Actin depolymerizing factor is essential for viability in plants, and its phosphoregulation is important for tip growth
Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitre...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 54; no. 5; pp. 863 - 875 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.06.2008
Blackwell Publishing Ltd Blackwell Science |
Subjects | |
Online Access | Get full text |
ISSN | 0960-7412 1365-313X 1365-313X |
DOI | 10.1111/j.1365-313x.2008.03451.x |
Cover
Loading…
Abstract | Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitrella patens, ADF is encoded by a single, intronless gene. We used RNA interference to demonstrate that ADF is essential for plant viability. Loss of ADF dramatically alters the organization of the F-actin cytoskeleton, and leads to an inhibition of tip growth. We show that ADF is subject to phosphorylation in vivo, and using complementation studies we show that mutations of the predicted phosphorylation site partially rescue plant viability, but with differential affects on tip growth. Specifically, the unphosphorylatable ADF S6A mutant generates small polarized plants with normal F-actin organization, whereas the phosphomimetic S6D mutant generates small, unpolarized plants with a disorganized F-actin cyotskeleton. These data indicate that phosphoregulation at serine 6 is required for full ADF function in vivo, and, in particular, that the interaction between ADF and actin is important for tip growth. |
---|---|
AbstractList | Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitrella patens, ADF is encoded by a single, intronless gene. We used RNA interference to demonstrate that ADF is essential for plant viability. Loss of ADF dramatically alters the organization of the F-actin cytoskeleton, and leads to an inhibition of tip growth. We show that ADF is subject to phosphorylation in vivo, and using complementation studies we show that mutations of the predicted phosphorylation site partially rescue plant viability, but with differential affects on tip growth. Specifically, the unphosphorylatable ADF S6A mutant generates small polarized plants with normal F-actin organization, whereas the phosphomimetic S6D mutant generates small, unpolarized plants with a disorganized F-actin cytoskeleton. These data indicate that phosphoregulation at serine 6 is required for full ADF function in vivo, and, in particular, that the interaction between ADF and actin is important for tip growth. Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitrella patens, ADF is encoded by a single, intronless gene. We used RNA interference to demonstrate that ADF is essential for plant viability. Loss of ADF dramatically alters the organization of the F-actin cytoskeleton, and leads to an inhibition of tip growth. We show that ADF is subject to phosphorylation in vivo, and using complementation studies we show that mutations of the predicted phosphorylation site partially rescue plant viability, but with differential affects on tip growth. Specifically, the unphosphorylatable ADF S6A mutant generates small polarized plants with normal F-actin organization, whereas the phosphomimetic S6D mutant generates small, unpolarized plants with a disorganized F-actin cytoskeleton. These data indicate that phosphoregulation at serine 6 is required for full ADF function in vivo, and, in particular, that the interaction between ADF and actin is important for tip growth.Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitrella patens, ADF is encoded by a single, intronless gene. We used RNA interference to demonstrate that ADF is essential for plant viability. Loss of ADF dramatically alters the organization of the F-actin cytoskeleton, and leads to an inhibition of tip growth. We show that ADF is subject to phosphorylation in vivo, and using complementation studies we show that mutations of the predicted phosphorylation site partially rescue plant viability, but with differential affects on tip growth. Specifically, the unphosphorylatable ADF S6A mutant generates small polarized plants with normal F-actin organization, whereas the phosphomimetic S6D mutant generates small, unpolarized plants with a disorganized F-actin cytoskeleton. These data indicate that phosphoregulation at serine 6 is required for full ADF function in vivo, and, in particular, that the interaction between ADF and actin is important for tip growth. Summary Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitrella patens, ADF is encoded by a single, intronless gene. We used RNA interference to demonstrate that ADF is essential for plant viability. Loss of ADF dramatically alters the organization of the F‐actin cytoskeleton, and leads to an inhibition of tip growth. We show that ADF is subject to phosphorylation in vivo, and using complementation studies we show that mutations of the predicted phosphorylation site partially rescue plant viability, but with differential affects on tip growth. Specifically, the unphosphorylatable ADF S6A mutant generates small polarized plants with normal F‐actin organization, whereas the phosphomimetic S6D mutant generates small, unpolarized plants with a disorganized F‐actin cyotskeleton. These data indicate that phosphoregulation at serine 6 is required for full ADF function in vivo, and, in particular, that the interaction between ADF and actin is important for tip growth. Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitrella patens, ADF is encoded by a single, intronless gene. We used RNA interference to demonstrate that ADF is essential for plant viability. Loss of ADF dramatically alters the organization of the F-actin cytoskeleton, and leads to an inhibition of tip growth. We show that ADF is subject to phosphorylation in vivo, and using complementation studies we show that mutations of the predicted phosphorylation site partially rescue plant viability, but with differential affects on tip growth. Specifically, the unphosphorylatable ADF S6A mutant generates small polarized plants with normal F-actin organization, whereas the phosphomimetic S6D mutant generates small, unpolarized plants with a disorganized F-actin cyotskeleton. These data indicate that phosphoregulation at serine 6 is required for full ADF function in vivo, and, in particular, that the interaction between ADF and actin is important for tip growth. Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitrella patens, ADF is encoded by a single, intronless gene. We used RNA interference to demonstrate that ADF is essential for plant viability. Loss of ADF dramatically alters the organization of the F-actin cytoskeleton, and leads to an inhibition of tip growth. We show that ADF is subject to phosphorylation in vivo, and using complementation studies we show that mutations of the predicted phosphorylation site partially rescue plant viability, but with differential affects on tip growth. Specifically, the unphosphorylatable ADF S6A mutant generates small polarized plants with normal F-actin organization, whereas the phosphomimetic S6D mutant generates small, unpolarized plants with a disorganized F-actin cyotskeleton. These data indicate that phosphoregulation at serine 6 is required for full ADF function in vivo, and, in particular, that the interaction between ADF and actin is important for tip growth. [PUBLICATION ABSTRACT] Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the degree to which ADF is necessary has been elusive because of the presence of multiple ADF isoforms in many plant species. In the moss Physcomitrella patens , ADF is encoded by a single, intronless gene. We used RNA interference to demonstrate that ADF is essential for plant viability. Loss of ADF dramatically alters the organization of the F‐actin cytoskeleton, and leads to an inhibition of tip growth. We show that ADF is subject to phosphorylation in vivo , and using complementation studies we show that mutations of the predicted phosphorylation site partially rescue plant viability, but with differential affects on tip growth. Specifically, the unphosphorylatable ADF S6A mutant generates small polarized plants with normal F‐actin organization, whereas the phosphomimetic S6D mutant generates small, unpolarized plants with a disorganized F‐actin cyotskeleton. These data indicate that phosphoregulation at serine 6 is required for full ADF function in vivo , and, in particular, that the interaction between ADF and actin is important for tip growth. |
Author | Bezanilla, Magdalena Kleinman, Ken P Augustine, Robert C Vidali, Luis |
Author_xml | – sequence: 1 fullname: Augustine, Robert C – sequence: 2 fullname: Vidali, Luis – sequence: 3 fullname: Kleinman, Ken P – sequence: 4 fullname: Bezanilla, Magdalena |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20390465$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18298672$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1rGzEQhkVJaZy0f6EVhebUdfW1Wu2hhRDSLwItNIHexKysdWTWq40k13Z_fbW2k0MuqUBISM87zDszJ-io971FCFMypXl9WEwpl2XBKd9MGSFqSrgo6XTzDE3uP34foQmpJSkqQdkxOolxQQituBQv0DFVrFayYhO0PjfJ9XhmB99tlza4v66f4xZM8gG7iG2Mtk8OOtzmhz8OGte5tMVZM3TQp_geQz_DLkU83PqYd7DzVQfJ-X7Uu-XgQ8rgTp_cgOfBr9PtS_S8hS7aV4fzFN18vry--Fpc_fjy7eL8qjBldlS0trGzbICXpFINqFoJKi2XAI1hRMGMGA6MCS5saYkS1lAQtFFN1ZjKGOCn6Gwfdwj-bmVj0ksXje1y7tavoq5IJaUQ8klQVLKspaIZfPsIXPhV6LMJzSgvWQ5IMvT6AK2apZ3pIbglhK2-L3wG3h0AiAa6NkBvXHzgGOE1EbLM3Kc9Z4KPMdhWG5d21U0BXKcp0eNE6IUeG6_HxutxIvRuIvQmB1CPAjzk8rT04166dp3d_rdOX__8Pt6y_s1e34LXMA_Z380vRijPcF3Vuav_ADm02DA |
CitedBy_id | crossref_primary_10_1371_journal_pone_0005744 crossref_primary_10_3389_fpls_2023_1146802 crossref_primary_10_1007_s11829_017_9562_0 crossref_primary_10_1007_s11103_021_01147_7 crossref_primary_10_1111_j_1467_7652_2008_00367_x crossref_primary_10_4161_psb_25601 crossref_primary_10_1242_jcs_172445 crossref_primary_10_3389_fpls_2017_00158 crossref_primary_10_1007_s11356_024_35439_4 crossref_primary_10_1111_ede_12376 crossref_primary_10_1111_tpj_12328 crossref_primary_10_1371_journal_pbio_3002073 crossref_primary_10_1016_j_isci_2019_05_026 crossref_primary_10_3389_fpls_2019_00456 crossref_primary_10_1242_dev_049023 crossref_primary_10_1016_j_cj_2021_12_012 crossref_primary_10_3390_genes14061301 crossref_primary_10_1007_s10265_016_0899_8 crossref_primary_10_1093_pcp_pcr068 crossref_primary_10_1093_pcp_pct202 crossref_primary_10_1016_j_pbi_2010_09_013 crossref_primary_10_1104_pp_109_143727 crossref_primary_10_1007_s11738_013_1324_8 crossref_primary_10_3389_fpls_2016_01393 crossref_primary_10_1371_journal_pgen_1007221 crossref_primary_10_1111_tpj_12457 crossref_primary_10_1016_j_pbi_2012_09_008 crossref_primary_10_1007_s00299_013_1482_6 crossref_primary_10_1073_pnas_0901170106 crossref_primary_10_1007_s11240_016_0994_5 crossref_primary_10_1016_j_xplc_2023_100787 crossref_primary_10_1016_j_plaphy_2014_11_003 crossref_primary_10_1105_tpc_109_073288 crossref_primary_10_3390_ijms21061970 crossref_primary_10_1016_j_bbamcr_2008_09_015 crossref_primary_10_1007_s00436_009_1699_z crossref_primary_10_1105_tpc_111_090753 crossref_primary_10_3390_genes7100079 crossref_primary_10_1007_s00425_014_2040_3 crossref_primary_10_1105_tpc_111_090670 crossref_primary_10_1111_pbi_12957 crossref_primary_10_1016_j_jplph_2011_07_009 crossref_primary_10_1016_j_neuron_2019_07_007 crossref_primary_10_1002_cm_20389 crossref_primary_10_1371_journal_pone_0095554 crossref_primary_10_3389_fpls_2018_01917 crossref_primary_10_1093_plcell_koab218 crossref_primary_10_1146_annurev_arplant_050312_120150 crossref_primary_10_1242_jcs_207738 crossref_primary_10_1016_j_pbi_2013_10_012 crossref_primary_10_1007_s00726_011_1111_z crossref_primary_10_1042_BST20220783 crossref_primary_10_1083_jcb_201802039 crossref_primary_10_1186_1939_8433_5_33 crossref_primary_10_1093_pcp_pcv002 crossref_primary_10_1073_pnas_1115926109 crossref_primary_10_1016_j_bbrc_2018_07_073 crossref_primary_10_1016_j_stress_2025_100762 crossref_primary_10_1186_s12870_022_03852_x crossref_primary_10_1111_j_1365_313X_2011_04623_x crossref_primary_10_1111_tpj_14807 crossref_primary_10_1111_tpj_12039 crossref_primary_10_1016_j_jprot_2012_07_005 crossref_primary_10_1073_pnas_1711037115 crossref_primary_10_1111_jac_12471 crossref_primary_10_1002_cm_20530 crossref_primary_10_1093_plphys_kiad203 crossref_primary_10_3390_ijms242015480 crossref_primary_10_1002_cm_20298 crossref_primary_10_3390_ijms20061403 crossref_primary_10_1016_j_molp_2017_06_001 crossref_primary_10_1105_tpc_109_069104 crossref_primary_10_1074_mcp_M117_068015 |
Cites_doi | 10.1111/j.1469-8137.2005.01582.x 10.1126/science.1150646 10.1038/31735 10.1073/pnas.0932694100 10.1074/jbc.273.33.20894 10.1074/jbc.270.52.31321 10.1105/tpc.003038 10.1083/jcb.145.6.1251 10.1083/jcb.115.6.1611 10.1046/j.1365-313X.1998.00107.x 10.1105/tpc.105.037135 10.1242/jcs.112.10.1553 10.1046/j.1365-313X.1999.00358.x 10.1093/emboj/20.11.2779 10.1016/S0014-5793(01)02528-5 10.1091/mbc.12.8.2534 10.1105/tpc.011676 10.1074/jbc.274.22.15538 10.1105/tpc.11.12.2349 10.1016/S0378-1119(02)00646-7 10.1002/elps.11501401163 10.1083/jcb.151.5.1119 10.1074/jbc.M610873200 10.1074/jbc.M305802200 10.1105/tpc.107.053413 10.1146/annurev.cellbio.17.1.159 10.1093/jxb/erm047 10.1016/0378-1119(94)90641-6 10.1111/j.1420-9101.2007.01301.x 10.1016/0378-1119(93)90770-4 10.1016/j.molcel.2006.08.006 10.1083/jcb.138.4.771 10.1111/j.1365-313X.2007.03257.x 10.1083/jcb.120.2.421 10.1105/tpc.007153 10.1083/jcb.136.6.1307 10.1046/j.1365-313X.1997.12051035.x 10.1083/jcb.200610005 10.1242/dev.00549 10.1002/cm.20114 10.1146/annurev.cellbio.15.1.185 10.1046/j.1365-2443.1996.05005.x 10.1105/tpc.105.033266 10.1002/elps.1150181505 10.1074/jbc.270.18.10923 10.1104/pp.103.024901 10.1186/gb-2002-3-5-reviews3007 10.1006/jmbi.1999.3336 10.1055/s-2005-837597 10.1105/TPC.010051 10.1016/j.ydbio.2004.11.010 10.1105/tpc.106.044867 10.1105/tpc.005363 10.1111/j.1365-313X.2007.03053.x 10.1038/31729 10.1007/BF00280425 10.1105/tpc.016550 10.1083/jcb.131.5.1243 10.1016/S0092-8674(01)00638-9 10.1016/j.jmb.2006.10.102 10.1002/(SICI)1097-0169(1997)36:4<323::AID-CM3>3.0.CO;2-6 10.1091/mbc.12.4.1131 10.1023/A:1010687911374 10.1242/jcs.007302 10.1016/j.cub.2004.01.004 |
ContentType | Journal Article |
Copyright | 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd 2008 INIST-CNRS Journal compilation © 2008 Blackwell Publishing Ltd and the Society for Experimental Biology |
Copyright_xml | – notice: 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd – notice: 2008 INIST-CNRS – notice: Journal compilation © 2008 Blackwell Publishing Ltd and the Society for Experimental Biology |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7S9 L.6 7X8 |
DOI | 10.1111/j.1365-313x.2008.03451.x |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1365-313X |
EndPage | 875 |
ExternalDocumentID | 1483464031 18298672 20390465 10_1111_j_1365_313X_2008_03451_x TPJ3451 US201300897912 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABJNI ABPTK ABPVW ABWRO ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FIJ G-S G.N GODZA H.T H.X HF~ HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAHBH AAHQN AAMNL AAYCA AFWVQ AHBTC AITYG ALVPJ HGLYW OIG AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5451-febed41235078ba898416e36aabc208ad0c3a22434e5e084ec1a41b8b7bc7cca3 |
IEDL.DBID | DR2 |
ISSN | 0960-7412 1365-313X |
IngestDate | Thu Jul 10 23:55:52 EDT 2025 Fri Jul 11 11:28:41 EDT 2025 Fri Jul 25 10:55:01 EDT 2025 Wed Feb 19 01:51:19 EST 2025 Mon Jul 21 09:11:13 EDT 2025 Tue Jul 01 03:57:00 EDT 2025 Thu Apr 24 23:44:07 EDT 2025 Wed Jan 22 17:12:48 EST 2025 Wed Dec 27 19:20:07 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | ADF cofilin Gene Growth Physcomitrella patens Cytoskeleton Inhibition Mutation phosphorylation tip growth |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5451-febed41235078ba898416e36aabc208ad0c3a22434e5e084ec1a41b8b7bc7cca3 |
Notes | http://dx.doi.org/10.1111/j.1365-313X.2008.03451.x SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 18298672 |
PQID | 213520760 |
PQPubID | 31702 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_70766446 proquest_miscellaneous_47659681 proquest_journals_213520760 pubmed_primary_18298672 pascalfrancis_primary_20390465 crossref_citationtrail_10_1111_j_1365_313X_2008_03451_x crossref_primary_10_1111_j_1365_313X_2008_03451_x wiley_primary_10_1111_j_1365_313X_2008_03451_x_TPJ3451 fao_agris_US201300897912 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2008 |
PublicationDateYYYYMMDD | 2008-06-01 |
PublicationDate_xml | – month: 06 year: 2008 text: June 2008 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2008 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell Science |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell Science |
References | 2002; 14 2003b; 130 2003; 15 2000; 295 1995; 131 1993; 124 2003; 278 1991; 115 1998; 393 1993; 120 1998; 273 2006; 63 2006; 24 1999; 17 2007; 177 1999; 15 1997; 12 2008; 319 1997; 18 1999; 11 1996; 1 2001; 17 2002; 108 2007; 20 2001; 12 2001; 499 1989 1998; 14 1988 1997; 136 2007; 365 2007; 19 1997; 138 2002; 292 2007; 282 2005; 278 2007; 120 1994; 151 2006; 18 2002; 3 2000; 151 2003a; 15 2007; 50 1999; 145 2007; 52 2001a; 45 2003; 133 1995; 270 2007; 58 2001; 20 1993; 14 1994; 242 2004; 16 2005; 168 2004; 14 1997; 36 1999; 274 2005; 7 2001b; 13 1999; 112 2005; 17 2003; 100 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 Okada K. (e_1_2_6_50_1) 1999; 112 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Harlow E.A.L.D. (e_1_2_6_26_1) 1988 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 Sambrook J. (e_1_2_6_58_1) 1989 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 11 start-page: 2349 year: 1999 end-page: 2363 article-title: Latrunculin B has different effects on pollen germination and tube growth publication-title: Plant Cell – volume: 278 start-page: 33450 year: 2003 end-page: 33455 article-title: Cell cycle‐associated changes in Slingshot phosphatase activity and roles in cytokinesis in animal cells publication-title: J. Biol. Chem. – volume: 115 start-page: 1611 year: 1991 end-page: 1620 article-title: Characterization of actin filament severing by actophorin from publication-title: J. Cell Biol. – volume: 14 start-page: 1023 year: 1993 end-page: 1031 article-title: The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences publication-title: Electrophoresis – volume: 177 start-page: 465 year: 2007 end-page: 476 article-title: Cofilin promotes stimulus‐induced lamellipodium formation by generating an abundant supply of actin monomers publication-title: J. Cell Biol. – volume: 100 start-page: 8007 year: 2003 end-page: 8012 article-title: Comparative genomics of gametophytic transcriptome and : implication for land plant evolution publication-title: Proc. Natl Acad. Sci. USA – year: 1989 – volume: 18 start-page: 867 year: 2006 end-page: 878 article-title: Calcium‐dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity publication-title: Plant Cell – volume: 292 start-page: 233 year: 2002 end-page: 243 article-title: Petunia actin‐depolymerizing factor is mainly accumulated in vascular tissue and its gene expression is enhanced by the first intron publication-title: Gene – volume: 13 start-page: 1333 year: 2001b end-page: 1346 article-title: ADF proteins are involved in the control of flowering and regulate F‐actin organization, cell expansion, and organ growth in publication-title: Plant Cell – volume: 242 start-page: 346 year: 1994 end-page: 357 article-title: The unc‐60 gene encodes proteins homologous to a family of actin‐binding proteins publication-title: Mol. Gen. Genet. – volume: 52 start-page: 460 year: 2007 end-page: 472 article-title: The ancient subclasses of actin depolymerizing factor genes exhibit novel and differential expression publication-title: Plant J. – volume: 14 start-page: 145 year: 2004 end-page: 149 article-title: The actin‐interacting protein AIP1 is essential for actin organization and plant development publication-title: Curr. Biol. – volume: 393 start-page: 809 year: 1998 end-page: 812 article-title: Cofilin phosphorylation by LIM‐kinase 1 and its role in Rac‐mediated actin reorganization publication-title: Nature – volume: 124 start-page: 115 year: 1993 end-page: 120 article-title: Isolation of a yeast essential gene, COF1, that encodes a homologue of mammalian cofilin, a low‐M(r) actin‐binding and depolymerizing protein publication-title: Gene – volume: 120 start-page: 421 year: 1993 end-page: 435 article-title: Cofilin is an essential component of the yeast cortical cytoskeleton publication-title: J. Cell Biol. – volume: 50 start-page: 230 year: 2007 end-page: 239 article-title: An upstream region in the first intron of petunia actin‐depolymerizing factor 1 affects tissue‐specific expression in transgenic ( ) publication-title: Plant J. – volume: 14 start-page: 187 year: 1998 end-page: 193 article-title: Ser6 in the maize actin‐depolymerizing factor, ZmADF3, is phosphorylated by a calcium‐stimulated protein kinase and is essential for the control of functional activity publication-title: Plant J. – volume: 273 start-page: 20894 year: 1998 end-page: 20902 article-title: Kinetic analysis of the interaction of actin‐depolymerizing factor (ADF)/cofilin with G‐ and F‐actins. Comparison of plant and human ADFs and effect of phosphorylation publication-title: J. Biol. Chem. – volume: 108 start-page: 233 year: 2002 end-page: 246 article-title: Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin publication-title: Cell – volume: 151 start-page: 1119 year: 2000 end-page: 1128 article-title: Phosphorylation of ADF/cofilin abolishes EGF‐induced actin nucleation at the leading edge and subsequent lamellipod extension publication-title: J. Cell Biol. – volume: 20 start-page: 1223 year: 2007 end-page: 1229 article-title: Compact genes are highly expressed in the moss publication-title: J. Evol. Biol. – volume: 15 start-page: 1632 year: 2003a end-page: 1645 article-title: Mutations in actin‐related proteins 2 and 3 affect cell shape development in Arabidopsis publication-title: Plant Cell – volume: 16 start-page: 257 year: 2004 end-page: 269 article-title: Overexpression of an formin stimulates supernumerary actin cable formation from pollen tube cell membrane publication-title: Plant Cell – volume: 270 start-page: 31321 year: 1995 end-page: 31330 article-title: Identification and characterization of a novel family of serine/threonine kinases containing two N‐terminal LIM motifs publication-title: J. Biol. Chem. – volume: 63 start-page: 162 year: 2006 end-page: 171 article-title: The role of ARPC4 in tip growth and alignment of the polar axis in filaments of publication-title: Cell Motil. Cytoskeleton – volume: 133 start-page: 470 year: 2003 end-page: 474 article-title: RNA interference in the moss publication-title: Plant Physiol. – volume: 138 start-page: 771 year: 1997 end-page: 781 article-title: Cofilin changes the twist of F‐actin: implications for actin filament dynamics and cellular function publication-title: J. Cell Biol. – volume: 499 start-page: 97 year: 2001 end-page: 100 article-title: Phosphorylation of plant actin‐depolymerising factor by calmodulin‐like domain protein kinase publication-title: FEBS Lett. – volume: 274 start-page: 15538 year: 1999 end-page: 15546 article-title: Mechanism of interaction of actophorin (ADF/Cofilin) with actin filaments publication-title: J. Biol. Chem. – volume: 130 start-page: 3137 year: 2003b end-page: 3146 article-title: Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F‐actin formation publication-title: Development – volume: 282 start-page: 13692 year: 2007 end-page: 13702 article-title: LIM kinase and slingshot are critical for neurite extension publication-title: J. Biol. Chem. – volume: 58 start-page: 1843 year: 2007 end-page: 1849 article-title: Both chloronemal and caulonemal cells expand by tip growth in the moss publication-title: J. Exp. Bot. – volume: 19 start-page: 3705 year: 2007 end-page: 3722 article-title: Profilin is essential for tip growth in the moss publication-title: Plant Cell – volume: 15 start-page: 185 year: 1999 end-page: 230 article-title: Proteins of the ADF/cofilin family: essential regulators of actin dynamics publication-title: Annu. Rev. Cell Dev. Biol. – volume: 17 start-page: 2327 year: 2005 end-page: 2339 article-title: Actin‐related protein2/3 complex component ARPC1 is required for proper cell morphogenesis and polarized cell growth in publication-title: Plant Cell – volume: 319 start-page: 64 year: 2008 end-page: 69 article-title: The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants publication-title: Science – volume: 120 start-page: 2609 year: 2007 end-page: 2618 article-title: CAP1 – a key regulator of actin organisation and development publication-title: J. Cell Sci. – volume: 18 start-page: 2714 year: 1997 end-page: 2723 article-title: SWISS‐MODEL and the Swiss‐PdbViewer: an environment for comparative protein modeling publication-title: Electrophoresis – volume: 20 start-page: 2779 year: 2001 end-page: 2788 article-title: Rop GTPases are localized to tips of root hairs and control polar growth publication-title: EMBO J. – volume: 14 start-page: 2175 year: 2002 end-page: 2190 article-title: The regulation of actin organization by actin‐depolymerizing factor in elongating pollen tubes publication-title: Plant Cell – volume: 131 start-page: 1243 year: 1995 end-page: 1259 article-title: Mutations in twinstar, a gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis publication-title: J. Cell Biol. – volume: 36 start-page: 323 year: 1997 end-page: 338 article-title: Characterization and localization of profilin in pollen grains and tubes of publication-title: Cell Motil. Cytoskeleton – volume: 45 start-page: 517 year: 2001a end-page: 527 article-title: Molecular identification and characterization of the AtADF1, AtADFS and AtADF6 genes publication-title: Plant Mol. Biol. – volume: 14 start-page: 2915 year: 2002 end-page: 2927 article-title: Regulation of the pollen‐specific actin‐depolymerizing factor LlADF1 publication-title: Plant Cell – volume: 15 start-page: 237 year: 2003 end-page: 249 article-title: Actin‐depolymerizing factor mediates Rac/Rop GTPase‐regulated pollen tube growth publication-title: Plant Cell – volume: 18 start-page: 2182 year: 2006 end-page: 2193 article-title: Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily publication-title: Plant Cell – volume: 112 start-page: 1553 issue: Pt. 10 year: 1999 end-page: 1565 article-title: XAIP1: a homologue of yeast actin interacting protein 1 (AIP1), which induces disassembly of actin filaments cooperatively with ADF/cofilin family proteins publication-title: J. Cell Sci. – volume: 24 start-page: 13 year: 2006 end-page: 23 article-title: Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin publication-title: Mol. Cell. – volume: 12 start-page: 1131 year: 2001 end-page: 1145 article-title: Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin‐mediated actin reorganization and focal adhesion formation publication-title: Mol. Biol. Cell – volume: 168 start-page: 529 year: 2005 end-page: 540 article-title: group Ie formins localize to specific cell membrane domains, interact with actin‐binding proteins and cause defects in cell expansion upon aberrant expression publication-title: New Phytol. – volume: 270 start-page: 10923 year: 1995 end-page: 10932 article-title: Identification, characterization, and intracellular distribution of cofilin in publication-title: J. Biol. Chem. – year: 1988 – volume: 393 start-page: 805 year: 1998 end-page: 809 article-title: Regulation of actin dynamics through phosphorylation of cofilin by LIM‐kinase publication-title: Nature – volume: 145 start-page: 1251 year: 1999 end-page: 1264 article-title: Aip1p interacts with cofilin to disassemble actin filaments publication-title: J. Cell Biol. – volume: 12 start-page: 2534 year: 2001 end-page: 2545 article-title: Actin polymerization is essential for pollen tube growth publication-title: Mol. Biol. Cell – volume: 295 start-page: 203 year: 2000 end-page: 211 article-title: Phosphorylation of actophorin (ADF/cofilin) blocks interaction with actin without a change in atomic structure publication-title: J. Mol. Biol. – volume: 136 start-page: 1307 year: 1997 end-page: 1322 article-title: Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin‐based motility publication-title: J. Cell Biol. – volume: 3 year: 2002 article-title: The ADF/cofilin family: actin‐remodeling proteins publication-title: Genome Biol. – volume: 12 start-page: 1035 year: 1997 end-page: 1043 article-title: The maize actin‐depolymerizing factor, ZmADF3, redistributes to the growing tip of elongating root hairs and can be induced to translocate into the nucleus with actin publication-title: Plant J. – volume: 17 start-page: 141 year: 1999 end-page: 154 article-title: The role of actin in root hair morphogenesis: studies with lipochito‐oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug publication-title: Plant J. – volume: 278 start-page: 231 year: 2005 end-page: 241 article-title: The actin depolymerizing factor n‐cofilin is essential for neural tube morphogenesis and neural crest cell migration publication-title: Dev. Biol. – volume: 17 start-page: 159 year: 2001 end-page: 187 article-title: Polarized cell growth in higher plants publication-title: Annu. Rev. Cell Dev. Biol. – volume: 7 start-page: 251 year: 2005 end-page: 257 article-title: An RNAi system in with an internal marker for silencing allows for rapid identification of loss of function phenotypes publication-title: Plant Biol. (Stuttg.) – volume: 1 start-page: 73 year: 1996 end-page: 86 article-title: Phosphorylation of Ser‐3 of cofilin regulates its essential function on actin publication-title: Genes Cells – volume: 151 start-page: 119 year: 1994 end-page: 123 article-title: Site‐directed mutagenesis of double‐stranded DNA by the polymerase chain reaction publication-title: Gene – volume: 365 start-page: 1350 year: 2007 end-page: 1358 article-title: Actin filament severing by cofilin publication-title: J. Mol. Biol. – ident: e_1_2_6_17_1 doi: 10.1111/j.1469-8137.2005.01582.x – ident: e_1_2_6_54_1 doi: 10.1126/science.1150646 – ident: e_1_2_6_66_1 doi: 10.1038/31735 – ident: e_1_2_6_48_1 doi: 10.1073/pnas.0932694100 – ident: e_1_2_6_55_1 doi: 10.1074/jbc.273.33.20894 – ident: e_1_2_6_51_1 doi: 10.1074/jbc.270.52.31321 – volume-title: Antibodies: A Laboratory Manual year: 1988 ident: e_1_2_6_26_1 – ident: e_1_2_6_14_1 doi: 10.1105/tpc.003038 – ident: e_1_2_6_56_1 doi: 10.1083/jcb.145.6.1251 – ident: e_1_2_6_37_1 doi: 10.1083/jcb.115.6.1611 – ident: e_1_2_6_59_1 doi: 10.1046/j.1365-313X.1998.00107.x – ident: e_1_2_6_67_1 doi: 10.1105/tpc.105.037135 – volume: 112 start-page: 1553 issue: 10 year: 1999 ident: e_1_2_6_50_1 article-title: XAIP1: a Xenopus homologue of yeast actin interacting protein 1 (AIP1), which induces disassembly of actin filaments cooperatively with ADF/cofilin family proteins publication-title: J. Cell Sci. doi: 10.1242/jcs.112.10.1553 – ident: e_1_2_6_43_1 doi: 10.1046/j.1365-313X.1999.00358.x – ident: e_1_2_6_44_1 doi: 10.1093/emboj/20.11.2779 – ident: e_1_2_6_3_1 doi: 10.1016/S0014-5793(01)02528-5 – ident: e_1_2_6_63_1 doi: 10.1091/mbc.12.8.2534 – ident: e_1_2_6_38_1 doi: 10.1105/tpc.011676 – ident: e_1_2_6_11_1 doi: 10.1074/jbc.274.22.15538 – ident: e_1_2_6_22_1 doi: 10.1105/tpc.11.12.2349 – ident: e_1_2_6_47_1 doi: 10.1016/S0378-1119(02)00646-7 – ident: e_1_2_6_10_1 doi: 10.1002/elps.11501401163 – ident: e_1_2_6_68_1 doi: 10.1083/jcb.151.5.1119 – ident: e_1_2_6_21_1 doi: 10.1074/jbc.M610873200 – ident: e_1_2_6_32_1 doi: 10.1074/jbc.M305802200 – ident: e_1_2_6_64_1 doi: 10.1105/tpc.107.053413 – ident: e_1_2_6_28_1 doi: 10.1146/annurev.cellbio.17.1.159 – ident: e_1_2_6_42_1 doi: 10.1093/jxb/erm047 – ident: e_1_2_6_65_1 doi: 10.1016/0378-1119(94)90641-6 – ident: e_1_2_6_60_1 doi: 10.1111/j.1420-9101.2007.01301.x – ident: e_1_2_6_29_1 doi: 10.1016/0378-1119(93)90770-4 – ident: e_1_2_6_5_1 doi: 10.1016/j.molcel.2006.08.006 – ident: e_1_2_6_40_1 doi: 10.1083/jcb.138.4.771 – ident: e_1_2_6_57_1 doi: 10.1111/j.1365-313X.2007.03257.x – ident: e_1_2_6_45_1 doi: 10.1083/jcb.120.2.421 – ident: e_1_2_6_15_1 doi: 10.1105/tpc.007153 – ident: e_1_2_6_13_1 doi: 10.1083/jcb.136.6.1307 – ident: e_1_2_6_31_1 doi: 10.1046/j.1365-313X.1997.12051035.x – ident: e_1_2_6_34_1 doi: 10.1083/jcb.200610005 – ident: e_1_2_6_39_1 doi: 10.1242/dev.00549 – ident: e_1_2_6_53_1 doi: 10.1002/cm.20114 – ident: e_1_2_6_7_1 doi: 10.1146/annurev.cellbio.15.1.185 – ident: e_1_2_6_46_1 doi: 10.1046/j.1365-2443.1996.05005.x – ident: e_1_2_6_27_1 doi: 10.1105/tpc.105.033266 – ident: e_1_2_6_23_1 doi: 10.1002/elps.1150181505 – ident: e_1_2_6_2_1 doi: 10.1074/jbc.270.18.10923 – ident: e_1_2_6_8_1 doi: 10.1104/pp.103.024901 – ident: e_1_2_6_36_1 doi: 10.1186/gb-2002-3-5-reviews3007 – ident: e_1_2_6_12_1 doi: 10.1006/jmbi.1999.3336 – ident: e_1_2_6_9_1 doi: 10.1055/s-2005-837597 – ident: e_1_2_6_20_1 doi: 10.1105/TPC.010051 – ident: e_1_2_6_25_1 doi: 10.1016/j.ydbio.2004.11.010 – volume-title: Molecular Cloning: A Laboratory Manual year: 1989 ident: e_1_2_6_58_1 – ident: e_1_2_6_35_1 doi: 10.1105/tpc.106.044867 – ident: e_1_2_6_4_1 doi: 10.1105/tpc.005363 – ident: e_1_2_6_30_1 doi: 10.1111/j.1365-313X.2007.03053.x – ident: e_1_2_6_6_1 doi: 10.1038/31729 – ident: e_1_2_6_41_1 doi: 10.1007/BF00280425 – ident: e_1_2_6_16_1 doi: 10.1105/tpc.016550 – ident: e_1_2_6_24_1 doi: 10.1083/jcb.131.5.1243 – ident: e_1_2_6_49_1 doi: 10.1016/S0092-8674(01)00638-9 – ident: e_1_2_6_52_1 doi: 10.1016/j.jmb.2006.10.102 – ident: e_1_2_6_62_1 doi: 10.1002/(SICI)1097-0169(1997)36:4<323::AID-CM3>3.0.CO;2-6 – ident: e_1_2_6_61_1 doi: 10.1091/mbc.12.4.1131 – ident: e_1_2_6_19_1 doi: 10.1023/A:1010687911374 – ident: e_1_2_6_18_1 doi: 10.1242/jcs.007302 – ident: e_1_2_6_33_1 doi: 10.1016/j.cub.2004.01.004 |
SSID | ssj0017364 |
Score | 2.2548084 |
Snippet | Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However, the... Summary Actin depolymerizing factor (ADF)/cofilin is important for regulating actin dynamics, and in plants is thought to be required for tip growth. However,... |
SourceID | proquest pubmed pascalfrancis crossref wiley fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 863 |
SubjectTerms | ADF Biochemistry Biological and medical sciences Botany Bryophyta - genetics Bryophyta - growth & development Bryophyta - metabolism cofilin Destrin - genetics Destrin - metabolism Fundamental and applied biological sciences. Psychology Genes, Plant Genetics Molecular and cellular biology Molecular genetics Mosses Mutants Mutation Phosphorylation Physcomitrella patens Plant Roots - growth & development Plant species Ribonucleic acid RNA tip growth Transcription. Transcription factor. Splicing. Rna processing |
Title | Actin depolymerizing factor is essential for viability in plants, and its phosphoregulation is important for tip growth |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2008.03451.x https://www.ncbi.nlm.nih.gov/pubmed/18298672 https://www.proquest.com/docview/213520760 https://www.proquest.com/docview/47659681 https://www.proquest.com/docview/70766446 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWg4sCFb2goFB84klUcO45zLIiqqgRC0JX2FtmOvY26JKtNlrL99cwk2cBWRaoQh0iRkrFiZzx-4xm_IeStZ4UpvPBg_YosFEbz0BQKvFbA1h4ZyqICTyN_-ixPpuJ0lsyG_Cc8C9PzQ4wbbjgzOnuNE1ybZneSY4YWZ3w2pERykbAJ4kl8gPjo68gkxVLeM0kBYA9hEb2W1HNjQzsr1V2va8yb1A0Mne9rXtwESncxbrdIHT8kF9vu9bkpF5N1ayb26hrz4__p_yPyYMCy9KhXvsfkjquekHvva8Cbm6fk8ghMaUULQPiLDcaFrmCVpH19H1o2FEnLK7AvCwq4mf4oe8LwDQWZ5QKzc95RXRW0bBu6PK8buFZuPhQbQ_nye-c6VG0n35ZLOl_Vl-35MzI9_nj24SQcyjyEFuAbCz3oUSHwzC7AFaNVhpFQx6XWxsaR0kVkuQakwYVLXKSEs0wLZpRJjU1BAflzslfVldsnFDxu6V0hnfVWODDGVgprVObBDU68iwKSbn9pbgcOdCzFscj_8IVgVHMc1aFCJ45q_jMgbJRc9jwgt5DZB63J9RzMdT79FmOQOFJZmrE4IIc7qjS2GUc8i4RMAnKw1a18sCpNHjOAyxhKDcib8SmYA4zx6MrV6yYXqUwyqdjf30ihAQDBMiAvepX93R8VZ0qm8HGyU7xbdzQ_-3KKdy__VfCA3O_zcHB36xXZa1dr9xrAXmsOu2n8C0yNRVo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgIMHL-BwLg80PPJIqTpyvx_ExlbFNCFqpb5bt2F1ESKom3ej-eu6StNBpSBPioVKk9qz4ej7_znf-HSFvLMtUZrkF75elLlcycFWWQNQK2NoiQ5mX4W3k07NoOObHk3DStwPCuzAdP8T6wA1XRuuvcYHjgfTmKscSrYAFk74mMuAhGwCgvIcNvrGdwYevay4pFgcdlxRAdhe20WtlPTeOtLFX3bWywspJWYPybNf14iZYuoly223q6BEpVhPsqlO-DxaNGuira9yP_0kDj8l2D2fpYWd_T8gdUz4l999VADmXz8jlIXjTkmYA8oslpoauYKOkXYsfmtcUectLcDEFBehML_KOM3xJQWZWYIHOWyrLjOZNTWfnVQ2fuZn2_cZQPv_RRg9l08o3-YxO59Vlc_6cjI8-jt4P3b7Tg6sBwTHXgillHK_tAmJRMkkxGWqCSEqlfS-RmacDCWAj4CY0XsKNZpIzlahY6RhsMNghW2VVml1CIeiOrMkio63mBvyxjrhWSWohEg6t8RwSr_5ToXsadOzGUYg_wiHQqkCt9k06Uavip0PYWnLWUYHcQmYXzEbIKXhsMf7mY57YS9I4Zb5D9jdsaT2m7wWpBxbskL2VcYnesdTCZ4CYMZvqkIP1t-ARMM0jS1MtasHjKEyjhP39FzEMADg4csiLzmZ_zyfx0ySK4eWi1vJuPVEx-nKMTy__VfCAPBiOTk_Eyaezz3vkYVeWg4ddr8hWM1-Y14D9GrXfrulfjvBJdA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BQYgL71JTaPfAEUdee722j-URlQJVBY2Um7XPNGqwrdihpL-eGdsJpCpShThEipTMKjuZmf3GM_sNIa8dM8o47iD6mcznSka-MilkrYCtHTKUBQZvI385FocjfjSOx33_E96F6fgh1g_c0DPaeI0OXhm36eTYoRWxaNy3REY8ZgPAk3e4AN9BgPR1TSXFkqijkgLE7sMpeqWr59qVNo6q206W2Dgpa9Cd64ZeXIdKN0Fue0oNH5Lz1f665pTzwaJRA315hfrx_yjgEXnQg1l60FnfY3LLFk_I3bclAM7lU3JxALG0oAYg_myJhaFLOCZpN-CHTmuKrOUFBJgZBeBMf0w7xvAlBZlqhu05b6gsDJ02Na3Oyhpeczvpp42h_PR7mzsUTSvfTCs6mZcXzdkzMhp-OH136PdzHnwN-I35DgzJcLy0C3hFyTTDUqiNhJRKh0EqTaAjCVAj4ja2QcqtZpIzlapE6QQsMNomW0VZ2B1CIeUWzhphtdPcQjTWgmuVZg7y4NjZwCPJ6i_NdU-CjrM4ZvkfyRBoNUet9iM6Uav5T4-wtWTVEYHcQGYHrCaXE4jX-ehbiFXiIM2SjIUe2dswpfWaYRBlARexR3ZXtpX3YaXOQwZ4GWupHtlffwrxAIs8srDlos55IuJMpOzv30hgAUDBwiPPO5P9vZ80zFKRwI8TreHdeKP56ckRvnvxr4L75N7J-2H--ePxp11yv-vJwSddL8lWM1_YVwD8GrXXevQviGJILA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Actin+depolymerizing+factor+is+essential+for+viability+in+plants%2C+and+its+phosphoregulation+is+important+for+tip+growth&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Augustine%2C+Robert+C&rft.au=Vidali%2C+Luis&rft.au=Kleinman%2C+Ken+P&rft.au=Bezanilla%2C+Magdalena&rft.date=2008-06-01&rft.issn=1365-313X&rft.eissn=1365-313X&rft.volume=54&rft.issue=5&rft.spage=863&rft_id=info:doi/10.1111%2Fj.1365-313X.2008.03451.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |