Neonatal brain image segmentation in longitudinal MRI studies
In the study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the properties of developing tissues. Among various brain tissue segmentation algorithms, atlas-based brain image segmentation can potentially...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 49; no. 1; pp. 391 - 400 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2010
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2009.07.066 |
Cover
Loading…
Abstract | In the study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the properties of developing tissues. Among various brain tissue segmentation algorithms, atlas-based brain image segmentation can potentially achieve good segmentation results on neonatal brain images. However, their performances rely on both the quality of the atlas and the spatial correspondence between the atlas and the to-be-segmented image. Moreover, it is difficult to build a population atlas for neonates due to the requirement of a large set of tissue-segmented neonatal brain images. To combat these obstacles, we present a longitudinal neonatal brain image segmentation framework by taking advantage of the longitudinal data acquired at late time-point to build a subject-specific tissue probabilistic atlas. Specifically, tissue segmentation of the neonatal brain is formulated as two iterative steps of bias correction and probabilistic-atlas-based tissue segmentation, along with the longitudinal atlas reconstructed by the late time image of the same subject. The proposed method has been evaluated qualitatively through visual inspection and quantitatively by comparing with manual delineations and two population-atlas-based segmentation methods. Experimental results show that the utilization of a subject-specific probabilistic atlas can substantially improve tissue segmentation of neonatal brain images. |
---|---|
AbstractList | In the study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the properties of developing tissues. Among various brain tissue segmentation algorithms, atlas-based brain image segmentation can potentially achieve good segmentation results on neonatal brain images. However, their performances rely on both the quality of the atlas and the spatial correspondence between the atlas and the to-be-segmented image. Moreover, it is difficult to build a population atlas for neonates due to the requirement of a large set of tissue-segmented neonatal brain images. To combat these obstacles, we present a longitudinal neonatal brain image segmentation framework by taking advantage of the longitudinal data acquired at late time-point to build a subject-specific tissue probabilistic atlas. Specifically, tissue segmentation of the neonatal brain is formulated as two iterative steps of bias correction and probabilistic-atlas-based tissue segmentation, along with the longitudinal atlas reconstructed by the late time image of the same subject. The proposed method has been evaluated qualitatively through visual inspection and quantitatively by comparing with manual delineations and two population-atlas-based segmentation methods. Experimental results show that the utilization of a subject-specific probabilistic atlas can substantially improve tissue segmentation of neonatal brain images. In the study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the properties of developing tissues. Among various brain tissue segmentation algorithms, atlas-based brain image segmentation can potentially achieve good segmentation results on neonatal brain images. However, their performances rely on both the quality of the atlas and the spatial correspondence between the atlas and the to-be-segmented image. Moreover, it is difficult to build a population atlas for neonates due to the requirement of a large set of tissue-segmented neonatal brain images. To combat these obstacles, we present a longitudinal neonatal brain image segmentation framework by taking advantage of the longitudinal data acquired at late time-point to build a subject-specific tissue probabilistic atlas. Specifically, tissue segmentation of the neonatal brain is formulated as two iterative steps of bias correction and probabilistic-atlas-based tissue segmentation, along with the longitudinal atlas reconstructed by the late time image of the same subject. The proposed method has been evaluated qualitatively through visual inspection and quantitatively by comparing with manual delineations and two population-atlas-based segmentation methods. Experimental results show that the utilization of a subject-specific probabilistic atlas can substantially improve tissue segmentation of neonatal brain images.In the study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the properties of developing tissues. Among various brain tissue segmentation algorithms, atlas-based brain image segmentation can potentially achieve good segmentation results on neonatal brain images. However, their performances rely on both the quality of the atlas and the spatial correspondence between the atlas and the to-be-segmented image. Moreover, it is difficult to build a population atlas for neonates due to the requirement of a large set of tissue-segmented neonatal brain images. To combat these obstacles, we present a longitudinal neonatal brain image segmentation framework by taking advantage of the longitudinal data acquired at late time-point to build a subject-specific tissue probabilistic atlas. Specifically, tissue segmentation of the neonatal brain is formulated as two iterative steps of bias correction and probabilistic-atlas-based tissue segmentation, along with the longitudinal atlas reconstructed by the late time image of the same subject. The proposed method has been evaluated qualitatively through visual inspection and quantitatively by comparing with manual delineations and two population-atlas-based segmentation methods. Experimental results show that the utilization of a subject-specific probabilistic atlas can substantially improve tissue segmentation of neonatal brain images. In study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the properties of developing tissues.. Among various brain tissue segmentation algorithms, atlas-based brain image segmentation can potentially achieve good segmentation results on neonatal brain images. However, their performances rely on both the quality of the atlas and the spatial correspondence between the atlas and the to-be-segmented image. Moreover, it is difficult to build a population atlas for neonates due to the requirement of a large set of tissue-segmented neonatal brain images. To combat these obstacles, we present a longitudinal neonatal brain image segmentation framework by taking advantage of the longitudinal data acquired at late time-point to build a subject-specific tissue probabilistic atlas. Specifically, tissue segmentation of the neonatal brain is formulated as two iterative steps of bias correction and probabilistic-atlas-based tissue segmentation, along with the longitudinal atlas reconstructed by the late time image of the same subject. The proposed method has been evaluated qualitatively through visual inspection and quantitatively by comparing with manual delineations and two population-atlas-based segmentation methods. Experimental results show that the utilization of a subject-specific probabilistic atlas can substantially improve tissue segmentation of neonatal brain images. |
Author | Tang, Songyuan Gilmore, John H. Shen, Dinggang Shi, Feng Lin, Weili Fan, Yong |
AuthorAffiliation | a IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill b Department of Psychiatry, University of North Carolina at Chapel Hill c MRI Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill |
AuthorAffiliation_xml | – name: a IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill – name: b Department of Psychiatry, University of North Carolina at Chapel Hill – name: c MRI Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill |
Author_xml | – sequence: 1 givenname: Feng surname: Shi fullname: Shi, Feng organization: IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA – sequence: 2 givenname: Yong surname: Fan fullname: Fan, Yong organization: IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA – sequence: 3 givenname: Songyuan surname: Tang fullname: Tang, Songyuan organization: IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA – sequence: 4 givenname: John H. surname: Gilmore fullname: Gilmore, John H. organization: Department of Psychiatry, University of North Carolina at Chapel Hill, USA – sequence: 5 givenname: Weili surname: Lin fullname: Lin, Weili organization: MRI Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA – sequence: 6 givenname: Dinggang surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19660558$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVtv1DAQhSNURC_wF1AkJHhKGCe-PoCAqkClAhKCZ8vrjBcvWbu1k0r99_WypYV9gD75dubzmTmH1V6IAauqJtASIPzlqg04p-jXZoltB6BaEC1w_qA6IKBYo5jo9jZ71jeSELVfHea8giIkVD6q9oniHBiTB9WrzxiDmcxYL5Lxof6FrDMu1xgmM_lYrkI9xrD00zz4UISfvp7WeXPA_Lh66MyY8cnNelR9f3_y7fhjc_blw-nx27PGMkqnxnVCUtEr5hwzi0Fy3hkQg1mgMSARQKCjnEhnqJNABUPFHbiF6Jyx0kF_VL3ecs_nxRoHW7wlM-rzVOymKx2N13-_BP9DL-Ol7gSnSrECeHEDSPFixjzptc8Wx9EEjHPWoqegetbRonz-T2VHSM8JiCJ8tiNcxTmVAWVNGHBJuOz7onr6p_Nby78TuGvNpphzQqet3w6-NOJHTUBvItcrfRe53kSuQegSeQHIHcDtH_8vfbctxZLdpceks_UYLA4-oZ30EP19IG92IHb0wVsz_sSr-yGuAa6Y424 |
CitedBy_id | crossref_primary_10_1016_j_media_2018_05_003 crossref_primary_10_1002_hbm_26126 crossref_primary_10_1109_TMI_2024_3430348 crossref_primary_10_1371_journal_pone_0107650 crossref_primary_10_1016_j_brainres_2011_01_032 crossref_primary_10_1016_j_neuroimage_2018_01_054 crossref_primary_10_1016_j_mri_2019_05_023 crossref_primary_10_1016_j_aej_2023_06_040 crossref_primary_10_1109_TCYB_2017_2786161 crossref_primary_10_1016_j_media_2012_07_006 crossref_primary_10_1016_j_neuroimage_2010_10_019 crossref_primary_10_1371_journal_pone_0166112 crossref_primary_10_1016_j_neuroimage_2016_04_023 crossref_primary_10_3389_fninf_2022_880301 crossref_primary_10_1016_j_eswa_2018_01_053 crossref_primary_10_1109_TETCI_2018_2869919 crossref_primary_10_1118_1_4928400 crossref_primary_10_1016_j_jneumeth_2012_09_018 crossref_primary_10_1016_j_spen_2020_100796 crossref_primary_10_3390_s21134556 crossref_primary_10_1016_j_neuroimage_2010_02_025 crossref_primary_10_1007_s42979_022_01151_8 crossref_primary_10_1016_j_mric_2011_08_009 crossref_primary_10_1371_journal_pone_0060344 crossref_primary_10_1007_s00429_018_1707_0 crossref_primary_10_1016_j_media_2016_06_038 crossref_primary_10_1155_2013_317215 crossref_primary_10_1002_mp_12578 crossref_primary_10_3389_fninf_2016_00012 crossref_primary_10_1007_s00542_020_05144_6 crossref_primary_10_1186_s12938_020_00785_0 crossref_primary_10_1016_j_media_2020_101663 crossref_primary_10_1016_j_dcn_2015_08_008 crossref_primary_10_1109_TCYB_2018_2859342 crossref_primary_10_1016_j_neuroimage_2011_09_062 crossref_primary_10_1016_j_neuroimage_2015_05_099 crossref_primary_10_1016_j_neuroimage_2016_05_011 crossref_primary_10_1016_j_neuroimage_2016_07_020 crossref_primary_10_1371_journal_pone_0085475 crossref_primary_10_1007_s11042_020_09062_7 crossref_primary_10_1038_s41598_024_69995_z crossref_primary_10_1109_TMI_2011_2162529 crossref_primary_10_1002_mp_12132 crossref_primary_10_1002_hbm_21486 crossref_primary_10_1002_hbm_23301 crossref_primary_10_1016_j_nicl_2017_08_015 crossref_primary_10_1002_dev_20579 crossref_primary_10_3389_fnins_2019_01025 crossref_primary_10_1016_j_neuroimage_2013_11_040 crossref_primary_10_1016_j_bandl_2012_10_007 crossref_primary_10_1016_j_neuroimage_2015_04_055 crossref_primary_10_1002_hbm_23536 crossref_primary_10_1007_s11042_020_09810_9 crossref_primary_10_1007_s12021_012_9164_z crossref_primary_10_1016_j_bbe_2016_11_004 crossref_primary_10_1016_j_neuroimage_2014_12_061 crossref_primary_10_3390_app12115377 crossref_primary_10_1371_journal_pone_0108306 crossref_primary_10_3389_fnins_2016_00220 crossref_primary_10_3389_fnins_2021_650082 crossref_primary_10_1016_j_media_2014_06_007 crossref_primary_10_1038_pr_2011_21 crossref_primary_10_1371_journal_pone_0018746 crossref_primary_10_1016_j_neuroimage_2013_08_008 crossref_primary_10_1016_j_ynirp_2022_100120 crossref_primary_10_1080_21681163_2019_1573380 crossref_primary_10_1109_JBHI_2015_2415477 crossref_primary_10_1002_hbm_22511 crossref_primary_10_1016_j_media_2022_102576 crossref_primary_10_1016_j_neuroimage_2021_118232 crossref_primary_10_1016_j_neuroimage_2017_06_074 crossref_primary_10_1002_hbm_22076 crossref_primary_10_1016_j_neucom_2016_05_107 crossref_primary_10_1109_TCYB_2018_2834390 crossref_primary_10_1002_hbm_21023 crossref_primary_10_3389_fnana_2015_00163 crossref_primary_10_1016_j_bspc_2019_101613 crossref_primary_10_1016_j_neuroscience_2017_09_021 crossref_primary_10_1109_TMI_2016_2548501 crossref_primary_10_1016_j_neuroimage_2012_05_042 crossref_primary_10_1109_TMI_2013_2269814 crossref_primary_10_1002_hbm_22502 crossref_primary_10_1016_j_neuroimage_2011_06_064 crossref_primary_10_1186_s12880_022_00807_4 crossref_primary_10_1007_s00429_012_0496_0 crossref_primary_10_1093_cercor_bhy244 crossref_primary_10_1016_j_neuroimage_2014_12_042 crossref_primary_10_3389_fnhum_2015_00021 crossref_primary_10_1007_s11760_017_1202_8 crossref_primary_10_1080_00207454_2019_1695609 crossref_primary_10_1016_j_compmedimag_2019_101660 crossref_primary_10_1093_cercor_bhz053 crossref_primary_10_1016_j_neuroimage_2018_03_042 crossref_primary_10_1016_j_yebeh_2019_106684 crossref_primary_10_1016_j_neuroimage_2020_116946 crossref_primary_10_1007_s12021_018_9359_z crossref_primary_10_1093_cercor_bhr327 crossref_primary_10_1371_journal_pone_0187391 crossref_primary_10_1093_cercor_bhs413 crossref_primary_10_1016_j_ins_2016_01_035 crossref_primary_10_1016_j_neuroimage_2018_12_043 crossref_primary_10_1109_ACCESS_2020_2998901 crossref_primary_10_21833_ijaas_2023_08_006 crossref_primary_10_1016_j_dcn_2023_101249 crossref_primary_10_1016_j_neuroimage_2017_04_041 crossref_primary_10_1371_journal_pone_0080954 crossref_primary_10_3389_fped_2017_00159 crossref_primary_10_1016_j_neuroimage_2015_06_007 crossref_primary_10_1016_j_compbiomed_2015_06_016 crossref_primary_10_1007_s11042_019_07829_1 crossref_primary_10_1016_j_neuroimage_2010_07_025 crossref_primary_10_1109_TMI_2011_2154385 crossref_primary_10_1016_j_nicl_2023_103354 crossref_primary_10_1016_j_jvcir_2016_03_027 crossref_primary_10_1016_j_knosys_2020_105945 crossref_primary_10_1523_ENEURO_0003_15_2015 crossref_primary_10_1523_JNEUROSCI_3976_13_2014 crossref_primary_10_1007_s10278_012_9460_z crossref_primary_10_1002_hbm_24027 crossref_primary_10_1109_TMI_2015_2437894 crossref_primary_10_1016_j_neuroimage_2013_12_038 |
Cites_doi | 10.1016/S1361-8415(03)00037-9 10.1093/cercor/bhm180 10.1109/42.668698 10.1093/cercor/5.1.56 10.1523/JNEUROSCI.3479-08.2008 10.1016/j.neuroimage.2006.05.020 10.1016/j.neuroimage.2009.02.018 10.1109/TMI.2004.828354 10.1016/j.neuroimage.2009.04.068 10.1016/j.neuroimage.2005.11.044 10.1016/j.neuroimage.2007.07.030 10.1542/peds.2005-2675 10.1109/42.811268 10.1016/S1361-8415(00)00003-7 10.1109/TMI.2002.803111 10.2307/1932409 10.1146/annurev.bioeng.2.1.315 10.1109/TMI.2007.893283 10.1016/0098-3004(84)90020-7 10.1016/j.neuroimage.2006.01.015 10.1016/j.media.2005.05.007 10.1016/S0896-6273(02)00569-X 10.1016/j.neuroimage.2008.07.060 10.1002/ima.10035 10.1016/j.acra.2006.05.017 10.1002/hbm.10062 10.1016/j.neuroimage.2005.02.018 10.1016/S0167-8655(98)00121-4 10.1016/j.neuroimage.2006.05.061 10.1142/S021800149700055X 10.1109/42.963819 10.1016/S1361-8415(03)00004-5 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Inc. Copyright Elsevier Limited Jan 1, 2010 2009 Elsevier Inc. All rights reserved. 2009 |
Copyright_xml | – notice: 2009 Elsevier Inc. – notice: Copyright Elsevier Limited Jan 1, 2010 – notice: 2009 Elsevier Inc. All rights reserved. 2009 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7QO 7X8 5PM |
DOI | 10.1016/j.neuroimage.2009.07.066 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts Biotechnology Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 400 |
ExternalDocumentID | PMC2764995 3244776121 19660558 10_1016_j_neuroimage_2009_07_066 S1053811909008532 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: MH088520 – fundername: NIBIB NIH HHS grantid: R01 EB006733 – fundername: NINDS NIH HHS grantid: NS055754 – fundername: NIMH NIH HHS grantid: R03 MH076970 – fundername: NIBIB NIH HHS grantid: R03 EB008760 – fundername: NINDS NIH HHS grantid: R01 NS055754 – fundername: NIBIB NIH HHS grantid: EB006733 – fundername: NIBIB NIH HHS grantid: EB008374 – fundername: NIBIB NIH HHS grantid: R01 EB008374 – fundername: NIMH NIH HHS grantid: MH064065 |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 .1- .FO 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AFRHN AGHFR AGQPQ AGRNS AIGII AJUYK AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 GBLVA HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP Z5R ZMT CGR CUY CVF ECM EIF NPM PMFND 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7QO 7X8 5PM |
ID | FETCH-LOGICAL-c544t-f27847395ff5abd8662a07dabeaa08e007ef4618fa4f80475e96f0fb72fac8f03 |
IEDL.DBID | BENPR |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 18:27:25 EDT 2025 Fri Jul 11 12:40:21 EDT 2025 Mon Jul 21 10:19:05 EDT 2025 Wed Aug 13 07:29:27 EDT 2025 Fri May 30 10:59:22 EDT 2025 Thu Apr 24 22:55:17 EDT 2025 Tue Jul 01 02:14:25 EDT 2025 Fri Feb 23 02:20:31 EST 2024 Tue Aug 26 18:05:29 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Probabilistic atlas Tissue segmentation Neonate Subject-specific atlas |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c544t-f27847395ff5abd8662a07dabeaa08e007ef4618fa4f80475e96f0fb72fac8f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 19660558 |
PQID | 1506816833 |
PQPubID | 2031077 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2764995 proquest_miscellaneous_734093524 proquest_miscellaneous_21136107 proquest_journals_1506816833 pubmed_primary_19660558 crossref_citationtrail_10_1016_j_neuroimage_2009_07_066 crossref_primary_10_1016_j_neuroimage_2009_07_066 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2009_07_066 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2009_07_066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-01-01 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2010 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Knickmeyer, Gouttard, Kang, Evans, Wilber, Smith, Hamer, Lin, Gerig, Gilmore (bb0065) 2008; 28 Shen, Davatzikos (bb0120) 2002; 21 Yeo, Sabuncu, Desikan, Fischl, Golland (bb0170) 2008 Mewes, Huppi, Als, Rybicki, Inder, McAnulty, Mulkern, Robertson, Rivkin, Warfield (bb0075) 2006; 118 Sled, Zijdenbos, Evans (bb0125) 1998; 17 Gerig, Davis, Lorenzen, Xu, Jomier, Piven, Joshi (bb0055) 2006 Kwon, Han, Shin, Park (bb0070) 2003; 13 Pohl, Fisher, Grimson, Kikinis, Wells (bb0100) 2006; 31 Warfield, Zou, Wells (bb0155) 2004; 23 Armstrong, Schleicher, Omran, Curtis, Zilles (bb0015) 1995; 5 Prastawa, Gilmore, Lin, Gerig (bb0105) 2005; 9 Bezdek, Ehrlich (bb0030) 1984; 10 Pham, Prince, Xu, Dagher (bb0085) 1997; 11 Smith (bb0130) 2002; 17 Aljabar, Heckemann, Hammers, Hajnal, Rueckert (bb0005) 2009; 46 Ashburner, Friston (bb0020) 2005; 26 Altaye, Holland, Wilke, Gaser (bb0010) 2008; 43 Weisenfeld, Warfield (bb0160) 2009; 47 Dubois, Benders, Cachia, Lazeyras, Ha-Vinh Leuchter, Sizonenko, Borradori-Tolsa, Mangin, Huppi (bb0045) 2008; 18 Song, Awate, Licht, Gee (bb0135) 2007 Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness (bb0050) 2002; 33 Bazin, Pham (bb0025) 2007; 26 Dice (bb0040) 1945; 26 Pham, Xu, Prince (bb0095) 2000; 2 Xue, Srinivasan, Jiang, Rutherford, Edwards, Rueckert, Hajnal (bb0165) 2007; 38 Yezzi, Zollei, Kapur (bb0175) 2003; 7 Heckemann, Hajnal, Aljabar, Rueckert, Hammers (bb0060) 2006; 33 Nishida, Makris, Kennedy, Vangel, Fischl, Krishnamoorthy, Caviness, Grant (bb0080) 2006; 32 Van Leemput, Maes, Vandermeulen, Suetens (bb0140) 1999; 18 Shattuck, Leahy (bb0115) 2001; 20 Wang, Vemuri, Eisenschenk (bb0145) 2006; 13 Warfield, Kaus, Jolesz, Kikinis (bb0150) 2000; 4 Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (bb0180) 2006; 31 Pham, Prince (bb0090) 1999; 20 Rohlfing, Russakoff, Maurer (bb0110) 2003 Cocosco, Zijdenbos, Evans (bb0035) 2003; 7 Aljabar (10.1016/j.neuroimage.2009.07.066_bb0005) 2009; 46 Dice (10.1016/j.neuroimage.2009.07.066_bb0040) 1945; 26 Van Leemput (10.1016/j.neuroimage.2009.07.066_bb0140) 1999; 18 Dubois (10.1016/j.neuroimage.2009.07.066_bb0045) 2008; 18 Yushkevich (10.1016/j.neuroimage.2009.07.066_bb0180) 2006; 31 Armstrong (10.1016/j.neuroimage.2009.07.066_bb0015) 1995; 5 Pohl (10.1016/j.neuroimage.2009.07.066_bb0100) 2006; 31 Cocosco (10.1016/j.neuroimage.2009.07.066_bb0035) 2003; 7 Gerig (10.1016/j.neuroimage.2009.07.066_bb0055) 2006 Fischl (10.1016/j.neuroimage.2009.07.066_bb0050) 2002; 33 Knickmeyer (10.1016/j.neuroimage.2009.07.066_bb0065) 2008; 28 Warfield (10.1016/j.neuroimage.2009.07.066_bb0155) 2004; 23 Sled (10.1016/j.neuroimage.2009.07.066_bb0125) 1998; 17 Bezdek (10.1016/j.neuroimage.2009.07.066_bb0030) 1984; 10 Heckemann (10.1016/j.neuroimage.2009.07.066_bb0060) 2006; 33 Shen (10.1016/j.neuroimage.2009.07.066_bb0120) 2002; 21 Wang (10.1016/j.neuroimage.2009.07.066_bb0145) 2006; 13 Warfield (10.1016/j.neuroimage.2009.07.066_bb0150) 2000; 4 Pham (10.1016/j.neuroimage.2009.07.066_bb0090) 1999; 20 Prastawa (10.1016/j.neuroimage.2009.07.066_bb0105) 2005; 9 Shattuck (10.1016/j.neuroimage.2009.07.066_bb0115) 2001; 20 Rohlfing (10.1016/j.neuroimage.2009.07.066_bb0110) 2003 Nishida (10.1016/j.neuroimage.2009.07.066_bb0080) 2006; 32 Pham (10.1016/j.neuroimage.2009.07.066_bb0095) 2000; 2 Mewes (10.1016/j.neuroimage.2009.07.066_bb0075) 2006; 118 Bazin (10.1016/j.neuroimage.2009.07.066_bb0025) 2007; 26 Kwon (10.1016/j.neuroimage.2009.07.066_bb0070) 2003; 13 Pham (10.1016/j.neuroimage.2009.07.066_bb0085) 1997; 11 Altaye (10.1016/j.neuroimage.2009.07.066_bb0010) 2008; 43 Smith (10.1016/j.neuroimage.2009.07.066_bb0130) 2002; 17 Yezzi (10.1016/j.neuroimage.2009.07.066_bb0175) 2003; 7 Weisenfeld (10.1016/j.neuroimage.2009.07.066_bb0160) 2009; 47 Song (10.1016/j.neuroimage.2009.07.066_bb0135) 2007 Yeo (10.1016/j.neuroimage.2009.07.066_bb0170) 2008 Ashburner (10.1016/j.neuroimage.2009.07.066_bb0020) 2005; 26 Xue (10.1016/j.neuroimage.2009.07.066_bb0165) 2007; 38 |
References_xml | – volume: 13 start-page: 115 year: 2003 end-page: 125 ident: bb0070 article-title: Hierarchical fuzzy segmentation of brain MR images publication-title: Int. J. Imaging Syst. Technol. – volume: 46 start-page: 726 year: 2009 end-page: 738 ident: bb0005 article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy publication-title: NeuroImage – volume: 28 start-page: 12176 year: 2008 end-page: 12182 ident: bb0065 article-title: A structural MRI study of human brain development from birth to 2 years publication-title: J. Neurosci. – volume: 31 start-page: 228 year: 2006 end-page: 239 ident: bb0100 article-title: A Bayesian model for joint segmentation and registration publication-title: NeuroImage – volume: 5 start-page: 56 year: 1995 end-page: 63 ident: bb0015 article-title: The ontogeny of human gyrification publication-title: Cereb. Cortex – volume: 21 start-page: 1421 year: 2002 end-page: 1439 ident: bb0120 article-title: HAMMER: hierarchical attribute matching mechanism for elastic registration publication-title: IEEE Trans. Med. Imaging – volume: 17 start-page: 87 year: 1998 end-page: 97 ident: bb0125 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans. Med. Imaging – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: bb0130 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. – volume: 7 start-page: 171 year: 2003 end-page: 185 ident: bb0175 article-title: A variational framework for integrating segmentation and registration through active contours publication-title: Med. Image Anal. – volume: 38 start-page: 461 year: 2007 end-page: 477 ident: bb0165 article-title: Automatic segmentation and reconstruction of the cortex from neonatal MRI publication-title: NeuroImage – volume: 118 start-page: 23 year: 2006 end-page: 33 ident: bb0075 article-title: Regional brain development in serial magnetic resonance imaging of low-risk preterm infants publication-title: Pediatrics – volume: 2 start-page: 315 year: 2000 end-page: 337 ident: bb0095 article-title: A survey of current methods in medical image segmentation publication-title: Annu. Rev. Biomed. Eng. – volume: 18 start-page: 885 year: 1999 end-page: 896 ident: bb0140 article-title: Automated model-based bias field correction of MR images of the brain publication-title: IEEE Trans. Med. Imaging – volume: 26 start-page: 487 year: 2007 end-page: 496 ident: bb0025 article-title: Topology-preserving tissue classification of magnetic resonance brain images publication-title: IEEE Trans. Med. Imag. – volume: 26 start-page: 839 year: 2005 end-page: 851 ident: bb0020 article-title: Unified segmentation publication-title: NeuroImage – start-page: 603 year: 2008 end-page: 615 ident: bb0170 article-title: Effects of registration regularization and atlas sharpness on segmentation accuracy publication-title: Med. Image Anal. – volume: 33 start-page: 115 year: 2006 end-page: 126 ident: bb0060 article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion publication-title: NeuroImage – volume: 13 start-page: 1104 year: 2006 end-page: 1111 ident: bb0145 article-title: Joint registration and segmentation of neuroanatomic structures from brain MRI publication-title: Acad. Radiol. – volume: 33 start-page: 341 year: 2002 end-page: 355 ident: bb0050 article-title: Whole brain segmentation automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – start-page: 1041 year: 2006 end-page: 1047 ident: bb0055 publication-title: Computational Anatomy to Assess Longitudinal Trajectory of Brain Growth. Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06) – start-page: 210 year: 2003 end-page: 221 ident: bb0110 publication-title: Expectation Maximization Strategies for Multi-Atlas Multi-Label Segmentation. IPMI 2003 – volume: 7 start-page: 513 year: 2003 end-page: 527 ident: bb0035 article-title: A fully automatic and robust brain MRI tissue classification method publication-title: Med. Image Anal. – volume: 23 start-page: 903 year: 2004 end-page: 921 ident: bb0155 article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation publication-title: IEEE Trans. Med. Imaging – volume: 20 start-page: 57 year: 1999 end-page: 68 ident: bb0090 article-title: An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities publication-title: Pattern Recogn. Lett. – volume: 20 start-page: 1167 year: 2001 end-page: 1177 ident: bb0115 article-title: Automated graph-based analysis and correction of cortical volume topology publication-title: IEEE Trans. Med. Imaging – volume: 31 start-page: 1116 year: 2006 end-page: 1128 ident: bb0180 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: NeuroImage – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: bb0040 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 9 start-page: 457 year: 2005 end-page: 466 ident: bb0105 article-title: Automatic segmentation of MR images of the developing newborn brain publication-title: Med. Image Anal. – volume: 4 start-page: 43 year: 2000 end-page: 55 ident: bb0150 article-title: Adaptive, template moderated, spatially varying statistical classification publication-title: Med. Image Anal. – start-page: 883 year: 2007 end-page: 890 ident: bb0135 article-title: Clinical neonatal brain MRI segmentation using adaptive nonparametric data models and intensity-based Markov priors publication-title: MICCAI 2007 – volume: 47 start-page: 564 year: 2009 end-page: 572 ident: bb0160 article-title: Automatic segmentation of newborn brain MRI publication-title: NeuroImage – volume: 18 start-page: 1444 year: 2008 end-page: 1454 ident: bb0045 article-title: Mapping the early cortical folding process in the preterm newborn brain publication-title: Cereb. Cortex – volume: 32 start-page: 1041 year: 2006 end-page: 1049 ident: bb0080 article-title: Detailed semiautomated MRI based morphometry of the neonatal brain: preliminary results publication-title: NeuroImage – volume: 43 start-page: 721 year: 2008 end-page: 730 ident: bb0010 article-title: Infant brain probability templates for MRI segmentation and normalization publication-title: NeuroImage – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: bb0030 article-title: FCM: the fuzzy c-means clustering algorithm publication-title: Comput. Geosci. – volume: 11 start-page: 1189 year: 1997 end-page: 1212 ident: bb0085 article-title: An automated technique for statistical characterization of brain tissues in magnetic resonance imaging publication-title: Int. J. Pattern Recogn. Artif. Intell. – volume: 7 start-page: 513 year: 2003 ident: 10.1016/j.neuroimage.2009.07.066_bb0035 article-title: A fully automatic and robust brain MRI tissue classification method publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(03)00037-9 – volume: 18 start-page: 1444 year: 2008 ident: 10.1016/j.neuroimage.2009.07.066_bb0045 article-title: Mapping the early cortical folding process in the preterm newborn brain publication-title: Cereb. Cortex doi: 10.1093/cercor/bhm180 – volume: 17 start-page: 87 year: 1998 ident: 10.1016/j.neuroimage.2009.07.066_bb0125 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.668698 – volume: 5 start-page: 56 year: 1995 ident: 10.1016/j.neuroimage.2009.07.066_bb0015 article-title: The ontogeny of human gyrification publication-title: Cereb. Cortex doi: 10.1093/cercor/5.1.56 – volume: 28 start-page: 12176 year: 2008 ident: 10.1016/j.neuroimage.2009.07.066_bb0065 article-title: A structural MRI study of human brain development from birth to 2 years publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3479-08.2008 – start-page: 1041 year: 2006 ident: 10.1016/j.neuroimage.2009.07.066_bb0055 – volume: 32 start-page: 1041 year: 2006 ident: 10.1016/j.neuroimage.2009.07.066_bb0080 article-title: Detailed semiautomated MRI based morphometry of the neonatal brain: preliminary results publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.05.020 – start-page: 883 year: 2007 ident: 10.1016/j.neuroimage.2009.07.066_bb0135 article-title: Clinical neonatal brain MRI segmentation using adaptive nonparametric data models and intensity-based Markov priors publication-title: MICCAI 2007 – volume: 46 start-page: 726 year: 2009 ident: 10.1016/j.neuroimage.2009.07.066_bb0005 article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.02.018 – volume: 23 start-page: 903 year: 2004 ident: 10.1016/j.neuroimage.2009.07.066_bb0155 article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.828354 – volume: 47 start-page: 564 year: 2009 ident: 10.1016/j.neuroimage.2009.07.066_bb0160 article-title: Automatic segmentation of newborn brain MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.04.068 – start-page: 603 year: 2008 ident: 10.1016/j.neuroimage.2009.07.066_bb0170 article-title: Effects of registration regularization and atlas sharpness on segmentation accuracy publication-title: Med. Image Anal. – volume: 31 start-page: 228 year: 2006 ident: 10.1016/j.neuroimage.2009.07.066_bb0100 article-title: A Bayesian model for joint segmentation and registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.11.044 – volume: 38 start-page: 461 year: 2007 ident: 10.1016/j.neuroimage.2009.07.066_bb0165 article-title: Automatic segmentation and reconstruction of the cortex from neonatal MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.07.030 – volume: 118 start-page: 23 year: 2006 ident: 10.1016/j.neuroimage.2009.07.066_bb0075 article-title: Regional brain development in serial magnetic resonance imaging of low-risk preterm infants publication-title: Pediatrics doi: 10.1542/peds.2005-2675 – volume: 18 start-page: 885 year: 1999 ident: 10.1016/j.neuroimage.2009.07.066_bb0140 article-title: Automated model-based bias field correction of MR images of the brain publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.811268 – volume: 4 start-page: 43 year: 2000 ident: 10.1016/j.neuroimage.2009.07.066_bb0150 article-title: Adaptive, template moderated, spatially varying statistical classification publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(00)00003-7 – volume: 21 start-page: 1421 year: 2002 ident: 10.1016/j.neuroimage.2009.07.066_bb0120 article-title: HAMMER: hierarchical attribute matching mechanism for elastic registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2002.803111 – volume: 26 start-page: 297 year: 1945 ident: 10.1016/j.neuroimage.2009.07.066_bb0040 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – volume: 2 start-page: 315 year: 2000 ident: 10.1016/j.neuroimage.2009.07.066_bb0095 article-title: A survey of current methods in medical image segmentation publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.2.1.315 – volume: 26 start-page: 487 year: 2007 ident: 10.1016/j.neuroimage.2009.07.066_bb0025 article-title: Topology-preserving tissue classification of magnetic resonance brain images publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2007.893283 – volume: 10 start-page: 191 year: 1984 ident: 10.1016/j.neuroimage.2009.07.066_bb0030 article-title: FCM: the fuzzy c-means clustering algorithm publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – volume: 31 start-page: 1116 year: 2006 ident: 10.1016/j.neuroimage.2009.07.066_bb0180 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 9 start-page: 457 year: 2005 ident: 10.1016/j.neuroimage.2009.07.066_bb0105 article-title: Automatic segmentation of MR images of the developing newborn brain publication-title: Med. Image Anal. doi: 10.1016/j.media.2005.05.007 – start-page: 210 year: 2003 ident: 10.1016/j.neuroimage.2009.07.066_bb0110 – volume: 33 start-page: 341 year: 2002 ident: 10.1016/j.neuroimage.2009.07.066_bb0050 article-title: Whole brain segmentation automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 43 start-page: 721 year: 2008 ident: 10.1016/j.neuroimage.2009.07.066_bb0010 article-title: Infant brain probability templates for MRI segmentation and normalization publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.07.060 – volume: 13 start-page: 115 year: 2003 ident: 10.1016/j.neuroimage.2009.07.066_bb0070 article-title: Hierarchical fuzzy segmentation of brain MR images publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.10035 – volume: 13 start-page: 1104 year: 2006 ident: 10.1016/j.neuroimage.2009.07.066_bb0145 article-title: Joint registration and segmentation of neuroanatomic structures from brain MRI publication-title: Acad. Radiol. doi: 10.1016/j.acra.2006.05.017 – volume: 17 start-page: 143 year: 2002 ident: 10.1016/j.neuroimage.2009.07.066_bb0130 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10062 – volume: 26 start-page: 839 year: 2005 ident: 10.1016/j.neuroimage.2009.07.066_bb0020 article-title: Unified segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.02.018 – volume: 20 start-page: 57 year: 1999 ident: 10.1016/j.neuroimage.2009.07.066_bb0090 article-title: An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities publication-title: Pattern Recogn. Lett. doi: 10.1016/S0167-8655(98)00121-4 – volume: 33 start-page: 115 year: 2006 ident: 10.1016/j.neuroimage.2009.07.066_bb0060 article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.05.061 – volume: 11 start-page: 1189 year: 1997 ident: 10.1016/j.neuroimage.2009.07.066_bb0085 article-title: An automated technique for statistical characterization of brain tissues in magnetic resonance imaging publication-title: Int. J. Pattern Recogn. Artif. Intell. doi: 10.1142/S021800149700055X – volume: 20 start-page: 1167 year: 2001 ident: 10.1016/j.neuroimage.2009.07.066_bb0115 article-title: Automated graph-based analysis and correction of cortical volume topology publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.963819 – volume: 7 start-page: 171 year: 2003 ident: 10.1016/j.neuroimage.2009.07.066_bb0175 article-title: A variational framework for integrating segmentation and registration through active contours publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(03)00004-5 |
SSID | ssj0009148 |
Score | 2.4064457 |
Snippet | In the study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to... In study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 391 |
SubjectTerms | Accuracy Algorithms Brain Brain - anatomy & histology Brain - growth & development Fuzzy Logic Humans Image Processing, Computer-Assisted Infant Infant, Newborn Longitudinal Studies Magnetic Resonance Imaging Neonate Pediatrics Probabilistic atlas Software Studies Subject-specific atlas Tissue segmentation |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLYQB8QF8aY8e-Ba1jVJ0wpxQAgESOPAQ-IWpXnA0OgQ2678duI23RgPaRK3qo2l1okdN7a_D-BQWa2UpTqSzGYRNcRd5VpjA7M0KR4SVo20nZv08oFeP7LHOThremGwrNL7_tqnV97a32l5bbbeut3WnYsM3HbjNrQc4waCfphSjvj5Rx-TMo-8Tet2OEYiHO2reeoarwozsvvqLNcjV_KjuMJL_HWL-hmCfq-k_LI1XSzDko8pw9P6tVdgzpSrsNDxWfM1OLkxeEbuhhRICBFWrxIOzNOrbzxyt8qw10fqopFGmqywc3sVDuoSw3V4uDi_P7uMPG1CpBilw8hiLhHzb9YyWegsTRMZcy0LI2WcGRcUGEvTdmYltVlMOTN5amNb8MRKldmYbMB82S_NFoSSK5Zro7Q1lJIkL4itGMQypWLrTD8A3mhKKI8pjtQWPdEUj72IiY6R8jIXMRdOxwG0x5JvNa7GDDJ5Mxmi6Rt1nk445z-D7PFYdmp9zSi928y98DY-EIjNiKwlhARwMH7srBNTLrI0_dFAJEiZ4_6wAwj_GMEJxVx0QgPYrNfSRB-InMoYanlqlY0HIDT49JOy-1xBhCc8db-ybPtfX70Di3WtBB447cL88H1k9lwINiz2Kxv7BHP8NJk priority: 102 providerName: Elsevier |
Title | Neonatal brain image segmentation in longitudinal MRI studies |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811909008532 https://dx.doi.org/10.1016/j.neuroimage.2009.07.066 https://www.ncbi.nlm.nih.gov/pubmed/19660558 https://www.proquest.com/docview/1506816833 https://www.proquest.com/docview/21136107 https://www.proquest.com/docview/734093524 https://pubmed.ncbi.nlm.nih.gov/PMC2764995 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Za9tAEB4aG0pfStJTOVw99FWpjl3tilJKEhKctjbBNOC3ZbVHmpLISWW_5rdnR1rZSS_8IgtrB8RoZzSa4_sA3iurlbJER5JaHhGTubNCaxxglibHJGEzSDsa58Nz8mVKpz7hVvu2ys4nNo5azxTmyD8gEh5yRGTZ55vbCFmjsLrqKTQ2oO9cMKc96B8ej88mK9jdhLTDcDSLeJIUvpen7fBqECMvr53detxKth83aIl_fUH9GYD-3kf54MV0sgnPfUQZHrRbYAuemOoFPB35mvlL-DQ2mCF3S0qkgwibWwlrc3Htx47cX1V4NUPiooVGkqxwNDkN67bB8BWcnxx_PxpGnjQhUpSQeWSxkojVN2upLDXP81TGTMvSSBlz40ICY0mecCuJ5TFh1BS5jW3JUisVt3H2GnrVrDJvIZRM0UIbpa0hJEuLMrMNfxhXKrbO8ANgnaaE8ojiSGxxJbrWsZ9ipWMkvCxEzITTcQDJUvKmRdVYQ6boHobopkadnxPO9a8h-3Ep6yOLNmJYU3q3e_bCW3gtVvsxgHfLy842seAiKzNb1CJFwhz3fR1A-I8VLCNYiU5JAG_avbTSB-KmUopafrTLlgsQGPzxleryRwMQnrLcfcjS7f_f9w48a1shMJ-0C735r4XZcxHWvBzAxv5d4o5sygbQPziafDvD39Ovw_HAm9g9uBMvmA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuFc-SUqgPcAzkYceJUIV4tNql3RWqWqk34_gBRW22kF0h_hS_EU_s7FJe2ktvq8Szisbj8dgz830AT5TVSlmqY8lsGVOTu1-V1tjALE2Bl4RdI-1oXAyO6bsTdrICP_peGCyr7H1i56j1ROEd-XNEwkOOiDx_efElRtYozK72FBreLPbN92_uyNbuDN-6-X2aZXu7R28GcWAViBWjdBpbTLVhespaJmtdFkUmE65lbaRMSuP2TGNpkZZWUlsmlDNTFTaxNc-sVKVNcve_12DNhRmVW0Vrr3fH7w8XML8p9c13LI_LNK1C7ZCvKOsQKk_PnZ8IOJn8WdKhM_51Q_wz4P29bvOXjXDvFqyHCJa88iZ3G1ZMcweuj0KO_i7sjA3eyLshNdJPkO5TSGs-noc2J_eoIWcTJEqaaSTlIqPDIWl9QeM9OL4Sdd6H1WbSmAdAJFes0kZpayjNs6rObcdXViqVWOdoIuC9poQKCOZIpHEm-lK1z2KhYyTYrETChdNxBOlc8sKjeCwhU_WTIfouVedXhdtqlpB9MZcNkYyPUJaU3urnXgSP0oqF_UewPX_tfAEmeGRjJrNWZEjQ487zEZB_jOA5xcx3RiPY8La00AfitDKGWr5kZfMBCER--U1z-qkDJM944Q7ObPP_370NNwZHowNxMBzvP4SbvgwD77K2YHX6dWYeuehuWj8OS4rAh6texT8BErJohw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbwJFJoDHEPzsGNHqEJAu-pSdlVVVOrNOH5AUZstZFeIv8avwxM7u5SX9tLbKvGsorE9M_bMfB_AU2W1UpboRFLLE2IK96vSGhuYpSnxkrBrpB1Pyv1j8vaEnqzBj74XBssqe5vYGWo9VXhHvo1IeMgRURTbNpRFHO4OX158SZBBCjOtPZ2GXyIH5vs3d3xrd0a7bq6f5flw7_2b_SQwDCSKEjJLLKbdMFVlLZW15mWZy5RpWRspU26c_zSWlBm3klieEkZNVdrU1iy3UnGbFu5_r8E6c16RD2D99d7k8GgJ-ZsR34hHi4RnWRXqiHx1WYdWeXrubEbAzGTP0w6p8a_O8c_g9_cazl-c4vAm3AjRbPzKL79bsGaa27AxDvn6O7AzMXg774bUSEURd58St-bjeWh5co-a-GyKpElzjQRd8fhoFLe-uPEuHF-JOu_BoJk25gHEkilaaaO0NYQUeVUXtuMu40ql1hmdCFivKaECmjmSapyJvmzts1jqGMk2K5Ey4XQcQbaQvPCIHivIVP1kiL5j1dlY4dzOCrIvFrIhqvHRyorSm_3ci2BdWrHcCxFsLV47u4DJHtmY6bwVOZL1uLN9BPE_RrCCYBY8JxHc92tpqQ_EbKUUtXxplS0GICj55TfN6acOnDxnpTtE04f__-4t2HC7V7wbTQ4ewXVfkYHXWpswmH2dm8cu0JvVT8KOiuHDVW_in4EebLM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neonatal+Brain+Image+Segmentation+in+Longitudinal+MRI+Studies&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Shi%2C+Feng&rft.au=Fan%2C+Yong&rft.au=Tang%2C+Songyuan&rft.au=Gilmore%2C+John+H.&rft.date=2010-01-01&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=49&rft.issue=1&rft.spage=391&rft.epage=400&rft_id=info:doi/10.1016%2Fj.neuroimage.2009.07.066&rft_id=info%3Apmid%2F19660558&rft.externalDocID=PMC2764995 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |