Characterization of CD22 expression in acute lymphoblastic leukemia

Background CD22 is a B‐lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). Procedure Properties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with...

Full description

Saved in:
Bibliographic Details
Published inPediatric blood & cancer Vol. 62; no. 6; pp. 964 - 969
Main Authors Shah, Nirali N., Stevenson, Maryalice Stetler, Yuan, Constance M., Richards, Kelly, Delbrook, Cindy, Kreitman, Robert J., Pastan, Ira, Wayne, Alan S.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.06.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background CD22 is a B‐lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). Procedure Properties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B‐precursor (pre‐B) ALL. Results CD22 expression was demonstrated in all subjects (n = 163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349–19,653, n = 160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349–3,624, n = 20 versus 3,853 sites/cell, range 451–19,653, n = 140; P = <0.0001) and 6 of 21 cases had sub‐populations of blasts lacking CD22 expression (22%–82% CD22 +). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti‐CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti‐CD22 directed agents. Conclusions These characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy‐refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22‐negative blast population. Pediatr Blood Cancer Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
AbstractList CD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). Properties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B-precursor (pre-B) ALL. CD22 expression was demonstrated in all subjects (n = 163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349-19,653, n = 160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349-3,624, n = 20 versus 3,853 sites/cell, range 451-19,653, n = 140; P = <0.0001) and 6 of 21 cases had sub-populations of blasts lacking CD22 expression (22%-82% CD22 +). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti-CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti-CD22 directed agents. These characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy-refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22-negative blast population.
Background CD22 is a B‐lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). Procedure Properties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B‐precursor (pre‐B) ALL. Results CD22 expression was demonstrated in all subjects (n = 163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349–19,653, n = 160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349–3,624, n = 20 versus 3,853 sites/cell, range 451–19,653, n = 140; P = <0.0001) and 6 of 21 cases had sub‐populations of blasts lacking CD22 expression (22%–82% CD22 +). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti‐CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti‐CD22 directed agents. Conclusions These characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy‐refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22‐negative blast population. Pediatr Blood Cancer Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
CD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL).BACKGROUNDCD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL).Properties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B-precursor (pre-B) ALL.PROCEDUREProperties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B-precursor (pre-B) ALL.CD22 expression was demonstrated in all subjects (n = 163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349-19,653, n = 160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349-3,624, n = 20 versus 3,853 sites/cell, range 451-19,653, n = 140; P = <0.0001) and 6 of 21 cases had sub-populations of blasts lacking CD22 expression (22%-82% CD22 +). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti-CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti-CD22 directed agents.RESULTSCD22 expression was demonstrated in all subjects (n = 163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349-19,653, n = 160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349-3,624, n = 20 versus 3,853 sites/cell, range 451-19,653, n = 140; P = <0.0001) and 6 of 21 cases had sub-populations of blasts lacking CD22 expression (22%-82% CD22 +). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti-CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti-CD22 directed agents.These characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy-refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22-negative blast population.CONCLUSIONSThese characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy-refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22-negative blast population.
BackgroundCD22 is a B‐lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL).ProcedureProperties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B‐precursor (pre‐B) ALL.ResultsCD22 expression was demonstrated in all subjects (n = 163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349–19,653, n = 160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349–3,624, n = 20 versus 3,853 sites/cell, range 451–19,653, n = 140; P = <0.0001) and 6 of 21 cases had sub‐populations of blasts lacking CD22 expression (22%–82% CD22 +). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti‐CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti‐CD22 directed agents.ConclusionsThese characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy‐refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22‐negative blast population. Pediatr Blood Cancer Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Background CD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). Procedure Properties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B-precursor (pre-B) ALL. Results CD22 expression was demonstrated in all subjects (n=163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349-19,653, n=160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349-3,624, n=20 versus 3,853 sites/cell, range 451-19,653, n=140; P=<0.0001) and 6 of 21 cases had sub-populations of blasts lacking CD22 expression (22%-82% CD22+). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti-CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti-CD22 directed agents. Conclusions These characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy-refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22-negative blast population. Pediatr Blood Cancer Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Author Delbrook, Cindy
Wayne, Alan S.
Shah, Nirali N.
Yuan, Constance M.
Pastan, Ira
Stevenson, Maryalice Stetler
Richards, Kelly
Kreitman, Robert J.
AuthorAffiliation 4 Children's Center for Cancer and Blood Diseases, Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
1 Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD
2 Laboratory of Pathology, CCR, NCI, NIH, Bethesda, MD
3 Laboratory of Molecular Biology, CCR, NCI, NIH, Bethesda, MD
AuthorAffiliation_xml – name: 1 Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD
– name: 3 Laboratory of Molecular Biology, CCR, NCI, NIH, Bethesda, MD
– name: 2 Laboratory of Pathology, CCR, NCI, NIH, Bethesda, MD
– name: 4 Children's Center for Cancer and Blood Diseases, Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
Author_xml – sequence: 1
  givenname: Nirali N.
  surname: Shah
  fullname: Shah, Nirali N.
  email: Correspondence to: Nirali N. Shah, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Building 10, Room 1W-3750, 9000 Rockville Pike, Bethesda, MD 20892-1104., Nirali.Shah@nih.gov
  organization: Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Maryland, Bethesda
– sequence: 2
  givenname: Maryalice Stetler
  surname: Stevenson
  fullname: Stevenson, Maryalice Stetler
  organization: Laboratory of Pathology, CCR, NCI, NIH, Maryland, Bethesda
– sequence: 3
  givenname: Constance M.
  surname: Yuan
  fullname: Yuan, Constance M.
  organization: Laboratory of Pathology, CCR, NCI, NIH, Maryland, Bethesda
– sequence: 4
  givenname: Kelly
  surname: Richards
  fullname: Richards, Kelly
  organization: Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Maryland, Bethesda
– sequence: 5
  givenname: Cindy
  surname: Delbrook
  fullname: Delbrook, Cindy
  organization: Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Maryland, Bethesda
– sequence: 6
  givenname: Robert J.
  surname: Kreitman
  fullname: Kreitman, Robert J.
  organization: Laboratory of Molecular Biology, CCR, NCI, NIH, Maryland, Bethesda
– sequence: 7
  givenname: Ira
  surname: Pastan
  fullname: Pastan, Ira
  organization: Laboratory of Molecular Biology, CCR, NCI, NIH, Maryland, Bethesda
– sequence: 8
  givenname: Alan S.
  surname: Wayne
  fullname: Wayne, Alan S.
  organization: Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25728039$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URB-w4A-gSGzKIu31O9kg0UBbpFIQAs3SclyHcZvEwU6gw6_H03mIViCxsn39naNjn3200_veIvQcwxEGIMdDbY4IZxgeoT3MGc85YLmz3UO5i_ZjvE6oAF48QbuES1IALfdQVc110Ga0wf3So_N95pusektIZm-HYGNcjlyfaTONNmsX3TD3davj6EzW2unGdk4_RY8b3Ub7bL0eoK-n775U5_nFx7P31ZuL3KQckBuKjanLkplSS84pFOmsZUl1gxkW1FDGdGNZQZhgNZGWSMFrgjUmcKWhpgfo9cp3mOrOXhnbj0G3agiu02GhvHbq_k3v5uqb_6EYg5SAJoPDtUHw3ycbR9W5aGzb6t76KSosCmCCUAr_gUomCiFhib58gF77KfTpJxQBygWHQhSJevFn-G3qTRUJOF4BJvgYg22UceNdJektrlUY1LJslcpWd2UnxasHio3p39i1-0_X2sW_QfXppNoo8pXCxdHebhU63CghqeRqdnmmis8fzk_JbKYw_Q1S5MXZ
CitedBy_id crossref_primary_10_3324_haematol_2023_283815
crossref_primary_10_1158_1078_0432_CCR_20_3863
crossref_primary_10_1038_nm_4441
crossref_primary_10_1038_s41392_022_00947_7
crossref_primary_10_3390_cancers13215418
crossref_primary_10_1080_10428194_2021_1980214
crossref_primary_10_1182_blood_2017_02_749101
crossref_primary_10_1097_MPH_0000000000001440
crossref_primary_10_1182_bloodadvances_2016001925
crossref_primary_10_1038_bcj_2017_53
crossref_primary_10_1126_scitranslmed_aaw9414
crossref_primary_10_21682_2311_1267_2022_9_2_85_92
crossref_primary_10_1089_cbr_2020_3568
crossref_primary_10_24287_1726_1708_2024_23_2_60_70
crossref_primary_10_1002_pbc_26604
crossref_primary_10_1038_s41375_024_02220_y
crossref_primary_10_3389_fimmu_2023_1237738
crossref_primary_10_1002_cyto_b_22113
crossref_primary_10_1038_s41375_018_0265_z
crossref_primary_10_1016_j_imlet_2016_02_014
crossref_primary_10_1186_s40164_024_00490_x
crossref_primary_10_1016_j_hemonc_2021_07_002
crossref_primary_10_1007_s11899_018_0457_7
crossref_primary_10_1007_s40272_024_00634_w
crossref_primary_10_1021_acs_bioconjchem_3c00374
crossref_primary_10_24287_1726_1708_2023_22_2_175_184
crossref_primary_10_1002_pbc_28112
crossref_primary_10_1007_s00262_023_03444_0
crossref_primary_10_1007_s12185_022_03502_w
crossref_primary_10_3390_hematolrep16040056
crossref_primary_10_1016_j_exphem_2018_07_002
crossref_primary_10_24287_1726_1708_2023_22_1_46_52
crossref_primary_10_1097_PPO_0000000000000375
crossref_primary_10_3390_cancers14215445
crossref_primary_10_1016_j_bbagrm_2020_194564
crossref_primary_10_1016_j_hoc_2023_06_003
crossref_primary_10_1038_s41598_021_00227_4
crossref_primary_10_1002_cyto_b_21482
crossref_primary_10_1177_1758835920962997
crossref_primary_10_3390_cancers16213585
crossref_primary_10_1042_BSR20200514
crossref_primary_10_1200_JCO_21_01693
crossref_primary_10_1002_ajh_26853
crossref_primary_10_1002_bab_1654
crossref_primary_10_1007_s11899_018_0479_1
crossref_primary_10_1177_2040620716652289
crossref_primary_10_1038_s41375_022_01576_3
crossref_primary_10_1158_2159_8290_CD_20_0242
crossref_primary_10_1089_gtmb_2016_0006
crossref_primary_10_3389_fimmu_2023_1165870
crossref_primary_10_1002_pbc_28976
crossref_primary_10_1007_s11899_017_0394_x
crossref_primary_10_3390_biomedicines11102693
crossref_primary_10_1039_D0NR02133D
crossref_primary_10_1016_j_hoc_2022_03_005
crossref_primary_10_1126_scisignal_aaf3949
crossref_primary_10_1586_14737140_2016_1131614
crossref_primary_10_1016_j_omtn_2023_07_028
crossref_primary_10_3390_cancers17050779
crossref_primary_10_1182_blood_2024024517
crossref_primary_10_1007_s40272_020_00413_3
crossref_primary_10_1182_asheducation_2018_1_25
crossref_primary_10_1002_ajh_25235
crossref_primary_10_1186_s40169_020_0268_z
crossref_primary_10_1158_1535_7163_MCT_20_1089
crossref_primary_10_1093_ajcp_aqaa242
crossref_primary_10_1007_s44228_022_00006_6
crossref_primary_10_1146_annurev_cancerbio_030419_033436
crossref_primary_10_1080_10428194_2017_1375107
crossref_primary_10_1038_s41591_021_01436_0
crossref_primary_10_3390_ijms23105686
crossref_primary_10_1158_1078_0432_CCR_18_3784
crossref_primary_10_55095_CSPediatrie2022_042
crossref_primary_10_1002_cpcy_44
crossref_primary_10_1007_s11864_024_01213_4
crossref_primary_10_1080_10428194_2017_1354372
crossref_primary_10_1080_10428194_2022_2116936
crossref_primary_10_1158_1535_7163_MCT_15_0828
crossref_primary_10_3390_cells8111341
crossref_primary_10_1186_s40164_023_00454_7
crossref_primary_10_1002_jha2_814
crossref_primary_10_1111_imr_12774
crossref_primary_10_1182_blood_2024026085
crossref_primary_10_1016_j_leukres_2016_07_009
crossref_primary_10_1007_s40262_024_01386_z
crossref_primary_10_1007_s11626_024_00895_2
crossref_primary_10_1016_j_heliyon_2023_e17960
crossref_primary_10_3389_fimmu_2022_921894
crossref_primary_10_1016_j_yao_2021_02_014
crossref_primary_10_1056_NEJMoa1509277
crossref_primary_10_1002_cyto_b_22088
crossref_primary_10_1038_s41375_019_0488_7
crossref_primary_10_1158_1078_0432_CCR_20_2399
crossref_primary_10_1111_bcp_13832
crossref_primary_10_3390_jcm10163556
crossref_primary_10_1007_s11864_016_0406_4
crossref_primary_10_1073_pnas_1714512115
crossref_primary_10_1007_s00277_022_05040_1
crossref_primary_10_1016_j_retram_2019_12_001
crossref_primary_10_3389_fimmu_2022_825364
crossref_primary_10_1016_j_cll_2017_07_009
crossref_primary_10_1016_j_clml_2018_05_006
crossref_primary_10_1182_hematology_2019000018
crossref_primary_10_18632_oncotarget_16141
crossref_primary_10_1182_bloodadvances_2018020198
crossref_primary_10_2147_BTT_S290294
crossref_primary_10_1002_hon_3029
crossref_primary_10_1080_16078454_2022_2074704
crossref_primary_10_1038_s41408_017_0023_x
crossref_primary_10_1016_j_critrevonc_2020_103096
crossref_primary_10_1111_bjh_17333
crossref_primary_10_1002_cpt_950
crossref_primary_10_1002_cyto_b_22091
crossref_primary_10_1182_blood_2020007848
crossref_primary_10_1038_s41571_019_0184_6
crossref_primary_10_1182_blood_2018_04_785980
crossref_primary_10_1126_sciadv_abm5667
crossref_primary_10_1158_1078_0432_CCR_15_2500
crossref_primary_10_1186_s12951_020_00752_w
crossref_primary_10_24287_1726_1708_2022_21_3_100_114
crossref_primary_10_1126_scitranslmed_abm1262
Cites_doi 10.3109/10428194.2010.529206
10.1158/1078-0432.CCR-09-2980
10.1002/cyto.b.20363
10.1200/JCO.2011.38.1756
10.1158/0008-5472.CAN-09-2405
10.1200/JCO.2009.22.2950
10.4049/jimmunol.155.7.3368
10.1016/j.blre.2011.08.001
10.1007/s12185-011-0900-1
10.1016/S0021-9258(17)30557-4
10.1038/sj.leu.2404578
10.1146/annurev.immunol.15.1.481
10.1056/NEJMsa060185
10.1038/leu.2008.303
10.3109/10428194.2011.559668
10.1158/1078-0432.CCR-11-1839
10.1016/S0065-2776(05)88001-0
10.1182/blood-2008-01-131987
10.1002/cyto.b.20567
10.1002/cncr.28136
10.1046/j.1365-2141.2002.03843.x
10.1158/1078-0432.CCR-08-0324
10.1200/JCO.2007.15.3528
10.1182/blood-2012-06-438002
10.1056/NEJMoa1215134
10.4049/jimmunol.150.11.4715
10.1002/(SICI)1097-0320(19981001)33:2<106::AID-CYTO4>3.0.CO;2-H
ContentType Journal Article
Copyright Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
2015 Wiley Periodicals, Inc.
Copyright_xml – notice: Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
– notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
7TO
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
DOI 10.1002/pbc.25410
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Genetics Abstracts
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1545-5017
EndPage 969
ExternalDocumentID PMC4405453
25728039
10_1002_pbc_25410
PBC25410
ark_67375_WNG_8RMHF2WW_1
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Intramural
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research
– fundername: Warren Grant Magnuson Clinical Center
– fundername: Intramural NIH HHS
  grantid: Z99 CA999999
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UDS
V2E
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
XV2
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7T5
7TK
7TO
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5450-c31ccb994c9a7553081cca793af14163c344afe482464b27e2765b21a120da0b3
IEDL.DBID DR2
ISSN 1545-5009
1545-5017
IngestDate Thu Aug 21 13:52:18 EDT 2025
Fri Jul 11 10:24:30 EDT 2025
Fri Jul 11 10:32:39 EDT 2025
Wed Aug 13 09:36:14 EDT 2025
Mon Jul 21 05:57:00 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Tue Jul 01 03:53:06 EDT 2025
Wed Jan 22 16:43:20 EST 2025
Wed Oct 30 09:48:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords monoclonal antibody
acute lymphoblastic leukemia
relapse
CD22
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5450-c31ccb994c9a7553081cca793af14163c344afe482464b27e2765b21a120da0b3
Notes Warren Grant Magnuson Clinical Center
ArticleID:PBC25410
istex:847423B95BAD33DD99067D614AFF1BC4EFD4E082
Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research
ark:/67375/WNG-8RMHF2WW-1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25728039
PQID 2035650868
PQPubID 1036357
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4405453
proquest_miscellaneous_1680462330
proquest_miscellaneous_1674686700
proquest_journals_2035650868
pubmed_primary_25728039
crossref_citationtrail_10_1002_pbc_25410
crossref_primary_10_1002_pbc_25410
wiley_primary_10_1002_pbc_25410_PBC25410
istex_primary_ark_67375_WNG_8RMHF2WW_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2015
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: June 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Glenview
PublicationTitle Pediatric blood & cancer
PublicationTitleAlternate Pediatr Blood Cancer
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Wayne AS, Kreitman RJ, Findley HW, Lew G, Delbrook C, Steinberg SM, Stetler-Stevenson M, Fitzgerald DJ, Pastan I. Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-positive hematologic malignancies of childhood: Preclinical studies and phase I clinical trial. Clin Cancer Res 2010; 16:1894-1903.
Gloeckler Ries L, Mortality CC, In: Reis LAG, Smith SM, Gurney JG, et al (eds). Cancer Incidence and Survival among Children and Adolescents: SEER Program 1975-1995. NIH Pub. No. 99-4649 Bethesda. United States: National Cancer Institute 1999. pp 165-170.
Matsushita K, Margulies I, Onda M, Nagata S, Stetler-Stevenson M, Kreitman RJ. Soluble CD22 as a tumor marker for hairy cell leukemia. Blood 2008; 112:2272-2277.
Kennedy GA, Tey SK, Cobcroft R, Marlton P, Cull G, Grimmett K, Thomson D, Gill D. Incidence and nature of CD20-negative relapses following rituximab therapy in aggressive B-cell non-Hodgkin's lymphoma: A retrospective review. Br J Haematol 2002; 119:412-416.
Zhang Y, Pastan I. High shed antigen levels within tumors: An additional barrier to immunoconjugate therapy. Clin Cancer Res 2008; 14:7981-7986.
Ogata M, Chaudhary VK, Pastan I, FitzGerald DJ. Processing of Pseudomonas exotoxin by a cellular protease results in the generation of a 37,000-Da toxin fragment that is translocated to the cytosol. The Journal of biological chemistry 1990; 265:20678-20685.
Raponi S, De Propris MS, Intoppa S, Milani ML, Vitale A, Elia L, Perbellini O, Pizzolo G, Foa R, Guarini A. Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: Analysis of 552 cases. Leuk Lymphoma 2011; 52:1098-1107.
Piccaluga PP, Arpinati M, Candoni A, Laterza C, Paolini S, Gazzola A, Sabattini E, Visani G, Pileri SA. Surface antigens analysis reveals significant expression of candidate targets for immunotherapy in adult acute lymphoid leukemia. Leuk Lymphoma 2011; 52:325-327.
Singh R, Zhang Y, Pastan I, Kreitman RJ. Synergistic antitumor activity of anti-CD25 recombinant immunotoxin LMB-2 with chemotherapy. Clin Cancer Res 2012; 18:152-160.
Jasper GA, Arun I, Venzon D, Kreitman RJ, Wayne AS, Yuan CM, Marti GE, Stetler-Stevenson M. Variables affecting the quantitation of CD22 in neoplastic B cells. Cytometry B Clin Cytom 2011; 80:83-90.
Kreitman RJ, Pastan I. Accumulation of a recombinant immunotoxin in a tumor in vivo: Fewer than 1000 molecules per cell are sufficient for complete responses. Cancer research 1998; 58:968-975.
Schwartz A, Marti GE, Poon R, Gratama JW, Fernandez-Repollet E. Standardizing flow cytometry: A classification system of fluorescence standards used for flow cytometry. Cytometry 1998; 33:106-114.
Law CL, Aruffo A, Chandran KA, Doty RT, Clark EA. Ig domains 1 and 2 of murine CD22 constitute the ligand-binding domain and bind multiple sialylated ligands expressed on B and T cells. J Immunol 1995; 155:3368-3376.
Kantarjian H, Thomas D, Jorgensen J, Kebriaei P, Jabbour E, Rytting M, York S, Ravandi F, Garris R, Kwari M, Faderl S, Cortes J, Champlin R, O'Brien S. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer 2013; 119:2728-2736.
Chevallier P, Robillard N, Houille G, Ayari S, Guillaume T, Delaunay J, Harousseau JL, Avet-Loiseau H, Mohty M, Garand R. Simultaneous study of five candidate target antigens (CD20, CD22, CD33, CD52, HER2) for antibody-based immunotherapy in B-ALL: A monocentric study of 44 cases. Leukemia 2009; 23:806-807.
Jansen MW, Corral L, van der Velden VH, Panzer-Grumayer R, Schrappe M, Schrauder A, Marschalek R, Meyer C, den Boer ML, Hop WJ, Valsecchi MG, Basso G, Biondi A, Pieters R. Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia 2007; 21:633-641.
Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. The New England journal of medicine 2013; 368:1509-1518.
Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM, Pastan IH, Dimitrov DS, Morgan RA, Fitzgerald DJ, Barrett DM, Wayne AS, Mackall CL, Orentas RJ. Anti -CD22-chimeric antigen receptors targeting B cell precursor acute lymphoblastic leukemia. Blood. 2013; 121:1165-1174.
Raetz EA, Cairo MS, Borowitz MJ, Blaney SM, Krailo MD, Leil TA, Reid JM, Goldenberg DM, Wegener WA, Carroll WL, Adamson PC. Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: A Children's Oncology Group Pilot Study. J Clin Oncol 2008; 26:3756-3762.
Hoelzer D, Gokbuget N. Chemoimmunotherapy in acute lymphoblastic leukemia. Blood Rev 2012; 26:25-32.
Wood BL, Arroz M, Barnett D, DiGiuseppe J, Greig B, Kussick SJ, Oldaker T, Shenkin M, Stone E, Wallace P. 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: Optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytometry B Clin Cytom 2007; 72:S14-S22.
Kreitman RJ, Tallman MS, Robak T, Coutre S, Wilson WH, Stetler-Stevenson M, Fitzgerald DJ, Lechleider R, Pastan I. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol 2012; 30:1822-1828.
Tedder TF, Poe JC, Haas KM. CD22: A multifunctional receptor that regulates B lymphocyte survival and signal transduction. Advances in immunology 2005; 88:1-50.
Tedder TF, Tuscano J, Sato S, Kehrl JH. CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annual review of immunology 1997; 15:481-504.
Iwamoto S, Deguchi T, Ohta H, Kiyokawa N, Tsurusawa M, Yamada T, Takase K, Fujimoto J, Hanada R, Hori H, Horibe K, Komada Y. Flow cytometric analysis of de novo acute lymphoblastic leukemia in childhood: Report from the Japanese Pediatric Leukemia/Lymphoma Study Group. Int J Hematol 2011; 94:185-192.
Zhang Y, Hansen JK, Xiang L, Kawa S, Onda M, Ho M, Hassan R, Pastan I. A flow cytometry method to quantitate internalized immunotoxins shows that taxol synergistically increases cellular immunotoxins uptake. Cancer research 2010; 70:1082-1089.
Stetler-Stevenson M, Ahmad E, Barnett D, Braylan RC, DiGiuseppe JA, Marti G, Menozzi D, Oldaker TA, Orfao A, Rabellino E, Stone EC. C W Clinical and Laboratory Standards Institute. Clinical Flow Cytometric Analysis of Neoplastic Hematolymphoid Cells; Approved Guideline- Second Edition. CLSI document. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute 2005. pp A2-H43.
Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, Friedman DL, Marina N, Hobbie W, Kadan-Lottick NS, Schwartz CL, Leisenring W, Robison LL. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 2006; 355:1572-1582.
Clark EA. CD22, a B cell-specific receptor, mediates adhesion and signal transduction. J Immunol 1993; 150:4715-4718.
Ko RH, Ji L, Barnette P, Bostrom B, Hutchinson R, Raetz E, Seibel NL, Twist CJ, Eckroth E, Sposto R, Gaynon PS, Loh ML. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: A Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol 2010; 28:648-654.
2009; 23
2010; 16
2011; 80
2013; 368
2008; 14
2011; 52
2012; 18
2005
2007; 72
1995; 155
2013; 121
2002; 119
1990; 265
2005; 88
2012; 30
1999
2006; 355
2013; 119
2010; 28
1997; 15
2011; 94
1993; 150
2008; 26
2012; 26
2010; 70
2008; 112
2007; 21
1998; 33
1998; 58
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_15_1
Law CL (e_1_2_7_5_1) 1995; 155
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
Kreitman RJ (e_1_2_7_24_1) 1998; 58
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Ogata M (e_1_2_7_25_1) 1990; 265
Stetler‐Stevenson M (e_1_2_7_22_1) 2005
Gloeckler Ries L (e_1_2_7_2_1) 1999
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – reference: Singh R, Zhang Y, Pastan I, Kreitman RJ. Synergistic antitumor activity of anti-CD25 recombinant immunotoxin LMB-2 with chemotherapy. Clin Cancer Res 2012; 18:152-160.
– reference: Hoelzer D, Gokbuget N. Chemoimmunotherapy in acute lymphoblastic leukemia. Blood Rev 2012; 26:25-32.
– reference: Kennedy GA, Tey SK, Cobcroft R, Marlton P, Cull G, Grimmett K, Thomson D, Gill D. Incidence and nature of CD20-negative relapses following rituximab therapy in aggressive B-cell non-Hodgkin's lymphoma: A retrospective review. Br J Haematol 2002; 119:412-416.
– reference: Ko RH, Ji L, Barnette P, Bostrom B, Hutchinson R, Raetz E, Seibel NL, Twist CJ, Eckroth E, Sposto R, Gaynon PS, Loh ML. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: A Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol 2010; 28:648-654.
– reference: Kreitman RJ, Tallman MS, Robak T, Coutre S, Wilson WH, Stetler-Stevenson M, Fitzgerald DJ, Lechleider R, Pastan I. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol 2012; 30:1822-1828.
– reference: Stetler-Stevenson M, Ahmad E, Barnett D, Braylan RC, DiGiuseppe JA, Marti G, Menozzi D, Oldaker TA, Orfao A, Rabellino E, Stone EC. C W Clinical and Laboratory Standards Institute. Clinical Flow Cytometric Analysis of Neoplastic Hematolymphoid Cells; Approved Guideline- Second Edition. CLSI document. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute 2005. pp A2-H43.
– reference: Gloeckler Ries L, Mortality CC, In: Reis LAG, Smith SM, Gurney JG, et al (eds). Cancer Incidence and Survival among Children and Adolescents: SEER Program 1975-1995. NIH Pub. No. 99-4649 Bethesda. United States: National Cancer Institute 1999. pp 165-170.
– reference: Raetz EA, Cairo MS, Borowitz MJ, Blaney SM, Krailo MD, Leil TA, Reid JM, Goldenberg DM, Wegener WA, Carroll WL, Adamson PC. Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: A Children's Oncology Group Pilot Study. J Clin Oncol 2008; 26:3756-3762.
– reference: Jansen MW, Corral L, van der Velden VH, Panzer-Grumayer R, Schrappe M, Schrauder A, Marschalek R, Meyer C, den Boer ML, Hop WJ, Valsecchi MG, Basso G, Biondi A, Pieters R. Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia 2007; 21:633-641.
– reference: Ogata M, Chaudhary VK, Pastan I, FitzGerald DJ. Processing of Pseudomonas exotoxin by a cellular protease results in the generation of a 37,000-Da toxin fragment that is translocated to the cytosol. The Journal of biological chemistry 1990; 265:20678-20685.
– reference: Wood BL, Arroz M, Barnett D, DiGiuseppe J, Greig B, Kussick SJ, Oldaker T, Shenkin M, Stone E, Wallace P. 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: Optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytometry B Clin Cytom 2007; 72:S14-S22.
– reference: Schwartz A, Marti GE, Poon R, Gratama JW, Fernandez-Repollet E. Standardizing flow cytometry: A classification system of fluorescence standards used for flow cytometry. Cytometry 1998; 33:106-114.
– reference: Piccaluga PP, Arpinati M, Candoni A, Laterza C, Paolini S, Gazzola A, Sabattini E, Visani G, Pileri SA. Surface antigens analysis reveals significant expression of candidate targets for immunotherapy in adult acute lymphoid leukemia. Leuk Lymphoma 2011; 52:325-327.
– reference: Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, Friedman DL, Marina N, Hobbie W, Kadan-Lottick NS, Schwartz CL, Leisenring W, Robison LL. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 2006; 355:1572-1582.
– reference: Clark EA. CD22, a B cell-specific receptor, mediates adhesion and signal transduction. J Immunol 1993; 150:4715-4718.
– reference: Jasper GA, Arun I, Venzon D, Kreitman RJ, Wayne AS, Yuan CM, Marti GE, Stetler-Stevenson M. Variables affecting the quantitation of CD22 in neoplastic B cells. Cytometry B Clin Cytom 2011; 80:83-90.
– reference: Law CL, Aruffo A, Chandran KA, Doty RT, Clark EA. Ig domains 1 and 2 of murine CD22 constitute the ligand-binding domain and bind multiple sialylated ligands expressed on B and T cells. J Immunol 1995; 155:3368-3376.
– reference: Matsushita K, Margulies I, Onda M, Nagata S, Stetler-Stevenson M, Kreitman RJ. Soluble CD22 as a tumor marker for hairy cell leukemia. Blood 2008; 112:2272-2277.
– reference: Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM, Pastan IH, Dimitrov DS, Morgan RA, Fitzgerald DJ, Barrett DM, Wayne AS, Mackall CL, Orentas RJ. Anti -CD22-chimeric antigen receptors targeting B cell precursor acute lymphoblastic leukemia. Blood. 2013; 121:1165-1174.
– reference: Tedder TF, Tuscano J, Sato S, Kehrl JH. CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annual review of immunology 1997; 15:481-504.
– reference: Zhang Y, Hansen JK, Xiang L, Kawa S, Onda M, Ho M, Hassan R, Pastan I. A flow cytometry method to quantitate internalized immunotoxins shows that taxol synergistically increases cellular immunotoxins uptake. Cancer research 2010; 70:1082-1089.
– reference: Kantarjian H, Thomas D, Jorgensen J, Kebriaei P, Jabbour E, Rytting M, York S, Ravandi F, Garris R, Kwari M, Faderl S, Cortes J, Champlin R, O'Brien S. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer 2013; 119:2728-2736.
– reference: Chevallier P, Robillard N, Houille G, Ayari S, Guillaume T, Delaunay J, Harousseau JL, Avet-Loiseau H, Mohty M, Garand R. Simultaneous study of five candidate target antigens (CD20, CD22, CD33, CD52, HER2) for antibody-based immunotherapy in B-ALL: A monocentric study of 44 cases. Leukemia 2009; 23:806-807.
– reference: Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. The New England journal of medicine 2013; 368:1509-1518.
– reference: Wayne AS, Kreitman RJ, Findley HW, Lew G, Delbrook C, Steinberg SM, Stetler-Stevenson M, Fitzgerald DJ, Pastan I. Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-positive hematologic malignancies of childhood: Preclinical studies and phase I clinical trial. Clin Cancer Res 2010; 16:1894-1903.
– reference: Tedder TF, Poe JC, Haas KM. CD22: A multifunctional receptor that regulates B lymphocyte survival and signal transduction. Advances in immunology 2005; 88:1-50.
– reference: Raponi S, De Propris MS, Intoppa S, Milani ML, Vitale A, Elia L, Perbellini O, Pizzolo G, Foa R, Guarini A. Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: Analysis of 552 cases. Leuk Lymphoma 2011; 52:1098-1107.
– reference: Iwamoto S, Deguchi T, Ohta H, Kiyokawa N, Tsurusawa M, Yamada T, Takase K, Fujimoto J, Hanada R, Hori H, Horibe K, Komada Y. Flow cytometric analysis of de novo acute lymphoblastic leukemia in childhood: Report from the Japanese Pediatric Leukemia/Lymphoma Study Group. Int J Hematol 2011; 94:185-192.
– reference: Zhang Y, Pastan I. High shed antigen levels within tumors: An additional barrier to immunoconjugate therapy. Clin Cancer Res 2008; 14:7981-7986.
– reference: Kreitman RJ, Pastan I. Accumulation of a recombinant immunotoxin in a tumor in vivo: Fewer than 1000 molecules per cell are sufficient for complete responses. Cancer research 1998; 58:968-975.
– start-page: A2
  year: 2005
  end-page: H43
– volume: 58
  start-page: 968
  year: 1998
  end-page: 975
  article-title: Accumulation of a recombinant immunotoxin in a tumor in vivo: Fewer than 1000 molecules per cell are sufficient for complete responses
  publication-title: Cancer research
– volume: 72
  start-page: S14
  year: 2007
  end-page: S22
  article-title: 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: Optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia
  publication-title: Cytometry B Clin Cytom
– volume: 14
  start-page: 7981
  year: 2008
  end-page: 7986
  article-title: High shed antigen levels within tumors: An additional barrier to immunoconjugate therapy
  publication-title: Clin Cancer Res
– volume: 88
  start-page: 1
  year: 2005
  end-page: 50
  article-title: CD22: A multifunctional receptor that regulates B lymphocyte survival and signal transduction
  publication-title: Advances in immunology
– volume: 121
  start-page: 1165
  year: 2013
  end-page: 1174
  article-title: Anti ‐CD22‐chimeric antigen receptors targeting B cell precursor acute lymphoblastic leukemia
  publication-title: Blood.
– volume: 52
  start-page: 325
  year: 2011
  end-page: 327
  article-title: Surface antigens analysis reveals significant expression of candidate targets for immunotherapy in adult acute lymphoid leukemia
  publication-title: Leuk Lymphoma
– start-page: 165
  year: 1999
  end-page: 170
– volume: 28
  start-page: 648
  year: 2010
  end-page: 654
  article-title: Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: A Therapeutic Advances in Childhood Leukemia Consortium study
  publication-title: J Clin Oncol
– volume: 21
  start-page: 633
  year: 2007
  end-page: 641
  article-title: Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement
  publication-title: Leukemia
– volume: 80
  start-page: 83
  year: 2011
  end-page: 90
  article-title: Variables affecting the quantitation of CD22 in neoplastic B cells
  publication-title: Cytometry B Clin Cytom
– volume: 368
  start-page: 1509
  year: 2013
  end-page: 1518
  article-title: Chimeric antigen receptor‐modified T cells for acute lymphoid leukemia
  publication-title: The New England journal of medicine
– volume: 112
  start-page: 2272
  year: 2008
  end-page: 2277
  article-title: Soluble CD22 as a tumor marker for hairy cell leukemia
  publication-title: Blood
– volume: 119
  start-page: 2728
  year: 2013
  end-page: 2736
  article-title: Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia
  publication-title: Cancer
– volume: 94
  start-page: 185
  year: 2011
  end-page: 192
  article-title: Flow cytometric analysis of de novo acute lymphoblastic leukemia in childhood: Report from the Japanese Pediatric Leukemia/Lymphoma Study Group
  publication-title: Int J Hematol
– volume: 70
  start-page: 1082
  year: 2010
  end-page: 1089
  article-title: A flow cytometry method to quantitate internalized immunotoxins shows that taxol synergistically increases cellular immunotoxins uptake
  publication-title: Cancer research
– volume: 23
  start-page: 806
  year: 2009
  end-page: 807
  article-title: Simultaneous study of five candidate target antigens (CD20, CD22, CD33, CD52, HER2) for antibody‐based immunotherapy in B‐ALL: A monocentric study of 44 cases
  publication-title: Leukemia
– volume: 155
  start-page: 3368
  year: 1995
  end-page: 3376
  article-title: Ig domains 1 and 2 of murine CD22 constitute the ligand‐binding domain and bind multiple sialylated ligands expressed on B and T cells
  publication-title: J Immunol
– volume: 52
  start-page: 1098
  year: 2011
  end-page: 1107
  article-title: Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody‐based immunotherapy in acute lymphoblastic leukemia: Analysis of 552 cases
  publication-title: Leuk Lymphoma
– volume: 150
  start-page: 4715
  year: 1993
  end-page: 4718
  article-title: CD22, a B cell‐specific receptor, mediates adhesion and signal transduction
  publication-title: J Immunol
– volume: 26
  start-page: 25
  year: 2012
  end-page: 32
  article-title: Chemoimmunotherapy in acute lymphoblastic leukemia
  publication-title: Blood Rev
– volume: 30
  start-page: 1822
  year: 2012
  end-page: 1828
  article-title: Phase I trial of anti‐CD22 recombinant immunotoxin moxetumomab pasudotox (CAT‐8015 or HA22) in patients with hairy cell leukemia
  publication-title: J Clin Oncol
– volume: 18
  start-page: 152
  year: 2012
  end-page: 160
  article-title: Synergistic antitumor activity of anti‐CD25 recombinant immunotoxin LMB‐2 with chemotherapy
  publication-title: Clin Cancer Res
– volume: 33
  start-page: 106
  year: 1998
  end-page: 114
  article-title: Standardizing flow cytometry: A classification system of fluorescence standards used for flow cytometry
  publication-title: Cytometry
– volume: 15
  start-page: 481
  year: 1997
  end-page: 504
  article-title: CD22, a B lymphocyte‐specific adhesion molecule that regulates antigen receptor signaling
  publication-title: Annual review of immunology
– volume: 355
  start-page: 1572
  year: 2006
  end-page: 1582
  article-title: Chronic health conditions in adult survivors of childhood cancer
  publication-title: N Engl J Med
– volume: 26
  start-page: 3756
  year: 2008
  end-page: 3762
  article-title: Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: A Children's Oncology Group Pilot Study
  publication-title: J Clin Oncol
– volume: 265
  start-page: 20678
  year: 1990
  end-page: 20685
  article-title: Processing of Pseudomonas exotoxin by a cellular protease results in the generation of a 37,000‐Da toxin fragment that is translocated to the cytosol
  publication-title: The Journal of biological chemistry
– volume: 119
  start-page: 412
  year: 2002
  end-page: 416
  article-title: Incidence and nature of CD20‐negative relapses following rituximab therapy in aggressive B‐cell non‐Hodgkin's lymphoma: A retrospective review
  publication-title: Br J Haematol
– volume: 16
  start-page: 1894
  year: 2010
  end-page: 1903
  article-title: Anti‐CD22 immunotoxin RFB4(dsFv)‐PE38 (BL22) for CD22‐positive hematologic malignancies of childhood: Preclinical studies and phase I clinical trial
  publication-title: Clin Cancer Res
– ident: e_1_2_7_15_1
  doi: 10.3109/10428194.2010.529206
– ident: e_1_2_7_30_1
  doi: 10.1158/1078-0432.CCR-09-2980
– ident: e_1_2_7_31_1
  doi: 10.1002/cyto.b.20363
– ident: e_1_2_7_11_1
  doi: 10.1200/JCO.2011.38.1756
– ident: e_1_2_7_19_1
  doi: 10.1158/0008-5472.CAN-09-2405
– ident: e_1_2_7_3_1
  doi: 10.1200/JCO.2009.22.2950
– volume: 155
  start-page: 3368
  year: 1995
  ident: e_1_2_7_5_1
  article-title: Ig domains 1 and 2 of murine CD22 constitute the ligand‐binding domain and bind multiple sialylated ligands expressed on B and T cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.155.7.3368
– ident: e_1_2_7_13_1
  doi: 10.1016/j.blre.2011.08.001
– ident: e_1_2_7_17_1
  doi: 10.1007/s12185-011-0900-1
– volume: 265
  start-page: 20678
  year: 1990
  ident: e_1_2_7_25_1
  article-title: Processing of Pseudomonas exotoxin by a cellular protease results in the generation of a 37,000‐Da toxin fragment that is translocated to the cytosol
  publication-title: The Journal of biological chemistry
  doi: 10.1016/S0021-9258(17)30557-4
– ident: e_1_2_7_26_1
  doi: 10.1038/sj.leu.2404578
– ident: e_1_2_7_6_1
  doi: 10.1146/annurev.immunol.15.1.481
– ident: e_1_2_7_4_1
  doi: 10.1056/NEJMsa060185
– ident: e_1_2_7_16_1
  doi: 10.1038/leu.2008.303
– ident: e_1_2_7_14_1
  doi: 10.3109/10428194.2011.559668
– ident: e_1_2_7_18_1
  doi: 10.1158/1078-0432.CCR-11-1839
– ident: e_1_2_7_7_1
  doi: 10.1016/S0065-2776(05)88001-0
– ident: e_1_2_7_23_1
  doi: 10.1182/blood-2008-01-131987
– ident: e_1_2_7_20_1
  doi: 10.1002/cyto.b.20567
– ident: e_1_2_7_10_1
  doi: 10.1002/cncr.28136
– ident: e_1_2_7_27_1
  doi: 10.1046/j.1365-2141.2002.03843.x
– ident: e_1_2_7_29_1
  doi: 10.1158/1078-0432.CCR-08-0324
– ident: e_1_2_7_9_1
  doi: 10.1200/JCO.2007.15.3528
– start-page: A2
  volume-title: C W Clinical and Laboratory Standards Institute. Clinical Flow Cytometric Analysis of Neoplastic Hematolymphoid Cells; Approved Guideline‐ Second Edition. CLSI document
  year: 2005
  ident: e_1_2_7_22_1
– start-page: 165
  volume-title: Reis LAG, Smith SM, Gurney JG, et al (eds). Cancer Incidence and Survival among Children and Adolescents: SEER Program 1975‐1995. NIH Pub. No. 99–4649 Bethesda
  year: 1999
  ident: e_1_2_7_2_1
– ident: e_1_2_7_12_1
  doi: 10.1182/blood-2012-06-438002
– volume: 58
  start-page: 968
  year: 1998
  ident: e_1_2_7_24_1
  article-title: Accumulation of a recombinant immunotoxin in a tumor in vivo: Fewer than 1000 molecules per cell are sufficient for complete responses
  publication-title: Cancer research
– ident: e_1_2_7_28_1
  doi: 10.1056/NEJMoa1215134
– ident: e_1_2_7_8_1
  doi: 10.4049/jimmunol.150.11.4715
– ident: e_1_2_7_21_1
  doi: 10.1002/(SICI)1097-0320(19981001)33:2<106::AID-CYTO4>3.0.CO;2-H
SSID ssj0026058
Score 2.4762611
Snippet Background CD22 is a B‐lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). Procedure...
CD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). Properties of CD22...
BackgroundCD22 is a B‐lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia...
CD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL).BACKGROUNDCD22 is a...
Background CD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). Procedure...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 964
SubjectTerms Acute lymphoblastic leukemia
Adolescent
Adult
Antigens
Blood cancer
Cancer
CD22
CD22 antigen
Chemotherapy
Child
Child, Preschool
Children
Chromosomes, Human, Pair 11
Enzyme-linked immunosorbent assay
Hematology
Histone-Lysine N-Methyltransferase
Humans
Infant
Leukemia
Lymphatic leukemia
Monoclonal antibodies
monoclonal antibody
Myeloid-Lymphoid Leukemia Protein - genetics
Oncology
Pediatrics
Pharmacokinetics
Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy
Precursor Cell Lymphoblastic Leukemia-Lymphoma - immunology
relapse
Sialic Acid Binding Ig-like Lectin 2 - analysis
Sialic Acid Binding Ig-like Lectin 2 - antagonists & inhibitors
Therapeutic applications
Therapeutic targets
Title Characterization of CD22 expression in acute lymphoblastic leukemia
URI https://api.istex.fr/ark:/67375/WNG-8RMHF2WW-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpbc.25410
https://www.ncbi.nlm.nih.gov/pubmed/25728039
https://www.proquest.com/docview/2035650868
https://www.proquest.com/docview/1674686700
https://www.proquest.com/docview/1680462330
https://pubmed.ncbi.nlm.nih.gov/PMC4405453
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamISFeYOPXwjZkEEK8pHMcO3HEEwRKhdQJTUzdA5Jlu46oWtJpbaSxv35nJzEUBkK8Jcolis939pf4vs8IvcgNTXTGeAxgmMSMcR4Lzd1KYUEMpYlNPT16fJyNTtnHM362hV73XJhWHyL8cHOZ4cdrl-BKr45-iIaeazOArxtPr3K1Wg4QnQTpKAfTPQ0OEELMAUj0qkKEHoU7N-aiW86tlzcBzd_rJX_GsX4iGt5DX_omtPUn80Gz1gNz9Yu643-2cQfd7QAqftNG1C7asvV9dHvcLcE_QGUZJJ5bBideVrh8Rym2l11RbY1nNVamWVu8-A7RstQA0eFxeGGbuf02Uw_R6fD953IUdzsxxAb8R2KTJsboomCmULnbaEjAuYLUVlXiEJ1JGVOVZYKyjGmaW5pnXNNEJZRMFdHpI7RdL2u7h7DW05zkVZUC0GDUEG0yYemUVZobIRIboVd9n0jTyZS73TIWshVYphKcIr1TIvQ8mJ632hw3Gb30HRss1MXcFbPlXE6OP0hxMh4N6WQikwgd9D0vuzxeSUpS7jBsJiL0LFyGDHTLKqq2y2YlHY8jE47u9Dcb4VjAaQo2j9tgCi8Eg6bbIqyIUL4RZsHAKYBvXqlnX70SOAO4zXgKPvNR9GcvyE9vS3_w5N9N99EdQIe8rYs7QNvri8YeAgJb66c-1a4Bb6YptQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NmwS8sPGdbUBACPGSLnHsxJF4gUApsFZo2tS9TJbtOqJql05bIw3--p2dDygMhHhLlEsUn-_sn-273wG8SDWJVEJZgGA4DChlLOCK2ZPCLNSERCZ26dHDUTI4op-O2fEavG5zYWp-iG7DzXqGG6-tg9sN6b0frKFnSvdweWPzqzZsRW-3oDroyKMsUHeJcIgRAoZQouUVCsle9-rKbLRhFXt5HdT8PWLyZyTrpqL-Jpy0jagjUGa9aql6-vsv_I7_28otuN1gVP9NbVR3YM2Ud-HGsDmFvwd53rE810mc_qLw83eE-Oayiast_WnpS10tjT__hgazUIjS8XP-3FQzczqV9-Go__4wHwRNMYZAowLDQMeR1irLqM5kamsNcbyX6N2yiCyo0zGlsjCUE5pQRVJD0oQpEsmIhBMZqvgBrJeL0jwCX6lJGqZFESPWoESHSifckAktFNOcR8aDV22nCN0wlduCGXNRcywTgUoRTikePO9Ez2p6juuEXrqe7STk-czGs6VMjEcfBD8YDvpkPBaRB7tt14vGlS8ECWNmYWzCPXjWPUYntCcrsjSL6kLYVI6E24ynv8lwmwgcxyjzsLam7odw3LRVwjIP0hU76wQsCfjqk3L61ZGBU0TclMWoM2dGf9aC-PI2dxfb_y76FG4ODof7Yv_j6PMO3EKwyOowuV1YX55X5jECsqV64vzuCu6sLdA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTZp44X4JGxAQQrykcxw7ccQTpJRyaTVNTN3DJMt2HVG1S6utkQa_nmMnMRQGQrwlykkUH59jf4nP9xmh55kmsUopiwAM44hSxiKumF0pzLEmJDaJo0ePxunwmH44YSdb6FXHhWn0IfwPN5sZbry2Cb6algc_RENXSvfg68bSq3ZoirkN6f6R146yON3x4AAiRAyQRCcrhMmBv3VjMtqxfr28Cmn-XjD5M5B1M9HgBjrt2tAUoMx79Vr19Ldf5B3_s5E30fUWoYavm5C6hbZMdRvtjto1-DuoKLzGc0PhDJdlWPQJCc1lW1VbhbMqlLpem3DxFcJlqQCjw-PChann5mwm76LjwdvPxTBqt2KINPgPRzqJtVZ5TnUuM7vTEIdzCbkty9hCOp1QKktDOaEpVSQzJEuZIrGMCZ5KrJJ7aLtaVuYBCpWaZjgrywSQBiUaK51yQ6a0VExzHpsAvez6ROhWp9xul7EQjcIyEeAU4ZwSoGfedNWIc1xl9MJ1rLeQ53NbzZYxMRm_E_xoNByQyUTEAdrvel60iXwhCE6YBbEpD9BTfxlS0K6ryMos6wthiRwpt3ynv9lwSwNOErC53wSTfyEYNe0eYXmAso0w8wZWAnzzSjX74qTAKeBtyhLwmYuiP3tBHL4p3MHDfzd9gnYP-wPx6f344x66BkiRNTVy-2h7fV6bR4DG1uqxy7rvYdksiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+CD22+expression+in+acute+lymphoblastic+leukemia&rft.jtitle=Pediatric+blood+%26+cancer&rft.au=Shah%2C+Nirali+N.&rft.au=Stevenson%2C+Maryalice+Stetler&rft.au=Yuan%2C+Constance+M.&rft.au=Richards%2C+Kelly&rft.date=2015-06-01&rft.issn=1545-5009&rft.eissn=1545-5017&rft.volume=62&rft.issue=6&rft.spage=964&rft.epage=969&rft_id=info:doi/10.1002%2Fpbc.25410&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pbc_25410
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5009&client=summon