Highly Efficient Perovskite–Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage
Organic–inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley–Queisser limit of single‐junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss) in small‐ and large‐bandga...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 34 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2017
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic–inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley–Queisser limit of single‐junction solar cells; however, they are limited by large nonideal photovoltage loss (V
oc,loss) in small‐ and large‐bandgap subcells. Here, an integrated approach is utilized to improve the V
oc of subcells with optimized bandgaps and fabricate perovskite–perovskite tandem solar cells with small V
oc,loss. A fullerene variant, Indene‐C60 bis‐adduct, is used to achieve optimized interfacial contact in a small‐bandgap (≈1.2 eV) subcell, which facilitates higher quasi‐Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V
oc to 0.84 V. Compositional engineering of large‐bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V
oc of 1.22 V. The resultant monolithic perovskite–perovskite tandem solar cell shows a high V
oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V
oc,loss is better than state‐of‐the‐art silicon–perovskite tandem solar cells, which highlights the prospects of using perovskite–perovskite tandems for solar‐energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar‐to‐hydrogen efficiencies beyond 15%.
High open‐circuit voltage, V
oc (1.98 V) and power conversion efficiency, PCE (18.5%) is realized in an ideal bandgap‐matched two‐terminal perovskite–perovskite tandem solar cell via an integrated approach. A fullerene variant, Indene‐C60 bis‐adduct is used to achieve optimized interfacial contact and alleviate hysteresis instabilities in the small‐bandgap subcell. Compositional engineering is employed to realize more highly photostabilized V
oc in the large‐bandgap subcell. |
---|---|
AbstractList | Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley-Queisser limit of single-junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss ) in small- and large-bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite-perovskite tandem solar cells with small V oc,loss . A fullerene variant, Indene-C60 bis-adduct, is used to achieve optimized interfacial contact in a small-bandgap (≈1.2 eV) subcell, which facilitates higher quasi-Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large-bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite-perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state-of-the-art silicon-perovskite tandem solar cells, which highlights the prospects of using perovskite-perovskite tandems for solar-energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar-to-hydrogen efficiencies beyond 15%.Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley-Queisser limit of single-junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss ) in small- and large-bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite-perovskite tandem solar cells with small V oc,loss . A fullerene variant, Indene-C60 bis-adduct, is used to achieve optimized interfacial contact in a small-bandgap (≈1.2 eV) subcell, which facilitates higher quasi-Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large-bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite-perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state-of-the-art silicon-perovskite tandem solar cells, which highlights the prospects of using perovskite-perovskite tandems for solar-energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar-to-hydrogen efficiencies beyond 15%. Organic–inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley–Queisser limit of single‐junction solar cells; however, they are limited by large nonideal photovoltage loss ( V oc,loss ) in small‐ and large‐bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite–perovskite tandem solar cells with small V oc,loss . A fullerene variant, Indene‐C 60 bis‐adduct, is used to achieve optimized interfacial contact in a small‐bandgap (≈1.2 eV) subcell, which facilitates higher quasi‐Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large‐bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite–perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state‐of‐the‐art silicon–perovskite tandem solar cells, which highlights the prospects of using perovskite–perovskite tandems for solar‐energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar‐to‐hydrogen efficiencies beyond 15%. Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley-Queisser limit of single-junction solar cells; however, they are limited by large nonideal photovoltage loss (V ) in small- and large-bandgap subcells. Here, an integrated approach is utilized to improve the V of subcells with optimized bandgaps and fabricate perovskite-perovskite tandem solar cells with small V . A fullerene variant, Indene-C bis-adduct, is used to achieve optimized interfacial contact in a small-bandgap (≈1.2 eV) subcell, which facilitates higher quasi-Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V to 0.84 V. Compositional engineering of large-bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V of 1.22 V. The resultant monolithic perovskite-perovskite tandem solar cell shows a high V of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V is better than state-of-the-art silicon-perovskite tandem solar cells, which highlights the prospects of using perovskite-perovskite tandems for solar-energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar-to-hydrogen efficiencies beyond 15%. Organic–inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley–Queisser limit of single‐junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss) in small‐ and large‐bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite–perovskite tandem solar cells with small V oc,loss. A fullerene variant, Indene‐C60 bis‐adduct, is used to achieve optimized interfacial contact in a small‐bandgap (≈1.2 eV) subcell, which facilitates higher quasi‐Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large‐bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite–perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state‐of‐the‐art silicon–perovskite tandem solar cells, which highlights the prospects of using perovskite–perovskite tandems for solar‐energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar‐to‐hydrogen efficiencies beyond 15%. High open‐circuit voltage, V oc (1.98 V) and power conversion efficiency, PCE (18.5%) is realized in an ideal bandgap‐matched two‐terminal perovskite–perovskite tandem solar cell via an integrated approach. A fullerene variant, Indene‐C60 bis‐adduct is used to achieve optimized interfacial contact and alleviate hysteresis instabilities in the small‐bandgap subcell. Compositional engineering is employed to realize more highly photostabilized V oc in the large‐bandgap subcell. Organic–inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley–Queisser limit of single‐junction solar cells; however, they are limited by large nonideal photovoltage loss (Voc,loss) in small‐ and large‐bandgap subcells. Here, an integrated approach is utilized to improve the Voc of subcells with optimized bandgaps and fabricate perovskite–perovskite tandem solar cells with small Voc,loss. A fullerene variant, Indene‐C60 bis‐adduct, is used to achieve optimized interfacial contact in a small‐bandgap (≈1.2 eV) subcell, which facilitates higher quasi‐Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves Voc to 0.84 V. Compositional engineering of large‐bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized Voc of 1.22 V. The resultant monolithic perovskite–perovskite tandem solar cell shows a high Voc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal Voc,loss is better than state‐of‐the‐art silicon–perovskite tandem solar cells, which highlights the prospects of using perovskite–perovskite tandems for solar‐energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar‐to‐hydrogen efficiencies beyond 15%. |
Author | Rajagopal, Adharsh Jo, Sae Byeok Yang, Zhibin Liang, Po‐Wei Braly, Ian L. Jen, Alex K.‐Y. Hillhouse, Hugh W. |
Author_xml | – sequence: 1 givenname: Adharsh surname: Rajagopal fullname: Rajagopal, Adharsh organization: University of Washington – sequence: 2 givenname: Zhibin surname: Yang fullname: Yang, Zhibin organization: University of Washington – sequence: 3 givenname: Sae Byeok surname: Jo fullname: Jo, Sae Byeok organization: University of Washington – sequence: 4 givenname: Ian L. surname: Braly fullname: Braly, Ian L. organization: University of Washington – sequence: 5 givenname: Po‐Wei surname: Liang fullname: Liang, Po‐Wei organization: University of Washington – sequence: 6 givenname: Hugh W. surname: Hillhouse fullname: Hillhouse, Hugh W. organization: University of Washington – sequence: 7 givenname: Alex K.‐Y. surname: Jen fullname: Jen, Alex K.‐Y. email: alexjen@cityu.edu.hk organization: City University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28692764$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1380026$$D View this record in Osti.gov |
BookMark | eNqFkU9rFDEYh4NU7LZ69ShBEbzMmv8zOS5rtcKKRes5ZJPMTupM0ibZyt78Dn5DP4kp21ooiKcQeJ6X9_f-jsBBiMEB8ByjOUaIvNV20nOCcIsIZugRmGFOcMOQ5AdghiTljRSsOwRHOV8ghKRA4gk4JJ2QpBVsBq5O_WYYd_Ck773xLhR45lK8zt99cb9__rr_wHMdrJvg1zjqBJduHDP84rQZfNjADr2GsYdlqNjgYnLFGz3ClZ98gT7AsyGWeB3HojfuKXjc6zG7Z7fvMfj2_uR8edqsPn_4uFysGsMZRw230tK1bS23_ZoILaVjsmtRh1vSUmu5YJZQjoW1FBleU7esZ9RSYVvGeUePwcv93JiLV9nUDGYwMQRnisK0q9cTFXqzhy5TvNq6XNTks6nhdHBxmxWWuJWiwqyirx6gF3GbQo1QKSoIr-uhSr24pbbryVl1mfyk007dXbwCbA-YFHNOrld1M118DCVpPyqM1E2x6qZY9bfYqs0faHeT_ynIvfDDj273H1ot3n1a3Lt_AGpGtBQ |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2018_07_049 crossref_primary_10_1002_cjoc_202200796 crossref_primary_10_1021_acs_chemrev_3c00667 crossref_primary_10_1016_j_chempr_2024_12_002 crossref_primary_10_1002_solr_202400172 crossref_primary_10_1016_j_solmat_2020_110741 crossref_primary_10_1002_eom2_12313 crossref_primary_10_1007_s11664_024_11141_6 crossref_primary_10_1039_C8QM00620B crossref_primary_10_1016_j_joule_2018_10_029 crossref_primary_10_1016_j_mtener_2018_12_009 crossref_primary_10_1021_jacs_9b03662 crossref_primary_10_1016_j_chphi_2024_100562 crossref_primary_10_1088_1361_6439_ac34a0 crossref_primary_10_1007_s12596_023_01647_3 crossref_primary_10_1016_j_matdes_2021_110138 crossref_primary_10_1088_1674_4926_24070022 crossref_primary_10_1038_s41560_018_0126_z crossref_primary_10_1021_jacs_0c06288 crossref_primary_10_1002_adma_202206574 crossref_primary_10_1016_j_cej_2022_135196 crossref_primary_10_1002_idm2_12142 crossref_primary_10_3390_coatings14111410 crossref_primary_10_7498_aps_72_20222019 crossref_primary_10_1002_adma_202210834 crossref_primary_10_1002_aenm_202202674 crossref_primary_10_1002_solr_201900396 crossref_primary_10_1016_j_ijleo_2023_170714 crossref_primary_10_1002_solr_202000384 crossref_primary_10_3390_solar4020010 crossref_primary_10_1002_smll_202208289 crossref_primary_10_1016_j_apcatb_2019_04_050 crossref_primary_10_1038_s41467_020_19062_8 crossref_primary_10_1002_adma_202002196 crossref_primary_10_1002_aenm_201803699 crossref_primary_10_1021_accountsmr_0c00017 crossref_primary_10_1039_D0EE00788A crossref_primary_10_1021_acsenergylett_4c03065 crossref_primary_10_1016_j_micrna_2022_207240 crossref_primary_10_1002_aenm_201801954 crossref_primary_10_1002_adma_201902870 crossref_primary_10_1002_aesr_202200160 crossref_primary_10_1016_j_joule_2020_06_006 crossref_primary_10_1063_5_0027573 crossref_primary_10_1002_aenm_202000566 crossref_primary_10_1002_smtd_202300238 crossref_primary_10_1021_acsenergylett_8b00207 crossref_primary_10_1021_acssuschemeng_2c05801 crossref_primary_10_1039_D4TC01803F crossref_primary_10_1039_C8EE01936C crossref_primary_10_1016_j_solmat_2022_111617 crossref_primary_10_1021_acsenergylett_8b01411 crossref_primary_10_1002_adma_201803230 crossref_primary_10_1002_smtd_202000093 crossref_primary_10_1002_adma_202107729 crossref_primary_10_1002_aenm_202404628 crossref_primary_10_1039_D1CS00841B crossref_primary_10_1002_adma_202211593 crossref_primary_10_1002_pip_3881 crossref_primary_10_1002_solr_202100401 crossref_primary_10_1002_solr_202400264 crossref_primary_10_1021_acsaem_0c02535 crossref_primary_10_1039_D4EE06027J crossref_primary_10_1016_j_tsf_2024_140432 crossref_primary_10_1021_acsenergylett_8b02179 crossref_primary_10_1007_s43939_021_00016_w crossref_primary_10_1016_j_jcis_2021_07_147 crossref_primary_10_1016_j_mattod_2023_06_002 crossref_primary_10_1002_adma_202105539 crossref_primary_10_1007_s40820_020_00559_2 crossref_primary_10_3390_ma15062254 crossref_primary_10_1002_pip_3095 crossref_primary_10_1002_smll_202400807 crossref_primary_10_1038_s41560_018_0190_4 crossref_primary_10_1109_TED_2022_3167965 crossref_primary_10_1016_j_jechem_2020_09_022 crossref_primary_10_1021_jacs_0c00647 crossref_primary_10_1016_j_solener_2020_08_003 crossref_primary_10_1039_D2TA01470J crossref_primary_10_1002_solr_201900080 crossref_primary_10_1002_advs_201901397 crossref_primary_10_1021_acs_chemmater_1c00848 crossref_primary_10_1002_solr_202200877 crossref_primary_10_1002_smtd_202000395 crossref_primary_10_1002_aenm_202400204 crossref_primary_10_1002_adfm_202204825 crossref_primary_10_1515_ntrev_2022_0547 crossref_primary_10_1038_s41377_022_00924_3 crossref_primary_10_1002_admi_201701404 crossref_primary_10_1039_D1TA08964A crossref_primary_10_1021_acsphotonics_2c00484 crossref_primary_10_1002_adfm_202206561 crossref_primary_10_1021_acsenergylett_2c02156 crossref_primary_10_1007_s11664_022_09902_2 crossref_primary_10_1063_1_5061809 crossref_primary_10_1002_smll_202202028 crossref_primary_10_1002_solr_202000218 crossref_primary_10_1021_acs_jpclett_8b01152 crossref_primary_10_1016_j_jechem_2022_03_019 crossref_primary_10_1002_adma_201806478 crossref_primary_10_1021_acs_jpcc_1c02987 crossref_primary_10_1039_C8SE00314A crossref_primary_10_1002_solr_202100212 crossref_primary_10_1021_acsenergylett_7b00636 crossref_primary_10_1021_acs_nanolett_8b01480 crossref_primary_10_1016_j_jallcom_2025_179760 crossref_primary_10_1039_C9EE02162K crossref_primary_10_1002_adma_202405684 crossref_primary_10_1002_advs_201700792 crossref_primary_10_1039_D0TA04275G crossref_primary_10_1021_acsaem_0c01930 crossref_primary_10_1016_j_coelec_2018_10_017 crossref_primary_10_1002_adma_202209750 crossref_primary_10_1016_j_joule_2019_01_007 crossref_primary_10_1016_j_ijleo_2023_170821 crossref_primary_10_1039_D2EE00731B crossref_primary_10_1002_aenm_201903085 crossref_primary_10_1021_acsenergylett_7b01287 crossref_primary_10_1002_adfm_202207554 crossref_primary_10_1002_aenm_202001188 crossref_primary_10_1016_j_spmi_2020_106549 crossref_primary_10_1002_advs_202100552 crossref_primary_10_1021_acsenergylett_7b00525 crossref_primary_10_1002_smtd_202300207 crossref_primary_10_1016_j_jpcs_2024_112220 crossref_primary_10_1039_C9TC02003A crossref_primary_10_1007_s40843_024_3076_3 crossref_primary_10_1016_j_rser_2022_112553 crossref_primary_10_1002_adfm_202401508 crossref_primary_10_1016_j_nanoen_2020_104917 crossref_primary_10_1039_D2TC03111F crossref_primary_10_1002_adma_201704418 crossref_primary_10_1002_aenm_201801254 crossref_primary_10_1002_solr_202301059 crossref_primary_10_1007_s11426_020_9870_4 crossref_primary_10_1063_5_0061483 crossref_primary_10_3390_ma18010058 crossref_primary_10_1002_ente_202100952 crossref_primary_10_1002_solr_202300081 crossref_primary_10_3390_nano13121886 crossref_primary_10_1016_j_ijleo_2020_164723 crossref_primary_10_1002_adfm_202001904 crossref_primary_10_1002_adsu_202300188 crossref_primary_10_1002_adts_202300988 crossref_primary_10_1007_s11664_024_11051_7 crossref_primary_10_1039_C9TA05308E crossref_primary_10_1039_D2EE00663D crossref_primary_10_1051_epjpv_2021004 crossref_primary_10_1002_adma_201705998 crossref_primary_10_1016_j_jmat_2021_04_002 crossref_primary_10_1002_aenm_201903347 crossref_primary_10_1016_j_scib_2020_04_013 crossref_primary_10_1002_adma_201907392 crossref_primary_10_1002_adma_202311025 crossref_primary_10_1002_cjoc_202100672 crossref_primary_10_1016_j_isci_2021_102463 crossref_primary_10_1126_science_aav7911 crossref_primary_10_1039_D4RA03916E crossref_primary_10_1002_aenm_201702365 crossref_primary_10_1002_aenm_201802774 crossref_primary_10_1016_j_jpcs_2019_109093 crossref_primary_10_1038_s41560_018_0278_x crossref_primary_10_1002_smll_202300101 crossref_primary_10_1002_smll_202006145 crossref_primary_10_1002_adma_202408387 crossref_primary_10_1002_adma_202411677 crossref_primary_10_1039_C8TA05444D crossref_primary_10_1155_2023_3801813 crossref_primary_10_1002_solr_202500053 crossref_primary_10_1016_j_ces_2019_01_003 crossref_primary_10_1002_eem2_12211 crossref_primary_10_1002_solr_202100945 crossref_primary_10_1246_bcsj_20180071 crossref_primary_10_1016_j_joule_2017_09_017 crossref_primary_10_1016_j_nanoen_2019_04_069 crossref_primary_10_3390_ma14133526 crossref_primary_10_1002_adfm_202301196 crossref_primary_10_1021_accountsmr_1c00169 crossref_primary_10_1002_solr_201800146 crossref_primary_10_1007_s12633_023_02466_8 crossref_primary_10_23919_IEN_2023_0026 crossref_primary_10_1002_adma_202205769 crossref_primary_10_1016_j_jechem_2021_03_038 crossref_primary_10_1002_adma_201800455 crossref_primary_10_1039_D0TA12286F crossref_primary_10_3390_en16083519 crossref_primary_10_1002_adma_202003312 crossref_primary_10_1016_j_optmat_2021_111893 crossref_primary_10_3390_polym16213053 crossref_primary_10_1088_1361_6463_abb487 crossref_primary_10_3390_inorganics12020052 crossref_primary_10_1002_smll_201907226 crossref_primary_10_1016_j_optmat_2020_109935 crossref_primary_10_1002_adma_202002228 crossref_primary_10_1021_acs_chemrev_9b00780 crossref_primary_10_1039_D0CS01488E crossref_primary_10_1021_acsami_9b06315 crossref_primary_10_1002_solr_201800256 crossref_primary_10_1002_solr_201900467 crossref_primary_10_1016_j_jechem_2022_07_003 crossref_primary_10_1021_acsenergylett_3c02018 crossref_primary_10_1002_smtd_201900150 crossref_primary_10_1021_acs_chemrev_8b00539 crossref_primary_10_1016_j_matlet_2024_136430 crossref_primary_10_1021_acsenergylett_7b00964 crossref_primary_10_1039_D3EE03638C crossref_primary_10_1016_j_ceramint_2018_02_147 crossref_primary_10_1038_s41524_023_01066_9 crossref_primary_10_1002_advs_202105085 crossref_primary_10_1021_acsenergylett_1c02302 crossref_primary_10_1021_acsenergylett_7b00847 crossref_primary_10_1039_D2TA09627G crossref_primary_10_1002_adfm_202107650 crossref_primary_10_1002_aenm_201801692 crossref_primary_10_1007_s12274_019_2336_5 crossref_primary_10_1016_j_jechem_2023_09_023 crossref_primary_10_1021_acsenergylett_2c01578 crossref_primary_10_1039_D0TC03885G crossref_primary_10_1039_D0MH00990C crossref_primary_10_1002_adma_202110351 crossref_primary_10_3390_jcs8110458 crossref_primary_10_1021_acsaem_4c01360 crossref_primary_10_1109_JPHOTOV_2023_3328690 crossref_primary_10_1016_j_scib_2020_11_006 crossref_primary_10_1007_s43207_021_00117_5 crossref_primary_10_1039_D0TC01440K crossref_primary_10_1016_j_nanoen_2020_105400 crossref_primary_10_1016_j_mtcomm_2022_103881 crossref_primary_10_1016_j_solener_2022_07_033 crossref_primary_10_1016_j_nanoen_2021_106219 crossref_primary_10_1016_j_solmat_2021_111232 crossref_primary_10_1002_aenm_202100784 crossref_primary_10_1016_j_solener_2020_01_006 crossref_primary_10_1021_acsenergylett_3c02470 crossref_primary_10_1088_1674_4926_41_5_051201 crossref_primary_10_1038_s41467_019_08507_4 crossref_primary_10_1002_smtd_202201255 crossref_primary_10_1016_j_solener_2019_05_006 crossref_primary_10_1039_D0TA10098F crossref_primary_10_15541_jim20230116 crossref_primary_10_1007_s12209_022_00341_y crossref_primary_10_1016_j_nanoen_2023_109175 crossref_primary_10_1038_s41560_019_0466_3 crossref_primary_10_1038_s41598_024_78165_0 crossref_primary_10_32604_jrm_2022_023122 crossref_primary_10_1021_acsami_2c06760 crossref_primary_10_1088_1361_6641_ab27f7 crossref_primary_10_1002_solr_202100509 crossref_primary_10_1021_acsenergylett_8b00576 crossref_primary_10_1039_D4TC00053F crossref_primary_10_1002_adfm_201804427 crossref_primary_10_1002_adfm_202005594 crossref_primary_10_1016_j_nanoen_2020_105634 crossref_primary_10_1002_adfm_201802803 crossref_primary_10_1002_admi_202101144 crossref_primary_10_1002_aenm_201803135 crossref_primary_10_1039_D4NJ04725G crossref_primary_10_1038_s41467_021_23008_z crossref_primary_10_1016_j_nantod_2023_102046 crossref_primary_10_1016_j_orgel_2022_106714 crossref_primary_10_1007_s40843_022_2437_9 crossref_primary_10_1002_aenm_201903488 crossref_primary_10_3390_en14123383 crossref_primary_10_1021_acs_jpclett_1c02244 crossref_primary_10_1002_adfm_201808801 crossref_primary_10_1021_acsenergylett_0c02105 crossref_primary_10_1021_acs_jpclett_0c00772 crossref_primary_10_1021_acsomega_2c01786 crossref_primary_10_1039_C9TA04366G crossref_primary_10_1039_D1EE01562A crossref_primary_10_1021_acsenergylett_3c01241 crossref_primary_10_1063_5_0232621 crossref_primary_10_1038_s41586_023_05992_y crossref_primary_10_1007_s13391_020_00206_3 crossref_primary_10_1021_acsami_1c10318 crossref_primary_10_1016_j_rio_2025_100813 crossref_primary_10_1007_s40843_022_2231_9 crossref_primary_10_1002_aenm_201903013 crossref_primary_10_1016_j_optmat_2023_113822 crossref_primary_10_1016_j_nanoen_2018_10_014 crossref_primary_10_1021_acsenergylett_0c02475 crossref_primary_10_1002_adts_202200800 crossref_primary_10_1002_aenm_201904102 crossref_primary_10_1021_acsenergylett_8b01201 crossref_primary_10_1038_s41566_021_00809_8 crossref_primary_10_3390_nano13010096 crossref_primary_10_1007_s42452_021_04487_7 crossref_primary_10_1002_ente_202201050 crossref_primary_10_1021_acssuschemeng_0c05619 crossref_primary_10_1002_aenm_202204115 crossref_primary_10_1038_s41467_019_12513_x crossref_primary_10_1002_inf2_12322 crossref_primary_10_1016_j_mtener_2017_10_001 crossref_primary_10_1016_j_nanoen_2024_109933 crossref_primary_10_31613_ceramist_2019_22_2_05 crossref_primary_10_1002_aenm_202000361 |
Cites_doi | 10.1038/nenergy.2017.18 10.1039/C5TA08744A 10.1039/C5EE02965A 10.1021/acs.jpclett.5b02014 10.1038/nphoton.2016.62 10.1039/C4EE01076K 10.1021/acs.jpclett.5b02686 10.1515/9783110283204 10.1039/C6EE01729K 10.1002/aenm.201402321 10.1126/science.1243167 10.1038/natrevmats.2015.7 10.1002/adma.201602696 10.1021/ja5033259 10.1021/jacs.5b06658 10.1021/acs.accounts.5b00433 10.1021/acsenergylett.6b00495 10.1126/science.aad4424 10.1039/C6EE03397K 10.1063/1.4963760 10.1002/aenm.201601353 10.1039/C6EE03014A 10.1002/aenm.201600132 10.1021/acsami.5b12740 10.1038/nenergy.2017.9 10.1021/acsenergylett.6b00355 10.1002/adma.201501629 10.1021/jacs.6b08337 10.1002/adma.201505279 10.1021/acs.chemrev.5b00715 10.1038/nphoton.2014.171 10.1002/adma.201604744 10.1002/advs.201500301 10.1038/natrevmats.2016.99 10.1002/pip.2855 10.1021/acs.jpcc.5b10728 10.1557/mrs.2015.167 10.1021/acs.jpclett.5b01645 10.1126/science.1258307 10.1126/science.aaf9717 10.1021/acs.jpclett.6b00322 10.1021/acs.jpclett.5b01738 10.1002/aenm.201602121 10.1038/nenergy.2016.48 10.1103/PhysRevApplied.4.014020 10.1021/jacs.6b09257 10.1126/science.aad5845 10.1021/acs.nanolett.6b03857 10.1002/aenm.201600396 10.1021/acsenergylett.6b00254 10.1021/acsnano.6b05825 10.1002/aenm.201500799 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OTOTI |
DOI | 10.1002/adma.201702140 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1380026 28692764 10_1002_adma_201702140 ADMA201702140 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: DMR‐1608279 – fundername: Department of Energy SunShot funderid: DE‐EE 0006710 – fundername: Office of Naval Research funderid: N00014‐17‐1‐2260 – fundername: Asian Office of Aerospace R&D funderid: FA2386‐15‐1‐4106 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c5450-5d9d3bd7d5dfb26a99e49870817273dd564d23516dd30c552174f43d36d745583 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu May 18 22:38:27 EDT 2023 Fri Jul 11 02:19:11 EDT 2025 Fri Jul 25 08:21:57 EDT 2025 Mon Jul 21 05:42:02 EDT 2025 Tue Jul 01 00:44:34 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 Wed Jan 22 17:05:21 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | monolithic tandem hysteresis and photostability solar water splitting open-circuit voltage optical simulations |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5450-5d9d3bd7d5dfb26a99e49870817273dd564d23516dd30c552174f43d36d745583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 EE 0006710 USDOE |
OpenAccessLink | https://www.osti.gov/biblio/1380026 |
PMID | 28692764 |
PQID | 1936254980 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1380026 proquest_miscellaneous_1917963804 proquest_journals_1936254980 pubmed_primary_28692764 crossref_citationtrail_10_1002_adma_201702140 crossref_primary_10_1002_adma_201702140 wiley_primary_10_1002_adma_201702140_ADMA201702140 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Sep |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-Sep |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2017; 7 2015; 6 2017; 2 2015; 5 2015; 4 2017; 25 2016; 109 2016; 10 2013; 342 2017; 29 2016; 16 2014; 136 2016; 120 2016; 4 2016; 6 2016; 7 2016; 1 2016; 3 2015; 137 2015; 40 2017; 10 2016; 354 2016; 352 2017 2016 2016; 116 2016; 138 2016; 28 2014; 8 2014; 7 2016; 49 2016; 351 2014; 345 2016; 8 2016; 9 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 354 start-page: 861 year: 2016 publication-title: Science – volume: 29 start-page: 1604744 year: 2017 publication-title: Adv. Mater. – volume: 116 start-page: 4558 year: 2016 publication-title: Chem. Rev. – volume: 136 start-page: 8094 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 3937 year: 2016 publication-title: Adv. Mater. – volume: 2 start-page: 16099 year: 2017 publication-title: Nat. Rev. Mater. – volume: 2 start-page: 17009 year: 2017 publication-title: Nat. Energy – volume: 10 start-page: 710 year: 2017 publication-title: Energy Environ. Sci. – volume: 1 start-page: 15007 year: 2016 publication-title: Nat. Rev. Mater. – volume: 25 start-page: 3 year: 2017 publication-title: Prog. Photovoltaics – volume: 6 start-page: 3503 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 345 start-page: 1593 year: 2014 publication-title: Science – volume: 342 start-page: 344 year: 2013 publication-title: Science – volume: 2 start-page: 17018 year: 2017 publication-title: Nat. Energy – volume: 49 start-page: 294 year: 2016 publication-title: Acc. Chem. Res. – volume: 16 start-page: 7739 year: 2016 publication-title: Nano Lett. – volume: 7 start-page: 161 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 10 start-page: 295 year: 2016 publication-title: Nat. Photonics – volume: 9 start-page: 81 year: 2016 publication-title: Energy Environ. Sci. – volume: 137 start-page: 11445 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1602121 year: 2017 publication-title: Adv. Energy Mater. – volume: 351 start-page: 151 year: 2016 publication-title: Science – volume: 4 start-page: 1208 year: 2016 publication-title: J. Mater. Chem. A – volume: 10 start-page: 10258 year: 2016 publication-title: ACS Nano – volume: 4 start-page: 14020 year: 2015 publication-title: Phys. Rev. Appl. – volume: 8 start-page: 7070 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 16048 year: 2016 publication-title: Nat. Energy – volume: 6 start-page: 3808 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 28 start-page: 5121 year: 2016 publication-title: Adv. Mater. – volume: 6 start-page: 1600132 year: 2016 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1600396 year: 2016 publication-title: Adv. Energy Mater. – volume: 1 start-page: 474 year: 2016 publication-title: ACS Energy Lett. – volume: 138 start-page: 12360 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 153902 year: 2016 publication-title: Appl. Phys. Lett. – volume: 120 start-page: 893 year: 2016 publication-title: J. Phys. Chem. C – volume: 40 start-page: 681 year: 2015 publication-title: MRS Bull. – volume: 5 start-page: 1500799 year: 2015 publication-title: Adv. Energy Mater. – volume: 9 start-page: 3472 year: 2016 publication-title: Energy Environ. Sci. – year: 2016 – volume: 7 start-page: 1321 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 352 start-page: aad4424 year: 2016 publication-title: Science – volume: 1 start-page: 1199 year: 2016 publication-title: ACS Energy Lett. – volume: 7 start-page: 3061 year: 2014 publication-title: Energy Environ. Sci. – volume: 138 start-page: 14750 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 8990 year: 2016 publication-title: Adv. Mater. – volume: 8 start-page: 737 year: 2014 publication-title: Nat. Photonics – volume: 6 start-page: 4640 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 1 start-page: 726 year: 2016 publication-title: ACS Energy Lett. – year: 2017 – volume: 6 start-page: 1601353 year: 2016 publication-title: Adv. Energy Mater. – volume: 3 start-page: 1500301 year: 2016 publication-title: Adv. Sci. – volume: 5 start-page: 1402321 year: 2015 publication-title: Adv. Energy Mater. – volume: 10 start-page: 361 year: 2017 publication-title: Energy Environ. Sci. – ident: e_1_2_5_27_1 doi: 10.1038/nenergy.2017.18 – ident: e_1_2_5_13_1 doi: 10.1039/C5TA08744A – ident: e_1_2_5_51_1 doi: 10.1039/C5EE02965A – ident: e_1_2_5_28_1 doi: 10.1021/acs.jpclett.5b02014 – ident: e_1_2_5_5_1 doi: 10.1038/nphoton.2016.62 – ident: e_1_2_5_22_1 doi: 10.1039/C4EE01076K – ident: e_1_2_5_52_1 doi: 10.1021/acs.jpclett.5b02686 – ident: e_1_2_5_29_1 doi: 10.1515/9783110283204 – ident: e_1_2_5_34_1 doi: 10.1039/C6EE01729K – ident: e_1_2_5_26_1 doi: 10.1002/aenm.201402321 – ident: e_1_2_5_38_1 doi: 10.1126/science.1243167 – ident: e_1_2_5_3_1 doi: 10.1038/natrevmats.2015.7 – ident: e_1_2_5_25_1 doi: 10.1002/adma.201602696 – ident: e_1_2_5_16_1 doi: 10.1021/ja5033259 – ident: e_1_2_5_19_1 doi: 10.1021/jacs.5b06658 – ident: e_1_2_5_37_1 doi: 10.1021/acs.accounts.5b00433 – ident: e_1_2_5_44_1 doi: 10.1021/acsenergylett.6b00495 – ident: e_1_2_5_6_1 doi: 10.1126/science.aad4424 – ident: e_1_2_5_7_1 doi: 10.1039/C6EE03397K – ident: e_1_2_5_8_1 – ident: e_1_2_5_31_1 doi: 10.1063/1.4963760 – ident: e_1_2_5_24_1 doi: 10.1002/aenm.201601353 – ident: e_1_2_5_47_1 doi: 10.1039/C6EE03014A – ident: e_1_2_5_32_1 doi: 10.1002/aenm.201600132 – ident: e_1_2_5_49_1 doi: 10.1021/acsami.5b12740 – ident: e_1_2_5_21_1 doi: 10.1038/nenergy.2017.9 – ident: e_1_2_5_41_1 doi: 10.1021/acsenergylett.6b00355 – ident: e_1_2_5_12_1 doi: 10.1002/adma.201501629 – ident: e_1_2_5_17_1 doi: 10.1021/jacs.6b08337 – ident: e_1_2_5_15_1 doi: 10.1002/adma.201505279 – ident: e_1_2_5_2_1 doi: 10.1021/acs.chemrev.5b00715 – ident: e_1_2_5_36_1 doi: 10.1038/nphoton.2014.171 – ident: e_1_2_5_18_1 doi: 10.1002/adma.201604744 – ident: e_1_2_5_46_1 doi: 10.1002/advs.201500301 – ident: e_1_2_5_1_1 doi: 10.1038/natrevmats.2016.99 – ident: e_1_2_5_9_1 doi: 10.1002/pip.2855 – ident: e_1_2_5_45_1 doi: 10.1021/acs.jpcc.5b10728 – ident: e_1_2_5_11_1 doi: 10.1557/mrs.2015.167 – ident: e_1_2_5_30_1 doi: 10.1021/acs.jpclett.5b01645 – ident: e_1_2_5_48_1 doi: 10.1126/science.1258307 – ident: e_1_2_5_20_1 doi: 10.1126/science.aaf9717 – ident: e_1_2_5_40_1 doi: 10.1021/acs.jpclett.6b00322 – ident: e_1_2_5_23_1 doi: 10.1021/acs.jpclett.5b01738 – ident: e_1_2_5_14_1 doi: 10.1002/aenm.201602121 – ident: e_1_2_5_4_1 doi: 10.1038/nenergy.2016.48 – ident: e_1_2_5_10_1 doi: 10.1103/PhysRevApplied.4.014020 – ident: e_1_2_5_39_1 doi: 10.1021/jacs.6b09257 – ident: e_1_2_5_42_1 doi: 10.1126/science.aad5845 – ident: e_1_2_5_43_1 doi: 10.1021/acs.nanolett.6b03857 – ident: e_1_2_5_33_1 doi: 10.1002/aenm.201600396 – ident: e_1_2_5_53_1 doi: 10.1021/acsenergylett.6b00254 – ident: e_1_2_5_35_1 doi: 10.1021/acsnano.6b05825 – ident: e_1_2_5_50_1 doi: 10.1002/aenm.201500799 |
SSID | ssj0009606 |
Score | 2.6411302 |
Snippet | Organic–inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the... Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Buckminsterfullerene Energy conversion efficiency Fermi level Fullerenes hysteresis and photostability Indene Materials science monolithic tandem open‐circuit voltage optical simulations Perovskites Photovoltaic cells Solar cells solar water splitting Water splitting |
Title | Highly Efficient Perovskite–Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201702140 https://www.ncbi.nlm.nih.gov/pubmed/28692764 https://www.proquest.com/docview/1936254980 https://www.proquest.com/docview/1917963804 https://www.osti.gov/biblio/1380026 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBYjT9vDetnWpZehwcae3Dq6xX4MXUIpbJQuhb4Jy5JYaWpvjVNon_of-g_3S3qO7DjN6CisbxKSQJbP5TvS0SdCPqU-NdzGMpIqySPhhYwMeAqIUjyDQuylCwmy39XBiTg8lacPbvHX_BDthhtqRrDXqOCZme4tSEMzG3iDen1k_cKgHRO2EBUdL_ijEJ4Hsj0uo1SJZM7aGLO95eFLXqlTgnY9hjiXAWzwQKMVks3nXieenO_OKrOb3_xF6_icj1slrxt4Sge1PK2RF65YJ68ekBa-Ib8xNWRyTYeBfAJ8Fj1yl-XVFLeB_9zeLSp0jBvUF_QHRs90300mU3rcJG_SJP5MS08BftLx4i4lDfet6FlBj36WVQmmswJ795acjIbj_YOoebghygGQxZG0qeXG9q203jCVpakTKRiGJKAla6USlnHZU9byOJcSwyIvuOXK9oWUCX9HOkVZuPeEMuQjTEzmAeYIb5mBdojYnMgB2bke75Jo_uN03rCa4-MaE13zMTONS6nbpeySL23_XzWfxz97bqEcaEAiSKebY95RXukeR4itumR7Lh660fqpBjCsMOBOYPDHthn0FQ9hssKVM-wDJhCMXiy6ZKMWq3YiLFEp6ytoYUE4npihHnz9Nmhrm_8zaIu8xHKdNLdNOtXlzO0AyqrMh6BJ9ymrG2A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qYQEsSnmnDxgkKlZunXnFXrCImlYpfagqqdTdEHvGAhFs2jhFZcU_8CX8Cp_Al3CvXyEIhITUBTvbM7bGnvs49_rOGYBnYRJGwvrKUzqIPZlI5UXoKTBKSTge-IlyRYHsoR6cyJen6nQBvtZrYUp-iCbhRppR2GtScEpIb85YQ0e2IA7qdIn2y6_qKvfc5UeM2iYvdvs4xeuc72wPtwZetbGAFyNg8D1lQysi27XKJhHXozB0EmNv9I7kza1VWlouVEdbK_xYKYLtiRRWaNuVSgUCn3sNrtM24kTX3z-eMVZRQFDQ-wnlhVoGNU-kzzfnxzvnB1sZ6vPvMO48ZC583s5t-FZ_rbLU5d3GNI824k-_EEn-V59zCRYrBM56pcrcgQWX3oVbP_Ey3oMzqn4ZX7Ltgl8D3TI7cufZxYQy3d8_f5mdsCHl4N-zV5QgYFtuPJ6w46o-lQX-OssShgibDWfLRVmxpIy9TdnRmyzP0DvkaNLvw8mVvPMDaKVZ6h4B40S5GESjBJGcTCyPsB2DUidjBK-uI9rg1ZJi4oq4nfYPGZuScpobmjrTTF0bnjf9P5SUJX_suUKCZxBsEWNwTKVVcW46gqII3YbVWh5NZdgmBvG-ppxCgDc_bZrRJNF_plHqsin1QSuPdt2XbXhYynEzEB7okHc1tvBCGv8yQtPrH_Sas-V_uekJ3BgMD_bN_u7h3grcpOtljeAqtPLzqVtDUJlHjws1ZvD6qgX9BwwQdhg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VICE48P8TWmCRqDi5dfYv9oFD1DRqKVRRSaXetrF3VyCCXRoHVE68Ay_Cq_AKPAkztuMQBEJC6oGb7V1ba-_8fDOe_RbgSezjRNhQBUpHaSC9VEGCngKjFM_xIPTKlQWy-3rnUD4_Ukcr8HW-Fqbih2gSbqQZpb0mBT-xfnNBGjq2JW9Qp0usX2FdVrnnzj5i0DZ9ttvHGV7nfLA92toJ6n0FghTxQhgoG1uR2K5V1idcj-PYSQy90TmSM7dWaWm5UB1trQhTpQi1eyms0LYrlYoEPvcCXJQ6jGmziP7BgrCK4oGS3U-oINYymtNEhnxzebxLbrCVozr_DuIuI-bS5Q2uwbf5x6oqXd5uzIpkI_30C4_k__Q1r8PVGn-zXqUwN2DFZTfhyk-sjLfgPdW-TM7YdsmugU6ZDd1p_mFKee7vn78sTtiIMvDv2CtKD7AtN5lM2UFdncqicJ3lniG-ZqPFYlFWLihjbzI2fJ0XOfqGAg36bTg8l3e-A60sz9w9YJwIF6Nk7BHHSW95gu0YkjqZInR1HdGGYC4oJq1p22n3kImpCKe5oakzzdS14WnT_6QiLPljz1WSO4NQi_iCUyqsSgvTERRD6DaszcXR1GZtahDta8ooRHjz46YZDRL9ZRpnLp9RH7TxaNVD2Ya7lRg3A-GRjnlXYwsvhfEvIzS9_stec3b_X256BJeG_YF5sbu_twqX6XJVILgGreJ05h4goiySh6USMzg-bzn_AQandMc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Efficient+Perovskite-Perovskite+Tandem+Solar+Cells+Reaching+80%25+of+the+Theoretical+Limit+in+Photovoltage&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Rajagopal%2C+Adharsh&rft.au=Yang%2C+Zhibin&rft.au=Jo%2C+Sae+Byeok&rft.au=Braly%2C+Ian+L&rft.date=2017-09-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=29&rft.issue=34&rft_id=info:doi/10.1002%2Fadma.201702140&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |