Highly Efficient Perovskite–Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage

Organic–inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley–Queisser limit of single‐junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss) in small‐ and large‐bandga...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 34
Main Authors Rajagopal, Adharsh, Yang, Zhibin, Jo, Sae Byeok, Braly, Ian L., Liang, Po‐Wei, Hillhouse, Hugh W., Jen, Alex K.‐Y.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.09.2017
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic–inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley–Queisser limit of single‐junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss) in small‐ and large‐bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite–perovskite tandem solar cells with small V oc,loss. A fullerene variant, Indene‐C60 bis‐adduct, is used to achieve optimized interfacial contact in a small‐bandgap (≈1.2 eV) subcell, which facilitates higher quasi‐Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large‐bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite–perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state‐of‐the‐art silicon–perovskite tandem solar cells, which highlights the prospects of using perovskite–perovskite tandems for solar‐energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar‐to‐hydrogen efficiencies beyond 15%. High open‐circuit voltage, V oc (1.98 V) and power conversion efficiency, PCE (18.5%) is realized in an ideal bandgap‐matched two‐terminal perovskite–perovskite tandem solar cell via an integrated approach. A fullerene variant, Indene‐C60 bis‐adduct is used to achieve optimized interfacial contact and alleviate hysteresis instabilities in the small‐bandgap subcell. Compositional engineering is employed to realize more highly photostabilized V oc in the large‐bandgap subcell.
AbstractList Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley-Queisser limit of single-junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss ) in small- and large-bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite-perovskite tandem solar cells with small V oc,loss . A fullerene variant, Indene-C60 bis-adduct, is used to achieve optimized interfacial contact in a small-bandgap (≈1.2 eV) subcell, which facilitates higher quasi-Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large-bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite-perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state-of-the-art silicon-perovskite tandem solar cells, which highlights the prospects of using perovskite-perovskite tandems for solar-energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar-to-hydrogen efficiencies beyond 15%.Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley-Queisser limit of single-junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss ) in small- and large-bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite-perovskite tandem solar cells with small V oc,loss . A fullerene variant, Indene-C60 bis-adduct, is used to achieve optimized interfacial contact in a small-bandgap (≈1.2 eV) subcell, which facilitates higher quasi-Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large-bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite-perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state-of-the-art silicon-perovskite tandem solar cells, which highlights the prospects of using perovskite-perovskite tandems for solar-energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar-to-hydrogen efficiencies beyond 15%.
Organic–inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley–Queisser limit of single‐junction solar cells; however, they are limited by large nonideal photovoltage loss ( V oc,loss ) in small‐ and large‐bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite–perovskite tandem solar cells with small V oc,loss . A fullerene variant, Indene‐C 60 bis‐adduct, is used to achieve optimized interfacial contact in a small‐bandgap (≈1.2 eV) subcell, which facilitates higher quasi‐Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large‐bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite–perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state‐of‐the‐art silicon–perovskite tandem solar cells, which highlights the prospects of using perovskite–perovskite tandems for solar‐energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar‐to‐hydrogen efficiencies beyond 15%.
Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley-Queisser limit of single-junction solar cells; however, they are limited by large nonideal photovoltage loss (V ) in small- and large-bandgap subcells. Here, an integrated approach is utilized to improve the V of subcells with optimized bandgaps and fabricate perovskite-perovskite tandem solar cells with small V . A fullerene variant, Indene-C bis-adduct, is used to achieve optimized interfacial contact in a small-bandgap (≈1.2 eV) subcell, which facilitates higher quasi-Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V to 0.84 V. Compositional engineering of large-bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V of 1.22 V. The resultant monolithic perovskite-perovskite tandem solar cell shows a high V of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V is better than state-of-the-art silicon-perovskite tandem solar cells, which highlights the prospects of using perovskite-perovskite tandems for solar-energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar-to-hydrogen efficiencies beyond 15%.
Organic–inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley–Queisser limit of single‐junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss) in small‐ and large‐bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite–perovskite tandem solar cells with small V oc,loss. A fullerene variant, Indene‐C60 bis‐adduct, is used to achieve optimized interfacial contact in a small‐bandgap (≈1.2 eV) subcell, which facilitates higher quasi‐Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large‐bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite–perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state‐of‐the‐art silicon–perovskite tandem solar cells, which highlights the prospects of using perovskite–perovskite tandems for solar‐energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar‐to‐hydrogen efficiencies beyond 15%. High open‐circuit voltage, V oc (1.98 V) and power conversion efficiency, PCE (18.5%) is realized in an ideal bandgap‐matched two‐terminal perovskite–perovskite tandem solar cell via an integrated approach. A fullerene variant, Indene‐C60 bis‐adduct is used to achieve optimized interfacial contact and alleviate hysteresis instabilities in the small‐bandgap subcell. Compositional engineering is employed to realize more highly photostabilized V oc in the large‐bandgap subcell.
Organic–inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley–Queisser limit of single‐junction solar cells; however, they are limited by large nonideal photovoltage loss (Voc,loss) in small‐ and large‐bandgap subcells. Here, an integrated approach is utilized to improve the Voc of subcells with optimized bandgaps and fabricate perovskite–perovskite tandem solar cells with small Voc,loss. A fullerene variant, Indene‐C60 bis‐adduct, is used to achieve optimized interfacial contact in a small‐bandgap (≈1.2 eV) subcell, which facilitates higher quasi‐Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves Voc to 0.84 V. Compositional engineering of large‐bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized Voc of 1.22 V. The resultant monolithic perovskite–perovskite tandem solar cell shows a high Voc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal Voc,loss is better than state‐of‐the‐art silicon–perovskite tandem solar cells, which highlights the prospects of using perovskite–perovskite tandems for solar‐energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar‐to‐hydrogen efficiencies beyond 15%.
Author Rajagopal, Adharsh
Jo, Sae Byeok
Yang, Zhibin
Liang, Po‐Wei
Braly, Ian L.
Jen, Alex K.‐Y.
Hillhouse, Hugh W.
Author_xml – sequence: 1
  givenname: Adharsh
  surname: Rajagopal
  fullname: Rajagopal, Adharsh
  organization: University of Washington
– sequence: 2
  givenname: Zhibin
  surname: Yang
  fullname: Yang, Zhibin
  organization: University of Washington
– sequence: 3
  givenname: Sae Byeok
  surname: Jo
  fullname: Jo, Sae Byeok
  organization: University of Washington
– sequence: 4
  givenname: Ian L.
  surname: Braly
  fullname: Braly, Ian L.
  organization: University of Washington
– sequence: 5
  givenname: Po‐Wei
  surname: Liang
  fullname: Liang, Po‐Wei
  organization: University of Washington
– sequence: 6
  givenname: Hugh W.
  surname: Hillhouse
  fullname: Hillhouse, Hugh W.
  organization: University of Washington
– sequence: 7
  givenname: Alex K.‐Y.
  surname: Jen
  fullname: Jen, Alex K.‐Y.
  email: alexjen@cityu.edu.hk
  organization: City University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28692764$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1380026$$D View this record in Osti.gov
BookMark eNqFkU9rFDEYh4NU7LZ69ShBEbzMmv8zOS5rtcKKRes5ZJPMTupM0ibZyt78Dn5DP4kp21ooiKcQeJ6X9_f-jsBBiMEB8ByjOUaIvNV20nOCcIsIZugRmGFOcMOQ5AdghiTljRSsOwRHOV8ghKRA4gk4JJ2QpBVsBq5O_WYYd_Ck773xLhR45lK8zt99cb9__rr_wHMdrJvg1zjqBJduHDP84rQZfNjADr2GsYdlqNjgYnLFGz3ClZ98gT7AsyGWeB3HojfuKXjc6zG7Z7fvMfj2_uR8edqsPn_4uFysGsMZRw230tK1bS23_ZoILaVjsmtRh1vSUmu5YJZQjoW1FBleU7esZ9RSYVvGeUePwcv93JiLV9nUDGYwMQRnisK0q9cTFXqzhy5TvNq6XNTks6nhdHBxmxWWuJWiwqyirx6gF3GbQo1QKSoIr-uhSr24pbbryVl1mfyk007dXbwCbA-YFHNOrld1M118DCVpPyqM1E2x6qZY9bfYqs0faHeT_ynIvfDDj273H1ot3n1a3Lt_AGpGtBQ
CitedBy_id crossref_primary_10_1016_j_nanoen_2018_07_049
crossref_primary_10_1002_cjoc_202200796
crossref_primary_10_1021_acs_chemrev_3c00667
crossref_primary_10_1016_j_chempr_2024_12_002
crossref_primary_10_1002_solr_202400172
crossref_primary_10_1016_j_solmat_2020_110741
crossref_primary_10_1002_eom2_12313
crossref_primary_10_1007_s11664_024_11141_6
crossref_primary_10_1039_C8QM00620B
crossref_primary_10_1016_j_joule_2018_10_029
crossref_primary_10_1016_j_mtener_2018_12_009
crossref_primary_10_1021_jacs_9b03662
crossref_primary_10_1016_j_chphi_2024_100562
crossref_primary_10_1088_1361_6439_ac34a0
crossref_primary_10_1007_s12596_023_01647_3
crossref_primary_10_1016_j_matdes_2021_110138
crossref_primary_10_1088_1674_4926_24070022
crossref_primary_10_1038_s41560_018_0126_z
crossref_primary_10_1021_jacs_0c06288
crossref_primary_10_1002_adma_202206574
crossref_primary_10_1016_j_cej_2022_135196
crossref_primary_10_1002_idm2_12142
crossref_primary_10_3390_coatings14111410
crossref_primary_10_7498_aps_72_20222019
crossref_primary_10_1002_adma_202210834
crossref_primary_10_1002_aenm_202202674
crossref_primary_10_1002_solr_201900396
crossref_primary_10_1016_j_ijleo_2023_170714
crossref_primary_10_1002_solr_202000384
crossref_primary_10_3390_solar4020010
crossref_primary_10_1002_smll_202208289
crossref_primary_10_1016_j_apcatb_2019_04_050
crossref_primary_10_1038_s41467_020_19062_8
crossref_primary_10_1002_adma_202002196
crossref_primary_10_1002_aenm_201803699
crossref_primary_10_1021_accountsmr_0c00017
crossref_primary_10_1039_D0EE00788A
crossref_primary_10_1021_acsenergylett_4c03065
crossref_primary_10_1016_j_micrna_2022_207240
crossref_primary_10_1002_aenm_201801954
crossref_primary_10_1002_adma_201902870
crossref_primary_10_1002_aesr_202200160
crossref_primary_10_1016_j_joule_2020_06_006
crossref_primary_10_1063_5_0027573
crossref_primary_10_1002_aenm_202000566
crossref_primary_10_1002_smtd_202300238
crossref_primary_10_1021_acsenergylett_8b00207
crossref_primary_10_1021_acssuschemeng_2c05801
crossref_primary_10_1039_D4TC01803F
crossref_primary_10_1039_C8EE01936C
crossref_primary_10_1016_j_solmat_2022_111617
crossref_primary_10_1021_acsenergylett_8b01411
crossref_primary_10_1002_adma_201803230
crossref_primary_10_1002_smtd_202000093
crossref_primary_10_1002_adma_202107729
crossref_primary_10_1002_aenm_202404628
crossref_primary_10_1039_D1CS00841B
crossref_primary_10_1002_adma_202211593
crossref_primary_10_1002_pip_3881
crossref_primary_10_1002_solr_202100401
crossref_primary_10_1002_solr_202400264
crossref_primary_10_1021_acsaem_0c02535
crossref_primary_10_1039_D4EE06027J
crossref_primary_10_1016_j_tsf_2024_140432
crossref_primary_10_1021_acsenergylett_8b02179
crossref_primary_10_1007_s43939_021_00016_w
crossref_primary_10_1016_j_jcis_2021_07_147
crossref_primary_10_1016_j_mattod_2023_06_002
crossref_primary_10_1002_adma_202105539
crossref_primary_10_1007_s40820_020_00559_2
crossref_primary_10_3390_ma15062254
crossref_primary_10_1002_pip_3095
crossref_primary_10_1002_smll_202400807
crossref_primary_10_1038_s41560_018_0190_4
crossref_primary_10_1109_TED_2022_3167965
crossref_primary_10_1016_j_jechem_2020_09_022
crossref_primary_10_1021_jacs_0c00647
crossref_primary_10_1016_j_solener_2020_08_003
crossref_primary_10_1039_D2TA01470J
crossref_primary_10_1002_solr_201900080
crossref_primary_10_1002_advs_201901397
crossref_primary_10_1021_acs_chemmater_1c00848
crossref_primary_10_1002_solr_202200877
crossref_primary_10_1002_smtd_202000395
crossref_primary_10_1002_aenm_202400204
crossref_primary_10_1002_adfm_202204825
crossref_primary_10_1515_ntrev_2022_0547
crossref_primary_10_1038_s41377_022_00924_3
crossref_primary_10_1002_admi_201701404
crossref_primary_10_1039_D1TA08964A
crossref_primary_10_1021_acsphotonics_2c00484
crossref_primary_10_1002_adfm_202206561
crossref_primary_10_1021_acsenergylett_2c02156
crossref_primary_10_1007_s11664_022_09902_2
crossref_primary_10_1063_1_5061809
crossref_primary_10_1002_smll_202202028
crossref_primary_10_1002_solr_202000218
crossref_primary_10_1021_acs_jpclett_8b01152
crossref_primary_10_1016_j_jechem_2022_03_019
crossref_primary_10_1002_adma_201806478
crossref_primary_10_1021_acs_jpcc_1c02987
crossref_primary_10_1039_C8SE00314A
crossref_primary_10_1002_solr_202100212
crossref_primary_10_1021_acsenergylett_7b00636
crossref_primary_10_1021_acs_nanolett_8b01480
crossref_primary_10_1016_j_jallcom_2025_179760
crossref_primary_10_1039_C9EE02162K
crossref_primary_10_1002_adma_202405684
crossref_primary_10_1002_advs_201700792
crossref_primary_10_1039_D0TA04275G
crossref_primary_10_1021_acsaem_0c01930
crossref_primary_10_1016_j_coelec_2018_10_017
crossref_primary_10_1002_adma_202209750
crossref_primary_10_1016_j_joule_2019_01_007
crossref_primary_10_1016_j_ijleo_2023_170821
crossref_primary_10_1039_D2EE00731B
crossref_primary_10_1002_aenm_201903085
crossref_primary_10_1021_acsenergylett_7b01287
crossref_primary_10_1002_adfm_202207554
crossref_primary_10_1002_aenm_202001188
crossref_primary_10_1016_j_spmi_2020_106549
crossref_primary_10_1002_advs_202100552
crossref_primary_10_1021_acsenergylett_7b00525
crossref_primary_10_1002_smtd_202300207
crossref_primary_10_1016_j_jpcs_2024_112220
crossref_primary_10_1039_C9TC02003A
crossref_primary_10_1007_s40843_024_3076_3
crossref_primary_10_1016_j_rser_2022_112553
crossref_primary_10_1002_adfm_202401508
crossref_primary_10_1016_j_nanoen_2020_104917
crossref_primary_10_1039_D2TC03111F
crossref_primary_10_1002_adma_201704418
crossref_primary_10_1002_aenm_201801254
crossref_primary_10_1002_solr_202301059
crossref_primary_10_1007_s11426_020_9870_4
crossref_primary_10_1063_5_0061483
crossref_primary_10_3390_ma18010058
crossref_primary_10_1002_ente_202100952
crossref_primary_10_1002_solr_202300081
crossref_primary_10_3390_nano13121886
crossref_primary_10_1016_j_ijleo_2020_164723
crossref_primary_10_1002_adfm_202001904
crossref_primary_10_1002_adsu_202300188
crossref_primary_10_1002_adts_202300988
crossref_primary_10_1007_s11664_024_11051_7
crossref_primary_10_1039_C9TA05308E
crossref_primary_10_1039_D2EE00663D
crossref_primary_10_1051_epjpv_2021004
crossref_primary_10_1002_adma_201705998
crossref_primary_10_1016_j_jmat_2021_04_002
crossref_primary_10_1002_aenm_201903347
crossref_primary_10_1016_j_scib_2020_04_013
crossref_primary_10_1002_adma_201907392
crossref_primary_10_1002_adma_202311025
crossref_primary_10_1002_cjoc_202100672
crossref_primary_10_1016_j_isci_2021_102463
crossref_primary_10_1126_science_aav7911
crossref_primary_10_1039_D4RA03916E
crossref_primary_10_1002_aenm_201702365
crossref_primary_10_1002_aenm_201802774
crossref_primary_10_1016_j_jpcs_2019_109093
crossref_primary_10_1038_s41560_018_0278_x
crossref_primary_10_1002_smll_202300101
crossref_primary_10_1002_smll_202006145
crossref_primary_10_1002_adma_202408387
crossref_primary_10_1002_adma_202411677
crossref_primary_10_1039_C8TA05444D
crossref_primary_10_1155_2023_3801813
crossref_primary_10_1002_solr_202500053
crossref_primary_10_1016_j_ces_2019_01_003
crossref_primary_10_1002_eem2_12211
crossref_primary_10_1002_solr_202100945
crossref_primary_10_1246_bcsj_20180071
crossref_primary_10_1016_j_joule_2017_09_017
crossref_primary_10_1016_j_nanoen_2019_04_069
crossref_primary_10_3390_ma14133526
crossref_primary_10_1002_adfm_202301196
crossref_primary_10_1021_accountsmr_1c00169
crossref_primary_10_1002_solr_201800146
crossref_primary_10_1007_s12633_023_02466_8
crossref_primary_10_23919_IEN_2023_0026
crossref_primary_10_1002_adma_202205769
crossref_primary_10_1016_j_jechem_2021_03_038
crossref_primary_10_1002_adma_201800455
crossref_primary_10_1039_D0TA12286F
crossref_primary_10_3390_en16083519
crossref_primary_10_1002_adma_202003312
crossref_primary_10_1016_j_optmat_2021_111893
crossref_primary_10_3390_polym16213053
crossref_primary_10_1088_1361_6463_abb487
crossref_primary_10_3390_inorganics12020052
crossref_primary_10_1002_smll_201907226
crossref_primary_10_1016_j_optmat_2020_109935
crossref_primary_10_1002_adma_202002228
crossref_primary_10_1021_acs_chemrev_9b00780
crossref_primary_10_1039_D0CS01488E
crossref_primary_10_1021_acsami_9b06315
crossref_primary_10_1002_solr_201800256
crossref_primary_10_1002_solr_201900467
crossref_primary_10_1016_j_jechem_2022_07_003
crossref_primary_10_1021_acsenergylett_3c02018
crossref_primary_10_1002_smtd_201900150
crossref_primary_10_1021_acs_chemrev_8b00539
crossref_primary_10_1016_j_matlet_2024_136430
crossref_primary_10_1021_acsenergylett_7b00964
crossref_primary_10_1039_D3EE03638C
crossref_primary_10_1016_j_ceramint_2018_02_147
crossref_primary_10_1038_s41524_023_01066_9
crossref_primary_10_1002_advs_202105085
crossref_primary_10_1021_acsenergylett_1c02302
crossref_primary_10_1021_acsenergylett_7b00847
crossref_primary_10_1039_D2TA09627G
crossref_primary_10_1002_adfm_202107650
crossref_primary_10_1002_aenm_201801692
crossref_primary_10_1007_s12274_019_2336_5
crossref_primary_10_1016_j_jechem_2023_09_023
crossref_primary_10_1021_acsenergylett_2c01578
crossref_primary_10_1039_D0TC03885G
crossref_primary_10_1039_D0MH00990C
crossref_primary_10_1002_adma_202110351
crossref_primary_10_3390_jcs8110458
crossref_primary_10_1021_acsaem_4c01360
crossref_primary_10_1109_JPHOTOV_2023_3328690
crossref_primary_10_1016_j_scib_2020_11_006
crossref_primary_10_1007_s43207_021_00117_5
crossref_primary_10_1039_D0TC01440K
crossref_primary_10_1016_j_nanoen_2020_105400
crossref_primary_10_1016_j_mtcomm_2022_103881
crossref_primary_10_1016_j_solener_2022_07_033
crossref_primary_10_1016_j_nanoen_2021_106219
crossref_primary_10_1016_j_solmat_2021_111232
crossref_primary_10_1002_aenm_202100784
crossref_primary_10_1016_j_solener_2020_01_006
crossref_primary_10_1021_acsenergylett_3c02470
crossref_primary_10_1088_1674_4926_41_5_051201
crossref_primary_10_1038_s41467_019_08507_4
crossref_primary_10_1002_smtd_202201255
crossref_primary_10_1016_j_solener_2019_05_006
crossref_primary_10_1039_D0TA10098F
crossref_primary_10_15541_jim20230116
crossref_primary_10_1007_s12209_022_00341_y
crossref_primary_10_1016_j_nanoen_2023_109175
crossref_primary_10_1038_s41560_019_0466_3
crossref_primary_10_1038_s41598_024_78165_0
crossref_primary_10_32604_jrm_2022_023122
crossref_primary_10_1021_acsami_2c06760
crossref_primary_10_1088_1361_6641_ab27f7
crossref_primary_10_1002_solr_202100509
crossref_primary_10_1021_acsenergylett_8b00576
crossref_primary_10_1039_D4TC00053F
crossref_primary_10_1002_adfm_201804427
crossref_primary_10_1002_adfm_202005594
crossref_primary_10_1016_j_nanoen_2020_105634
crossref_primary_10_1002_adfm_201802803
crossref_primary_10_1002_admi_202101144
crossref_primary_10_1002_aenm_201803135
crossref_primary_10_1039_D4NJ04725G
crossref_primary_10_1038_s41467_021_23008_z
crossref_primary_10_1016_j_nantod_2023_102046
crossref_primary_10_1016_j_orgel_2022_106714
crossref_primary_10_1007_s40843_022_2437_9
crossref_primary_10_1002_aenm_201903488
crossref_primary_10_3390_en14123383
crossref_primary_10_1021_acs_jpclett_1c02244
crossref_primary_10_1002_adfm_201808801
crossref_primary_10_1021_acsenergylett_0c02105
crossref_primary_10_1021_acs_jpclett_0c00772
crossref_primary_10_1021_acsomega_2c01786
crossref_primary_10_1039_C9TA04366G
crossref_primary_10_1039_D1EE01562A
crossref_primary_10_1021_acsenergylett_3c01241
crossref_primary_10_1063_5_0232621
crossref_primary_10_1038_s41586_023_05992_y
crossref_primary_10_1007_s13391_020_00206_3
crossref_primary_10_1021_acsami_1c10318
crossref_primary_10_1016_j_rio_2025_100813
crossref_primary_10_1007_s40843_022_2231_9
crossref_primary_10_1002_aenm_201903013
crossref_primary_10_1016_j_optmat_2023_113822
crossref_primary_10_1016_j_nanoen_2018_10_014
crossref_primary_10_1021_acsenergylett_0c02475
crossref_primary_10_1002_adts_202200800
crossref_primary_10_1002_aenm_201904102
crossref_primary_10_1021_acsenergylett_8b01201
crossref_primary_10_1038_s41566_021_00809_8
crossref_primary_10_3390_nano13010096
crossref_primary_10_1007_s42452_021_04487_7
crossref_primary_10_1002_ente_202201050
crossref_primary_10_1021_acssuschemeng_0c05619
crossref_primary_10_1002_aenm_202204115
crossref_primary_10_1038_s41467_019_12513_x
crossref_primary_10_1002_inf2_12322
crossref_primary_10_1016_j_mtener_2017_10_001
crossref_primary_10_1016_j_nanoen_2024_109933
crossref_primary_10_31613_ceramist_2019_22_2_05
crossref_primary_10_1002_aenm_202000361
Cites_doi 10.1038/nenergy.2017.18
10.1039/C5TA08744A
10.1039/C5EE02965A
10.1021/acs.jpclett.5b02014
10.1038/nphoton.2016.62
10.1039/C4EE01076K
10.1021/acs.jpclett.5b02686
10.1515/9783110283204
10.1039/C6EE01729K
10.1002/aenm.201402321
10.1126/science.1243167
10.1038/natrevmats.2015.7
10.1002/adma.201602696
10.1021/ja5033259
10.1021/jacs.5b06658
10.1021/acs.accounts.5b00433
10.1021/acsenergylett.6b00495
10.1126/science.aad4424
10.1039/C6EE03397K
10.1063/1.4963760
10.1002/aenm.201601353
10.1039/C6EE03014A
10.1002/aenm.201600132
10.1021/acsami.5b12740
10.1038/nenergy.2017.9
10.1021/acsenergylett.6b00355
10.1002/adma.201501629
10.1021/jacs.6b08337
10.1002/adma.201505279
10.1021/acs.chemrev.5b00715
10.1038/nphoton.2014.171
10.1002/adma.201604744
10.1002/advs.201500301
10.1038/natrevmats.2016.99
10.1002/pip.2855
10.1021/acs.jpcc.5b10728
10.1557/mrs.2015.167
10.1021/acs.jpclett.5b01645
10.1126/science.1258307
10.1126/science.aaf9717
10.1021/acs.jpclett.6b00322
10.1021/acs.jpclett.5b01738
10.1002/aenm.201602121
10.1038/nenergy.2016.48
10.1103/PhysRevApplied.4.014020
10.1021/jacs.6b09257
10.1126/science.aad5845
10.1021/acs.nanolett.6b03857
10.1002/aenm.201600396
10.1021/acsenergylett.6b00254
10.1021/acsnano.6b05825
10.1002/aenm.201500799
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OTOTI
DOI 10.1002/adma.201702140
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1380026
28692764
10_1002_adma_201702140
ADMA201702140
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMR‐1608279
– fundername: Department of Energy SunShot
  funderid: DE‐EE 0006710
– fundername: Office of Naval Research
  funderid: N00014‐17‐1‐2260
– fundername: Asian Office of Aerospace R&D
  funderid: FA2386‐15‐1‐4106
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c5450-5d9d3bd7d5dfb26a99e49870817273dd564d23516dd30c552174f43d36d745583
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu May 18 22:38:27 EDT 2023
Fri Jul 11 02:19:11 EDT 2025
Fri Jul 25 08:21:57 EDT 2025
Mon Jul 21 05:42:02 EDT 2025
Tue Jul 01 00:44:34 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
Wed Jan 22 17:05:21 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords monolithic tandem
hysteresis and photostability
solar water splitting
open-circuit voltage
optical simulations
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5450-5d9d3bd7d5dfb26a99e49870817273dd564d23516dd30c552174f43d36d745583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
EE 0006710
USDOE
OpenAccessLink https://www.osti.gov/biblio/1380026
PMID 28692764
PQID 1936254980
PQPubID 2045203
PageCount 10
ParticipantIDs osti_scitechconnect_1380026
proquest_miscellaneous_1917963804
proquest_journals_1936254980
pubmed_primary_28692764
crossref_citationtrail_10_1002_adma_201702140
crossref_primary_10_1002_adma_201702140
wiley_primary_10_1002_adma_201702140_ADMA201702140
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Sep
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sep
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2017; 7
2015; 6
2017; 2
2015; 5
2015; 4
2017; 25
2016; 109
2016; 10
2013; 342
2017; 29
2016; 16
2014; 136
2016; 120
2016; 4
2016; 6
2016; 7
2016; 1
2016; 3
2015; 137
2015; 40
2017; 10
2016; 354
2016; 352
2017
2016
2016; 116
2016; 138
2016; 28
2014; 8
2014; 7
2016; 49
2016; 351
2014; 345
2016; 8
2016; 9
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 354
  start-page: 861
  year: 2016
  publication-title: Science
– volume: 29
  start-page: 1604744
  year: 2017
  publication-title: Adv. Mater.
– volume: 116
  start-page: 4558
  year: 2016
  publication-title: Chem. Rev.
– volume: 136
  start-page: 8094
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 3937
  year: 2016
  publication-title: Adv. Mater.
– volume: 2
  start-page: 16099
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 2
  start-page: 17009
  year: 2017
  publication-title: Nat. Energy
– volume: 10
  start-page: 710
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 15007
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 25
  start-page: 3
  year: 2017
  publication-title: Prog. Photovoltaics
– volume: 6
  start-page: 3503
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 345
  start-page: 1593
  year: 2014
  publication-title: Science
– volume: 342
  start-page: 344
  year: 2013
  publication-title: Science
– volume: 2
  start-page: 17018
  year: 2017
  publication-title: Nat. Energy
– volume: 49
  start-page: 294
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 16
  start-page: 7739
  year: 2016
  publication-title: Nano Lett.
– volume: 7
  start-page: 161
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 10
  start-page: 295
  year: 2016
  publication-title: Nat. Photonics
– volume: 9
  start-page: 81
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 137
  start-page: 11445
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1602121
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 351
  start-page: 151
  year: 2016
  publication-title: Science
– volume: 4
  start-page: 1208
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 10258
  year: 2016
  publication-title: ACS Nano
– volume: 4
  start-page: 14020
  year: 2015
  publication-title: Phys. Rev. Appl.
– volume: 8
  start-page: 7070
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 16048
  year: 2016
  publication-title: Nat. Energy
– volume: 6
  start-page: 3808
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 28
  start-page: 5121
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1600132
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1600396
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 474
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 138
  start-page: 12360
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 153902
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 120
  start-page: 893
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 40
  start-page: 681
  year: 2015
  publication-title: MRS Bull.
– volume: 5
  start-page: 1500799
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 3472
  year: 2016
  publication-title: Energy Environ. Sci.
– year: 2016
– volume: 7
  start-page: 1321
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 352
  start-page: aad4424
  year: 2016
  publication-title: Science
– volume: 1
  start-page: 1199
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 3061
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 138
  start-page: 14750
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 8990
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  start-page: 737
  year: 2014
  publication-title: Nat. Photonics
– volume: 6
  start-page: 4640
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 1
  start-page: 726
  year: 2016
  publication-title: ACS Energy Lett.
– year: 2017
– volume: 6
  start-page: 1601353
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1500301
  year: 2016
  publication-title: Adv. Sci.
– volume: 5
  start-page: 1402321
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 361
  year: 2017
  publication-title: Energy Environ. Sci.
– ident: e_1_2_5_27_1
  doi: 10.1038/nenergy.2017.18
– ident: e_1_2_5_13_1
  doi: 10.1039/C5TA08744A
– ident: e_1_2_5_51_1
  doi: 10.1039/C5EE02965A
– ident: e_1_2_5_28_1
  doi: 10.1021/acs.jpclett.5b02014
– ident: e_1_2_5_5_1
  doi: 10.1038/nphoton.2016.62
– ident: e_1_2_5_22_1
  doi: 10.1039/C4EE01076K
– ident: e_1_2_5_52_1
  doi: 10.1021/acs.jpclett.5b02686
– ident: e_1_2_5_29_1
  doi: 10.1515/9783110283204
– ident: e_1_2_5_34_1
  doi: 10.1039/C6EE01729K
– ident: e_1_2_5_26_1
  doi: 10.1002/aenm.201402321
– ident: e_1_2_5_38_1
  doi: 10.1126/science.1243167
– ident: e_1_2_5_3_1
  doi: 10.1038/natrevmats.2015.7
– ident: e_1_2_5_25_1
  doi: 10.1002/adma.201602696
– ident: e_1_2_5_16_1
  doi: 10.1021/ja5033259
– ident: e_1_2_5_19_1
  doi: 10.1021/jacs.5b06658
– ident: e_1_2_5_37_1
  doi: 10.1021/acs.accounts.5b00433
– ident: e_1_2_5_44_1
  doi: 10.1021/acsenergylett.6b00495
– ident: e_1_2_5_6_1
  doi: 10.1126/science.aad4424
– ident: e_1_2_5_7_1
  doi: 10.1039/C6EE03397K
– ident: e_1_2_5_8_1
– ident: e_1_2_5_31_1
  doi: 10.1063/1.4963760
– ident: e_1_2_5_24_1
  doi: 10.1002/aenm.201601353
– ident: e_1_2_5_47_1
  doi: 10.1039/C6EE03014A
– ident: e_1_2_5_32_1
  doi: 10.1002/aenm.201600132
– ident: e_1_2_5_49_1
  doi: 10.1021/acsami.5b12740
– ident: e_1_2_5_21_1
  doi: 10.1038/nenergy.2017.9
– ident: e_1_2_5_41_1
  doi: 10.1021/acsenergylett.6b00355
– ident: e_1_2_5_12_1
  doi: 10.1002/adma.201501629
– ident: e_1_2_5_17_1
  doi: 10.1021/jacs.6b08337
– ident: e_1_2_5_15_1
  doi: 10.1002/adma.201505279
– ident: e_1_2_5_2_1
  doi: 10.1021/acs.chemrev.5b00715
– ident: e_1_2_5_36_1
  doi: 10.1038/nphoton.2014.171
– ident: e_1_2_5_18_1
  doi: 10.1002/adma.201604744
– ident: e_1_2_5_46_1
  doi: 10.1002/advs.201500301
– ident: e_1_2_5_1_1
  doi: 10.1038/natrevmats.2016.99
– ident: e_1_2_5_9_1
  doi: 10.1002/pip.2855
– ident: e_1_2_5_45_1
  doi: 10.1021/acs.jpcc.5b10728
– ident: e_1_2_5_11_1
  doi: 10.1557/mrs.2015.167
– ident: e_1_2_5_30_1
  doi: 10.1021/acs.jpclett.5b01645
– ident: e_1_2_5_48_1
  doi: 10.1126/science.1258307
– ident: e_1_2_5_20_1
  doi: 10.1126/science.aaf9717
– ident: e_1_2_5_40_1
  doi: 10.1021/acs.jpclett.6b00322
– ident: e_1_2_5_23_1
  doi: 10.1021/acs.jpclett.5b01738
– ident: e_1_2_5_14_1
  doi: 10.1002/aenm.201602121
– ident: e_1_2_5_4_1
  doi: 10.1038/nenergy.2016.48
– ident: e_1_2_5_10_1
  doi: 10.1103/PhysRevApplied.4.014020
– ident: e_1_2_5_39_1
  doi: 10.1021/jacs.6b09257
– ident: e_1_2_5_42_1
  doi: 10.1126/science.aad5845
– ident: e_1_2_5_43_1
  doi: 10.1021/acs.nanolett.6b03857
– ident: e_1_2_5_33_1
  doi: 10.1002/aenm.201600396
– ident: e_1_2_5_53_1
  doi: 10.1021/acsenergylett.6b00254
– ident: e_1_2_5_35_1
  doi: 10.1021/acsnano.6b05825
– ident: e_1_2_5_50_1
  doi: 10.1002/aenm.201500799
SSID ssj0009606
Score 2.6411302
Snippet Organic–inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the...
Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Buckminsterfullerene
Energy conversion efficiency
Fermi level
Fullerenes
hysteresis and photostability
Indene
Materials science
monolithic tandem
open‐circuit voltage
optical simulations
Perovskites
Photovoltaic cells
Solar cells
solar water splitting
Water splitting
Title Highly Efficient Perovskite–Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201702140
https://www.ncbi.nlm.nih.gov/pubmed/28692764
https://www.proquest.com/docview/1936254980
https://www.proquest.com/docview/1917963804
https://www.osti.gov/biblio/1380026
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBYjT9vDetnWpZehwcae3Dq6xX4MXUIpbJQuhb4Jy5JYaWpvjVNon_of-g_3S3qO7DjN6CisbxKSQJbP5TvS0SdCPqU-NdzGMpIqySPhhYwMeAqIUjyDQuylCwmy39XBiTg8lacPbvHX_BDthhtqRrDXqOCZme4tSEMzG3iDen1k_cKgHRO2EBUdL_ijEJ4Hsj0uo1SJZM7aGLO95eFLXqlTgnY9hjiXAWzwQKMVks3nXieenO_OKrOb3_xF6_icj1slrxt4Sge1PK2RF65YJ68ekBa-Ib8xNWRyTYeBfAJ8Fj1yl-XVFLeB_9zeLSp0jBvUF_QHRs90300mU3rcJG_SJP5MS08BftLx4i4lDfet6FlBj36WVQmmswJ795acjIbj_YOoebghygGQxZG0qeXG9q203jCVpakTKRiGJKAla6USlnHZU9byOJcSwyIvuOXK9oWUCX9HOkVZuPeEMuQjTEzmAeYIb5mBdojYnMgB2bke75Jo_uN03rCa4-MaE13zMTONS6nbpeySL23_XzWfxz97bqEcaEAiSKebY95RXukeR4itumR7Lh660fqpBjCsMOBOYPDHthn0FQ9hssKVM-wDJhCMXiy6ZKMWq3YiLFEp6ytoYUE4npihHnz9Nmhrm_8zaIu8xHKdNLdNOtXlzO0AyqrMh6BJ9ymrG2A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qYQEsSnmnDxgkKlZunXnFXrCImlYpfagqqdTdEHvGAhFs2jhFZcU_8CX8Cp_Al3CvXyEIhITUBTvbM7bGnvs49_rOGYBnYRJGwvrKUzqIPZlI5UXoKTBKSTge-IlyRYHsoR6cyJen6nQBvtZrYUp-iCbhRppR2GtScEpIb85YQ0e2IA7qdIn2y6_qKvfc5UeM2iYvdvs4xeuc72wPtwZetbGAFyNg8D1lQysi27XKJhHXozB0EmNv9I7kza1VWlouVEdbK_xYKYLtiRRWaNuVSgUCn3sNrtM24kTX3z-eMVZRQFDQ-wnlhVoGNU-kzzfnxzvnB1sZ6vPvMO48ZC583s5t-FZ_rbLU5d3GNI824k-_EEn-V59zCRYrBM56pcrcgQWX3oVbP_Ey3oMzqn4ZX7Ltgl8D3TI7cufZxYQy3d8_f5mdsCHl4N-zV5QgYFtuPJ6w46o-lQX-OssShgibDWfLRVmxpIy9TdnRmyzP0DvkaNLvw8mVvPMDaKVZ6h4B40S5GESjBJGcTCyPsB2DUidjBK-uI9rg1ZJi4oq4nfYPGZuScpobmjrTTF0bnjf9P5SUJX_suUKCZxBsEWNwTKVVcW46gqII3YbVWh5NZdgmBvG-ppxCgDc_bZrRJNF_plHqsin1QSuPdt2XbXhYynEzEB7okHc1tvBCGv8yQtPrH_Sas-V_uekJ3BgMD_bN_u7h3grcpOtljeAqtPLzqVtDUJlHjws1ZvD6qgX9BwwQdhg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VICE48P8TWmCRqDi5dfYv9oFD1DRqKVRRSaXetrF3VyCCXRoHVE68Ay_Cq_AKPAkztuMQBEJC6oGb7V1ba-_8fDOe_RbgSezjRNhQBUpHaSC9VEGCngKjFM_xIPTKlQWy-3rnUD4_Ukcr8HW-Fqbih2gSbqQZpb0mBT-xfnNBGjq2JW9Qp0usX2FdVrnnzj5i0DZ9ttvHGV7nfLA92toJ6n0FghTxQhgoG1uR2K5V1idcj-PYSQy90TmSM7dWaWm5UB1trQhTpQi1eyms0LYrlYoEPvcCXJQ6jGmziP7BgrCK4oGS3U-oINYymtNEhnxzebxLbrCVozr_DuIuI-bS5Q2uwbf5x6oqXd5uzIpkI_30C4_k__Q1r8PVGn-zXqUwN2DFZTfhyk-sjLfgPdW-TM7YdsmugU6ZDd1p_mFKee7vn78sTtiIMvDv2CtKD7AtN5lM2UFdncqicJ3lniG-ZqPFYlFWLihjbzI2fJ0XOfqGAg36bTg8l3e-A60sz9w9YJwIF6Nk7BHHSW95gu0YkjqZInR1HdGGYC4oJq1p22n3kImpCKe5oakzzdS14WnT_6QiLPljz1WSO4NQi_iCUyqsSgvTERRD6DaszcXR1GZtahDta8ooRHjz46YZDRL9ZRpnLp9RH7TxaNVD2Ya7lRg3A-GRjnlXYwsvhfEvIzS9_stec3b_X256BJeG_YF5sbu_twqX6XJVILgGreJ05h4goiySh6USMzg-bzn_AQandMc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Efficient+Perovskite-Perovskite+Tandem+Solar+Cells+Reaching+80%25+of+the+Theoretical+Limit+in+Photovoltage&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Rajagopal%2C+Adharsh&rft.au=Yang%2C+Zhibin&rft.au=Jo%2C+Sae+Byeok&rft.au=Braly%2C+Ian+L&rft.date=2017-09-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=29&rft.issue=34&rft_id=info:doi/10.1002%2Fadma.201702140&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon