Actin depolymerizing factor is essential for viability in plants, and its phosphoregulation is important for tip growth

Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitre...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 54; no. 5; pp. 863 - 875
Main Authors Augustine, Robert C, Vidali, Luis, Kleinman, Ken P, Bezanilla, Magdalena
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.06.2008
Blackwell Publishing Ltd
Blackwell Science
Subjects
Online AccessGet full text
ISSN0960-7412
1365-313X
1365-313X
DOI10.1111/j.1365-313x.2008.03451.x

Cover

Loading…
Abstract Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitrella patens, ADF is encoded by a single, intronless gene. We used RNA interference to demonstrate that ADF is essential for plant viability. Loss of ADF dramatically alters the organization of the F-actin cytoskeleton, and leads to an inhibition of tip growth. We show that ADF is subject to phosphorylation in vivo, and using complementation studies we show that mutations of the predicted phosphorylation site partially rescue plant viability, but with differential affects on tip growth. Specifically, the unphosphorylatable ADF S6A mutant generates small polarized plants with normal F-actin organization, whereas the phosphomimetic S6D mutant generates small, unpolarized plants with a disorganized F-actin cyotskeleton. These data indicate that phosphoregulation at serine 6 is required for full ADF function in vivo, and, in particular, that the interaction between ADF and actin is important for tip growth.
AbstractList Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitrella patens, ADF is encoded by a single, intronless gene. We used RNA interference to demonstrate that ADF is essential for plant viability. Loss of ADF dramatically alters the organization of the F-actin cytoskeleton, and leads to an inhibition of tip growth. We show that ADF is subject to phosphorylation in vivo, and using complementation studies we show that mutations of the predicted phosphorylation site partially rescue plant viability, but with differential affects on tip growth. Specifically, the unphosphorylatable ADF S6A mutant generates small polarized plants with normal F-actin organization, whereas the phosphomimetic S6D mutant generates small, unpolarized plants with a disorganized F-actin cytoskeleton. These data indicate that phosphoregulation at serine 6 is required for full ADF function in vivo, and, in particular, that the interaction between ADF and actin is important for tip growth.
Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitrella patens, ADF is encoded by a single, intronless gene. We used RNA interference to demonstrate that ADF is essential for plant viability. Loss of ADF dramatically alters the organization of the F-actin cytoskeleton, and leads to an inhibition of tip growth. We show that ADF is subject to phosphorylation in vivo, and using complementation studies we show that mutations of the predicted phosphorylation site partially rescue plant viability, but with differential affects on tip growth. Specifically, the unphosphorylatable ADF S6A mutant generates small polarized plants with normal F-actin organization, whereas the phosphomimetic S6D mutant generates small, unpolarized plants with a disorganized F-actin cytoskeleton. These data indicate that phosphoregulation at serine 6 is required for full ADF function in vivo, and, in particular, that the interaction between ADF and actin is important for tip growth.Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitrella patens, ADF is encoded by a single, intronless gene. We used RNA interference to demonstrate that ADF is essential for plant viability. Loss of ADF dramatically alters the organization of the F-actin cytoskeleton, and leads to an inhibition of tip growth. We show that ADF is subject to phosphorylation in vivo, and using complementation studies we show that mutations of the predicted phosphorylation site partially rescue plant viability, but with differential affects on tip growth. Specifically, the unphosphorylatable ADF S6A mutant generates small polarized plants with normal F-actin organization, whereas the phosphomimetic S6D mutant generates small, unpolarized plants with a disorganized F-actin cytoskeleton. These data indicate that phosphoregulation at serine 6 is required for full ADF function in vivo, and, in particular, that the interaction between ADF and actin is important for tip growth.
Summary Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitrella patens, ADF is encoded by a single, intronless gene. We used RNA interference to demonstrate that ADF is essential for plant viability. Loss of ADF dramatically alters the organization of the F‐actin cytoskeleton, and leads to an inhibition of tip growth. We show that ADF is subject to phosphorylation in vivo, and using complementation studies we show that mutations of the predicted phosphorylation site partially rescue plant viability, but with differential affects on tip growth. Specifically, the unphosphorylatable ADF S6A mutant generates small polarized plants with normal F‐actin organization, whereas the phosphomimetic S6D mutant generates small, unpolarized plants with a disorganized F‐actin cyotskeleton. These data indicate that phosphoregulation at serine 6 is required for full ADF function in vivo, and, in particular, that the interaction between ADF and actin is important for tip growth.
Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitrella patens, ADF is encoded by a single, intronless gene. We used RNA interference to demonstrate that ADF is essential for plant viability. Loss of ADF dramatically alters the organization of the F-actin cytoskeleton, and leads to an inhibition of tip growth. We show that ADF is subject to phosphorylation in vivo, and using complementation studies we show that mutations of the predicted phosphorylation site partially rescue plant viability, but with differential affects on tip growth. Specifically, the unphosphorylatable ADF S6A mutant generates small polarized plants with normal F-actin organization, whereas the phosphomimetic S6D mutant generates small, unpolarized plants with a disorganized F-actin cyotskeleton. These data indicate that phosphoregulation at serine 6 is required for full ADF function in vivo, and, in particular, that the interaction between ADF and actin is important for tip growth.
Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitrella patens, ADF is encoded by a single, intronless gene. We used RNA interference to demonstrate that ADF is essential for plant viability. Loss of ADF dramatically alters the organization of the F-actin cytoskeleton, and leads to an inhibition of tip growth. We show that ADF is subject to phosphorylation in vivo, and using complementation studies we show that mutations of the predicted phosphorylation site partially rescue plant viability, but with differential affects on tip growth. Specifically, the unphosphorylatable ADF S6A mutant generates small polarized plants with normal F-actin organization, whereas the phosphomimetic S6D mutant generates small, unpolarized plants with a disorganized F-actin cyotskeleton. These data indicate that phosphoregulation at serine 6 is required for full ADF function in vivo, and, in particular, that the interaction between ADF and actin is important for tip growth. [PUBLICATION ABSTRACT]
Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitrella patens , ADF is encoded by a single, intronless gene. We used RNA interference to demonstrate that ADF is essential for plant viability. Loss of ADF dramatically alters the organization of the F‐actin cytoskeleton, and leads to an inhibition of tip growth. We show that ADF is subject to phosphorylation in vivo , and using complementation studies we show that mutations of the predicted phosphorylation site partially rescue plant viability, but with differential affects on tip growth. Specifically, the unphosphorylatable ADF S6A mutant generates small polarized plants with normal F‐actin organization, whereas the phosphomimetic S6D mutant generates small, unpolarized plants with a disorganized F‐actin cyotskeleton. These data indicate that phosphoregulation at serine 6 is required for full ADF function in vivo , and, in particular, that the interaction between ADF and actin is important for tip growth.
Author Bezanilla, Magdalena
Kleinman, Ken P
Augustine, Robert C
Vidali, Luis
Author_xml – sequence: 1
  fullname: Augustine, Robert C
– sequence: 2
  fullname: Vidali, Luis
– sequence: 3
  fullname: Kleinman, Ken P
– sequence: 4
  fullname: Bezanilla, Magdalena
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20390465$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18298672$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1rGzEQhkVJaZy0f6EVhebUdfW1Wu2hhRDSLwItNIHexKysdWTWq40k13Z_fbW2k0MuqUBISM87zDszJ-io971FCFMypXl9WEwpl2XBKd9MGSFqSrgo6XTzDE3uP34foQmpJSkqQdkxOolxQQituBQv0DFVrFayYhO0PjfJ9XhmB99tlza4v66f4xZM8gG7iG2Mtk8OOtzmhz8OGte5tMVZM3TQp_geQz_DLkU83PqYd7DzVQfJ-X7Uu-XgQ8rgTp_cgOfBr9PtS_S8hS7aV4fzFN18vry--Fpc_fjy7eL8qjBldlS0trGzbICXpFINqFoJKi2XAI1hRMGMGA6MCS5saYkS1lAQtFFN1ZjKGOCn6Gwfdwj-bmVj0ksXje1y7tavoq5IJaUQ8klQVLKspaIZfPsIXPhV6LMJzSgvWQ5IMvT6AK2apZ3pIbglhK2-L3wG3h0AiAa6NkBvXHzgGOE1EbLM3Kc9Z4KPMdhWG5d21U0BXKcp0eNE6IUeG6_HxutxIvRuIvQmB1CPAjzk8rT04166dp3d_rdOX__8Pt6y_s1e34LXMA_Z380vRijPcF3Vuav_ADm02DA
CitedBy_id crossref_primary_10_1371_journal_pone_0005744
crossref_primary_10_3389_fpls_2023_1146802
crossref_primary_10_1007_s11829_017_9562_0
crossref_primary_10_1007_s11103_021_01147_7
crossref_primary_10_1111_j_1467_7652_2008_00367_x
crossref_primary_10_4161_psb_25601
crossref_primary_10_1242_jcs_172445
crossref_primary_10_3389_fpls_2017_00158
crossref_primary_10_1007_s11356_024_35439_4
crossref_primary_10_1111_ede_12376
crossref_primary_10_1111_tpj_12328
crossref_primary_10_1371_journal_pbio_3002073
crossref_primary_10_1016_j_isci_2019_05_026
crossref_primary_10_3389_fpls_2019_00456
crossref_primary_10_1242_dev_049023
crossref_primary_10_1016_j_cj_2021_12_012
crossref_primary_10_3390_genes14061301
crossref_primary_10_1007_s10265_016_0899_8
crossref_primary_10_1093_pcp_pcr068
crossref_primary_10_1093_pcp_pct202
crossref_primary_10_1016_j_pbi_2010_09_013
crossref_primary_10_1104_pp_109_143727
crossref_primary_10_1007_s11738_013_1324_8
crossref_primary_10_3389_fpls_2016_01393
crossref_primary_10_1371_journal_pgen_1007221
crossref_primary_10_1111_tpj_12457
crossref_primary_10_1016_j_pbi_2012_09_008
crossref_primary_10_1007_s00299_013_1482_6
crossref_primary_10_1073_pnas_0901170106
crossref_primary_10_1007_s11240_016_0994_5
crossref_primary_10_1016_j_xplc_2023_100787
crossref_primary_10_1016_j_plaphy_2014_11_003
crossref_primary_10_1105_tpc_109_073288
crossref_primary_10_3390_ijms21061970
crossref_primary_10_1016_j_bbamcr_2008_09_015
crossref_primary_10_1007_s00436_009_1699_z
crossref_primary_10_1105_tpc_111_090753
crossref_primary_10_3390_genes7100079
crossref_primary_10_1007_s00425_014_2040_3
crossref_primary_10_1105_tpc_111_090670
crossref_primary_10_1111_pbi_12957
crossref_primary_10_1016_j_jplph_2011_07_009
crossref_primary_10_1016_j_neuron_2019_07_007
crossref_primary_10_1002_cm_20389
crossref_primary_10_1371_journal_pone_0095554
crossref_primary_10_3389_fpls_2018_01917
crossref_primary_10_1093_plcell_koab218
crossref_primary_10_1146_annurev_arplant_050312_120150
crossref_primary_10_1242_jcs_207738
crossref_primary_10_1016_j_pbi_2013_10_012
crossref_primary_10_1007_s00726_011_1111_z
crossref_primary_10_1042_BST20220783
crossref_primary_10_1083_jcb_201802039
crossref_primary_10_1186_1939_8433_5_33
crossref_primary_10_1093_pcp_pcv002
crossref_primary_10_1073_pnas_1115926109
crossref_primary_10_1016_j_bbrc_2018_07_073
crossref_primary_10_1016_j_stress_2025_100762
crossref_primary_10_1186_s12870_022_03852_x
crossref_primary_10_1111_j_1365_313X_2011_04623_x
crossref_primary_10_1111_tpj_14807
crossref_primary_10_1111_tpj_12039
crossref_primary_10_1016_j_jprot_2012_07_005
crossref_primary_10_1073_pnas_1711037115
crossref_primary_10_1111_jac_12471
crossref_primary_10_1002_cm_20530
crossref_primary_10_1093_plphys_kiad203
crossref_primary_10_3390_ijms242015480
crossref_primary_10_1002_cm_20298
crossref_primary_10_3390_ijms20061403
crossref_primary_10_1016_j_molp_2017_06_001
crossref_primary_10_1105_tpc_109_069104
crossref_primary_10_1074_mcp_M117_068015
Cites_doi 10.1111/j.1469-8137.2005.01582.x
10.1126/science.1150646
10.1038/31735
10.1073/pnas.0932694100
10.1074/jbc.273.33.20894
10.1074/jbc.270.52.31321
10.1105/tpc.003038
10.1083/jcb.145.6.1251
10.1083/jcb.115.6.1611
10.1046/j.1365-313X.1998.00107.x
10.1105/tpc.105.037135
10.1242/jcs.112.10.1553
10.1046/j.1365-313X.1999.00358.x
10.1093/emboj/20.11.2779
10.1016/S0014-5793(01)02528-5
10.1091/mbc.12.8.2534
10.1105/tpc.011676
10.1074/jbc.274.22.15538
10.1105/tpc.11.12.2349
10.1016/S0378-1119(02)00646-7
10.1002/elps.11501401163
10.1083/jcb.151.5.1119
10.1074/jbc.M610873200
10.1074/jbc.M305802200
10.1105/tpc.107.053413
10.1146/annurev.cellbio.17.1.159
10.1093/jxb/erm047
10.1016/0378-1119(94)90641-6
10.1111/j.1420-9101.2007.01301.x
10.1016/0378-1119(93)90770-4
10.1016/j.molcel.2006.08.006
10.1083/jcb.138.4.771
10.1111/j.1365-313X.2007.03257.x
10.1083/jcb.120.2.421
10.1105/tpc.007153
10.1083/jcb.136.6.1307
10.1046/j.1365-313X.1997.12051035.x
10.1083/jcb.200610005
10.1242/dev.00549
10.1002/cm.20114
10.1146/annurev.cellbio.15.1.185
10.1046/j.1365-2443.1996.05005.x
10.1105/tpc.105.033266
10.1002/elps.1150181505
10.1074/jbc.270.18.10923
10.1104/pp.103.024901
10.1186/gb-2002-3-5-reviews3007
10.1006/jmbi.1999.3336
10.1055/s-2005-837597
10.1105/TPC.010051
10.1016/j.ydbio.2004.11.010
10.1105/tpc.106.044867
10.1105/tpc.005363
10.1111/j.1365-313X.2007.03053.x
10.1038/31729
10.1007/BF00280425
10.1105/tpc.016550
10.1083/jcb.131.5.1243
10.1016/S0092-8674(01)00638-9
10.1016/j.jmb.2006.10.102
10.1002/(SICI)1097-0169(1997)36:4<323::AID-CM3>3.0.CO;2-6
10.1091/mbc.12.4.1131
10.1023/A:1010687911374
10.1242/jcs.007302
10.1016/j.cub.2004.01.004
ContentType Journal Article
Copyright 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd
2008 INIST-CNRS
Journal compilation © 2008 Blackwell Publishing Ltd and the Society for Experimental Biology
Copyright_xml – notice: 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd
– notice: 2008 INIST-CNRS
– notice: Journal compilation © 2008 Blackwell Publishing Ltd and the Society for Experimental Biology
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7S9
L.6
7X8
DOI 10.1111/j.1365-313x.2008.03451.x
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA

Genetics Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 875
ExternalDocumentID 1483464031
18298672
20390465
10_1111_j_1365_313X_2008_03451_x
TPJ3451
US201300897912
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABWRO
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAHBH
AAHQN
AAMNL
AAYCA
AFWVQ
AHBTC
AITYG
ALVPJ
HGLYW
OIG
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7S9
L.6
7X8
ID FETCH-LOGICAL-c5451-febed41235078ba898416e36aabc208ad0c3a22434e5e084ec1a41b8b7bc7cca3
IEDL.DBID DR2
ISSN 0960-7412
1365-313X
IngestDate Thu Jul 10 23:55:52 EDT 2025
Fri Jul 11 11:28:41 EDT 2025
Fri Jul 25 10:55:01 EDT 2025
Wed Feb 19 01:51:19 EST 2025
Mon Jul 21 09:11:13 EDT 2025
Tue Jul 01 03:57:00 EDT 2025
Thu Apr 24 23:44:07 EDT 2025
Wed Jan 22 17:12:48 EST 2025
Wed Dec 27 19:20:07 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords ADF
cofilin
Gene
Growth
Physcomitrella patens
Cytoskeleton
Inhibition
Mutation
phosphorylation
tip growth
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5451-febed41235078ba898416e36aabc208ad0c3a22434e5e084ec1a41b8b7bc7cca3
Notes http://dx.doi.org/10.1111/j.1365-313X.2008.03451.x
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 18298672
PQID 213520760
PQPubID 31702
PageCount 13
ParticipantIDs proquest_miscellaneous_70766446
proquest_miscellaneous_47659681
proquest_journals_213520760
pubmed_primary_18298672
pascalfrancis_primary_20390465
crossref_citationtrail_10_1111_j_1365_313X_2008_03451_x
crossref_primary_10_1111_j_1365_313X_2008_03451_x
wiley_primary_10_1111_j_1365_313X_2008_03451_x_TPJ3451
fao_agris_US201300897912
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2008
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: June 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2008
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell Science
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell Science
References 2002; 14
2003b; 130
2003; 15
2000; 295
1995; 131
1993; 124
2003; 278
1991; 115
1998; 393
1993; 120
1998; 273
2006; 63
2006; 24
1999; 17
2007; 177
1999; 15
1997; 12
2008; 319
1997; 18
1999; 11
1996; 1
2001; 17
2002; 108
2007; 20
2001; 12
2001; 499
1989
1998; 14
1988
1997; 136
2007; 365
2007; 19
1997; 138
2002; 292
2007; 282
2005; 278
2007; 120
1994; 151
2006; 18
2002; 3
2000; 151
2003a; 15
2007; 50
1999; 145
2007; 52
2001a; 45
2003; 133
1995; 270
2007; 58
2001; 20
1993; 14
1994; 242
2004; 16
2005; 168
2004; 14
1997; 36
1999; 274
2005; 7
2001b; 13
1999; 112
2005; 17
2003; 100
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Okada K. (e_1_2_6_50_1) 1999; 112
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Harlow E.A.L.D. (e_1_2_6_26_1) 1988
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
Sambrook J. (e_1_2_6_58_1) 1989
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 11
  start-page: 2349
  year: 1999
  end-page: 2363
  article-title: Latrunculin B has different effects on pollen germination and tube growth
  publication-title: Plant Cell
– volume: 278
  start-page: 33450
  year: 2003
  end-page: 33455
  article-title: Cell cycle‐associated changes in Slingshot phosphatase activity and roles in cytokinesis in animal cells
  publication-title: J. Biol. Chem.
– volume: 115
  start-page: 1611
  year: 1991
  end-page: 1620
  article-title: Characterization of actin filament severing by actophorin from
  publication-title: J. Cell Biol.
– volume: 14
  start-page: 1023
  year: 1993
  end-page: 1031
  article-title: The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences
  publication-title: Electrophoresis
– volume: 177
  start-page: 465
  year: 2007
  end-page: 476
  article-title: Cofilin promotes stimulus‐induced lamellipodium formation by generating an abundant supply of actin monomers
  publication-title: J. Cell Biol.
– volume: 100
  start-page: 8007
  year: 2003
  end-page: 8012
  article-title: Comparative genomics of gametophytic transcriptome and : implication for land plant evolution
  publication-title: Proc. Natl Acad. Sci. USA
– year: 1989
– volume: 18
  start-page: 867
  year: 2006
  end-page: 878
  article-title: Calcium‐dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity
  publication-title: Plant Cell
– volume: 292
  start-page: 233
  year: 2002
  end-page: 243
  article-title: Petunia actin‐depolymerizing factor is mainly accumulated in vascular tissue and its gene expression is enhanced by the first intron
  publication-title: Gene
– volume: 13
  start-page: 1333
  year: 2001b
  end-page: 1346
  article-title: ADF proteins are involved in the control of flowering and regulate F‐actin organization, cell expansion, and organ growth in
  publication-title: Plant Cell
– volume: 242
  start-page: 346
  year: 1994
  end-page: 357
  article-title: The unc‐60 gene encodes proteins homologous to a family of actin‐binding proteins
  publication-title: Mol. Gen. Genet.
– volume: 52
  start-page: 460
  year: 2007
  end-page: 472
  article-title: The ancient subclasses of actin depolymerizing factor genes exhibit novel and differential expression
  publication-title: Plant J.
– volume: 14
  start-page: 145
  year: 2004
  end-page: 149
  article-title: The actin‐interacting protein AIP1 is essential for actin organization and plant development
  publication-title: Curr. Biol.
– volume: 393
  start-page: 809
  year: 1998
  end-page: 812
  article-title: Cofilin phosphorylation by LIM‐kinase 1 and its role in Rac‐mediated actin reorganization
  publication-title: Nature
– volume: 124
  start-page: 115
  year: 1993
  end-page: 120
  article-title: Isolation of a yeast essential gene, COF1, that encodes a homologue of mammalian cofilin, a low‐M(r) actin‐binding and depolymerizing protein
  publication-title: Gene
– volume: 120
  start-page: 421
  year: 1993
  end-page: 435
  article-title: Cofilin is an essential component of the yeast cortical cytoskeleton
  publication-title: J. Cell Biol.
– volume: 50
  start-page: 230
  year: 2007
  end-page: 239
  article-title: An upstream region in the first intron of petunia actin‐depolymerizing factor 1 affects tissue‐specific expression in transgenic ( )
  publication-title: Plant J.
– volume: 14
  start-page: 187
  year: 1998
  end-page: 193
  article-title: Ser6 in the maize actin‐depolymerizing factor, ZmADF3, is phosphorylated by a calcium‐stimulated protein kinase and is essential for the control of functional activity
  publication-title: Plant J.
– volume: 273
  start-page: 20894
  year: 1998
  end-page: 20902
  article-title: Kinetic analysis of the interaction of actin‐depolymerizing factor (ADF)/cofilin with G‐ and F‐actins. Comparison of plant and human ADFs and effect of phosphorylation
  publication-title: J. Biol. Chem.
– volume: 108
  start-page: 233
  year: 2002
  end-page: 246
  article-title: Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin
  publication-title: Cell
– volume: 151
  start-page: 1119
  year: 2000
  end-page: 1128
  article-title: Phosphorylation of ADF/cofilin abolishes EGF‐induced actin nucleation at the leading edge and subsequent lamellipod extension
  publication-title: J. Cell Biol.
– volume: 20
  start-page: 1223
  year: 2007
  end-page: 1229
  article-title: Compact genes are highly expressed in the moss
  publication-title: J. Evol. Biol.
– volume: 15
  start-page: 1632
  year: 2003a
  end-page: 1645
  article-title: Mutations in actin‐related proteins 2 and 3 affect cell shape development in Arabidopsis
  publication-title: Plant Cell
– volume: 16
  start-page: 257
  year: 2004
  end-page: 269
  article-title: Overexpression of an formin stimulates supernumerary actin cable formation from pollen tube cell membrane
  publication-title: Plant Cell
– volume: 270
  start-page: 31321
  year: 1995
  end-page: 31330
  article-title: Identification and characterization of a novel family of serine/threonine kinases containing two N‐terminal LIM motifs
  publication-title: J. Biol. Chem.
– volume: 63
  start-page: 162
  year: 2006
  end-page: 171
  article-title: The role of ARPC4 in tip growth and alignment of the polar axis in filaments of
  publication-title: Cell Motil. Cytoskeleton
– volume: 133
  start-page: 470
  year: 2003
  end-page: 474
  article-title: RNA interference in the moss
  publication-title: Plant Physiol.
– volume: 138
  start-page: 771
  year: 1997
  end-page: 781
  article-title: Cofilin changes the twist of F‐actin: implications for actin filament dynamics and cellular function
  publication-title: J. Cell Biol.
– volume: 499
  start-page: 97
  year: 2001
  end-page: 100
  article-title: Phosphorylation of plant actin‐depolymerising factor by calmodulin‐like domain protein kinase
  publication-title: FEBS Lett.
– volume: 274
  start-page: 15538
  year: 1999
  end-page: 15546
  article-title: Mechanism of interaction of actophorin (ADF/Cofilin) with actin filaments
  publication-title: J. Biol. Chem.
– volume: 130
  start-page: 3137
  year: 2003b
  end-page: 3146
  article-title: Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F‐actin formation
  publication-title: Development
– volume: 282
  start-page: 13692
  year: 2007
  end-page: 13702
  article-title: LIM kinase and slingshot are critical for neurite extension
  publication-title: J. Biol. Chem.
– volume: 58
  start-page: 1843
  year: 2007
  end-page: 1849
  article-title: Both chloronemal and caulonemal cells expand by tip growth in the moss
  publication-title: J. Exp. Bot.
– volume: 19
  start-page: 3705
  year: 2007
  end-page: 3722
  article-title: Profilin is essential for tip growth in the moss
  publication-title: Plant Cell
– volume: 15
  start-page: 185
  year: 1999
  end-page: 230
  article-title: Proteins of the ADF/cofilin family: essential regulators of actin dynamics
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 17
  start-page: 2327
  year: 2005
  end-page: 2339
  article-title: Actin‐related protein2/3 complex component ARPC1 is required for proper cell morphogenesis and polarized cell growth in
  publication-title: Plant Cell
– volume: 319
  start-page: 64
  year: 2008
  end-page: 69
  article-title: The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants
  publication-title: Science
– volume: 120
  start-page: 2609
  year: 2007
  end-page: 2618
  article-title: CAP1 – a key regulator of actin organisation and development
  publication-title: J. Cell Sci.
– volume: 18
  start-page: 2714
  year: 1997
  end-page: 2723
  article-title: SWISS‐MODEL and the Swiss‐PdbViewer: an environment for comparative protein modeling
  publication-title: Electrophoresis
– volume: 20
  start-page: 2779
  year: 2001
  end-page: 2788
  article-title: Rop GTPases are localized to tips of root hairs and control polar growth
  publication-title: EMBO J.
– volume: 14
  start-page: 2175
  year: 2002
  end-page: 2190
  article-title: The regulation of actin organization by actin‐depolymerizing factor in elongating pollen tubes
  publication-title: Plant Cell
– volume: 131
  start-page: 1243
  year: 1995
  end-page: 1259
  article-title: Mutations in twinstar, a gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis
  publication-title: J. Cell Biol.
– volume: 36
  start-page: 323
  year: 1997
  end-page: 338
  article-title: Characterization and localization of profilin in pollen grains and tubes of
  publication-title: Cell Motil. Cytoskeleton
– volume: 45
  start-page: 517
  year: 2001a
  end-page: 527
  article-title: Molecular identification and characterization of the AtADF1, AtADFS and AtADF6 genes
  publication-title: Plant Mol. Biol.
– volume: 14
  start-page: 2915
  year: 2002
  end-page: 2927
  article-title: Regulation of the pollen‐specific actin‐depolymerizing factor LlADF1
  publication-title: Plant Cell
– volume: 15
  start-page: 237
  year: 2003
  end-page: 249
  article-title: Actin‐depolymerizing factor mediates Rac/Rop GTPase‐regulated pollen tube growth
  publication-title: Plant Cell
– volume: 18
  start-page: 2182
  year: 2006
  end-page: 2193
  article-title: Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily
  publication-title: Plant Cell
– volume: 112
  start-page: 1553
  issue: Pt. 10
  year: 1999
  end-page: 1565
  article-title: XAIP1: a homologue of yeast actin interacting protein 1 (AIP1), which induces disassembly of actin filaments cooperatively with ADF/cofilin family proteins
  publication-title: J. Cell Sci.
– volume: 24
  start-page: 13
  year: 2006
  end-page: 23
  article-title: Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin
  publication-title: Mol. Cell.
– volume: 12
  start-page: 1131
  year: 2001
  end-page: 1145
  article-title: Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin‐mediated actin reorganization and focal adhesion formation
  publication-title: Mol. Biol. Cell
– volume: 168
  start-page: 529
  year: 2005
  end-page: 540
  article-title: group Ie formins localize to specific cell membrane domains, interact with actin‐binding proteins and cause defects in cell expansion upon aberrant expression
  publication-title: New Phytol.
– volume: 270
  start-page: 10923
  year: 1995
  end-page: 10932
  article-title: Identification, characterization, and intracellular distribution of cofilin in
  publication-title: J. Biol. Chem.
– year: 1988
– volume: 393
  start-page: 805
  year: 1998
  end-page: 809
  article-title: Regulation of actin dynamics through phosphorylation of cofilin by LIM‐kinase
  publication-title: Nature
– volume: 145
  start-page: 1251
  year: 1999
  end-page: 1264
  article-title: Aip1p interacts with cofilin to disassemble actin filaments
  publication-title: J. Cell Biol.
– volume: 12
  start-page: 2534
  year: 2001
  end-page: 2545
  article-title: Actin polymerization is essential for pollen tube growth
  publication-title: Mol. Biol. Cell
– volume: 295
  start-page: 203
  year: 2000
  end-page: 211
  article-title: Phosphorylation of actophorin (ADF/cofilin) blocks interaction with actin without a change in atomic structure
  publication-title: J. Mol. Biol.
– volume: 136
  start-page: 1307
  year: 1997
  end-page: 1322
  article-title: Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin‐based motility
  publication-title: J. Cell Biol.
– volume: 3
  year: 2002
  article-title: The ADF/cofilin family: actin‐remodeling proteins
  publication-title: Genome Biol.
– volume: 12
  start-page: 1035
  year: 1997
  end-page: 1043
  article-title: The maize actin‐depolymerizing factor, ZmADF3, redistributes to the growing tip of elongating root hairs and can be induced to translocate into the nucleus with actin
  publication-title: Plant J.
– volume: 17
  start-page: 141
  year: 1999
  end-page: 154
  article-title: The role of actin in root hair morphogenesis: studies with lipochito‐oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug
  publication-title: Plant J.
– volume: 278
  start-page: 231
  year: 2005
  end-page: 241
  article-title: The actin depolymerizing factor n‐cofilin is essential for neural tube morphogenesis and neural crest cell migration
  publication-title: Dev. Biol.
– volume: 17
  start-page: 159
  year: 2001
  end-page: 187
  article-title: Polarized cell growth in higher plants
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 7
  start-page: 251
  year: 2005
  end-page: 257
  article-title: An RNAi system in with an internal marker for silencing allows for rapid identification of loss of function phenotypes
  publication-title: Plant Biol. (Stuttg.)
– volume: 1
  start-page: 73
  year: 1996
  end-page: 86
  article-title: Phosphorylation of Ser‐3 of cofilin regulates its essential function on actin
  publication-title: Genes Cells
– volume: 151
  start-page: 119
  year: 1994
  end-page: 123
  article-title: Site‐directed mutagenesis of double‐stranded DNA by the polymerase chain reaction
  publication-title: Gene
– volume: 365
  start-page: 1350
  year: 2007
  end-page: 1358
  article-title: Actin filament severing by cofilin
  publication-title: J. Mol. Biol.
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1469-8137.2005.01582.x
– ident: e_1_2_6_54_1
  doi: 10.1126/science.1150646
– ident: e_1_2_6_66_1
  doi: 10.1038/31735
– ident: e_1_2_6_48_1
  doi: 10.1073/pnas.0932694100
– ident: e_1_2_6_55_1
  doi: 10.1074/jbc.273.33.20894
– ident: e_1_2_6_51_1
  doi: 10.1074/jbc.270.52.31321
– volume-title: Antibodies: A Laboratory Manual
  year: 1988
  ident: e_1_2_6_26_1
– ident: e_1_2_6_14_1
  doi: 10.1105/tpc.003038
– ident: e_1_2_6_56_1
  doi: 10.1083/jcb.145.6.1251
– ident: e_1_2_6_37_1
  doi: 10.1083/jcb.115.6.1611
– ident: e_1_2_6_59_1
  doi: 10.1046/j.1365-313X.1998.00107.x
– ident: e_1_2_6_67_1
  doi: 10.1105/tpc.105.037135
– volume: 112
  start-page: 1553
  issue: 10
  year: 1999
  ident: e_1_2_6_50_1
  article-title: XAIP1: a Xenopus homologue of yeast actin interacting protein 1 (AIP1), which induces disassembly of actin filaments cooperatively with ADF/cofilin family proteins
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.112.10.1553
– ident: e_1_2_6_43_1
  doi: 10.1046/j.1365-313X.1999.00358.x
– ident: e_1_2_6_44_1
  doi: 10.1093/emboj/20.11.2779
– ident: e_1_2_6_3_1
  doi: 10.1016/S0014-5793(01)02528-5
– ident: e_1_2_6_63_1
  doi: 10.1091/mbc.12.8.2534
– ident: e_1_2_6_38_1
  doi: 10.1105/tpc.011676
– ident: e_1_2_6_11_1
  doi: 10.1074/jbc.274.22.15538
– ident: e_1_2_6_22_1
  doi: 10.1105/tpc.11.12.2349
– ident: e_1_2_6_47_1
  doi: 10.1016/S0378-1119(02)00646-7
– ident: e_1_2_6_10_1
  doi: 10.1002/elps.11501401163
– ident: e_1_2_6_68_1
  doi: 10.1083/jcb.151.5.1119
– ident: e_1_2_6_21_1
  doi: 10.1074/jbc.M610873200
– ident: e_1_2_6_32_1
  doi: 10.1074/jbc.M305802200
– ident: e_1_2_6_64_1
  doi: 10.1105/tpc.107.053413
– ident: e_1_2_6_28_1
  doi: 10.1146/annurev.cellbio.17.1.159
– ident: e_1_2_6_42_1
  doi: 10.1093/jxb/erm047
– ident: e_1_2_6_65_1
  doi: 10.1016/0378-1119(94)90641-6
– ident: e_1_2_6_60_1
  doi: 10.1111/j.1420-9101.2007.01301.x
– ident: e_1_2_6_29_1
  doi: 10.1016/0378-1119(93)90770-4
– ident: e_1_2_6_5_1
  doi: 10.1016/j.molcel.2006.08.006
– ident: e_1_2_6_40_1
  doi: 10.1083/jcb.138.4.771
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1365-313X.2007.03257.x
– ident: e_1_2_6_45_1
  doi: 10.1083/jcb.120.2.421
– ident: e_1_2_6_15_1
  doi: 10.1105/tpc.007153
– ident: e_1_2_6_13_1
  doi: 10.1083/jcb.136.6.1307
– ident: e_1_2_6_31_1
  doi: 10.1046/j.1365-313X.1997.12051035.x
– ident: e_1_2_6_34_1
  doi: 10.1083/jcb.200610005
– ident: e_1_2_6_39_1
  doi: 10.1242/dev.00549
– ident: e_1_2_6_53_1
  doi: 10.1002/cm.20114
– ident: e_1_2_6_7_1
  doi: 10.1146/annurev.cellbio.15.1.185
– ident: e_1_2_6_46_1
  doi: 10.1046/j.1365-2443.1996.05005.x
– ident: e_1_2_6_27_1
  doi: 10.1105/tpc.105.033266
– ident: e_1_2_6_23_1
  doi: 10.1002/elps.1150181505
– ident: e_1_2_6_2_1
  doi: 10.1074/jbc.270.18.10923
– ident: e_1_2_6_8_1
  doi: 10.1104/pp.103.024901
– ident: e_1_2_6_36_1
  doi: 10.1186/gb-2002-3-5-reviews3007
– ident: e_1_2_6_12_1
  doi: 10.1006/jmbi.1999.3336
– ident: e_1_2_6_9_1
  doi: 10.1055/s-2005-837597
– ident: e_1_2_6_20_1
  doi: 10.1105/TPC.010051
– ident: e_1_2_6_25_1
  doi: 10.1016/j.ydbio.2004.11.010
– volume-title: Molecular Cloning: A Laboratory Manual
  year: 1989
  ident: e_1_2_6_58_1
– ident: e_1_2_6_35_1
  doi: 10.1105/tpc.106.044867
– ident: e_1_2_6_4_1
  doi: 10.1105/tpc.005363
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1365-313X.2007.03053.x
– ident: e_1_2_6_6_1
  doi: 10.1038/31729
– ident: e_1_2_6_41_1
  doi: 10.1007/BF00280425
– ident: e_1_2_6_16_1
  doi: 10.1105/tpc.016550
– ident: e_1_2_6_24_1
  doi: 10.1083/jcb.131.5.1243
– ident: e_1_2_6_49_1
  doi: 10.1016/S0092-8674(01)00638-9
– ident: e_1_2_6_52_1
  doi: 10.1016/j.jmb.2006.10.102
– ident: e_1_2_6_62_1
  doi: 10.1002/(SICI)1097-0169(1997)36:4<323::AID-CM3>3.0.CO;2-6
– ident: e_1_2_6_61_1
  doi: 10.1091/mbc.12.4.1131
– ident: e_1_2_6_19_1
  doi: 10.1023/A:1010687911374
– ident: e_1_2_6_18_1
  doi: 10.1242/jcs.007302
– ident: e_1_2_6_33_1
  doi: 10.1016/j.cub.2004.01.004
SSID ssj0017364
Score 2.2548084
Snippet Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the...
Summary Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However,...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 863
SubjectTerms ADF
Biochemistry
Biological and medical sciences
Botany
Bryophyta - genetics
Bryophyta - growth & development
Bryophyta - metabolism
cofilin
Destrin - genetics
Destrin - metabolism
Fundamental and applied biological sciences. Psychology
Genes, Plant
Genetics
Molecular and cellular biology
Molecular genetics
Mosses
Mutants
Mutation
Phosphorylation
Physcomitrella patens
Plant Roots - growth & development
Plant species
Ribonucleic acid
RNA
tip growth
Transcription. Transcription factor. Splicing. Rna processing
Title Actin depolymerizing factor is essential for viability in plants, and its phosphoregulation is important for tip growth
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2008.03451.x
https://www.ncbi.nlm.nih.gov/pubmed/18298672
https://www.proquest.com/docview/213520760
https://www.proquest.com/docview/47659681
https://www.proquest.com/docview/70766446
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWg4sCFb2goFB84klUcO45zLIiqqgRC0JX2FtmOvY26JKtNlrL99cwk2cBWRaoQh0iRkrFiZzx-4xm_IeStZ4UpvPBg_YosFEbz0BQKvFbA1h4ZyqICTyN_-ixPpuJ0lsyG_Cc8C9PzQ4wbbjgzOnuNE1ybZneSY4YWZ3w2pERykbAJ4kl8gPjo68gkxVLeM0kBYA9hEb2W1HNjQzsr1V2va8yb1A0Mne9rXtwESncxbrdIHT8kF9vu9bkpF5N1ayb26hrz4__p_yPyYMCy9KhXvsfkjquekHvva8Cbm6fk8ghMaUULQPiLDcaFrmCVpH19H1o2FEnLK7AvCwq4mf4oe8LwDQWZ5QKzc95RXRW0bBu6PK8buFZuPhQbQ_nye-c6VG0n35ZLOl_Vl-35MzI9_nj24SQcyjyEFuAbCz3oUSHwzC7AFaNVhpFQx6XWxsaR0kVkuQakwYVLXKSEs0wLZpRJjU1BAflzslfVldsnFDxu6V0hnfVWODDGVgprVObBDU68iwKSbn9pbgcOdCzFscj_8IVgVHMc1aFCJ45q_jMgbJRc9jwgt5DZB63J9RzMdT79FmOQOFJZmrE4IIc7qjS2GUc8i4RMAnKw1a18sCpNHjOAyxhKDcib8SmYA4zx6MrV6yYXqUwyqdjf30ihAQDBMiAvepX93R8VZ0qm8HGyU7xbdzQ_-3KKdy__VfCA3O_zcHB36xXZa1dr9xrAXmsOu2n8C0yNRVo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgIMHL-BwLg80PPJIqTpyvx_ExlbFNCFqpb5bt2F1ESKom3ej-eu6StNBpSBPioVKk9qz4ej7_znf-HSFvLMtUZrkF75elLlcycFWWQNQK2NoiQ5mX4W3k07NoOObHk3DStwPCuzAdP8T6wA1XRuuvcYHjgfTmKscSrYAFk74mMuAhGwCgvIcNvrGdwYevay4pFgcdlxRAdhe20WtlPTeOtLFX3bWywspJWYPybNf14iZYuoly223q6BEpVhPsqlO-DxaNGuira9yP_0kDj8l2D2fpYWd_T8gdUz4l999VADmXz8jlIXjTkmYA8oslpoauYKOkXYsfmtcUectLcDEFBehML_KOM3xJQWZWYIHOWyrLjOZNTWfnVQ2fuZn2_cZQPv_RRg9l08o3-YxO59Vlc_6cjI8-jt4P3b7Tg6sBwTHXgillHK_tAmJRMkkxGWqCSEqlfS-RmacDCWAj4CY0XsKNZpIzlahY6RhsMNghW2VVml1CIeiOrMkio63mBvyxjrhWSWohEg6t8RwSr_5ToXsadOzGUYg_wiHQqkCt9k06Uavip0PYWnLWUYHcQmYXzEbIKXhsMf7mY57YS9I4Zb5D9jdsaT2m7wWpBxbskL2VcYnesdTCZ4CYMZvqkIP1t-ARMM0jS1MtasHjKEyjhP39FzEMADg4csiLzmZ_zyfx0ySK4eWi1vJuPVEx-nKMTy__VfCAPBiOTk_Eyaezz3vkYVeWg4ddr8hWM1-Y14D9GrXfrulfjvBJdA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BQYgL71JTaPfAEUdee722j-URlQJVBY2Um7XPNGqwrdihpL-eGdsJpCpShThEipTMKjuZmf3GM_sNIa8dM8o47iD6mcznSka-MilkrYCtHTKUBQZvI385FocjfjSOx33_E96F6fgh1g_c0DPaeI0OXhm36eTYoRWxaNy3REY8ZgPAk3e4AN9BgPR1TSXFkqijkgLE7sMpeqWr59qVNo6q206W2Dgpa9Cd64ZeXIdKN0Fue0oNH5Lz1f665pTzwaJRA315hfrx_yjgEXnQg1l60FnfY3LLFk_I3bclAM7lU3JxALG0oAYg_myJhaFLOCZpN-CHTmuKrOUFBJgZBeBMf0w7xvAlBZlqhu05b6gsDJ02Na3Oyhpeczvpp42h_PR7mzsUTSvfTCs6mZcXzdkzMhp-OH136PdzHnwN-I35DgzJcLy0C3hFyTTDUqiNhJRKh0EqTaAjCVAj4ja2QcqtZpIzlapE6QQsMNomW0VZ2B1CIeUWzhphtdPcQjTWgmuVZg7y4NjZwCPJ6i_NdU-CjrM4ZvkfyRBoNUet9iM6Uav5T4-wtWTVEYHcQGYHrCaXE4jX-ehbiFXiIM2SjIUe2dswpfWaYRBlARexR3ZXtpX3YaXOQwZ4GWupHtlffwrxAIs8srDlos55IuJMpOzv30hgAUDBwiPPO5P9vZ80zFKRwI8TreHdeKP56ckRvnvxr4L75N7J-2H--ePxp11yv-vJwSddL8lWM1_YVwD8GrXXevQviGJILA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Actin+depolymerizing+factor+is+essential+for+viability+in+plants%2C+and+its+phosphoregulation+is+important+for+tip+growth&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Augustine%2C+Robert+C&rft.au=Vidali%2C+Luis&rft.au=Kleinman%2C+Ken+P&rft.au=Bezanilla%2C+Magdalena&rft.date=2008-06-01&rft.issn=1365-313X&rft.eissn=1365-313X&rft.volume=54&rft.issue=5&rft.spage=863&rft_id=info:doi/10.1111%2Fj.1365-313X.2008.03451.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon