Tuning the Anode–Electrolyte Interface Chemistry for Garnet‐Based Solid‐State Li Metal Batteries
Lithium (Li) metal is a promising candidate as the anode for high‐energy‐density solid‐state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid‐state Li metal batteries (SSLBs). He...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 23; pp. e2000030 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2020
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202000030 |
Cover
Loading…
Abstract | Lithium (Li) metal is a promising candidate as the anode for high‐energy‐density solid‐state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid‐state Li metal batteries (SSLBs). Here, it is reported that infusing garnet‐type solid electrolytes (GSEs) with the air‐stable electrolyte Li3PO4 (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm2 and achieves a high critical current density of 2.2 mA cm−2 under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li‐ion conductivity of the grain boundaries, but also form a stable Li‐ion conductive but electron‐insulating LPO‐derived solid‐electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain‐boundary modification on GSEs represents a promising strategy to revolutionize the anode–electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid‐state batteries.
Li3PO4‐infused Li6.5La3Zr1.5Ta0.5O12 via atomic layer deposition with simple annealing is demonstrated to have excellent moisture stability and interfacial stability to a lithium anode by presenting negligible interfacial resistance (≈1 Ω cm2) and a record‐high critical current density of 2.2 mA cm−2 at ambient conditions. This new surface/subsurface engineering approach stabilizes the anode–electrolyte interface for solid‐state batteries. |
---|---|
AbstractList | Lithium (Li) metal is a promising candidate as the anode for high‐energy‐density solid‐state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid‐state Li metal batteries (SSLBs). Here, it is reported that infusing garnet‐type solid electrolytes (GSEs) with the air‐stable electrolyte Li3PO4 (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm2 and achieves a high critical current density of 2.2 mA cm−2 under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li‐ion conductivity of the grain boundaries, but also form a stable Li‐ion conductive but electron‐insulating LPO‐derived solid‐electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain‐boundary modification on GSEs represents a promising strategy to revolutionize the anode–electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid‐state batteries. Lithium (Li) metal is a promising candidate as the anode for high-energy-density solid-state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid-state Li metal batteries (SSLBs). Here, it is reported that infusing garnet-type solid electrolytes (GSEs) with the air-stable electrolyte Li PO (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm and achieves a high critical current density of 2.2 mA cm under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li-ion conductivity of the grain boundaries, but also form a stable Li-ion conductive but electron-insulating LPO-derived solid-electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain-boundary modification on GSEs represents a promising strategy to revolutionize the anode-electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid-state batteries. Lithium (Li) metal is a promising candidate as the anode for high‐energy‐density solid‐state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid‐state Li metal batteries (SSLBs). Here, it is reported that infusing garnet‐type solid electrolytes (GSEs) with the air‐stable electrolyte Li 3 PO 4 (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm 2 and achieves a high critical current density of 2.2 mA cm −2 under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li‐ion conductivity of the grain boundaries, but also form a stable Li‐ion conductive but electron‐insulating LPO‐derived solid‐electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain‐boundary modification on GSEs represents a promising strategy to revolutionize the anode–electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid‐state batteries. Lithium (Li) metal is a promising candidate as the anode for high-energy-density solid-state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid-state Li metal batteries (SSLBs). Here, it is reported that infusing garnet-type solid electrolytes (GSEs) with the air-stable electrolyte Li3 PO4 (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm2 and achieves a high critical current density of 2.2 mA cm-2 under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li-ion conductivity of the grain boundaries, but also form a stable Li-ion conductive but electron-insulating LPO-derived solid-electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain-boundary modification on GSEs represents a promising strategy to revolutionize the anode-electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid-state batteries.Lithium (Li) metal is a promising candidate as the anode for high-energy-density solid-state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid-state Li metal batteries (SSLBs). Here, it is reported that infusing garnet-type solid electrolytes (GSEs) with the air-stable electrolyte Li3 PO4 (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm2 and achieves a high critical current density of 2.2 mA cm-2 under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li-ion conductivity of the grain boundaries, but also form a stable Li-ion conductive but electron-insulating LPO-derived solid-electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain-boundary modification on GSEs represents a promising strategy to revolutionize the anode-electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid-state batteries. Lithium (Li) metal is a promising candidate as the anode for high‐energy‐density solid‐state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid‐state Li metal batteries (SSLBs). Here, it is reported that infusing garnet‐type solid electrolytes (GSEs) with the air‐stable electrolyte Li3PO4 (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm2 and achieves a high critical current density of 2.2 mA cm−2 under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li‐ion conductivity of the grain boundaries, but also form a stable Li‐ion conductive but electron‐insulating LPO‐derived solid‐electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain‐boundary modification on GSEs represents a promising strategy to revolutionize the anode–electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid‐state batteries. Li3PO4‐infused Li6.5La3Zr1.5Ta0.5O12 via atomic layer deposition with simple annealing is demonstrated to have excellent moisture stability and interfacial stability to a lithium anode by presenting negligible interfacial resistance (≈1 Ω cm2) and a record‐high critical current density of 2.2 mA cm−2 at ambient conditions. This new surface/subsurface engineering approach stabilizes the anode–electrolyte interface for solid‐state batteries. |
Author | Wang, Chunsheng Deng, Tao Li, Shuang Hwang, Sooyeon Su, Dong Jia, Haiping Luo, Chao Sun, Xueliang Ji, Xiao Zhang, Ji‐Guang Cao, Longsheng Zhao, Yang Fan, Xiulin Wang, Pengfei Lu, Xiaochuan |
Author_xml | – sequence: 1 givenname: Tao surname: Deng fullname: Deng, Tao organization: University of Maryland – sequence: 2 givenname: Xiao surname: Ji fullname: Ji, Xiao organization: University of Maryland – sequence: 3 givenname: Yang surname: Zhao fullname: Zhao, Yang organization: University of Western Ontario – sequence: 4 givenname: Longsheng surname: Cao fullname: Cao, Longsheng organization: University of Maryland – sequence: 5 givenname: Shuang surname: Li fullname: Li, Shuang organization: Brookhaven National Laboratory – sequence: 6 givenname: Sooyeon surname: Hwang fullname: Hwang, Sooyeon organization: Brookhaven National Laboratory – sequence: 7 givenname: Chao surname: Luo fullname: Luo, Chao organization: George Mason University – sequence: 8 givenname: Pengfei surname: Wang fullname: Wang, Pengfei organization: University of Maryland – sequence: 9 givenname: Haiping surname: Jia fullname: Jia, Haiping organization: Pacific Northwest National Laboratory – sequence: 10 givenname: Xiulin surname: Fan fullname: Fan, Xiulin organization: University of Maryland – sequence: 11 givenname: Xiaochuan surname: Lu fullname: Lu, Xiaochuan organization: North Carolina A&T State University – sequence: 12 givenname: Dong surname: Su fullname: Su, Dong organization: Brookhaven National Laboratory – sequence: 13 givenname: Xueliang surname: Sun fullname: Sun, Xueliang organization: University of Western Ontario – sequence: 14 givenname: Chunsheng orcidid: 0000-0002-8626-6381 surname: Wang fullname: Wang, Chunsheng email: cswang@umd.edu organization: University of Maryland – sequence: 15 givenname: Ji‐Guang surname: Zhang fullname: Zhang, Ji‐Guang email: Jiguang.zhang@pnnl.gov organization: Pacific Northwest National Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32363768$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1617070$$D View this record in Osti.gov |
BookMark | eNqFkU9rFDEYh4NU7LZ69SiDXrzMmj-T7OS4XWstbPHQeg6ZzBs3JZvUJIPsrR9B8Bv2k5iytUJBzCUJPE9efvkdoYMQAyD0muA5wZh-0ONWzymmuC6Gn6EZ4ZS0HZb8AM2wZLyVousP0VHO1xWRAosX6JBRJthC9DNkr6bgwrembKBZhjjC3e2vUw-mpOh3BZrzUCBZbaBZbWDrckm7xsbUnOkUoNzd_jzRGcbmMno31ttl0VVau-YCivbNiS5Vd5BfoudW-wyvHvZj9PXT6dXqc7v-cna-Wq5bwzuO20EMlhjJR05phwcMvWVyGID2YIVY9IaDHa3lbMSScjHUg-xpZ4eBa2osZcfo7f7dmItT2bgCZmNiCDWRIoIs8AJX6P0euknx-wS5qBrMgPc6QJyyokz2hPc9ERV99wS9jlMKNYKiHSFYUCy7Sr15oKZhC6O6SW6r0079-eYKzPeASTHnBPYRIVjd96jue1SPPVaheyLUKLq4GErSzv9bk3vth_Ow-88Qtfx4sfzr_gb_Y7OF |
CitedBy_id | crossref_primary_10_1016_j_electacta_2022_141060 crossref_primary_10_1002_adfm_202300319 crossref_primary_10_1016_j_cej_2021_129739 crossref_primary_10_1021_acssuschemeng_2c01349 crossref_primary_10_1149_1945_7111_ac0944 crossref_primary_10_1149_1945_7111_ada740 crossref_primary_10_1039_D3QM01111A crossref_primary_10_1007_s41918_022_00167_1 crossref_primary_10_1002_smll_202401675 crossref_primary_10_1016_j_enchem_2024_100122 crossref_primary_10_1021_acsami_2c09729 crossref_primary_10_1002_smll_202202911 crossref_primary_10_1016_j_mattod_2022_10_019 crossref_primary_10_1021_acsaem_2c01018 crossref_primary_10_1039_D1TA10816F crossref_primary_10_1002_adma_202206228 crossref_primary_10_1002_smll_202402086 crossref_primary_10_1002_sstr_202300022 crossref_primary_10_1116_6_0000430 crossref_primary_10_1039_D4EE03199G crossref_primary_10_1016_j_jpowsour_2023_232914 crossref_primary_10_1002_sus2_67 crossref_primary_10_1016_j_cej_2022_140375 crossref_primary_10_1016_j_nanoen_2025_110749 crossref_primary_10_1016_j_ensm_2023_102918 crossref_primary_10_1039_D1EE02324A crossref_primary_10_1002_adma_202401625 crossref_primary_10_1002_aenm_202002891 crossref_primary_10_1002_advs_202207056 crossref_primary_10_1002_smll_202308297 crossref_primary_10_1002_anie_202418811 crossref_primary_10_1021_acsenergylett_1c02122 crossref_primary_10_1016_j_mtphys_2022_100679 crossref_primary_10_34133_2022_9753506 crossref_primary_10_1002_smll_202204487 crossref_primary_10_1016_j_cej_2023_147559 crossref_primary_10_1002_batt_202000082 crossref_primary_10_1007_s10008_023_05560_4 crossref_primary_10_1002_celc_202100010 crossref_primary_10_1021_acsnano_4c02236 crossref_primary_10_1016_j_jpowsour_2021_230062 crossref_primary_10_1038_s43246_021_00177_4 crossref_primary_10_1007_s11581_021_04011_2 crossref_primary_10_1016_j_chempr_2021_06_019 crossref_primary_10_1016_j_cej_2022_137538 crossref_primary_10_1063_5_0161316 crossref_primary_10_1002_smll_202103819 crossref_primary_10_1002_adfm_202421160 crossref_primary_10_1002_adma_202306111 crossref_primary_10_1002_advs_202304235 crossref_primary_10_1002_smll_202208282 crossref_primary_10_1002_adfm_202302729 crossref_primary_10_1016_j_cej_2023_147821 crossref_primary_10_1021_acs_chemrev_2c00196 crossref_primary_10_1021_acssuschemeng_2c06738 crossref_primary_10_1002_ange_202418811 crossref_primary_10_1021_acsami_2c09028 crossref_primary_10_1016_j_cej_2023_142895 crossref_primary_10_1016_j_jechem_2023_01_057 crossref_primary_10_1002_adfm_202009692 crossref_primary_10_1002_adfm_202309751 crossref_primary_10_1016_j_jallcom_2024_175769 crossref_primary_10_1021_acs_nanolett_2c03038 crossref_primary_10_1002_adma_202209833 crossref_primary_10_1021_acsami_1c01659 crossref_primary_10_1038_s41467_021_27473_4 crossref_primary_10_1002_aenm_202404900 crossref_primary_10_1016_j_scib_2021_04_034 crossref_primary_10_1002_smll_202305576 crossref_primary_10_1007_s43207_023_00293_6 crossref_primary_10_1039_D4SE00784K crossref_primary_10_1021_acsenergylett_2c02528 crossref_primary_10_1002_adfm_202201498 crossref_primary_10_1002_advs_202105924 crossref_primary_10_1021_acsenergylett_1c01573 crossref_primary_10_1126_sciadv_abq0153 crossref_primary_10_1002_adfm_202211711 crossref_primary_10_1002_idm2_12202 crossref_primary_10_1007_s12274_023_6096_x crossref_primary_10_1016_j_est_2025_116030 crossref_primary_10_1039_D2EE03709B crossref_primary_10_1002_adma_202108363 crossref_primary_10_1016_j_jpowsour_2023_233482 crossref_primary_10_1021_acsenergylett_1c00401 crossref_primary_10_1021_acssuschemeng_1c00878 crossref_primary_10_1002_batt_202200161 crossref_primary_10_1002_inf2_12248 crossref_primary_10_1016_j_ensm_2022_12_013 crossref_primary_10_1021_acsaem_3c00601 crossref_primary_10_1063_5_0108998 crossref_primary_10_1016_j_jcis_2022_04_018 crossref_primary_10_1039_D0EE02062A crossref_primary_10_1002_aenm_202003154 crossref_primary_10_1039_D4CC06729K crossref_primary_10_1021_acsenergylett_1c02332 crossref_primary_10_1002_adfm_202208751 crossref_primary_10_1016_j_ceramint_2021_08_076 crossref_primary_10_1016_j_jechem_2022_10_037 crossref_primary_10_1016_j_xcrp_2022_100851 crossref_primary_10_1021_acsami_3c03876 crossref_primary_10_1002_aenm_202300165 crossref_primary_10_1038_s41467_024_54234_w crossref_primary_10_1016_j_mtener_2021_100804 crossref_primary_10_1002_aenm_202002689 crossref_primary_10_1016_j_cej_2021_130522 crossref_primary_10_2139_ssrn_4103220 crossref_primary_10_1021_acsenergylett_2c00003 crossref_primary_10_1016_j_ensm_2022_05_043 crossref_primary_10_2139_ssrn_4149506 crossref_primary_10_1016_j_pmatsci_2023_101182 crossref_primary_10_1021_acs_jpclett_4c01246 crossref_primary_10_1039_D1TA00467K crossref_primary_10_1002_adfm_202102765 crossref_primary_10_1002_elsa_202100154 crossref_primary_10_1016_j_est_2023_107283 crossref_primary_10_3390_coatings13091496 crossref_primary_10_1002_inf2_12650 crossref_primary_10_1002_adfm_202307701 crossref_primary_10_1002_aesr_202300074 crossref_primary_10_1021_acsenergylett_4c02840 crossref_primary_10_1021_acsami_2c21133 crossref_primary_10_1111_ijac_14523 crossref_primary_10_1016_j_nanoen_2022_107027 crossref_primary_10_1126_sciadv_add8972 crossref_primary_10_1016_j_ensm_2022_06_011 crossref_primary_10_2139_ssrn_3995084 crossref_primary_10_1016_j_mtchem_2020_100368 crossref_primary_10_1063_5_0109575 crossref_primary_10_1021_acs_nanolett_1c01748 crossref_primary_10_1016_j_est_2023_107715 crossref_primary_10_1021_acs_energyfuels_4c02715 crossref_primary_10_1016_j_ensm_2021_02_001 crossref_primary_10_1002_advs_202104531 crossref_primary_10_1021_acs_accounts_2c00822 crossref_primary_10_1016_j_pmatsci_2023_101193 crossref_primary_10_1016_j_jpowsour_2022_231451 crossref_primary_10_1021_acsami_0c23144 crossref_primary_10_1016_j_jpowsour_2023_232720 crossref_primary_10_1016_j_pmatsci_2024_101339 crossref_primary_10_1111_jace_18730 crossref_primary_10_1016_j_esci_2024_100277 crossref_primary_10_1016_j_ensm_2022_10_002 crossref_primary_10_1002_aenm_202003250 crossref_primary_10_1039_D0DT03774E crossref_primary_10_1021_acsami_2c07292 crossref_primary_10_2139_ssrn_4092249 crossref_primary_10_1002_eem2_12282 crossref_primary_10_1002_cssc_202202220 crossref_primary_10_1002_adma_202303730 crossref_primary_10_1016_j_ensm_2022_10_056 crossref_primary_10_1021_acs_energyfuels_3c01626 crossref_primary_10_1002_eom2_12338 crossref_primary_10_1016_j_ssi_2023_116408 crossref_primary_10_1016_j_ensm_2022_07_037 crossref_primary_10_1002_adfm_202105776 crossref_primary_10_1002_advs_202205821 crossref_primary_10_1016_j_ensm_2022_08_041 crossref_primary_10_1007_s11426_022_1525_3 crossref_primary_10_1002_smll_202412799 crossref_primary_10_1007_s41918_024_00230_z crossref_primary_10_1016_j_mtnano_2023_100322 crossref_primary_10_1002_aenm_202101413 crossref_primary_10_1016_j_nanoen_2022_107603 crossref_primary_10_1016_j_cej_2021_133665 crossref_primary_10_1016_j_ensm_2024_103625 crossref_primary_10_1039_D4TA08187K crossref_primary_10_1002_admi_202102283 crossref_primary_10_1002_eem2_12831 crossref_primary_10_1021_acsami_2c10027 crossref_primary_10_1016_j_jallcom_2021_160375 crossref_primary_10_1007_s41918_020_00092_1 crossref_primary_10_1002_advs_202205012 crossref_primary_10_1002_smll_202100974 crossref_primary_10_1002_sstr_202100014 crossref_primary_10_1021_acsami_3c10933 crossref_primary_10_1021_jacs_1c10872 crossref_primary_10_1007_s41918_024_00221_0 crossref_primary_10_1016_j_ensm_2022_03_043 crossref_primary_10_1021_acsami_0c16966 crossref_primary_10_1002_cey2_100 crossref_primary_10_34133_energymatadv_0074 crossref_primary_10_1016_j_ensm_2024_103857 crossref_primary_10_1002_adfm_202304407 crossref_primary_10_1002_adma_202212111 crossref_primary_10_1016_j_jallcom_2024_173530 |
Cites_doi | 10.1021/jacs.7b06364 10.1007/s11581-017-2314-4 10.1016/j.joule.2019.06.013 10.1038/nnano.2017.16 10.1016/j.ssi.2014.10.017 10.1016/j.jpowsour.2014.11.062 10.1038/33647 10.1021/cm101438x 10.1021/acsenergylett.8b02542 10.1063/1.4941513 10.1016/j.ssi.2009.03.022 10.1038/nmat4821 10.1016/j.ssi.2016.06.013 10.1002/aenm.201501590 10.1021/acsaem.8b01061 10.1038/s41563-019-0431-3 10.1149/2.1571707jes 10.1016/j.jpowsour.2018.06.055 10.1016/j.jpowsour.2015.10.053 10.1021/jacs.8b03106 10.1021/jacs.6b05341 10.1016/j.electacta.2018.11.034 10.1021/acs.chemmater.7b03002 10.1016/j.mattod.2014.04.026 10.1038/s41560-018-0312-z 10.1039/C7TA03162A 10.1039/c2jm31413d 10.1038/s41563-019-0438-9 10.1038/nenergy.2016.30 10.1002/anie.200701144 10.1002/anie.201708637 10.1021/acsenergylett.8b00453 10.1016/j.jpowsour.2016.11.097 10.1016/j.jpowsour.2017.11.078 10.1103/PhysRevB.88.104103 10.1021/acsami.8b06366 10.1016/j.ssi.2013.09.012 10.1038/s41560-018-0191-3 10.1038/nmat3066 10.1016/j.jpowsour.2018.04.019 10.1088/0957-4484/25/50/504007 10.1038/natrevmats.2016.13 10.1016/0167-2738(95)00056-C 10.1149/1.1850854 10.1002/aenm.201803440 10.1021/acsami.6b00831 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OTOTI |
DOI | 10.1002/adma.202000030 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1617070 32363768 10_1002_adma_202000030 ADMA202000030 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Office of Energy Efficiency and Renewable Energy – fundername: Vehicle Technologies Office – fundername: U.S. Department of Energy funderid: DE‐AC02‐05CH11231 – fundername: U.S. Department of Energy grantid: DE-AC02-05CH11231 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c5450-b6bf1c95d52240b0e8f39bbe28ef6678c5efdff53d09256b53d9824fbb5a2cf23 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri May 19 00:36:59 EDT 2023 Fri Jul 11 10:19:59 EDT 2025 Fri Jul 25 06:57:19 EDT 2025 Wed Feb 19 02:30:45 EST 2025 Thu Apr 24 22:54:12 EDT 2025 Tue Jul 01 02:32:47 EDT 2025 Wed Jan 22 16:35:17 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | garnet electrolytes lithium dendrites solid-electrolyte interphase solid-state batteries interfacial chemistry |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5450-b6bf1c95d52240b0e8f39bbe28ef6678c5efdff53d09256b53d9824fbb5a2cf23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 DE‐AC02‐05CH11231 USDOE Office of Energy Efficiency and Renewable Energy (EERE) |
ORCID | 0000-0002-8626-6381 0000000286266381 |
OpenAccessLink | https://www.osti.gov/biblio/1617070 |
PMID | 32363768 |
PQID | 2411062094 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1617070 proquest_miscellaneous_2398158816 proquest_journals_2411062094 pubmed_primary_32363768 crossref_primary_10_1002_adma_202000030 crossref_citationtrail_10_1002_adma_202000030 wiley_primary_10_1002_adma_202000030_ADMA202000030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2019; 9 2019; 4 2013 2016 2017 2018; 88 1708 342 1 2019; 3 2018; 140 2005; 152 2018 2007; 389 46 1995; 79 2016 2019; 8 4 2010 2017; 22 5 2014; 25 2011; 10 2019; 18 2017; 29 2016; 302 2017; 139 2018; 24 2016; 6 2018; 396 2009 2014; 180 262 2018; 3 2016; 1 2017; 16 2015 2019; 273 18 2018; 377 2015; 275 2017; 56 2017 2016 1998; 12 1 392 2016; 138 2017; 164 2014; 17 2018; 10 2012; 22 2019; 296 2016; 294 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_21_2 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_26_2 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_26_4 e_1_2_4_29_1 e_1_2_4_26_3 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_1_3 e_1_2_4_3_1 e_1_2_4_1_2 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_5_2 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_7_2 e_1_2_4_8_1 e_1_2_4_9_2 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_18_2 e_1_2_4_19_1 |
References_xml | – volume: 302 start-page: 135 year: 2016 publication-title: J. Power Sources – volume: 18 start-page: 1105 year: 2019 publication-title: Nat. Mater. – volume: 10 start-page: 682 year: 2011 publication-title: Nat. Mater. – volume: 12 1 392 start-page: 194 694 year: 2017 2016 1998 publication-title: Nat. Nanotechnol. Nat. Rev. Mater. Nature – volume: 17 start-page: 236 year: 2014 publication-title: Mater. Today – volume: 3 start-page: 600 year: 2018 publication-title: Nat. Energy – volume: 3 start-page: 1212 year: 2018 publication-title: ACS Energy Lett. – volume: 3 start-page: 2030 year: 2019 publication-title: Joule – volume: 180 262 start-page: 911 573 year: 2009 2014 publication-title: Solid State Ionics Solid State Ionics – volume: 275 start-page: 612 year: 2015 publication-title: J. Power Sources – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 29 start-page: 7961 year: 2017 publication-title: Chem. Mater. – volume: 88 1708 342 1 start-page: 175 5511 year: 2013 2016 2017 2018 publication-title: Phys. Rev. B AIP Conf. Proc. J. Power Sources ACS Appl. Energy Mater. – volume: 152 start-page: A396 year: 2005 publication-title: J. Electrochem. Soc. – volume: 164 year: 2017 publication-title: J. Electrochem. Soc. – volume: 273 18 start-page: 51 1278 year: 2015 2019 publication-title: Solid State Ionics Nat. Mater. – volume: 8 4 start-page: 187 year: 2016 2019 publication-title: ACS Appl. Mater. Interfaces Nat. Energy – volume: 24 start-page: 1271 year: 2018 publication-title: Ionics – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 389 46 start-page: 120 7778 year: 2018 2007 publication-title: J. Power Sources Angew. Chem., Int. Ed. – volume: 79 start-page: 161 year: 1995 publication-title: Solid State Ionics – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 138 start-page: 9385 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 651 year: 2019 publication-title: ACS Energy Lett. – volume: 296 start-page: 842 year: 2019 publication-title: Electrochim. Acta – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 396 start-page: 314 year: 2018 publication-title: J. Power Sources – volume: 294 start-page: 108 year: 2016 publication-title: Solid State Ionics – volume: 22 year: 2012 publication-title: J. Mater. Chem. – volume: 16 start-page: 572 year: 2017 publication-title: Nat. Mater. – volume: 140 start-page: 6448 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 22 5 start-page: 5401 year: 2010 2017 publication-title: Chem. Mater. J. Mater. Chem. A – volume: 25 year: 2014 publication-title: Nanotechnology – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 377 start-page: 7 year: 2018 publication-title: J. Power Sources – ident: e_1_2_4_35_1 doi: 10.1021/jacs.7b06364 – ident: e_1_2_4_19_1 doi: 10.1007/s11581-017-2314-4 – ident: e_1_2_4_20_1 doi: 10.1016/j.joule.2019.06.013 – ident: e_1_2_4_1_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_4_21_1 doi: 10.1016/j.ssi.2014.10.017 – ident: e_1_2_4_29_1 doi: 10.1016/j.jpowsour.2014.11.062 – ident: e_1_2_4_1_3 doi: 10.1038/33647 – ident: e_1_2_4_18_1 doi: 10.1021/cm101438x – ident: e_1_2_4_22_1 doi: 10.1021/acsenergylett.8b02542 – ident: e_1_2_4_26_2 doi: 10.1063/1.4941513 – ident: e_1_2_4_7_1 doi: 10.1016/j.ssi.2009.03.022 – ident: e_1_2_4_4_1 doi: 10.1038/nmat4821 – ident: e_1_2_4_28_1 doi: 10.1016/j.ssi.2016.06.013 – ident: e_1_2_4_34_1 doi: 10.1002/aenm.201501590 – ident: e_1_2_4_26_4 doi: 10.1021/acsaem.8b01061 – ident: e_1_2_4_21_2 doi: 10.1038/s41563-019-0431-3 – ident: e_1_2_4_31_1 doi: 10.1149/2.1571707jes – ident: e_1_2_4_12_1 doi: 10.1016/j.jpowsour.2018.06.055 – ident: e_1_2_4_6_1 doi: 10.1016/j.jpowsour.2015.10.053 – ident: e_1_2_4_11_1 doi: 10.1021/jacs.8b03106 – ident: e_1_2_4_16_1 doi: 10.1021/jacs.6b05341 – ident: e_1_2_4_17_1 doi: 10.1016/j.electacta.2018.11.034 – ident: e_1_2_4_10_1 doi: 10.1021/acs.chemmater.7b03002 – ident: e_1_2_4_23_1 doi: 10.1016/j.mattod.2014.04.026 – ident: e_1_2_4_9_2 doi: 10.1038/s41560-018-0312-z – ident: e_1_2_4_18_2 doi: 10.1039/C7TA03162A – ident: e_1_2_4_30_1 doi: 10.1039/c2jm31413d – ident: e_1_2_4_32_1 doi: 10.1038/s41563-019-0438-9 – ident: e_1_2_4_2_1 doi: 10.1038/nenergy.2016.30 – ident: e_1_2_4_5_2 doi: 10.1002/anie.200701144 – ident: e_1_2_4_14_1 doi: 10.1002/anie.201708637 – ident: e_1_2_4_15_1 doi: 10.1021/acsenergylett.8b00453 – ident: e_1_2_4_26_3 doi: 10.1016/j.jpowsour.2016.11.097 – ident: e_1_2_4_36_1 doi: 10.1016/j.jpowsour.2017.11.078 – ident: e_1_2_4_26_1 doi: 10.1103/PhysRevB.88.104103 – ident: e_1_2_4_13_1 doi: 10.1021/acsami.8b06366 – ident: e_1_2_4_7_2 doi: 10.1016/j.ssi.2013.09.012 – ident: e_1_2_4_24_1 doi: 10.1038/s41560-018-0191-3 – ident: e_1_2_4_3_1 doi: 10.1038/nmat3066 – ident: e_1_2_4_5_1 doi: 10.1016/j.jpowsour.2018.04.019 – ident: e_1_2_4_25_1 doi: 10.1088/0957-4484/25/50/504007 – ident: e_1_2_4_1_2 doi: 10.1038/natrevmats.2016.13 – ident: e_1_2_4_8_1 doi: 10.1016/0167-2738(95)00056-C – ident: e_1_2_4_27_1 doi: 10.1149/1.1850854 – ident: e_1_2_4_33_1 doi: 10.1002/aenm.201803440 – ident: e_1_2_4_9_1 doi: 10.1021/acsami.6b00831 |
SSID | ssj0009606 |
Score | 2.6630666 |
Snippet | Lithium (Li) metal is a promising candidate as the anode for high‐energy‐density solid‐state batteries. However, interface issues, including large interfacial... Lithium (Li) metal is a promising candidate as the anode for high-energy-density solid-state batteries. However, interface issues, including large interfacial... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2000030 |
SubjectTerms | Anodes Anodic coatings Critical current density Direct reduction Electrolytes garnet electrolytes Grain boundaries Interface stability interfacial chemistry Lithium lithium dendrites Materials science Molten salt electrolytes Solid electrolytes solid‐electrolyte interphase solid‐state batteries |
Title | Tuning the Anode–Electrolyte Interface Chemistry for Garnet‐Based Solid‐State Li Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000030 https://www.ncbi.nlm.nih.gov/pubmed/32363768 https://www.proquest.com/docview/2411062094 https://www.proquest.com/docview/2398158816 https://www.osti.gov/biblio/1617070 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELbQnuDA_09oQUZC4uQ2sePEPi6lpUIsB2il3izbsaWKVYLa7AFOfQQk3rBPwky8SbsIhAS3WLEVx54Zf2OPvyHkpUDJEXXNuM8dK4s8Mqe1YzFoG22ee-3wRHfxoTo8Lt-dyJNrt_gTP8S04YaaMdhrVHDrznevSENtM_AG4VUT-BwYYQzYQlT08Yo_CuH5QLYnJNNVqUbWxpzvbjbfWJVmHWjX7xDnJoAdVqCDO8SOfU-BJ593Vr3b8d9-oXX8n5-7S26v4SmdJ3m6R26E9j65dY208AGJRyvcS6GAHOm87ZpwefFjPyXTWX7tAx32GKP1ge6NyeQoIGP61p61ob-8-P4aFs6GfuqWpw2UBrRL35_SRQA_gCa-T3DfH5Ljg_2jvUO2ztbAPKCwnLnKxcJr2UhECS4PKgrtXOAqxAqWRC9DbGKUosk14CwHD1rxMjonLfeRi0dk1nZteEJo6QtZ69pWQujSFdE2Wta-KqOywpa1zAgbZ8v4NZU5ZtRYmkTCzA2On5nGLyOvpvpfEonHH2tu4eQbgB_Ioesx2Mj3Bp1AsI0Z2R5lwqxV_dwABAK3moObnJEX02sYXjx5sW3oVlBHaFVIpYoqI4-TLE0dEVxUYOVVRvggEX_poZm_Wcyn0tN_abRFbuJzCnjbJrP-bBWeAbTq3fNBfX4CEb0bHw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BcgAOvB-hBYyExCltYsdJfFz6YIHdHmArcbNsx5YqVllUsgc49Scg8Q_7S5hJNimLQEhwixNHcewZ-5vx-BuA54IkRxRFzF1i4yxNQmyVsnHwygSTJE5Z2tGdHeWT4-zNB9lHE9JZmI4fYnC4kWa08zUpODmkdy9YQ03VEgfRWRP83mW4Qmm9STf3310wSBFAb-n2hIxVnpU9b2PCdzff31iXRkvUr99hzk0I265BhzfB9q3vQk8-7qwau-O-_kLs-F-_dwturBEqG3cidRsu-foOXP-Jt_AuhPmK3CkMwSMb18vKn599P-jy6Sy-NJ61bsZgnGd7fT45huCYvTKntW_Oz769xLWzYu-Xi5MKSy3gZdMTNvNoCrCO8hMt-HtwfHgw35vE64QNsUMglsQ2tyF1SlaSgIJNfBmEstbz0occV0UnfahCkKJKFEItixeq5FmwVhruAhf3YVQva_8QWOZSWajC5EKozKbBVEoWLs9CaYTJChlB3A-Xdms2c0qqsdAdDzPX1H966L8IXgz1P3U8Hn-suUWjrxGBEI2uo3gj12iyA3F6jGC7Fwq91vbPGlEQWtYcLeUIng2PsXtp88XUfrnCOkKVqSzLNI_gQSdMQ0MEFzlO9GUEvBWJv7RQj_dn46H06F9eegpXJ_PZVE9fH73dgmt0v4t_24ZRc7ryjxFpNfZJq0s_ALBHHzg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BIiE48IaGFjASEqe0iR0n9nHpdinQrRC0Um-W7dhSxSqp2uwBTv0JSPzD_hLGySbtIhAS3OLEVvyY8XzjxzcAr1iQHFYUMbWJibM08bGR0sTeSe11klhpwo7ubD_fPczeH_GjK7f4O36IYcEtaEY7XwcFPyn91iVpqC5b3qBw1QR_dx1uZHkigvs1-XRJIBXwecu2x3gs80z0tI0J3Votv2KWRjWq1-8g5yqCbU3Q9C7ovvLdyZMvm4vGbNpvv_A6_k_r7sGdJT4l406g7sM1Vz2A21dYCx-CP1iExRSC0JGMq7p0F-c_drpoOvOvjSPtIqPX1pHtPpocQWhM3urTyjUX59_foOUsyed6flxiqoW7ZO-YzBw6AqQj_ET__REcTncOtnfjZbiG2CIMS2KTG59ayUseYIJJnPBMGuOocD5Hm2i586X3nJWJRKBl8EEKmnljuKbWU_YYRlVduTUgmU15IQudMyYzk3pdSl7YPPNCM50VPIK4Hy1ll1zmIaTGXHUszFSF_lND_0Xwesh_0rF4_DHnehh8hfgjkOjacNrINip4gTg5RrDRy4Ra6vqZQgyEfjVFPzmCl8Nn7N6w9aIrVy8wD5Mi5UKkeQRPOlkaKsIoy3GaFxHQViL-UkM1nszGQ-rpvxR6ATc_TqZq793-h3W4FV53h982YNScLtwzhFmNed5q0k9Tsh3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+Anode%E2%80%93Electrolyte+Interface+Chemistry+for+Garnet%E2%80%90Based+Solid%E2%80%90State+Li+Metal+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Deng%2C+Tao&rft.au=Ji%2C+Xiao&rft.au=Zhao%2C+Yang&rft.au=Cao%2C+Longsheng&rft.date=2020-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=23&rft_id=info:doi/10.1002%2Fadma.202000030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202000030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |