Tuning the Anode–Electrolyte Interface Chemistry for Garnet‐Based Solid‐State Li Metal Batteries

Lithium (Li) metal is a promising candidate as the anode for high‐energy‐density solid‐state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid‐state Li metal batteries (SSLBs). He...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 23; pp. e2000030 - n/a
Main Authors Deng, Tao, Ji, Xiao, Zhao, Yang, Cao, Longsheng, Li, Shuang, Hwang, Sooyeon, Luo, Chao, Wang, Pengfei, Jia, Haiping, Fan, Xiulin, Lu, Xiaochuan, Su, Dong, Sun, Xueliang, Wang, Chunsheng, Zhang, Ji‐Guang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2020
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202000030

Cover

Loading…
Abstract Lithium (Li) metal is a promising candidate as the anode for high‐energy‐density solid‐state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid‐state Li metal batteries (SSLBs). Here, it is reported that infusing garnet‐type solid electrolytes (GSEs) with the air‐stable electrolyte Li3PO4 (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm2 and achieves a high critical current density of 2.2 mA cm−2 under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li‐ion conductivity of the grain boundaries, but also form a stable Li‐ion conductive but electron‐insulating LPO‐derived solid‐electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain‐boundary modification on GSEs represents a promising strategy to revolutionize the anode–electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid‐state batteries. Li3PO4‐infused Li6.5La3Zr1.5Ta0.5O12 via atomic layer deposition with simple annealing is demonstrated to have excellent moisture stability and interfacial stability to a lithium anode by presenting negligible interfacial resistance (≈1 Ω cm2) and a record‐high critical current density of 2.2 mA cm−2 at ambient conditions. This new surface/subsurface engineering approach stabilizes the anode–electrolyte interface for solid‐state batteries.
AbstractList Lithium (Li) metal is a promising candidate as the anode for high‐energy‐density solid‐state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid‐state Li metal batteries (SSLBs). Here, it is reported that infusing garnet‐type solid electrolytes (GSEs) with the air‐stable electrolyte Li3PO4 (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm2 and achieves a high critical current density of 2.2 mA cm−2 under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li‐ion conductivity of the grain boundaries, but also form a stable Li‐ion conductive but electron‐insulating LPO‐derived solid‐electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain‐boundary modification on GSEs represents a promising strategy to revolutionize the anode–electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid‐state batteries.
Lithium (Li) metal is a promising candidate as the anode for high-energy-density solid-state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid-state Li metal batteries (SSLBs). Here, it is reported that infusing garnet-type solid electrolytes (GSEs) with the air-stable electrolyte Li PO (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm and achieves a high critical current density of 2.2 mA cm under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li-ion conductivity of the grain boundaries, but also form a stable Li-ion conductive but electron-insulating LPO-derived solid-electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain-boundary modification on GSEs represents a promising strategy to revolutionize the anode-electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid-state batteries.
Lithium (Li) metal is a promising candidate as the anode for high‐energy‐density solid‐state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid‐state Li metal batteries (SSLBs). Here, it is reported that infusing garnet‐type solid electrolytes (GSEs) with the air‐stable electrolyte Li 3 PO 4 (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm 2 and achieves a high critical current density of 2.2 mA cm −2 under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li‐ion conductivity of the grain boundaries, but also form a stable Li‐ion conductive but electron‐insulating LPO‐derived solid‐electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain‐boundary modification on GSEs represents a promising strategy to revolutionize the anode–electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid‐state batteries.
Lithium (Li) metal is a promising candidate as the anode for high-energy-density solid-state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid-state Li metal batteries (SSLBs). Here, it is reported that infusing garnet-type solid electrolytes (GSEs) with the air-stable electrolyte Li3 PO4 (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm2 and achieves a high critical current density of 2.2 mA cm-2 under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li-ion conductivity of the grain boundaries, but also form a stable Li-ion conductive but electron-insulating LPO-derived solid-electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain-boundary modification on GSEs represents a promising strategy to revolutionize the anode-electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid-state batteries.Lithium (Li) metal is a promising candidate as the anode for high-energy-density solid-state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid-state Li metal batteries (SSLBs). Here, it is reported that infusing garnet-type solid electrolytes (GSEs) with the air-stable electrolyte Li3 PO4 (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm2 and achieves a high critical current density of 2.2 mA cm-2 under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li-ion conductivity of the grain boundaries, but also form a stable Li-ion conductive but electron-insulating LPO-derived solid-electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain-boundary modification on GSEs represents a promising strategy to revolutionize the anode-electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid-state batteries.
Lithium (Li) metal is a promising candidate as the anode for high‐energy‐density solid‐state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid‐state Li metal batteries (SSLBs). Here, it is reported that infusing garnet‐type solid electrolytes (GSEs) with the air‐stable electrolyte Li3PO4 (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm2 and achieves a high critical current density of 2.2 mA cm−2 under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li‐ion conductivity of the grain boundaries, but also form a stable Li‐ion conductive but electron‐insulating LPO‐derived solid‐electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain‐boundary modification on GSEs represents a promising strategy to revolutionize the anode–electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid‐state batteries. Li3PO4‐infused Li6.5La3Zr1.5Ta0.5O12 via atomic layer deposition with simple annealing is demonstrated to have excellent moisture stability and interfacial stability to a lithium anode by presenting negligible interfacial resistance (≈1 Ω cm2) and a record‐high critical current density of 2.2 mA cm−2 at ambient conditions. This new surface/subsurface engineering approach stabilizes the anode–electrolyte interface for solid‐state batteries.
Author Wang, Chunsheng
Deng, Tao
Li, Shuang
Hwang, Sooyeon
Su, Dong
Jia, Haiping
Luo, Chao
Sun, Xueliang
Ji, Xiao
Zhang, Ji‐Guang
Cao, Longsheng
Zhao, Yang
Fan, Xiulin
Wang, Pengfei
Lu, Xiaochuan
Author_xml – sequence: 1
  givenname: Tao
  surname: Deng
  fullname: Deng, Tao
  organization: University of Maryland
– sequence: 2
  givenname: Xiao
  surname: Ji
  fullname: Ji, Xiao
  organization: University of Maryland
– sequence: 3
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
  organization: University of Western Ontario
– sequence: 4
  givenname: Longsheng
  surname: Cao
  fullname: Cao, Longsheng
  organization: University of Maryland
– sequence: 5
  givenname: Shuang
  surname: Li
  fullname: Li, Shuang
  organization: Brookhaven National Laboratory
– sequence: 6
  givenname: Sooyeon
  surname: Hwang
  fullname: Hwang, Sooyeon
  organization: Brookhaven National Laboratory
– sequence: 7
  givenname: Chao
  surname: Luo
  fullname: Luo, Chao
  organization: George Mason University
– sequence: 8
  givenname: Pengfei
  surname: Wang
  fullname: Wang, Pengfei
  organization: University of Maryland
– sequence: 9
  givenname: Haiping
  surname: Jia
  fullname: Jia, Haiping
  organization: Pacific Northwest National Laboratory
– sequence: 10
  givenname: Xiulin
  surname: Fan
  fullname: Fan, Xiulin
  organization: University of Maryland
– sequence: 11
  givenname: Xiaochuan
  surname: Lu
  fullname: Lu, Xiaochuan
  organization: North Carolina A&T State University
– sequence: 12
  givenname: Dong
  surname: Su
  fullname: Su, Dong
  organization: Brookhaven National Laboratory
– sequence: 13
  givenname: Xueliang
  surname: Sun
  fullname: Sun, Xueliang
  organization: University of Western Ontario
– sequence: 14
  givenname: Chunsheng
  orcidid: 0000-0002-8626-6381
  surname: Wang
  fullname: Wang, Chunsheng
  email: cswang@umd.edu
  organization: University of Maryland
– sequence: 15
  givenname: Ji‐Guang
  surname: Zhang
  fullname: Zhang, Ji‐Guang
  email: Jiguang.zhang@pnnl.gov
  organization: Pacific Northwest National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32363768$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1617070$$D View this record in Osti.gov
BookMark eNqFkU9rFDEYh4NU7LZ69SiDXrzMmj-T7OS4XWstbPHQeg6ZzBs3JZvUJIPsrR9B8Bv2k5iytUJBzCUJPE9efvkdoYMQAyD0muA5wZh-0ONWzymmuC6Gn6EZ4ZS0HZb8AM2wZLyVousP0VHO1xWRAosX6JBRJthC9DNkr6bgwrembKBZhjjC3e2vUw-mpOh3BZrzUCBZbaBZbWDrckm7xsbUnOkUoNzd_jzRGcbmMno31ttl0VVau-YCivbNiS5Vd5BfoudW-wyvHvZj9PXT6dXqc7v-cna-Wq5bwzuO20EMlhjJR05phwcMvWVyGID2YIVY9IaDHa3lbMSScjHUg-xpZ4eBa2osZcfo7f7dmItT2bgCZmNiCDWRIoIs8AJX6P0euknx-wS5qBrMgPc6QJyyokz2hPc9ERV99wS9jlMKNYKiHSFYUCy7Sr15oKZhC6O6SW6r0079-eYKzPeASTHnBPYRIVjd96jue1SPPVaheyLUKLq4GErSzv9bk3vth_Ow-88Qtfx4sfzr_gb_Y7OF
CitedBy_id crossref_primary_10_1016_j_electacta_2022_141060
crossref_primary_10_1002_adfm_202300319
crossref_primary_10_1016_j_cej_2021_129739
crossref_primary_10_1021_acssuschemeng_2c01349
crossref_primary_10_1149_1945_7111_ac0944
crossref_primary_10_1149_1945_7111_ada740
crossref_primary_10_1039_D3QM01111A
crossref_primary_10_1007_s41918_022_00167_1
crossref_primary_10_1002_smll_202401675
crossref_primary_10_1016_j_enchem_2024_100122
crossref_primary_10_1021_acsami_2c09729
crossref_primary_10_1002_smll_202202911
crossref_primary_10_1016_j_mattod_2022_10_019
crossref_primary_10_1021_acsaem_2c01018
crossref_primary_10_1039_D1TA10816F
crossref_primary_10_1002_adma_202206228
crossref_primary_10_1002_smll_202402086
crossref_primary_10_1002_sstr_202300022
crossref_primary_10_1116_6_0000430
crossref_primary_10_1039_D4EE03199G
crossref_primary_10_1016_j_jpowsour_2023_232914
crossref_primary_10_1002_sus2_67
crossref_primary_10_1016_j_cej_2022_140375
crossref_primary_10_1016_j_nanoen_2025_110749
crossref_primary_10_1016_j_ensm_2023_102918
crossref_primary_10_1039_D1EE02324A
crossref_primary_10_1002_adma_202401625
crossref_primary_10_1002_aenm_202002891
crossref_primary_10_1002_advs_202207056
crossref_primary_10_1002_smll_202308297
crossref_primary_10_1002_anie_202418811
crossref_primary_10_1021_acsenergylett_1c02122
crossref_primary_10_1016_j_mtphys_2022_100679
crossref_primary_10_34133_2022_9753506
crossref_primary_10_1002_smll_202204487
crossref_primary_10_1016_j_cej_2023_147559
crossref_primary_10_1002_batt_202000082
crossref_primary_10_1007_s10008_023_05560_4
crossref_primary_10_1002_celc_202100010
crossref_primary_10_1021_acsnano_4c02236
crossref_primary_10_1016_j_jpowsour_2021_230062
crossref_primary_10_1038_s43246_021_00177_4
crossref_primary_10_1007_s11581_021_04011_2
crossref_primary_10_1016_j_chempr_2021_06_019
crossref_primary_10_1016_j_cej_2022_137538
crossref_primary_10_1063_5_0161316
crossref_primary_10_1002_smll_202103819
crossref_primary_10_1002_adfm_202421160
crossref_primary_10_1002_adma_202306111
crossref_primary_10_1002_advs_202304235
crossref_primary_10_1002_smll_202208282
crossref_primary_10_1002_adfm_202302729
crossref_primary_10_1016_j_cej_2023_147821
crossref_primary_10_1021_acs_chemrev_2c00196
crossref_primary_10_1021_acssuschemeng_2c06738
crossref_primary_10_1002_ange_202418811
crossref_primary_10_1021_acsami_2c09028
crossref_primary_10_1016_j_cej_2023_142895
crossref_primary_10_1016_j_jechem_2023_01_057
crossref_primary_10_1002_adfm_202009692
crossref_primary_10_1002_adfm_202309751
crossref_primary_10_1016_j_jallcom_2024_175769
crossref_primary_10_1021_acs_nanolett_2c03038
crossref_primary_10_1002_adma_202209833
crossref_primary_10_1021_acsami_1c01659
crossref_primary_10_1038_s41467_021_27473_4
crossref_primary_10_1002_aenm_202404900
crossref_primary_10_1016_j_scib_2021_04_034
crossref_primary_10_1002_smll_202305576
crossref_primary_10_1007_s43207_023_00293_6
crossref_primary_10_1039_D4SE00784K
crossref_primary_10_1021_acsenergylett_2c02528
crossref_primary_10_1002_adfm_202201498
crossref_primary_10_1002_advs_202105924
crossref_primary_10_1021_acsenergylett_1c01573
crossref_primary_10_1126_sciadv_abq0153
crossref_primary_10_1002_adfm_202211711
crossref_primary_10_1002_idm2_12202
crossref_primary_10_1007_s12274_023_6096_x
crossref_primary_10_1016_j_est_2025_116030
crossref_primary_10_1039_D2EE03709B
crossref_primary_10_1002_adma_202108363
crossref_primary_10_1016_j_jpowsour_2023_233482
crossref_primary_10_1021_acsenergylett_1c00401
crossref_primary_10_1021_acssuschemeng_1c00878
crossref_primary_10_1002_batt_202200161
crossref_primary_10_1002_inf2_12248
crossref_primary_10_1016_j_ensm_2022_12_013
crossref_primary_10_1021_acsaem_3c00601
crossref_primary_10_1063_5_0108998
crossref_primary_10_1016_j_jcis_2022_04_018
crossref_primary_10_1039_D0EE02062A
crossref_primary_10_1002_aenm_202003154
crossref_primary_10_1039_D4CC06729K
crossref_primary_10_1021_acsenergylett_1c02332
crossref_primary_10_1002_adfm_202208751
crossref_primary_10_1016_j_ceramint_2021_08_076
crossref_primary_10_1016_j_jechem_2022_10_037
crossref_primary_10_1016_j_xcrp_2022_100851
crossref_primary_10_1021_acsami_3c03876
crossref_primary_10_1002_aenm_202300165
crossref_primary_10_1038_s41467_024_54234_w
crossref_primary_10_1016_j_mtener_2021_100804
crossref_primary_10_1002_aenm_202002689
crossref_primary_10_1016_j_cej_2021_130522
crossref_primary_10_2139_ssrn_4103220
crossref_primary_10_1021_acsenergylett_2c00003
crossref_primary_10_1016_j_ensm_2022_05_043
crossref_primary_10_2139_ssrn_4149506
crossref_primary_10_1016_j_pmatsci_2023_101182
crossref_primary_10_1021_acs_jpclett_4c01246
crossref_primary_10_1039_D1TA00467K
crossref_primary_10_1002_adfm_202102765
crossref_primary_10_1002_elsa_202100154
crossref_primary_10_1016_j_est_2023_107283
crossref_primary_10_3390_coatings13091496
crossref_primary_10_1002_inf2_12650
crossref_primary_10_1002_adfm_202307701
crossref_primary_10_1002_aesr_202300074
crossref_primary_10_1021_acsenergylett_4c02840
crossref_primary_10_1021_acsami_2c21133
crossref_primary_10_1111_ijac_14523
crossref_primary_10_1016_j_nanoen_2022_107027
crossref_primary_10_1126_sciadv_add8972
crossref_primary_10_1016_j_ensm_2022_06_011
crossref_primary_10_2139_ssrn_3995084
crossref_primary_10_1016_j_mtchem_2020_100368
crossref_primary_10_1063_5_0109575
crossref_primary_10_1021_acs_nanolett_1c01748
crossref_primary_10_1016_j_est_2023_107715
crossref_primary_10_1021_acs_energyfuels_4c02715
crossref_primary_10_1016_j_ensm_2021_02_001
crossref_primary_10_1002_advs_202104531
crossref_primary_10_1021_acs_accounts_2c00822
crossref_primary_10_1016_j_pmatsci_2023_101193
crossref_primary_10_1016_j_jpowsour_2022_231451
crossref_primary_10_1021_acsami_0c23144
crossref_primary_10_1016_j_jpowsour_2023_232720
crossref_primary_10_1016_j_pmatsci_2024_101339
crossref_primary_10_1111_jace_18730
crossref_primary_10_1016_j_esci_2024_100277
crossref_primary_10_1016_j_ensm_2022_10_002
crossref_primary_10_1002_aenm_202003250
crossref_primary_10_1039_D0DT03774E
crossref_primary_10_1021_acsami_2c07292
crossref_primary_10_2139_ssrn_4092249
crossref_primary_10_1002_eem2_12282
crossref_primary_10_1002_cssc_202202220
crossref_primary_10_1002_adma_202303730
crossref_primary_10_1016_j_ensm_2022_10_056
crossref_primary_10_1021_acs_energyfuels_3c01626
crossref_primary_10_1002_eom2_12338
crossref_primary_10_1016_j_ssi_2023_116408
crossref_primary_10_1016_j_ensm_2022_07_037
crossref_primary_10_1002_adfm_202105776
crossref_primary_10_1002_advs_202205821
crossref_primary_10_1016_j_ensm_2022_08_041
crossref_primary_10_1007_s11426_022_1525_3
crossref_primary_10_1002_smll_202412799
crossref_primary_10_1007_s41918_024_00230_z
crossref_primary_10_1016_j_mtnano_2023_100322
crossref_primary_10_1002_aenm_202101413
crossref_primary_10_1016_j_nanoen_2022_107603
crossref_primary_10_1016_j_cej_2021_133665
crossref_primary_10_1016_j_ensm_2024_103625
crossref_primary_10_1039_D4TA08187K
crossref_primary_10_1002_admi_202102283
crossref_primary_10_1002_eem2_12831
crossref_primary_10_1021_acsami_2c10027
crossref_primary_10_1016_j_jallcom_2021_160375
crossref_primary_10_1007_s41918_020_00092_1
crossref_primary_10_1002_advs_202205012
crossref_primary_10_1002_smll_202100974
crossref_primary_10_1002_sstr_202100014
crossref_primary_10_1021_acsami_3c10933
crossref_primary_10_1021_jacs_1c10872
crossref_primary_10_1007_s41918_024_00221_0
crossref_primary_10_1016_j_ensm_2022_03_043
crossref_primary_10_1021_acsami_0c16966
crossref_primary_10_1002_cey2_100
crossref_primary_10_34133_energymatadv_0074
crossref_primary_10_1016_j_ensm_2024_103857
crossref_primary_10_1002_adfm_202304407
crossref_primary_10_1002_adma_202212111
crossref_primary_10_1016_j_jallcom_2024_173530
Cites_doi 10.1021/jacs.7b06364
10.1007/s11581-017-2314-4
10.1016/j.joule.2019.06.013
10.1038/nnano.2017.16
10.1016/j.ssi.2014.10.017
10.1016/j.jpowsour.2014.11.062
10.1038/33647
10.1021/cm101438x
10.1021/acsenergylett.8b02542
10.1063/1.4941513
10.1016/j.ssi.2009.03.022
10.1038/nmat4821
10.1016/j.ssi.2016.06.013
10.1002/aenm.201501590
10.1021/acsaem.8b01061
10.1038/s41563-019-0431-3
10.1149/2.1571707jes
10.1016/j.jpowsour.2018.06.055
10.1016/j.jpowsour.2015.10.053
10.1021/jacs.8b03106
10.1021/jacs.6b05341
10.1016/j.electacta.2018.11.034
10.1021/acs.chemmater.7b03002
10.1016/j.mattod.2014.04.026
10.1038/s41560-018-0312-z
10.1039/C7TA03162A
10.1039/c2jm31413d
10.1038/s41563-019-0438-9
10.1038/nenergy.2016.30
10.1002/anie.200701144
10.1002/anie.201708637
10.1021/acsenergylett.8b00453
10.1016/j.jpowsour.2016.11.097
10.1016/j.jpowsour.2017.11.078
10.1103/PhysRevB.88.104103
10.1021/acsami.8b06366
10.1016/j.ssi.2013.09.012
10.1038/s41560-018-0191-3
10.1038/nmat3066
10.1016/j.jpowsour.2018.04.019
10.1088/0957-4484/25/50/504007
10.1038/natrevmats.2016.13
10.1016/0167-2738(95)00056-C
10.1149/1.1850854
10.1002/aenm.201803440
10.1021/acsami.6b00831
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OTOTI
DOI 10.1002/adma.202000030
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1617070
32363768
10_1002_adma_202000030
ADMA202000030
Genre article
Journal Article
GrantInformation_xml – fundername: Office of Energy Efficiency and Renewable Energy
– fundername: Vehicle Technologies Office
– fundername: U.S. Department of Energy
  funderid: DE‐AC02‐05CH11231
– fundername: U.S. Department of Energy
  grantid: DE-AC02-05CH11231
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c5450-b6bf1c95d52240b0e8f39bbe28ef6678c5efdff53d09256b53d9824fbb5a2cf23
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri May 19 00:36:59 EDT 2023
Fri Jul 11 10:19:59 EDT 2025
Fri Jul 25 06:57:19 EDT 2025
Wed Feb 19 02:30:45 EST 2025
Thu Apr 24 22:54:12 EDT 2025
Tue Jul 01 02:32:47 EDT 2025
Wed Jan 22 16:35:17 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords garnet electrolytes
lithium dendrites
solid-electrolyte interphase
solid-state batteries
interfacial chemistry
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5450-b6bf1c95d52240b0e8f39bbe28ef6678c5efdff53d09256b53d9824fbb5a2cf23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
DE‐AC02‐05CH11231
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
ORCID 0000-0002-8626-6381
0000000286266381
OpenAccessLink https://www.osti.gov/biblio/1617070
PMID 32363768
PQID 2411062094
PQPubID 2045203
PageCount 10
ParticipantIDs osti_scitechconnect_1617070
proquest_miscellaneous_2398158816
proquest_journals_2411062094
pubmed_primary_32363768
crossref_primary_10_1002_adma_202000030
crossref_citationtrail_10_1002_adma_202000030
wiley_primary_10_1002_adma_202000030_ADMA202000030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2019; 9
2019; 4
2013 2016 2017 2018; 88 1708 342 1
2019; 3
2018; 140
2005; 152
2018 2007; 389 46
1995; 79
2016 2019; 8 4
2010 2017; 22 5
2014; 25
2011; 10
2019; 18
2017; 29
2016; 302
2017; 139
2018; 24
2016; 6
2018; 396
2009 2014; 180 262
2018; 3
2016; 1
2017; 16
2015 2019; 273 18
2018; 377
2015; 275
2017; 56
2017 2016 1998; 12 1 392
2016; 138
2017; 164
2014; 17
2018; 10
2012; 22
2019; 296
2016; 294
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_21_2
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_26_2
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_26_4
e_1_2_4_29_1
e_1_2_4_26_3
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_1_3
e_1_2_4_3_1
e_1_2_4_1_2
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_5_2
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_7_2
e_1_2_4_8_1
e_1_2_4_9_2
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_18_2
e_1_2_4_19_1
References_xml – volume: 302
  start-page: 135
  year: 2016
  publication-title: J. Power Sources
– volume: 18
  start-page: 1105
  year: 2019
  publication-title: Nat. Mater.
– volume: 10
  start-page: 682
  year: 2011
  publication-title: Nat. Mater.
– volume: 12 1 392
  start-page: 194 694
  year: 2017 2016 1998
  publication-title: Nat. Nanotechnol. Nat. Rev. Mater. Nature
– volume: 17
  start-page: 236
  year: 2014
  publication-title: Mater. Today
– volume: 3
  start-page: 600
  year: 2018
  publication-title: Nat. Energy
– volume: 3
  start-page: 1212
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 2030
  year: 2019
  publication-title: Joule
– volume: 180 262
  start-page: 911 573
  year: 2009 2014
  publication-title: Solid State Ionics Solid State Ionics
– volume: 275
  start-page: 612
  year: 2015
  publication-title: J. Power Sources
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  start-page: 7961
  year: 2017
  publication-title: Chem. Mater.
– volume: 88 1708 342 1
  start-page: 175 5511
  year: 2013 2016 2017 2018
  publication-title: Phys. Rev. B AIP Conf. Proc. J. Power Sources ACS Appl. Energy Mater.
– volume: 152
  start-page: A396
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 273 18
  start-page: 51 1278
  year: 2015 2019
  publication-title: Solid State Ionics Nat. Mater.
– volume: 8 4
  start-page: 187
  year: 2016 2019
  publication-title: ACS Appl. Mater. Interfaces Nat. Energy
– volume: 24
  start-page: 1271
  year: 2018
  publication-title: Ionics
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 389 46
  start-page: 120 7778
  year: 2018 2007
  publication-title: J. Power Sources Angew. Chem., Int. Ed.
– volume: 79
  start-page: 161
  year: 1995
  publication-title: Solid State Ionics
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 138
  start-page: 9385
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 651
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 296
  start-page: 842
  year: 2019
  publication-title: Electrochim. Acta
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 396
  start-page: 314
  year: 2018
  publication-title: J. Power Sources
– volume: 294
  start-page: 108
  year: 2016
  publication-title: Solid State Ionics
– volume: 22
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 16
  start-page: 572
  year: 2017
  publication-title: Nat. Mater.
– volume: 140
  start-page: 6448
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 22 5
  start-page: 5401
  year: 2010 2017
  publication-title: Chem. Mater. J. Mater. Chem. A
– volume: 25
  year: 2014
  publication-title: Nanotechnology
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 377
  start-page: 7
  year: 2018
  publication-title: J. Power Sources
– ident: e_1_2_4_35_1
  doi: 10.1021/jacs.7b06364
– ident: e_1_2_4_19_1
  doi: 10.1007/s11581-017-2314-4
– ident: e_1_2_4_20_1
  doi: 10.1016/j.joule.2019.06.013
– ident: e_1_2_4_1_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_4_21_1
  doi: 10.1016/j.ssi.2014.10.017
– ident: e_1_2_4_29_1
  doi: 10.1016/j.jpowsour.2014.11.062
– ident: e_1_2_4_1_3
  doi: 10.1038/33647
– ident: e_1_2_4_18_1
  doi: 10.1021/cm101438x
– ident: e_1_2_4_22_1
  doi: 10.1021/acsenergylett.8b02542
– ident: e_1_2_4_26_2
  doi: 10.1063/1.4941513
– ident: e_1_2_4_7_1
  doi: 10.1016/j.ssi.2009.03.022
– ident: e_1_2_4_4_1
  doi: 10.1038/nmat4821
– ident: e_1_2_4_28_1
  doi: 10.1016/j.ssi.2016.06.013
– ident: e_1_2_4_34_1
  doi: 10.1002/aenm.201501590
– ident: e_1_2_4_26_4
  doi: 10.1021/acsaem.8b01061
– ident: e_1_2_4_21_2
  doi: 10.1038/s41563-019-0431-3
– ident: e_1_2_4_31_1
  doi: 10.1149/2.1571707jes
– ident: e_1_2_4_12_1
  doi: 10.1016/j.jpowsour.2018.06.055
– ident: e_1_2_4_6_1
  doi: 10.1016/j.jpowsour.2015.10.053
– ident: e_1_2_4_11_1
  doi: 10.1021/jacs.8b03106
– ident: e_1_2_4_16_1
  doi: 10.1021/jacs.6b05341
– ident: e_1_2_4_17_1
  doi: 10.1016/j.electacta.2018.11.034
– ident: e_1_2_4_10_1
  doi: 10.1021/acs.chemmater.7b03002
– ident: e_1_2_4_23_1
  doi: 10.1016/j.mattod.2014.04.026
– ident: e_1_2_4_9_2
  doi: 10.1038/s41560-018-0312-z
– ident: e_1_2_4_18_2
  doi: 10.1039/C7TA03162A
– ident: e_1_2_4_30_1
  doi: 10.1039/c2jm31413d
– ident: e_1_2_4_32_1
  doi: 10.1038/s41563-019-0438-9
– ident: e_1_2_4_2_1
  doi: 10.1038/nenergy.2016.30
– ident: e_1_2_4_5_2
  doi: 10.1002/anie.200701144
– ident: e_1_2_4_14_1
  doi: 10.1002/anie.201708637
– ident: e_1_2_4_15_1
  doi: 10.1021/acsenergylett.8b00453
– ident: e_1_2_4_26_3
  doi: 10.1016/j.jpowsour.2016.11.097
– ident: e_1_2_4_36_1
  doi: 10.1016/j.jpowsour.2017.11.078
– ident: e_1_2_4_26_1
  doi: 10.1103/PhysRevB.88.104103
– ident: e_1_2_4_13_1
  doi: 10.1021/acsami.8b06366
– ident: e_1_2_4_7_2
  doi: 10.1016/j.ssi.2013.09.012
– ident: e_1_2_4_24_1
  doi: 10.1038/s41560-018-0191-3
– ident: e_1_2_4_3_1
  doi: 10.1038/nmat3066
– ident: e_1_2_4_5_1
  doi: 10.1016/j.jpowsour.2018.04.019
– ident: e_1_2_4_25_1
  doi: 10.1088/0957-4484/25/50/504007
– ident: e_1_2_4_1_2
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_4_8_1
  doi: 10.1016/0167-2738(95)00056-C
– ident: e_1_2_4_27_1
  doi: 10.1149/1.1850854
– ident: e_1_2_4_33_1
  doi: 10.1002/aenm.201803440
– ident: e_1_2_4_9_1
  doi: 10.1021/acsami.6b00831
SSID ssj0009606
Score 2.6630666
Snippet Lithium (Li) metal is a promising candidate as the anode for high‐energy‐density solid‐state batteries. However, interface issues, including large interfacial...
Lithium (Li) metal is a promising candidate as the anode for high-energy-density solid-state batteries. However, interface issues, including large interfacial...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2000030
SubjectTerms Anodes
Anodic coatings
Critical current density
Direct reduction
Electrolytes
garnet electrolytes
Grain boundaries
Interface stability
interfacial chemistry
Lithium
lithium dendrites
Materials science
Molten salt electrolytes
Solid electrolytes
solid‐electrolyte interphase
solid‐state batteries
Title Tuning the Anode–Electrolyte Interface Chemistry for Garnet‐Based Solid‐State Li Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000030
https://www.ncbi.nlm.nih.gov/pubmed/32363768
https://www.proquest.com/docview/2411062094
https://www.proquest.com/docview/2398158816
https://www.osti.gov/biblio/1617070
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELbQnuDA_09oQUZC4uQ2sePEPi6lpUIsB2il3izbsaWKVYLa7AFOfQQk3rBPwky8SbsIhAS3WLEVx54Zf2OPvyHkpUDJEXXNuM8dK4s8Mqe1YzFoG22ee-3wRHfxoTo8Lt-dyJNrt_gTP8S04YaaMdhrVHDrznevSENtM_AG4VUT-BwYYQzYQlT08Yo_CuH5QLYnJNNVqUbWxpzvbjbfWJVmHWjX7xDnJoAdVqCDO8SOfU-BJ593Vr3b8d9-oXX8n5-7S26v4SmdJ3m6R26E9j65dY208AGJRyvcS6GAHOm87ZpwefFjPyXTWX7tAx32GKP1ge6NyeQoIGP61p61ob-8-P4aFs6GfuqWpw2UBrRL35_SRQA_gCa-T3DfH5Ljg_2jvUO2ztbAPKCwnLnKxcJr2UhECS4PKgrtXOAqxAqWRC9DbGKUosk14CwHD1rxMjonLfeRi0dk1nZteEJo6QtZ69pWQujSFdE2Wta-KqOywpa1zAgbZ8v4NZU5ZtRYmkTCzA2On5nGLyOvpvpfEonHH2tu4eQbgB_Ioesx2Mj3Bp1AsI0Z2R5lwqxV_dwABAK3moObnJEX02sYXjx5sW3oVlBHaFVIpYoqI4-TLE0dEVxUYOVVRvggEX_poZm_Wcyn0tN_abRFbuJzCnjbJrP-bBWeAbTq3fNBfX4CEb0bHw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BcgAOvB-hBYyExCltYsdJfFz6YIHdHmArcbNsx5YqVllUsgc49Scg8Q_7S5hJNimLQEhwixNHcewZ-5vx-BuA54IkRxRFzF1i4yxNQmyVsnHwygSTJE5Z2tGdHeWT4-zNB9lHE9JZmI4fYnC4kWa08zUpODmkdy9YQ03VEgfRWRP83mW4Qmm9STf3310wSBFAb-n2hIxVnpU9b2PCdzff31iXRkvUr99hzk0I265BhzfB9q3vQk8-7qwau-O-_kLs-F-_dwturBEqG3cidRsu-foOXP-Jt_AuhPmK3CkMwSMb18vKn599P-jy6Sy-NJ61bsZgnGd7fT45huCYvTKntW_Oz769xLWzYu-Xi5MKSy3gZdMTNvNoCrCO8hMt-HtwfHgw35vE64QNsUMglsQ2tyF1SlaSgIJNfBmEstbz0occV0UnfahCkKJKFEItixeq5FmwVhruAhf3YVQva_8QWOZSWajC5EKozKbBVEoWLs9CaYTJChlB3A-Xdms2c0qqsdAdDzPX1H966L8IXgz1P3U8Hn-suUWjrxGBEI2uo3gj12iyA3F6jGC7Fwq91vbPGlEQWtYcLeUIng2PsXtp88XUfrnCOkKVqSzLNI_gQSdMQ0MEFzlO9GUEvBWJv7RQj_dn46H06F9eegpXJ_PZVE9fH73dgmt0v4t_24ZRc7ryjxFpNfZJq0s_ALBHHzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BIiE48IaGFjASEqe0iR0n9nHpdinQrRC0Um-W7dhSxSqp2uwBTv0JSPzD_hLGySbtIhAS3OLEVvyY8XzjxzcAr1iQHFYUMbWJibM08bGR0sTeSe11klhpwo7ubD_fPczeH_GjK7f4O36IYcEtaEY7XwcFPyn91iVpqC5b3qBw1QR_dx1uZHkigvs1-XRJIBXwecu2x3gs80z0tI0J3Votv2KWRjWq1-8g5yqCbU3Q9C7ovvLdyZMvm4vGbNpvv_A6_k_r7sGdJT4l406g7sM1Vz2A21dYCx-CP1iExRSC0JGMq7p0F-c_drpoOvOvjSPtIqPX1pHtPpocQWhM3urTyjUX59_foOUsyed6flxiqoW7ZO-YzBw6AqQj_ET__REcTncOtnfjZbiG2CIMS2KTG59ayUseYIJJnPBMGuOocD5Hm2i586X3nJWJRKBl8EEKmnljuKbWU_YYRlVduTUgmU15IQudMyYzk3pdSl7YPPNCM50VPIK4Hy1ll1zmIaTGXHUszFSF_lND_0Xwesh_0rF4_DHnehh8hfgjkOjacNrINip4gTg5RrDRy4Ra6vqZQgyEfjVFPzmCl8Nn7N6w9aIrVy8wD5Mi5UKkeQRPOlkaKsIoy3GaFxHQViL-UkM1nszGQ-rpvxR6ATc_TqZq793-h3W4FV53h982YNScLtwzhFmNed5q0k9Tsh3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+Anode%E2%80%93Electrolyte+Interface+Chemistry+for+Garnet%E2%80%90Based+Solid%E2%80%90State+Li+Metal+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Deng%2C+Tao&rft.au=Ji%2C+Xiao&rft.au=Zhao%2C+Yang&rft.au=Cao%2C+Longsheng&rft.date=2020-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=23&rft_id=info:doi/10.1002%2Fadma.202000030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202000030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon