Characterization of CD22 expression in acute lymphoblastic leukemia
Background CD22 is a B‐lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). Procedure Properties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with...
Saved in:
Published in | Pediatric blood & cancer Vol. 62; no. 6; pp. 964 - 969 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.06.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
CD22 is a B‐lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL).
Procedure
Properties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B‐precursor (pre‐B) ALL.
Results
CD22 expression was demonstrated in all subjects (n = 163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349–19,653, n = 160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349–3,624, n = 20 versus 3,853 sites/cell, range 451–19,653, n = 140; P = <0.0001) and 6 of 21 cases had sub‐populations of blasts lacking CD22 expression (22%–82% CD22 +). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti‐CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti‐CD22 directed agents.
Conclusions
These characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy‐refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22‐negative blast population. Pediatr Blood Cancer Published 2015. This article is a U.S. Government work and is in the public domain in the USA. |
---|---|
AbstractList | CD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL).
Properties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B-precursor (pre-B) ALL.
CD22 expression was demonstrated in all subjects (n = 163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349-19,653, n = 160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349-3,624, n = 20 versus 3,853 sites/cell, range 451-19,653, n = 140; P = <0.0001) and 6 of 21 cases had sub-populations of blasts lacking CD22 expression (22%-82% CD22 +). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti-CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti-CD22 directed agents.
These characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy-refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22-negative blast population. Background CD22 is a B‐lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). Procedure Properties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B‐precursor (pre‐B) ALL. Results CD22 expression was demonstrated in all subjects (n = 163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349–19,653, n = 160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349–3,624, n = 20 versus 3,853 sites/cell, range 451–19,653, n = 140; P = <0.0001) and 6 of 21 cases had sub‐populations of blasts lacking CD22 expression (22%–82% CD22 +). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti‐CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti‐CD22 directed agents. Conclusions These characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy‐refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22‐negative blast population. Pediatr Blood Cancer Published 2015. This article is a U.S. Government work and is in the public domain in the USA. CD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL).BACKGROUNDCD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL).Properties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B-precursor (pre-B) ALL.PROCEDUREProperties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B-precursor (pre-B) ALL.CD22 expression was demonstrated in all subjects (n = 163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349-19,653, n = 160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349-3,624, n = 20 versus 3,853 sites/cell, range 451-19,653, n = 140; P = <0.0001) and 6 of 21 cases had sub-populations of blasts lacking CD22 expression (22%-82% CD22 +). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti-CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti-CD22 directed agents.RESULTSCD22 expression was demonstrated in all subjects (n = 163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349-19,653, n = 160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349-3,624, n = 20 versus 3,853 sites/cell, range 451-19,653, n = 140; P = <0.0001) and 6 of 21 cases had sub-populations of blasts lacking CD22 expression (22%-82% CD22 +). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti-CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti-CD22 directed agents.These characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy-refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22-negative blast population.CONCLUSIONSThese characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy-refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22-negative blast population. BackgroundCD22 is a B‐lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL).ProcedureProperties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B‐precursor (pre‐B) ALL.ResultsCD22 expression was demonstrated in all subjects (n = 163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349–19,653, n = 160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349–3,624, n = 20 versus 3,853 sites/cell, range 451–19,653, n = 140; P = <0.0001) and 6 of 21 cases had sub‐populations of blasts lacking CD22 expression (22%–82% CD22 +). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti‐CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti‐CD22 directed agents.ConclusionsThese characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy‐refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22‐negative blast population. Pediatr Blood Cancer Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Background CD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). Procedure Properties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B-precursor (pre-B) ALL. Results CD22 expression was demonstrated in all subjects (n=163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349-19,653, n=160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349-3,624, n=20 versus 3,853 sites/cell, range 451-19,653, n=140; P=<0.0001) and 6 of 21 cases had sub-populations of blasts lacking CD22 expression (22%-82% CD22+). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti-CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti-CD22 directed agents. Conclusions These characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy-refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22-negative blast population. Pediatr Blood Cancer Published 2015. This article is a U.S. Government work and is in the public domain in the USA. |
Author | Delbrook, Cindy Wayne, Alan S. Shah, Nirali N. Yuan, Constance M. Pastan, Ira Stevenson, Maryalice Stetler Richards, Kelly Kreitman, Robert J. |
AuthorAffiliation | 4 Children's Center for Cancer and Blood Diseases, Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 1 Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 2 Laboratory of Pathology, CCR, NCI, NIH, Bethesda, MD 3 Laboratory of Molecular Biology, CCR, NCI, NIH, Bethesda, MD |
AuthorAffiliation_xml | – name: 1 Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD – name: 3 Laboratory of Molecular Biology, CCR, NCI, NIH, Bethesda, MD – name: 2 Laboratory of Pathology, CCR, NCI, NIH, Bethesda, MD – name: 4 Children's Center for Cancer and Blood Diseases, Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA |
Author_xml | – sequence: 1 givenname: Nirali N. surname: Shah fullname: Shah, Nirali N. email: Correspondence to: Nirali N. Shah, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Building 10, Room 1W-3750, 9000 Rockville Pike, Bethesda, MD 20892-1104., Nirali.Shah@nih.gov organization: Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Maryland, Bethesda – sequence: 2 givenname: Maryalice Stetler surname: Stevenson fullname: Stevenson, Maryalice Stetler organization: Laboratory of Pathology, CCR, NCI, NIH, Maryland, Bethesda – sequence: 3 givenname: Constance M. surname: Yuan fullname: Yuan, Constance M. organization: Laboratory of Pathology, CCR, NCI, NIH, Maryland, Bethesda – sequence: 4 givenname: Kelly surname: Richards fullname: Richards, Kelly organization: Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Maryland, Bethesda – sequence: 5 givenname: Cindy surname: Delbrook fullname: Delbrook, Cindy organization: Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Maryland, Bethesda – sequence: 6 givenname: Robert J. surname: Kreitman fullname: Kreitman, Robert J. organization: Laboratory of Molecular Biology, CCR, NCI, NIH, Maryland, Bethesda – sequence: 7 givenname: Ira surname: Pastan fullname: Pastan, Ira organization: Laboratory of Molecular Biology, CCR, NCI, NIH, Maryland, Bethesda – sequence: 8 givenname: Alan S. surname: Wayne fullname: Wayne, Alan S. organization: Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, Maryland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25728039$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URB-w4A-gSGzKIu31O9kg0UBbpFIQAs3SclyHcZvEwU6gw6_H03mIViCxsn39naNjn3200_veIvQcwxEGIMdDbY4IZxgeoT3MGc85YLmz3UO5i_ZjvE6oAF48QbuES1IALfdQVc110Ga0wf3So_N95pusektIZm-HYGNcjlyfaTONNmsX3TD3davj6EzW2unGdk4_RY8b3Ub7bL0eoK-n775U5_nFx7P31ZuL3KQckBuKjanLkplSS84pFOmsZUl1gxkW1FDGdGNZQZhgNZGWSMFrgjUmcKWhpgfo9cp3mOrOXhnbj0G3agiu02GhvHbq_k3v5uqb_6EYg5SAJoPDtUHw3ycbR9W5aGzb6t76KSosCmCCUAr_gUomCiFhib58gF77KfTpJxQBygWHQhSJevFn-G3qTRUJOF4BJvgYg22UceNdJektrlUY1LJslcpWd2UnxasHio3p39i1-0_X2sW_QfXppNoo8pXCxdHebhU63CghqeRqdnmmis8fzk_JbKYw_Q1S5MXZ |
CitedBy_id | crossref_primary_10_3324_haematol_2023_283815 crossref_primary_10_1158_1078_0432_CCR_20_3863 crossref_primary_10_1038_nm_4441 crossref_primary_10_1038_s41392_022_00947_7 crossref_primary_10_3390_cancers13215418 crossref_primary_10_1080_10428194_2021_1980214 crossref_primary_10_1182_blood_2017_02_749101 crossref_primary_10_1097_MPH_0000000000001440 crossref_primary_10_1182_bloodadvances_2016001925 crossref_primary_10_1038_bcj_2017_53 crossref_primary_10_1126_scitranslmed_aaw9414 crossref_primary_10_21682_2311_1267_2022_9_2_85_92 crossref_primary_10_1089_cbr_2020_3568 crossref_primary_10_24287_1726_1708_2024_23_2_60_70 crossref_primary_10_1002_pbc_26604 crossref_primary_10_1038_s41375_024_02220_y crossref_primary_10_3389_fimmu_2023_1237738 crossref_primary_10_1002_cyto_b_22113 crossref_primary_10_1038_s41375_018_0265_z crossref_primary_10_1016_j_imlet_2016_02_014 crossref_primary_10_1186_s40164_024_00490_x crossref_primary_10_1016_j_hemonc_2021_07_002 crossref_primary_10_1007_s11899_018_0457_7 crossref_primary_10_1007_s40272_024_00634_w crossref_primary_10_1021_acs_bioconjchem_3c00374 crossref_primary_10_24287_1726_1708_2023_22_2_175_184 crossref_primary_10_1002_pbc_28112 crossref_primary_10_1007_s00262_023_03444_0 crossref_primary_10_1007_s12185_022_03502_w crossref_primary_10_3390_hematolrep16040056 crossref_primary_10_1016_j_exphem_2018_07_002 crossref_primary_10_24287_1726_1708_2023_22_1_46_52 crossref_primary_10_1097_PPO_0000000000000375 crossref_primary_10_3390_cancers14215445 crossref_primary_10_1016_j_bbagrm_2020_194564 crossref_primary_10_1016_j_hoc_2023_06_003 crossref_primary_10_1038_s41598_021_00227_4 crossref_primary_10_1002_cyto_b_21482 crossref_primary_10_1177_1758835920962997 crossref_primary_10_3390_cancers16213585 crossref_primary_10_1042_BSR20200514 crossref_primary_10_1200_JCO_21_01693 crossref_primary_10_1002_ajh_26853 crossref_primary_10_1002_bab_1654 crossref_primary_10_1007_s11899_018_0479_1 crossref_primary_10_1177_2040620716652289 crossref_primary_10_1038_s41375_022_01576_3 crossref_primary_10_1158_2159_8290_CD_20_0242 crossref_primary_10_1089_gtmb_2016_0006 crossref_primary_10_3389_fimmu_2023_1165870 crossref_primary_10_1002_pbc_28976 crossref_primary_10_1007_s11899_017_0394_x crossref_primary_10_3390_biomedicines11102693 crossref_primary_10_1039_D0NR02133D crossref_primary_10_1016_j_hoc_2022_03_005 crossref_primary_10_1126_scisignal_aaf3949 crossref_primary_10_1586_14737140_2016_1131614 crossref_primary_10_1016_j_omtn_2023_07_028 crossref_primary_10_3390_cancers17050779 crossref_primary_10_1182_blood_2024024517 crossref_primary_10_1007_s40272_020_00413_3 crossref_primary_10_1182_asheducation_2018_1_25 crossref_primary_10_1002_ajh_25235 crossref_primary_10_1186_s40169_020_0268_z crossref_primary_10_1158_1535_7163_MCT_20_1089 crossref_primary_10_1093_ajcp_aqaa242 crossref_primary_10_1007_s44228_022_00006_6 crossref_primary_10_1146_annurev_cancerbio_030419_033436 crossref_primary_10_1080_10428194_2017_1375107 crossref_primary_10_1038_s41591_021_01436_0 crossref_primary_10_3390_ijms23105686 crossref_primary_10_1158_1078_0432_CCR_18_3784 crossref_primary_10_55095_CSPediatrie2022_042 crossref_primary_10_1002_cpcy_44 crossref_primary_10_1007_s11864_024_01213_4 crossref_primary_10_1080_10428194_2017_1354372 crossref_primary_10_1080_10428194_2022_2116936 crossref_primary_10_1158_1535_7163_MCT_15_0828 crossref_primary_10_3390_cells8111341 crossref_primary_10_1186_s40164_023_00454_7 crossref_primary_10_1002_jha2_814 crossref_primary_10_1111_imr_12774 crossref_primary_10_1182_blood_2024026085 crossref_primary_10_1016_j_leukres_2016_07_009 crossref_primary_10_1007_s40262_024_01386_z crossref_primary_10_1007_s11626_024_00895_2 crossref_primary_10_1016_j_heliyon_2023_e17960 crossref_primary_10_3389_fimmu_2022_921894 crossref_primary_10_1016_j_yao_2021_02_014 crossref_primary_10_1056_NEJMoa1509277 crossref_primary_10_1002_cyto_b_22088 crossref_primary_10_1038_s41375_019_0488_7 crossref_primary_10_1158_1078_0432_CCR_20_2399 crossref_primary_10_1111_bcp_13832 crossref_primary_10_3390_jcm10163556 crossref_primary_10_1007_s11864_016_0406_4 crossref_primary_10_1073_pnas_1714512115 crossref_primary_10_1007_s00277_022_05040_1 crossref_primary_10_1016_j_retram_2019_12_001 crossref_primary_10_3389_fimmu_2022_825364 crossref_primary_10_1016_j_cll_2017_07_009 crossref_primary_10_1016_j_clml_2018_05_006 crossref_primary_10_1182_hematology_2019000018 crossref_primary_10_18632_oncotarget_16141 crossref_primary_10_1182_bloodadvances_2018020198 crossref_primary_10_2147_BTT_S290294 crossref_primary_10_1002_hon_3029 crossref_primary_10_1080_16078454_2022_2074704 crossref_primary_10_1038_s41408_017_0023_x crossref_primary_10_1016_j_critrevonc_2020_103096 crossref_primary_10_1111_bjh_17333 crossref_primary_10_1002_cpt_950 crossref_primary_10_1002_cyto_b_22091 crossref_primary_10_1182_blood_2020007848 crossref_primary_10_1038_s41571_019_0184_6 crossref_primary_10_1182_blood_2018_04_785980 crossref_primary_10_1126_sciadv_abm5667 crossref_primary_10_1158_1078_0432_CCR_15_2500 crossref_primary_10_1186_s12951_020_00752_w crossref_primary_10_24287_1726_1708_2022_21_3_100_114 crossref_primary_10_1126_scitranslmed_abm1262 |
Cites_doi | 10.3109/10428194.2010.529206 10.1158/1078-0432.CCR-09-2980 10.1002/cyto.b.20363 10.1200/JCO.2011.38.1756 10.1158/0008-5472.CAN-09-2405 10.1200/JCO.2009.22.2950 10.4049/jimmunol.155.7.3368 10.1016/j.blre.2011.08.001 10.1007/s12185-011-0900-1 10.1016/S0021-9258(17)30557-4 10.1038/sj.leu.2404578 10.1146/annurev.immunol.15.1.481 10.1056/NEJMsa060185 10.1038/leu.2008.303 10.3109/10428194.2011.559668 10.1158/1078-0432.CCR-11-1839 10.1016/S0065-2776(05)88001-0 10.1182/blood-2008-01-131987 10.1002/cyto.b.20567 10.1002/cncr.28136 10.1046/j.1365-2141.2002.03843.x 10.1158/1078-0432.CCR-08-0324 10.1200/JCO.2007.15.3528 10.1182/blood-2012-06-438002 10.1056/NEJMoa1215134 10.4049/jimmunol.150.11.4715 10.1002/(SICI)1097-0320(19981001)33:2<106::AID-CYTO4>3.0.CO;2-H |
ContentType | Journal Article |
Copyright | Published 2015. This article is a U.S. Government work and is in the public domain in the USA. 2015 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Published 2015. This article is a U.S. Government work and is in the public domain in the USA. – notice: 2015 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK 7TO 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
DOI | 10.1002/pbc.25410 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Neurosciences Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Genetics Abstracts AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1545-5017 |
EndPage | 969 |
ExternalDocumentID | PMC4405453 25728039 10_1002_pbc_25410 PBC25410 ark_67375_WNG_8RMHF2WW_1 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Intramural |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research – fundername: Warren Grant Magnuson Clinical Center – fundername: Intramural NIH HHS grantid: Z99 CA999999 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABPPZ ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TEORI UB1 UDS V2E W8V W99 WBKPD WHWMO WIH WIJ WIK WJL WOHZO WQJ WRC WVDHM WXI WXSBR XG1 XV2 ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 1OB 7T5 7TK 7TO 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5450-c31ccb994c9a7553081cca793af14163c344afe482464b27e2765b21a120da0b3 |
IEDL.DBID | DR2 |
ISSN | 1545-5009 1545-5017 |
IngestDate | Thu Aug 21 13:52:18 EDT 2025 Fri Jul 11 10:24:30 EDT 2025 Fri Jul 11 10:32:39 EDT 2025 Wed Aug 13 09:36:14 EDT 2025 Mon Jul 21 05:57:00 EDT 2025 Thu Apr 24 23:08:27 EDT 2025 Tue Jul 01 03:53:06 EDT 2025 Wed Jan 22 16:43:20 EST 2025 Wed Oct 30 09:48:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | monoclonal antibody acute lymphoblastic leukemia relapse CD22 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Published 2015. This article is a U.S. Government work and is in the public domain in the USA. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5450-c31ccb994c9a7553081cca793af14163c344afe482464b27e2765b21a120da0b3 |
Notes | Warren Grant Magnuson Clinical Center ArticleID:PBC25410 istex:847423B95BAD33DD99067D614AFF1BC4EFD4E082 Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research ark:/67375/WNG-8RMHF2WW-1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25728039 |
PQID | 2035650868 |
PQPubID | 1036357 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4405453 proquest_miscellaneous_1680462330 proquest_miscellaneous_1674686700 proquest_journals_2035650868 pubmed_primary_25728039 crossref_citationtrail_10_1002_pbc_25410 crossref_primary_10_1002_pbc_25410 wiley_primary_10_1002_pbc_25410_PBC25410 istex_primary_ark_67375_WNG_8RMHF2WW_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2015 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: June 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Glenview |
PublicationTitle | Pediatric blood & cancer |
PublicationTitleAlternate | Pediatr Blood Cancer |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Wayne AS, Kreitman RJ, Findley HW, Lew G, Delbrook C, Steinberg SM, Stetler-Stevenson M, Fitzgerald DJ, Pastan I. Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-positive hematologic malignancies of childhood: Preclinical studies and phase I clinical trial. Clin Cancer Res 2010; 16:1894-1903. Gloeckler Ries L, Mortality CC, In: Reis LAG, Smith SM, Gurney JG, et al (eds). Cancer Incidence and Survival among Children and Adolescents: SEER Program 1975-1995. NIH Pub. No. 99-4649 Bethesda. United States: National Cancer Institute 1999. pp 165-170. Matsushita K, Margulies I, Onda M, Nagata S, Stetler-Stevenson M, Kreitman RJ. Soluble CD22 as a tumor marker for hairy cell leukemia. Blood 2008; 112:2272-2277. Kennedy GA, Tey SK, Cobcroft R, Marlton P, Cull G, Grimmett K, Thomson D, Gill D. Incidence and nature of CD20-negative relapses following rituximab therapy in aggressive B-cell non-Hodgkin's lymphoma: A retrospective review. Br J Haematol 2002; 119:412-416. Zhang Y, Pastan I. High shed antigen levels within tumors: An additional barrier to immunoconjugate therapy. Clin Cancer Res 2008; 14:7981-7986. Ogata M, Chaudhary VK, Pastan I, FitzGerald DJ. Processing of Pseudomonas exotoxin by a cellular protease results in the generation of a 37,000-Da toxin fragment that is translocated to the cytosol. The Journal of biological chemistry 1990; 265:20678-20685. Raponi S, De Propris MS, Intoppa S, Milani ML, Vitale A, Elia L, Perbellini O, Pizzolo G, Foa R, Guarini A. Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: Analysis of 552 cases. Leuk Lymphoma 2011; 52:1098-1107. Piccaluga PP, Arpinati M, Candoni A, Laterza C, Paolini S, Gazzola A, Sabattini E, Visani G, Pileri SA. Surface antigens analysis reveals significant expression of candidate targets for immunotherapy in adult acute lymphoid leukemia. Leuk Lymphoma 2011; 52:325-327. Singh R, Zhang Y, Pastan I, Kreitman RJ. Synergistic antitumor activity of anti-CD25 recombinant immunotoxin LMB-2 with chemotherapy. Clin Cancer Res 2012; 18:152-160. Jasper GA, Arun I, Venzon D, Kreitman RJ, Wayne AS, Yuan CM, Marti GE, Stetler-Stevenson M. Variables affecting the quantitation of CD22 in neoplastic B cells. Cytometry B Clin Cytom 2011; 80:83-90. Kreitman RJ, Pastan I. Accumulation of a recombinant immunotoxin in a tumor in vivo: Fewer than 1000 molecules per cell are sufficient for complete responses. Cancer research 1998; 58:968-975. Schwartz A, Marti GE, Poon R, Gratama JW, Fernandez-Repollet E. Standardizing flow cytometry: A classification system of fluorescence standards used for flow cytometry. Cytometry 1998; 33:106-114. Law CL, Aruffo A, Chandran KA, Doty RT, Clark EA. Ig domains 1 and 2 of murine CD22 constitute the ligand-binding domain and bind multiple sialylated ligands expressed on B and T cells. J Immunol 1995; 155:3368-3376. Kantarjian H, Thomas D, Jorgensen J, Kebriaei P, Jabbour E, Rytting M, York S, Ravandi F, Garris R, Kwari M, Faderl S, Cortes J, Champlin R, O'Brien S. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer 2013; 119:2728-2736. Chevallier P, Robillard N, Houille G, Ayari S, Guillaume T, Delaunay J, Harousseau JL, Avet-Loiseau H, Mohty M, Garand R. Simultaneous study of five candidate target antigens (CD20, CD22, CD33, CD52, HER2) for antibody-based immunotherapy in B-ALL: A monocentric study of 44 cases. Leukemia 2009; 23:806-807. Jansen MW, Corral L, van der Velden VH, Panzer-Grumayer R, Schrappe M, Schrauder A, Marschalek R, Meyer C, den Boer ML, Hop WJ, Valsecchi MG, Basso G, Biondi A, Pieters R. Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia 2007; 21:633-641. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. The New England journal of medicine 2013; 368:1509-1518. Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM, Pastan IH, Dimitrov DS, Morgan RA, Fitzgerald DJ, Barrett DM, Wayne AS, Mackall CL, Orentas RJ. Anti -CD22-chimeric antigen receptors targeting B cell precursor acute lymphoblastic leukemia. Blood. 2013; 121:1165-1174. Raetz EA, Cairo MS, Borowitz MJ, Blaney SM, Krailo MD, Leil TA, Reid JM, Goldenberg DM, Wegener WA, Carroll WL, Adamson PC. Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: A Children's Oncology Group Pilot Study. J Clin Oncol 2008; 26:3756-3762. Hoelzer D, Gokbuget N. Chemoimmunotherapy in acute lymphoblastic leukemia. Blood Rev 2012; 26:25-32. Wood BL, Arroz M, Barnett D, DiGiuseppe J, Greig B, Kussick SJ, Oldaker T, Shenkin M, Stone E, Wallace P. 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: Optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytometry B Clin Cytom 2007; 72:S14-S22. Kreitman RJ, Tallman MS, Robak T, Coutre S, Wilson WH, Stetler-Stevenson M, Fitzgerald DJ, Lechleider R, Pastan I. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol 2012; 30:1822-1828. Tedder TF, Poe JC, Haas KM. CD22: A multifunctional receptor that regulates B lymphocyte survival and signal transduction. Advances in immunology 2005; 88:1-50. Tedder TF, Tuscano J, Sato S, Kehrl JH. CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annual review of immunology 1997; 15:481-504. Iwamoto S, Deguchi T, Ohta H, Kiyokawa N, Tsurusawa M, Yamada T, Takase K, Fujimoto J, Hanada R, Hori H, Horibe K, Komada Y. Flow cytometric analysis of de novo acute lymphoblastic leukemia in childhood: Report from the Japanese Pediatric Leukemia/Lymphoma Study Group. Int J Hematol 2011; 94:185-192. Zhang Y, Hansen JK, Xiang L, Kawa S, Onda M, Ho M, Hassan R, Pastan I. A flow cytometry method to quantitate internalized immunotoxins shows that taxol synergistically increases cellular immunotoxins uptake. Cancer research 2010; 70:1082-1089. Stetler-Stevenson M, Ahmad E, Barnett D, Braylan RC, DiGiuseppe JA, Marti G, Menozzi D, Oldaker TA, Orfao A, Rabellino E, Stone EC. C W Clinical and Laboratory Standards Institute. Clinical Flow Cytometric Analysis of Neoplastic Hematolymphoid Cells; Approved Guideline- Second Edition. CLSI document. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute 2005. pp A2-H43. Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, Friedman DL, Marina N, Hobbie W, Kadan-Lottick NS, Schwartz CL, Leisenring W, Robison LL. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 2006; 355:1572-1582. Clark EA. CD22, a B cell-specific receptor, mediates adhesion and signal transduction. J Immunol 1993; 150:4715-4718. Ko RH, Ji L, Barnette P, Bostrom B, Hutchinson R, Raetz E, Seibel NL, Twist CJ, Eckroth E, Sposto R, Gaynon PS, Loh ML. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: A Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol 2010; 28:648-654. 2009; 23 2010; 16 2011; 80 2013; 368 2008; 14 2011; 52 2012; 18 2005 2007; 72 1995; 155 2013; 121 2002; 119 1990; 265 2005; 88 2012; 30 1999 2006; 355 2013; 119 2010; 28 1997; 15 2011; 94 1993; 150 2008; 26 2012; 26 2010; 70 2008; 112 2007; 21 1998; 33 1998; 58 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_15_1 Law CL (e_1_2_7_5_1) 1995; 155 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 Kreitman RJ (e_1_2_7_24_1) 1998; 58 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Ogata M (e_1_2_7_25_1) 1990; 265 Stetler‐Stevenson M (e_1_2_7_22_1) 2005 Gloeckler Ries L (e_1_2_7_2_1) 1999 e_1_2_7_30_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – reference: Singh R, Zhang Y, Pastan I, Kreitman RJ. Synergistic antitumor activity of anti-CD25 recombinant immunotoxin LMB-2 with chemotherapy. Clin Cancer Res 2012; 18:152-160. – reference: Hoelzer D, Gokbuget N. Chemoimmunotherapy in acute lymphoblastic leukemia. Blood Rev 2012; 26:25-32. – reference: Kennedy GA, Tey SK, Cobcroft R, Marlton P, Cull G, Grimmett K, Thomson D, Gill D. Incidence and nature of CD20-negative relapses following rituximab therapy in aggressive B-cell non-Hodgkin's lymphoma: A retrospective review. Br J Haematol 2002; 119:412-416. – reference: Ko RH, Ji L, Barnette P, Bostrom B, Hutchinson R, Raetz E, Seibel NL, Twist CJ, Eckroth E, Sposto R, Gaynon PS, Loh ML. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: A Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol 2010; 28:648-654. – reference: Kreitman RJ, Tallman MS, Robak T, Coutre S, Wilson WH, Stetler-Stevenson M, Fitzgerald DJ, Lechleider R, Pastan I. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol 2012; 30:1822-1828. – reference: Stetler-Stevenson M, Ahmad E, Barnett D, Braylan RC, DiGiuseppe JA, Marti G, Menozzi D, Oldaker TA, Orfao A, Rabellino E, Stone EC. C W Clinical and Laboratory Standards Institute. Clinical Flow Cytometric Analysis of Neoplastic Hematolymphoid Cells; Approved Guideline- Second Edition. CLSI document. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute 2005. pp A2-H43. – reference: Gloeckler Ries L, Mortality CC, In: Reis LAG, Smith SM, Gurney JG, et al (eds). Cancer Incidence and Survival among Children and Adolescents: SEER Program 1975-1995. NIH Pub. No. 99-4649 Bethesda. United States: National Cancer Institute 1999. pp 165-170. – reference: Raetz EA, Cairo MS, Borowitz MJ, Blaney SM, Krailo MD, Leil TA, Reid JM, Goldenberg DM, Wegener WA, Carroll WL, Adamson PC. Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: A Children's Oncology Group Pilot Study. J Clin Oncol 2008; 26:3756-3762. – reference: Jansen MW, Corral L, van der Velden VH, Panzer-Grumayer R, Schrappe M, Schrauder A, Marschalek R, Meyer C, den Boer ML, Hop WJ, Valsecchi MG, Basso G, Biondi A, Pieters R. Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia 2007; 21:633-641. – reference: Ogata M, Chaudhary VK, Pastan I, FitzGerald DJ. Processing of Pseudomonas exotoxin by a cellular protease results in the generation of a 37,000-Da toxin fragment that is translocated to the cytosol. The Journal of biological chemistry 1990; 265:20678-20685. – reference: Wood BL, Arroz M, Barnett D, DiGiuseppe J, Greig B, Kussick SJ, Oldaker T, Shenkin M, Stone E, Wallace P. 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: Optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytometry B Clin Cytom 2007; 72:S14-S22. – reference: Schwartz A, Marti GE, Poon R, Gratama JW, Fernandez-Repollet E. Standardizing flow cytometry: A classification system of fluorescence standards used for flow cytometry. Cytometry 1998; 33:106-114. – reference: Piccaluga PP, Arpinati M, Candoni A, Laterza C, Paolini S, Gazzola A, Sabattini E, Visani G, Pileri SA. Surface antigens analysis reveals significant expression of candidate targets for immunotherapy in adult acute lymphoid leukemia. Leuk Lymphoma 2011; 52:325-327. – reference: Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, Friedman DL, Marina N, Hobbie W, Kadan-Lottick NS, Schwartz CL, Leisenring W, Robison LL. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 2006; 355:1572-1582. – reference: Clark EA. CD22, a B cell-specific receptor, mediates adhesion and signal transduction. J Immunol 1993; 150:4715-4718. – reference: Jasper GA, Arun I, Venzon D, Kreitman RJ, Wayne AS, Yuan CM, Marti GE, Stetler-Stevenson M. Variables affecting the quantitation of CD22 in neoplastic B cells. Cytometry B Clin Cytom 2011; 80:83-90. – reference: Law CL, Aruffo A, Chandran KA, Doty RT, Clark EA. Ig domains 1 and 2 of murine CD22 constitute the ligand-binding domain and bind multiple sialylated ligands expressed on B and T cells. J Immunol 1995; 155:3368-3376. – reference: Matsushita K, Margulies I, Onda M, Nagata S, Stetler-Stevenson M, Kreitman RJ. Soluble CD22 as a tumor marker for hairy cell leukemia. Blood 2008; 112:2272-2277. – reference: Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM, Pastan IH, Dimitrov DS, Morgan RA, Fitzgerald DJ, Barrett DM, Wayne AS, Mackall CL, Orentas RJ. Anti -CD22-chimeric antigen receptors targeting B cell precursor acute lymphoblastic leukemia. Blood. 2013; 121:1165-1174. – reference: Tedder TF, Tuscano J, Sato S, Kehrl JH. CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annual review of immunology 1997; 15:481-504. – reference: Zhang Y, Hansen JK, Xiang L, Kawa S, Onda M, Ho M, Hassan R, Pastan I. A flow cytometry method to quantitate internalized immunotoxins shows that taxol synergistically increases cellular immunotoxins uptake. Cancer research 2010; 70:1082-1089. – reference: Kantarjian H, Thomas D, Jorgensen J, Kebriaei P, Jabbour E, Rytting M, York S, Ravandi F, Garris R, Kwari M, Faderl S, Cortes J, Champlin R, O'Brien S. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer 2013; 119:2728-2736. – reference: Chevallier P, Robillard N, Houille G, Ayari S, Guillaume T, Delaunay J, Harousseau JL, Avet-Loiseau H, Mohty M, Garand R. Simultaneous study of five candidate target antigens (CD20, CD22, CD33, CD52, HER2) for antibody-based immunotherapy in B-ALL: A monocentric study of 44 cases. Leukemia 2009; 23:806-807. – reference: Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. The New England journal of medicine 2013; 368:1509-1518. – reference: Wayne AS, Kreitman RJ, Findley HW, Lew G, Delbrook C, Steinberg SM, Stetler-Stevenson M, Fitzgerald DJ, Pastan I. Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-positive hematologic malignancies of childhood: Preclinical studies and phase I clinical trial. Clin Cancer Res 2010; 16:1894-1903. – reference: Tedder TF, Poe JC, Haas KM. CD22: A multifunctional receptor that regulates B lymphocyte survival and signal transduction. Advances in immunology 2005; 88:1-50. – reference: Raponi S, De Propris MS, Intoppa S, Milani ML, Vitale A, Elia L, Perbellini O, Pizzolo G, Foa R, Guarini A. Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: Analysis of 552 cases. Leuk Lymphoma 2011; 52:1098-1107. – reference: Iwamoto S, Deguchi T, Ohta H, Kiyokawa N, Tsurusawa M, Yamada T, Takase K, Fujimoto J, Hanada R, Hori H, Horibe K, Komada Y. Flow cytometric analysis of de novo acute lymphoblastic leukemia in childhood: Report from the Japanese Pediatric Leukemia/Lymphoma Study Group. Int J Hematol 2011; 94:185-192. – reference: Zhang Y, Pastan I. High shed antigen levels within tumors: An additional barrier to immunoconjugate therapy. Clin Cancer Res 2008; 14:7981-7986. – reference: Kreitman RJ, Pastan I. Accumulation of a recombinant immunotoxin in a tumor in vivo: Fewer than 1000 molecules per cell are sufficient for complete responses. Cancer research 1998; 58:968-975. – start-page: A2 year: 2005 end-page: H43 – volume: 58 start-page: 968 year: 1998 end-page: 975 article-title: Accumulation of a recombinant immunotoxin in a tumor in vivo: Fewer than 1000 molecules per cell are sufficient for complete responses publication-title: Cancer research – volume: 72 start-page: S14 year: 2007 end-page: S22 article-title: 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: Optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia publication-title: Cytometry B Clin Cytom – volume: 14 start-page: 7981 year: 2008 end-page: 7986 article-title: High shed antigen levels within tumors: An additional barrier to immunoconjugate therapy publication-title: Clin Cancer Res – volume: 88 start-page: 1 year: 2005 end-page: 50 article-title: CD22: A multifunctional receptor that regulates B lymphocyte survival and signal transduction publication-title: Advances in immunology – volume: 121 start-page: 1165 year: 2013 end-page: 1174 article-title: Anti ‐CD22‐chimeric antigen receptors targeting B cell precursor acute lymphoblastic leukemia publication-title: Blood. – volume: 52 start-page: 325 year: 2011 end-page: 327 article-title: Surface antigens analysis reveals significant expression of candidate targets for immunotherapy in adult acute lymphoid leukemia publication-title: Leuk Lymphoma – start-page: 165 year: 1999 end-page: 170 – volume: 28 start-page: 648 year: 2010 end-page: 654 article-title: Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: A Therapeutic Advances in Childhood Leukemia Consortium study publication-title: J Clin Oncol – volume: 21 start-page: 633 year: 2007 end-page: 641 article-title: Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement publication-title: Leukemia – volume: 80 start-page: 83 year: 2011 end-page: 90 article-title: Variables affecting the quantitation of CD22 in neoplastic B cells publication-title: Cytometry B Clin Cytom – volume: 368 start-page: 1509 year: 2013 end-page: 1518 article-title: Chimeric antigen receptor‐modified T cells for acute lymphoid leukemia publication-title: The New England journal of medicine – volume: 112 start-page: 2272 year: 2008 end-page: 2277 article-title: Soluble CD22 as a tumor marker for hairy cell leukemia publication-title: Blood – volume: 119 start-page: 2728 year: 2013 end-page: 2736 article-title: Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia publication-title: Cancer – volume: 94 start-page: 185 year: 2011 end-page: 192 article-title: Flow cytometric analysis of de novo acute lymphoblastic leukemia in childhood: Report from the Japanese Pediatric Leukemia/Lymphoma Study Group publication-title: Int J Hematol – volume: 70 start-page: 1082 year: 2010 end-page: 1089 article-title: A flow cytometry method to quantitate internalized immunotoxins shows that taxol synergistically increases cellular immunotoxins uptake publication-title: Cancer research – volume: 23 start-page: 806 year: 2009 end-page: 807 article-title: Simultaneous study of five candidate target antigens (CD20, CD22, CD33, CD52, HER2) for antibody‐based immunotherapy in B‐ALL: A monocentric study of 44 cases publication-title: Leukemia – volume: 155 start-page: 3368 year: 1995 end-page: 3376 article-title: Ig domains 1 and 2 of murine CD22 constitute the ligand‐binding domain and bind multiple sialylated ligands expressed on B and T cells publication-title: J Immunol – volume: 52 start-page: 1098 year: 2011 end-page: 1107 article-title: Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody‐based immunotherapy in acute lymphoblastic leukemia: Analysis of 552 cases publication-title: Leuk Lymphoma – volume: 150 start-page: 4715 year: 1993 end-page: 4718 article-title: CD22, a B cell‐specific receptor, mediates adhesion and signal transduction publication-title: J Immunol – volume: 26 start-page: 25 year: 2012 end-page: 32 article-title: Chemoimmunotherapy in acute lymphoblastic leukemia publication-title: Blood Rev – volume: 30 start-page: 1822 year: 2012 end-page: 1828 article-title: Phase I trial of anti‐CD22 recombinant immunotoxin moxetumomab pasudotox (CAT‐8015 or HA22) in patients with hairy cell leukemia publication-title: J Clin Oncol – volume: 18 start-page: 152 year: 2012 end-page: 160 article-title: Synergistic antitumor activity of anti‐CD25 recombinant immunotoxin LMB‐2 with chemotherapy publication-title: Clin Cancer Res – volume: 33 start-page: 106 year: 1998 end-page: 114 article-title: Standardizing flow cytometry: A classification system of fluorescence standards used for flow cytometry publication-title: Cytometry – volume: 15 start-page: 481 year: 1997 end-page: 504 article-title: CD22, a B lymphocyte‐specific adhesion molecule that regulates antigen receptor signaling publication-title: Annual review of immunology – volume: 355 start-page: 1572 year: 2006 end-page: 1582 article-title: Chronic health conditions in adult survivors of childhood cancer publication-title: N Engl J Med – volume: 26 start-page: 3756 year: 2008 end-page: 3762 article-title: Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: A Children's Oncology Group Pilot Study publication-title: J Clin Oncol – volume: 265 start-page: 20678 year: 1990 end-page: 20685 article-title: Processing of Pseudomonas exotoxin by a cellular protease results in the generation of a 37,000‐Da toxin fragment that is translocated to the cytosol publication-title: The Journal of biological chemistry – volume: 119 start-page: 412 year: 2002 end-page: 416 article-title: Incidence and nature of CD20‐negative relapses following rituximab therapy in aggressive B‐cell non‐Hodgkin's lymphoma: A retrospective review publication-title: Br J Haematol – volume: 16 start-page: 1894 year: 2010 end-page: 1903 article-title: Anti‐CD22 immunotoxin RFB4(dsFv)‐PE38 (BL22) for CD22‐positive hematologic malignancies of childhood: Preclinical studies and phase I clinical trial publication-title: Clin Cancer Res – ident: e_1_2_7_15_1 doi: 10.3109/10428194.2010.529206 – ident: e_1_2_7_30_1 doi: 10.1158/1078-0432.CCR-09-2980 – ident: e_1_2_7_31_1 doi: 10.1002/cyto.b.20363 – ident: e_1_2_7_11_1 doi: 10.1200/JCO.2011.38.1756 – ident: e_1_2_7_19_1 doi: 10.1158/0008-5472.CAN-09-2405 – ident: e_1_2_7_3_1 doi: 10.1200/JCO.2009.22.2950 – volume: 155 start-page: 3368 year: 1995 ident: e_1_2_7_5_1 article-title: Ig domains 1 and 2 of murine CD22 constitute the ligand‐binding domain and bind multiple sialylated ligands expressed on B and T cells publication-title: J Immunol doi: 10.4049/jimmunol.155.7.3368 – ident: e_1_2_7_13_1 doi: 10.1016/j.blre.2011.08.001 – ident: e_1_2_7_17_1 doi: 10.1007/s12185-011-0900-1 – volume: 265 start-page: 20678 year: 1990 ident: e_1_2_7_25_1 article-title: Processing of Pseudomonas exotoxin by a cellular protease results in the generation of a 37,000‐Da toxin fragment that is translocated to the cytosol publication-title: The Journal of biological chemistry doi: 10.1016/S0021-9258(17)30557-4 – ident: e_1_2_7_26_1 doi: 10.1038/sj.leu.2404578 – ident: e_1_2_7_6_1 doi: 10.1146/annurev.immunol.15.1.481 – ident: e_1_2_7_4_1 doi: 10.1056/NEJMsa060185 – ident: e_1_2_7_16_1 doi: 10.1038/leu.2008.303 – ident: e_1_2_7_14_1 doi: 10.3109/10428194.2011.559668 – ident: e_1_2_7_18_1 doi: 10.1158/1078-0432.CCR-11-1839 – ident: e_1_2_7_7_1 doi: 10.1016/S0065-2776(05)88001-0 – ident: e_1_2_7_23_1 doi: 10.1182/blood-2008-01-131987 – ident: e_1_2_7_20_1 doi: 10.1002/cyto.b.20567 – ident: e_1_2_7_10_1 doi: 10.1002/cncr.28136 – ident: e_1_2_7_27_1 doi: 10.1046/j.1365-2141.2002.03843.x – ident: e_1_2_7_29_1 doi: 10.1158/1078-0432.CCR-08-0324 – ident: e_1_2_7_9_1 doi: 10.1200/JCO.2007.15.3528 – start-page: A2 volume-title: C W Clinical and Laboratory Standards Institute. Clinical Flow Cytometric Analysis of Neoplastic Hematolymphoid Cells; Approved Guideline‐ Second Edition. CLSI document year: 2005 ident: e_1_2_7_22_1 – start-page: 165 volume-title: Reis LAG, Smith SM, Gurney JG, et al (eds). Cancer Incidence and Survival among Children and Adolescents: SEER Program 1975‐1995. NIH Pub. No. 99–4649 Bethesda year: 1999 ident: e_1_2_7_2_1 – ident: e_1_2_7_12_1 doi: 10.1182/blood-2012-06-438002 – volume: 58 start-page: 968 year: 1998 ident: e_1_2_7_24_1 article-title: Accumulation of a recombinant immunotoxin in a tumor in vivo: Fewer than 1000 molecules per cell are sufficient for complete responses publication-title: Cancer research – ident: e_1_2_7_28_1 doi: 10.1056/NEJMoa1215134 – ident: e_1_2_7_8_1 doi: 10.4049/jimmunol.150.11.4715 – ident: e_1_2_7_21_1 doi: 10.1002/(SICI)1097-0320(19981001)33:2<106::AID-CYTO4>3.0.CO;2-H |
SSID | ssj0026058 |
Score | 2.4762611 |
Snippet | Background
CD22 is a B‐lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL).
Procedure... CD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). Properties of CD22... BackgroundCD22 is a B‐lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia... CD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL).BACKGROUNDCD22 is a... Background CD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). Procedure... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 964 |
SubjectTerms | Acute lymphoblastic leukemia Adolescent Adult Antigens Blood cancer Cancer CD22 CD22 antigen Chemotherapy Child Child, Preschool Children Chromosomes, Human, Pair 11 Enzyme-linked immunosorbent assay Hematology Histone-Lysine N-Methyltransferase Humans Infant Leukemia Lymphatic leukemia Monoclonal antibodies monoclonal antibody Myeloid-Lymphoid Leukemia Protein - genetics Oncology Pediatrics Pharmacokinetics Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy Precursor Cell Lymphoblastic Leukemia-Lymphoma - immunology relapse Sialic Acid Binding Ig-like Lectin 2 - analysis Sialic Acid Binding Ig-like Lectin 2 - antagonists & inhibitors Therapeutic applications Therapeutic targets |
Title | Characterization of CD22 expression in acute lymphoblastic leukemia |
URI | https://api.istex.fr/ark:/67375/WNG-8RMHF2WW-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpbc.25410 https://www.ncbi.nlm.nih.gov/pubmed/25728039 https://www.proquest.com/docview/2035650868 https://www.proquest.com/docview/1674686700 https://www.proquest.com/docview/1680462330 https://pubmed.ncbi.nlm.nih.gov/PMC4405453 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamISFeYOPXwjZkEEK8pHMcO3HEEwRKhdQJTUzdA5Jlu46oWtJpbaSxv35nJzEUBkK8Jcolis939pf4vs8IvcgNTXTGeAxgmMSMcR4Lzd1KYUEMpYlNPT16fJyNTtnHM362hV73XJhWHyL8cHOZ4cdrl-BKr45-iIaeazOArxtPr3K1Wg4QnQTpKAfTPQ0OEELMAUj0qkKEHoU7N-aiW86tlzcBzd_rJX_GsX4iGt5DX_omtPUn80Gz1gNz9Yu643-2cQfd7QAqftNG1C7asvV9dHvcLcE_QGUZJJ5bBideVrh8Rym2l11RbY1nNVamWVu8-A7RstQA0eFxeGGbuf02Uw_R6fD953IUdzsxxAb8R2KTJsboomCmULnbaEjAuYLUVlXiEJ1JGVOVZYKyjGmaW5pnXNNEJZRMFdHpI7RdL2u7h7DW05zkVZUC0GDUEG0yYemUVZobIRIboVd9n0jTyZS73TIWshVYphKcIr1TIvQ8mJ632hw3Gb30HRss1MXcFbPlXE6OP0hxMh4N6WQikwgd9D0vuzxeSUpS7jBsJiL0LFyGDHTLKqq2y2YlHY8jE47u9Dcb4VjAaQo2j9tgCi8Eg6bbIqyIUL4RZsHAKYBvXqlnX70SOAO4zXgKPvNR9GcvyE9vS3_w5N9N99EdQIe8rYs7QNvri8YeAgJb66c-1a4Bb6YptQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NmwS8sPGdbUBACPGSLnHsxJF4gUApsFZo2tS9TJbtOqJql05bIw3--p2dDygMhHhLlEsUn-_sn-273wG8SDWJVEJZgGA4DChlLOCK2ZPCLNSERCZ26dHDUTI4op-O2fEavG5zYWp-iG7DzXqGG6-tg9sN6b0frKFnSvdweWPzqzZsRW-3oDroyKMsUHeJcIgRAoZQouUVCsle9-rKbLRhFXt5HdT8PWLyZyTrpqL-Jpy0jagjUGa9aql6-vsv_I7_28otuN1gVP9NbVR3YM2Ud-HGsDmFvwd53rE810mc_qLw83eE-Oayiast_WnpS10tjT__hgazUIjS8XP-3FQzczqV9-Go__4wHwRNMYZAowLDQMeR1irLqM5kamsNcbyX6N2yiCyo0zGlsjCUE5pQRVJD0oQpEsmIhBMZqvgBrJeL0jwCX6lJGqZFESPWoESHSifckAktFNOcR8aDV22nCN0wlduCGXNRcywTgUoRTikePO9Ez2p6juuEXrqe7STk-czGs6VMjEcfBD8YDvpkPBaRB7tt14vGlS8ECWNmYWzCPXjWPUYntCcrsjSL6kLYVI6E24ynv8lwmwgcxyjzsLam7odw3LRVwjIP0hU76wQsCfjqk3L61ZGBU0TclMWoM2dGf9aC-PI2dxfb_y76FG4ODof7Yv_j6PMO3EKwyOowuV1YX55X5jECsqV64vzuCu6sLdA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTZp44X4JGxAQQrykcxw7ccQTpJRyaTVNTN3DJMt2HVG1S6utkQa_nmMnMRQGQrwlykkUH59jf4nP9xmh55kmsUopiwAM44hSxiKumF0pzLEmJDaJo0ePxunwmH44YSdb6FXHhWn0IfwPN5sZbry2Cb6algc_RENXSvfg68bSq3ZoirkN6f6R146yON3x4AAiRAyQRCcrhMmBv3VjMtqxfr28Cmn-XjD5M5B1M9HgBjrt2tAUoMx79Vr19Ldf5B3_s5E30fUWoYavm5C6hbZMdRvtjto1-DuoKLzGc0PhDJdlWPQJCc1lW1VbhbMqlLpem3DxFcJlqQCjw-PChann5mwm76LjwdvPxTBqt2KINPgPRzqJtVZ5TnUuM7vTEIdzCbkty9hCOp1QKktDOaEpVSQzJEuZIrGMCZ5KrJJ7aLtaVuYBCpWaZjgrywSQBiUaK51yQ6a0VExzHpsAvez6ROhWp9xul7EQjcIyEeAU4ZwSoGfedNWIc1xl9MJ1rLeQ53NbzZYxMRm_E_xoNByQyUTEAdrvel60iXwhCE6YBbEpD9BTfxlS0K6ryMos6wthiRwpt3ynv9lwSwNOErC53wSTfyEYNe0eYXmAso0w8wZWAnzzSjX74qTAKeBtyhLwmYuiP3tBHL4p3MHDfzd9gnYP-wPx6f344x66BkiRNTVy-2h7fV6bR4DG1uqxy7rvYdksiA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+CD22+expression+in+acute+lymphoblastic+leukemia&rft.jtitle=Pediatric+blood+%26+cancer&rft.au=Shah%2C+Nirali+N.&rft.au=Stevenson%2C+Maryalice+Stetler&rft.au=Yuan%2C+Constance+M.&rft.au=Richards%2C+Kelly&rft.date=2015-06-01&rft.issn=1545-5009&rft.eissn=1545-5017&rft.volume=62&rft.issue=6&rft.spage=964&rft.epage=969&rft_id=info:doi/10.1002%2Fpbc.25410&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pbc_25410 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5009&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5009&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5009&client=summon |