AAAAV
AAAXR
AACGO
AAGIX
AAHPQ
AAIKC
AAIQE
AAMNW
AAMOA
AAMTA
AANCE
AAQKA
AARTV
AASCR
AASOK
AAXQO
AAYEP
ABASU
ABBHK
ABBUW
ABDIG
ABJNI
ABPLY
ABTLG
ABVCZ
ABXSQ
ABXVJ
ABZAD
ABZZY
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACHIC
ACHQT
ACIJW
ACILI
ACLDA
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADFPA
ADGGA
ADHPY
ADNKB
ADQXQ
ADULT
AE3
AE6
AEETU
AENEX
AEUPB
AEXZC
AFBFQ
AFDTB
AFFNX
AFUWQ
AGINI
AHOMT
AHQNM
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
ANHSF
AOHHW
AOQMC
AQVQM
BOYCO
BQLVK
BS7
BYPQX
C45
CGR
CS3
CUY
CVF
DCCCD
DIWNM
DU5
DUNZO
E.X
EBS
ECM
EEVPB
EIF
EJD
ERAAH
EX3
F2M
F2N
F5P
FCALG
FL-
FW0
GNXGY
GQDEL
H0~
HGD
HLJTE
HQ3
HTVGU
HZ~
IKREB
IKYAY
IN~
IPNFZ
IPSME
JAAYA
JBMMH
JENOY
JF9
JG8
JHFFW
JK3
JK8
JKQEH
JLS
JLXEF
JPM
JSG
JST
K8S
KD2
L-C
N9A
NPM
N~7
N~B
N~M
O9-
OAG
OAH
OCUKA
ODA
OLG
OLH
OLU
OLY
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
R58
RIG
RLZ
S4R
S4S
SA0
T8P
TEORI
TSPGW
V2I
VVN
W3M
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YCJ
YOC
ZFV
ZGI
ZZMQN
ID FETCH-LOGICAL-c5453-1d0421aaad986a694d859eebf66e2018dba4aea9c1f856496d3b37ff134ea5be2
IngestDate Thu Apr 03 06:57:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5453-1d0421aaad986a694d859eebf66e2018dba4aea9c1f856496d3b37ff134ea5be2
OpenAccessLink http://doi.org/10.1097/EDE.0000000000000623
PMID 28099267
ParticipantIDs pubmed_primary_28099267
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Epidemiology (Cambridge, Mass.)
PublicationTitleAlternate Epidemiology
PublicationYear 2017
SSID ssj0017315
Score 2.3700838
Snippet Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a...
SourceID pubmed
SourceType Index Database
StartPage 338
SubjectTerms Air Pollution - statistics & numerical data
Birth Weight
Environmental Exposure - statistics & numerical data
Female
Georgia
Humans
Infant, Newborn
Linear Models
Male
Particulate Matter
Spatio-Temporal Analysis
Title Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures
URI https://www.ncbi.nlm.nih.gov/pubmed/28099267
Volume 28
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5avQgivt-yB6-pTfaR7FG0IpWKooXeyibZYBHbkurFf-E_dvaRh1pFzSGELCwh35fJ7Ox8Mwgd-0KyiKfU8xMmPcrC0JOEKy8E10D_ARNh4h29a37Zp90BGzQab7WspZfnuJW8ztWV_AdVuAe4apXsH5AtJ4UbcA34whkQhvOvMO5VAT4waPkkh887NybM5Q_e5HofxjiVJnPaFaICVEa5Tn2zD6frHU_0RLMPcfqqd6zJCCjVXVbiM5u1alGEK1VICruT2cOLrGRjZ0VE2iboVmKIO90b4LFIrHR9x2u7VK_TkdPgpPLJhVxdeAJ-eWUyYEsVJtX39LqobnODqMYtUjOgxNZ6-WLYbcHgznnHFpwsDm7FyjWsp08G7CAC1zewnT5-Hv1UbrsYaqImLDx0J1Ud_nHbUiHxWaG_FOHJvMfR1aXdFJ9WKsZjuV9FK26pgU8tb9ZQQ43X0bKN02IrP9tAtzUOYcMhXHEIA4dwySH8kUMYOIRLDuGSQ5uof9G5P7v0XJsNLwH3mXh-Cobbl1KmIuKSC5pGTCgVZ5wrQDRKY0mlkiLxs4hxKnhKYhJmmU-okixWwRZaGE_GagfhNknjtlKZIDGjGQwGUZKwhLepBL9H0V20bd_IcGprqQyLd7X37cg-Wqp4dYAWM_h41SF4gs_xkUHnHYN-XHs
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+Error+Correction+for+Predicted+Spatiotemporal+Air+Pollution+Exposures&rft.jtitle=Epidemiology+%28Cambridge%2C+Mass.%29&rft.au=Keller%2C+Joshua+P&rft.au=Chang%2C+Howard+H&rft.au=Strickland%2C+Matthew+J&rft.au=Szpiro%2C+Adam+A&rft.date=2017-05-01&rft.eissn=1531-5487&rft.volume=28&rft.issue=3&rft.spage=338&rft_id=info:doi/10.1097%2FEDE.0000000000000623&rft_id=info%3Apmid%2F28099267&rft_id=info%3Apmid%2F28099267&rft.externalDocID=28099267