Neonatal brain image segmentation in longitudinal MRI studies

In the study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the properties of developing tissues. Among various brain tissue segmentation algorithms, atlas-based brain image segmentation can potentially...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 49; no. 1; pp. 391 - 400
Main Authors Shi, Feng, Fan, Yong, Tang, Songyuan, Gilmore, John H., Lin, Weili, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2010
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2009.07.066

Cover

Loading…
Abstract In the study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the properties of developing tissues. Among various brain tissue segmentation algorithms, atlas-based brain image segmentation can potentially achieve good segmentation results on neonatal brain images. However, their performances rely on both the quality of the atlas and the spatial correspondence between the atlas and the to-be-segmented image. Moreover, it is difficult to build a population atlas for neonates due to the requirement of a large set of tissue-segmented neonatal brain images. To combat these obstacles, we present a longitudinal neonatal brain image segmentation framework by taking advantage of the longitudinal data acquired at late time-point to build a subject-specific tissue probabilistic atlas. Specifically, tissue segmentation of the neonatal brain is formulated as two iterative steps of bias correction and probabilistic-atlas-based tissue segmentation, along with the longitudinal atlas reconstructed by the late time image of the same subject. The proposed method has been evaluated qualitatively through visual inspection and quantitatively by comparing with manual delineations and two population-atlas-based segmentation methods. Experimental results show that the utilization of a subject-specific probabilistic atlas can substantially improve tissue segmentation of neonatal brain images.
AbstractList In the study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the properties of developing tissues. Among various brain tissue segmentation algorithms, atlas-based brain image segmentation can potentially achieve good segmentation results on neonatal brain images. However, their performances rely on both the quality of the atlas and the spatial correspondence between the atlas and the to-be-segmented image. Moreover, it is difficult to build a population atlas for neonates due to the requirement of a large set of tissue-segmented neonatal brain images. To combat these obstacles, we present a longitudinal neonatal brain image segmentation framework by taking advantage of the longitudinal data acquired at late time-point to build a subject-specific tissue probabilistic atlas. Specifically, tissue segmentation of the neonatal brain is formulated as two iterative steps of bias correction and probabilistic-atlas-based tissue segmentation, along with the longitudinal atlas reconstructed by the late time image of the same subject. The proposed method has been evaluated qualitatively through visual inspection and quantitatively by comparing with manual delineations and two population-atlas-based segmentation methods. Experimental results show that the utilization of a subject-specific probabilistic atlas can substantially improve tissue segmentation of neonatal brain images.
In the study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the properties of developing tissues. Among various brain tissue segmentation algorithms, atlas-based brain image segmentation can potentially achieve good segmentation results on neonatal brain images. However, their performances rely on both the quality of the atlas and the spatial correspondence between the atlas and the to-be-segmented image. Moreover, it is difficult to build a population atlas for neonates due to the requirement of a large set of tissue-segmented neonatal brain images. To combat these obstacles, we present a longitudinal neonatal brain image segmentation framework by taking advantage of the longitudinal data acquired at late time-point to build a subject-specific tissue probabilistic atlas. Specifically, tissue segmentation of the neonatal brain is formulated as two iterative steps of bias correction and probabilistic-atlas-based tissue segmentation, along with the longitudinal atlas reconstructed by the late time image of the same subject. The proposed method has been evaluated qualitatively through visual inspection and quantitatively by comparing with manual delineations and two population-atlas-based segmentation methods. Experimental results show that the utilization of a subject-specific probabilistic atlas can substantially improve tissue segmentation of neonatal brain images.In the study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the properties of developing tissues. Among various brain tissue segmentation algorithms, atlas-based brain image segmentation can potentially achieve good segmentation results on neonatal brain images. However, their performances rely on both the quality of the atlas and the spatial correspondence between the atlas and the to-be-segmented image. Moreover, it is difficult to build a population atlas for neonates due to the requirement of a large set of tissue-segmented neonatal brain images. To combat these obstacles, we present a longitudinal neonatal brain image segmentation framework by taking advantage of the longitudinal data acquired at late time-point to build a subject-specific tissue probabilistic atlas. Specifically, tissue segmentation of the neonatal brain is formulated as two iterative steps of bias correction and probabilistic-atlas-based tissue segmentation, along with the longitudinal atlas reconstructed by the late time image of the same subject. The proposed method has been evaluated qualitatively through visual inspection and quantitatively by comparing with manual delineations and two population-atlas-based segmentation methods. Experimental results show that the utilization of a subject-specific probabilistic atlas can substantially improve tissue segmentation of neonatal brain images.
In study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the properties of developing tissues.. Among various brain tissue segmentation algorithms, atlas-based brain image segmentation can potentially achieve good segmentation results on neonatal brain images. However, their performances rely on both the quality of the atlas and the spatial correspondence between the atlas and the to-be-segmented image. Moreover, it is difficult to build a population atlas for neonates due to the requirement of a large set of tissue-segmented neonatal brain images. To combat these obstacles, we present a longitudinal neonatal brain image segmentation framework by taking advantage of the longitudinal data acquired at late time-point to build a subject-specific tissue probabilistic atlas. Specifically, tissue segmentation of the neonatal brain is formulated as two iterative steps of bias correction and probabilistic-atlas-based tissue segmentation, along with the longitudinal atlas reconstructed by the late time image of the same subject. The proposed method has been evaluated qualitatively through visual inspection and quantitatively by comparing with manual delineations and two population-atlas-based segmentation methods. Experimental results show that the utilization of a subject-specific probabilistic atlas can substantially improve tissue segmentation of neonatal brain images.
Author Tang, Songyuan
Gilmore, John H.
Shen, Dinggang
Shi, Feng
Lin, Weili
Fan, Yong
AuthorAffiliation a IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill
b Department of Psychiatry, University of North Carolina at Chapel Hill
c MRI Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill
AuthorAffiliation_xml – name: a IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill
– name: b Department of Psychiatry, University of North Carolina at Chapel Hill
– name: c MRI Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill
Author_xml – sequence: 1
  givenname: Feng
  surname: Shi
  fullname: Shi, Feng
  organization: IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
– sequence: 2
  givenname: Yong
  surname: Fan
  fullname: Fan, Yong
  organization: IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
– sequence: 3
  givenname: Songyuan
  surname: Tang
  fullname: Tang, Songyuan
  organization: IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
– sequence: 4
  givenname: John H.
  surname: Gilmore
  fullname: Gilmore, John H.
  organization: Department of Psychiatry, University of North Carolina at Chapel Hill, USA
– sequence: 5
  givenname: Weili
  surname: Lin
  fullname: Lin, Weili
  organization: MRI Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
– sequence: 6
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19660558$$D View this record in MEDLINE/PubMed
BookMark eNqNkVtv1DAQhSNURC_wF1AkJHhKGCe-PoCAqkClAhKCZ8vrjBcvWbu1k0r99_WypYV9gD75dubzmTmH1V6IAauqJtASIPzlqg04p-jXZoltB6BaEC1w_qA6IKBYo5jo9jZ71jeSELVfHea8giIkVD6q9oniHBiTB9WrzxiDmcxYL5Lxof6FrDMu1xgmM_lYrkI9xrD00zz4UISfvp7WeXPA_Lh66MyY8cnNelR9f3_y7fhjc_blw-nx27PGMkqnxnVCUtEr5hwzi0Fy3hkQg1mgMSARQKCjnEhnqJNABUPFHbiF6Jyx0kF_VL3ecs_nxRoHW7wlM-rzVOymKx2N13-_BP9DL-Ol7gSnSrECeHEDSPFixjzptc8Wx9EEjHPWoqegetbRonz-T2VHSM8JiCJ8tiNcxTmVAWVNGHBJuOz7onr6p_Nby78TuGvNpphzQqet3w6-NOJHTUBvItcrfRe53kSuQegSeQHIHcDtH_8vfbctxZLdpceks_UYLA4-oZ30EP19IG92IHb0wVsz_sSr-yGuAa6Y424
CitedBy_id crossref_primary_10_1016_j_media_2018_05_003
crossref_primary_10_1002_hbm_26126
crossref_primary_10_1109_TMI_2024_3430348
crossref_primary_10_1371_journal_pone_0107650
crossref_primary_10_1016_j_brainres_2011_01_032
crossref_primary_10_1016_j_neuroimage_2018_01_054
crossref_primary_10_1016_j_mri_2019_05_023
crossref_primary_10_1016_j_aej_2023_06_040
crossref_primary_10_1109_TCYB_2017_2786161
crossref_primary_10_1016_j_media_2012_07_006
crossref_primary_10_1016_j_neuroimage_2010_10_019
crossref_primary_10_1371_journal_pone_0166112
crossref_primary_10_1016_j_neuroimage_2016_04_023
crossref_primary_10_3389_fninf_2022_880301
crossref_primary_10_1016_j_eswa_2018_01_053
crossref_primary_10_1109_TETCI_2018_2869919
crossref_primary_10_1118_1_4928400
crossref_primary_10_1016_j_jneumeth_2012_09_018
crossref_primary_10_1016_j_spen_2020_100796
crossref_primary_10_3390_s21134556
crossref_primary_10_1016_j_neuroimage_2010_02_025
crossref_primary_10_1007_s42979_022_01151_8
crossref_primary_10_1016_j_mric_2011_08_009
crossref_primary_10_1371_journal_pone_0060344
crossref_primary_10_1007_s00429_018_1707_0
crossref_primary_10_1016_j_media_2016_06_038
crossref_primary_10_1155_2013_317215
crossref_primary_10_1002_mp_12578
crossref_primary_10_3389_fninf_2016_00012
crossref_primary_10_1007_s00542_020_05144_6
crossref_primary_10_1186_s12938_020_00785_0
crossref_primary_10_1016_j_media_2020_101663
crossref_primary_10_1016_j_dcn_2015_08_008
crossref_primary_10_1109_TCYB_2018_2859342
crossref_primary_10_1016_j_neuroimage_2011_09_062
crossref_primary_10_1016_j_neuroimage_2015_05_099
crossref_primary_10_1016_j_neuroimage_2016_05_011
crossref_primary_10_1016_j_neuroimage_2016_07_020
crossref_primary_10_1371_journal_pone_0085475
crossref_primary_10_1007_s11042_020_09062_7
crossref_primary_10_1038_s41598_024_69995_z
crossref_primary_10_1109_TMI_2011_2162529
crossref_primary_10_1002_mp_12132
crossref_primary_10_1002_hbm_21486
crossref_primary_10_1002_hbm_23301
crossref_primary_10_1016_j_nicl_2017_08_015
crossref_primary_10_1002_dev_20579
crossref_primary_10_3389_fnins_2019_01025
crossref_primary_10_1016_j_neuroimage_2013_11_040
crossref_primary_10_1016_j_bandl_2012_10_007
crossref_primary_10_1016_j_neuroimage_2015_04_055
crossref_primary_10_1002_hbm_23536
crossref_primary_10_1007_s11042_020_09810_9
crossref_primary_10_1007_s12021_012_9164_z
crossref_primary_10_1016_j_bbe_2016_11_004
crossref_primary_10_1016_j_neuroimage_2014_12_061
crossref_primary_10_3390_app12115377
crossref_primary_10_1371_journal_pone_0108306
crossref_primary_10_3389_fnins_2016_00220
crossref_primary_10_3389_fnins_2021_650082
crossref_primary_10_1016_j_media_2014_06_007
crossref_primary_10_1038_pr_2011_21
crossref_primary_10_1371_journal_pone_0018746
crossref_primary_10_1016_j_neuroimage_2013_08_008
crossref_primary_10_1016_j_ynirp_2022_100120
crossref_primary_10_1080_21681163_2019_1573380
crossref_primary_10_1109_JBHI_2015_2415477
crossref_primary_10_1002_hbm_22511
crossref_primary_10_1016_j_media_2022_102576
crossref_primary_10_1016_j_neuroimage_2021_118232
crossref_primary_10_1016_j_neuroimage_2017_06_074
crossref_primary_10_1002_hbm_22076
crossref_primary_10_1016_j_neucom_2016_05_107
crossref_primary_10_1109_TCYB_2018_2834390
crossref_primary_10_1002_hbm_21023
crossref_primary_10_3389_fnana_2015_00163
crossref_primary_10_1016_j_bspc_2019_101613
crossref_primary_10_1016_j_neuroscience_2017_09_021
crossref_primary_10_1109_TMI_2016_2548501
crossref_primary_10_1016_j_neuroimage_2012_05_042
crossref_primary_10_1109_TMI_2013_2269814
crossref_primary_10_1002_hbm_22502
crossref_primary_10_1016_j_neuroimage_2011_06_064
crossref_primary_10_1186_s12880_022_00807_4
crossref_primary_10_1007_s00429_012_0496_0
crossref_primary_10_1093_cercor_bhy244
crossref_primary_10_1016_j_neuroimage_2014_12_042
crossref_primary_10_3389_fnhum_2015_00021
crossref_primary_10_1007_s11760_017_1202_8
crossref_primary_10_1080_00207454_2019_1695609
crossref_primary_10_1016_j_compmedimag_2019_101660
crossref_primary_10_1093_cercor_bhz053
crossref_primary_10_1016_j_neuroimage_2018_03_042
crossref_primary_10_1016_j_yebeh_2019_106684
crossref_primary_10_1016_j_neuroimage_2020_116946
crossref_primary_10_1007_s12021_018_9359_z
crossref_primary_10_1093_cercor_bhr327
crossref_primary_10_1371_journal_pone_0187391
crossref_primary_10_1093_cercor_bhs413
crossref_primary_10_1016_j_ins_2016_01_035
crossref_primary_10_1016_j_neuroimage_2018_12_043
crossref_primary_10_1109_ACCESS_2020_2998901
crossref_primary_10_21833_ijaas_2023_08_006
crossref_primary_10_1016_j_dcn_2023_101249
crossref_primary_10_1016_j_neuroimage_2017_04_041
crossref_primary_10_1371_journal_pone_0080954
crossref_primary_10_3389_fped_2017_00159
crossref_primary_10_1016_j_neuroimage_2015_06_007
crossref_primary_10_1016_j_compbiomed_2015_06_016
crossref_primary_10_1007_s11042_019_07829_1
crossref_primary_10_1016_j_neuroimage_2010_07_025
crossref_primary_10_1109_TMI_2011_2154385
crossref_primary_10_1016_j_nicl_2023_103354
crossref_primary_10_1016_j_jvcir_2016_03_027
crossref_primary_10_1016_j_knosys_2020_105945
crossref_primary_10_1523_ENEURO_0003_15_2015
crossref_primary_10_1523_JNEUROSCI_3976_13_2014
crossref_primary_10_1007_s10278_012_9460_z
crossref_primary_10_1002_hbm_24027
crossref_primary_10_1109_TMI_2015_2437894
crossref_primary_10_1016_j_neuroimage_2013_12_038
Cites_doi 10.1016/S1361-8415(03)00037-9
10.1093/cercor/bhm180
10.1109/42.668698
10.1093/cercor/5.1.56
10.1523/JNEUROSCI.3479-08.2008
10.1016/j.neuroimage.2006.05.020
10.1016/j.neuroimage.2009.02.018
10.1109/TMI.2004.828354
10.1016/j.neuroimage.2009.04.068
10.1016/j.neuroimage.2005.11.044
10.1016/j.neuroimage.2007.07.030
10.1542/peds.2005-2675
10.1109/42.811268
10.1016/S1361-8415(00)00003-7
10.1109/TMI.2002.803111
10.2307/1932409
10.1146/annurev.bioeng.2.1.315
10.1109/TMI.2007.893283
10.1016/0098-3004(84)90020-7
10.1016/j.neuroimage.2006.01.015
10.1016/j.media.2005.05.007
10.1016/S0896-6273(02)00569-X
10.1016/j.neuroimage.2008.07.060
10.1002/ima.10035
10.1016/j.acra.2006.05.017
10.1002/hbm.10062
10.1016/j.neuroimage.2005.02.018
10.1016/S0167-8655(98)00121-4
10.1016/j.neuroimage.2006.05.061
10.1142/S021800149700055X
10.1109/42.963819
10.1016/S1361-8415(03)00004-5
ContentType Journal Article
Copyright 2009 Elsevier Inc.
Copyright Elsevier Limited Jan 1, 2010
2009 Elsevier Inc. All rights reserved. 2009
Copyright_xml – notice: 2009 Elsevier Inc.
– notice: Copyright Elsevier Limited Jan 1, 2010
– notice: 2009 Elsevier Inc. All rights reserved. 2009
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7QO
7X8
5PM
DOI 10.1016/j.neuroimage.2009.07.066
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology


MEDLINE - Academic

MEDLINE
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 400
ExternalDocumentID PMC2764995
3244776121
19660558
10_1016_j_neuroimage_2009_07_066
S1053811909008532
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: MH088520
– fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NINDS NIH HHS
  grantid: NS055754
– fundername: NIMH NIH HHS
  grantid: R03 MH076970
– fundername: NIBIB NIH HHS
  grantid: R03 EB008760
– fundername: NINDS NIH HHS
  grantid: R01 NS055754
– fundername: NIBIB NIH HHS
  grantid: EB006733
– fundername: NIBIB NIH HHS
  grantid: EB008374
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
– fundername: NIMH NIH HHS
  grantid: MH064065
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
.1-
.FO
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AFRHN
AGHFR
AGQPQ
AGRNS
AIGII
AJUYK
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
GBLVA
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
Z5R
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7QO
7X8
5PM
ID FETCH-LOGICAL-c544t-f27847395ff5abd8662a07dabeaa08e007ef4618fa4f80475e96f0fb72fac8f03
IEDL.DBID BENPR
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 18:27:25 EDT 2025
Fri Jul 11 12:40:21 EDT 2025
Mon Jul 21 10:19:05 EDT 2025
Wed Aug 13 07:29:27 EDT 2025
Fri May 30 10:59:22 EDT 2025
Thu Apr 24 22:55:17 EDT 2025
Tue Jul 01 02:14:25 EDT 2025
Fri Feb 23 02:20:31 EST 2024
Tue Aug 26 18:05:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Probabilistic atlas
Tissue segmentation
Neonate
Subject-specific atlas
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c544t-f27847395ff5abd8662a07dabeaa08e007ef4618fa4f80475e96f0fb72fac8f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 19660558
PQID 1506816833
PQPubID 2031077
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2764995
proquest_miscellaneous_734093524
proquest_miscellaneous_21136107
proquest_journals_1506816833
pubmed_primary_19660558
crossref_citationtrail_10_1016_j_neuroimage_2009_07_066
crossref_primary_10_1016_j_neuroimage_2009_07_066
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2009_07_066
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2009_07_066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-01-01
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2010
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Knickmeyer, Gouttard, Kang, Evans, Wilber, Smith, Hamer, Lin, Gerig, Gilmore (bb0065) 2008; 28
Shen, Davatzikos (bb0120) 2002; 21
Yeo, Sabuncu, Desikan, Fischl, Golland (bb0170) 2008
Mewes, Huppi, Als, Rybicki, Inder, McAnulty, Mulkern, Robertson, Rivkin, Warfield (bb0075) 2006; 118
Sled, Zijdenbos, Evans (bb0125) 1998; 17
Gerig, Davis, Lorenzen, Xu, Jomier, Piven, Joshi (bb0055) 2006
Kwon, Han, Shin, Park (bb0070) 2003; 13
Pohl, Fisher, Grimson, Kikinis, Wells (bb0100) 2006; 31
Warfield, Zou, Wells (bb0155) 2004; 23
Armstrong, Schleicher, Omran, Curtis, Zilles (bb0015) 1995; 5
Prastawa, Gilmore, Lin, Gerig (bb0105) 2005; 9
Bezdek, Ehrlich (bb0030) 1984; 10
Pham, Prince, Xu, Dagher (bb0085) 1997; 11
Smith (bb0130) 2002; 17
Aljabar, Heckemann, Hammers, Hajnal, Rueckert (bb0005) 2009; 46
Ashburner, Friston (bb0020) 2005; 26
Altaye, Holland, Wilke, Gaser (bb0010) 2008; 43
Weisenfeld, Warfield (bb0160) 2009; 47
Dubois, Benders, Cachia, Lazeyras, Ha-Vinh Leuchter, Sizonenko, Borradori-Tolsa, Mangin, Huppi (bb0045) 2008; 18
Song, Awate, Licht, Gee (bb0135) 2007
Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness (bb0050) 2002; 33
Bazin, Pham (bb0025) 2007; 26
Dice (bb0040) 1945; 26
Pham, Xu, Prince (bb0095) 2000; 2
Xue, Srinivasan, Jiang, Rutherford, Edwards, Rueckert, Hajnal (bb0165) 2007; 38
Yezzi, Zollei, Kapur (bb0175) 2003; 7
Heckemann, Hajnal, Aljabar, Rueckert, Hammers (bb0060) 2006; 33
Nishida, Makris, Kennedy, Vangel, Fischl, Krishnamoorthy, Caviness, Grant (bb0080) 2006; 32
Van Leemput, Maes, Vandermeulen, Suetens (bb0140) 1999; 18
Shattuck, Leahy (bb0115) 2001; 20
Wang, Vemuri, Eisenschenk (bb0145) 2006; 13
Warfield, Kaus, Jolesz, Kikinis (bb0150) 2000; 4
Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (bb0180) 2006; 31
Pham, Prince (bb0090) 1999; 20
Rohlfing, Russakoff, Maurer (bb0110) 2003
Cocosco, Zijdenbos, Evans (bb0035) 2003; 7
Aljabar (10.1016/j.neuroimage.2009.07.066_bb0005) 2009; 46
Dice (10.1016/j.neuroimage.2009.07.066_bb0040) 1945; 26
Van Leemput (10.1016/j.neuroimage.2009.07.066_bb0140) 1999; 18
Dubois (10.1016/j.neuroimage.2009.07.066_bb0045) 2008; 18
Yushkevich (10.1016/j.neuroimage.2009.07.066_bb0180) 2006; 31
Armstrong (10.1016/j.neuroimage.2009.07.066_bb0015) 1995; 5
Pohl (10.1016/j.neuroimage.2009.07.066_bb0100) 2006; 31
Cocosco (10.1016/j.neuroimage.2009.07.066_bb0035) 2003; 7
Gerig (10.1016/j.neuroimage.2009.07.066_bb0055) 2006
Fischl (10.1016/j.neuroimage.2009.07.066_bb0050) 2002; 33
Knickmeyer (10.1016/j.neuroimage.2009.07.066_bb0065) 2008; 28
Warfield (10.1016/j.neuroimage.2009.07.066_bb0155) 2004; 23
Sled (10.1016/j.neuroimage.2009.07.066_bb0125) 1998; 17
Bezdek (10.1016/j.neuroimage.2009.07.066_bb0030) 1984; 10
Heckemann (10.1016/j.neuroimage.2009.07.066_bb0060) 2006; 33
Shen (10.1016/j.neuroimage.2009.07.066_bb0120) 2002; 21
Wang (10.1016/j.neuroimage.2009.07.066_bb0145) 2006; 13
Warfield (10.1016/j.neuroimage.2009.07.066_bb0150) 2000; 4
Pham (10.1016/j.neuroimage.2009.07.066_bb0090) 1999; 20
Prastawa (10.1016/j.neuroimage.2009.07.066_bb0105) 2005; 9
Shattuck (10.1016/j.neuroimage.2009.07.066_bb0115) 2001; 20
Rohlfing (10.1016/j.neuroimage.2009.07.066_bb0110) 2003
Nishida (10.1016/j.neuroimage.2009.07.066_bb0080) 2006; 32
Pham (10.1016/j.neuroimage.2009.07.066_bb0095) 2000; 2
Mewes (10.1016/j.neuroimage.2009.07.066_bb0075) 2006; 118
Bazin (10.1016/j.neuroimage.2009.07.066_bb0025) 2007; 26
Kwon (10.1016/j.neuroimage.2009.07.066_bb0070) 2003; 13
Pham (10.1016/j.neuroimage.2009.07.066_bb0085) 1997; 11
Altaye (10.1016/j.neuroimage.2009.07.066_bb0010) 2008; 43
Smith (10.1016/j.neuroimage.2009.07.066_bb0130) 2002; 17
Yezzi (10.1016/j.neuroimage.2009.07.066_bb0175) 2003; 7
Weisenfeld (10.1016/j.neuroimage.2009.07.066_bb0160) 2009; 47
Song (10.1016/j.neuroimage.2009.07.066_bb0135) 2007
Yeo (10.1016/j.neuroimage.2009.07.066_bb0170) 2008
Ashburner (10.1016/j.neuroimage.2009.07.066_bb0020) 2005; 26
Xue (10.1016/j.neuroimage.2009.07.066_bb0165) 2007; 38
References_xml – volume: 13
  start-page: 115
  year: 2003
  end-page: 125
  ident: bb0070
  article-title: Hierarchical fuzzy segmentation of brain MR images
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 46
  start-page: 726
  year: 2009
  end-page: 738
  ident: bb0005
  article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy
  publication-title: NeuroImage
– volume: 28
  start-page: 12176
  year: 2008
  end-page: 12182
  ident: bb0065
  article-title: A structural MRI study of human brain development from birth to 2 years
  publication-title: J. Neurosci.
– volume: 31
  start-page: 228
  year: 2006
  end-page: 239
  ident: bb0100
  article-title: A Bayesian model for joint segmentation and registration
  publication-title: NeuroImage
– volume: 5
  start-page: 56
  year: 1995
  end-page: 63
  ident: bb0015
  article-title: The ontogeny of human gyrification
  publication-title: Cereb. Cortex
– volume: 21
  start-page: 1421
  year: 2002
  end-page: 1439
  ident: bb0120
  article-title: HAMMER: hierarchical attribute matching mechanism for elastic registration
  publication-title: IEEE Trans. Med. Imaging
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  ident: bb0125
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: bb0130
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– volume: 7
  start-page: 171
  year: 2003
  end-page: 185
  ident: bb0175
  article-title: A variational framework for integrating segmentation and registration through active contours
  publication-title: Med. Image Anal.
– volume: 38
  start-page: 461
  year: 2007
  end-page: 477
  ident: bb0165
  article-title: Automatic segmentation and reconstruction of the cortex from neonatal MRI
  publication-title: NeuroImage
– volume: 118
  start-page: 23
  year: 2006
  end-page: 33
  ident: bb0075
  article-title: Regional brain development in serial magnetic resonance imaging of low-risk preterm infants
  publication-title: Pediatrics
– volume: 2
  start-page: 315
  year: 2000
  end-page: 337
  ident: bb0095
  article-title: A survey of current methods in medical image segmentation
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 18
  start-page: 885
  year: 1999
  end-page: 896
  ident: bb0140
  article-title: Automated model-based bias field correction of MR images of the brain
  publication-title: IEEE Trans. Med. Imaging
– volume: 26
  start-page: 487
  year: 2007
  end-page: 496
  ident: bb0025
  article-title: Topology-preserving tissue classification of magnetic resonance brain images
  publication-title: IEEE Trans. Med. Imag.
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  ident: bb0020
  article-title: Unified segmentation
  publication-title: NeuroImage
– start-page: 603
  year: 2008
  end-page: 615
  ident: bb0170
  article-title: Effects of registration regularization and atlas sharpness on segmentation accuracy
  publication-title: Med. Image Anal.
– volume: 33
  start-page: 115
  year: 2006
  end-page: 126
  ident: bb0060
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
  publication-title: NeuroImage
– volume: 13
  start-page: 1104
  year: 2006
  end-page: 1111
  ident: bb0145
  article-title: Joint registration and segmentation of neuroanatomic structures from brain MRI
  publication-title: Acad. Radiol.
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  ident: bb0050
  article-title: Whole brain segmentation automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– start-page: 1041
  year: 2006
  end-page: 1047
  ident: bb0055
  publication-title: Computational Anatomy to Assess Longitudinal Trajectory of Brain Growth. Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06)
– start-page: 210
  year: 2003
  end-page: 221
  ident: bb0110
  publication-title: Expectation Maximization Strategies for Multi-Atlas Multi-Label Segmentation. IPMI 2003
– volume: 7
  start-page: 513
  year: 2003
  end-page: 527
  ident: bb0035
  article-title: A fully automatic and robust brain MRI tissue classification method
  publication-title: Med. Image Anal.
– volume: 23
  start-page: 903
  year: 2004
  end-page: 921
  ident: bb0155
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 20
  start-page: 57
  year: 1999
  end-page: 68
  ident: bb0090
  article-title: An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities
  publication-title: Pattern Recogn. Lett.
– volume: 20
  start-page: 1167
  year: 2001
  end-page: 1177
  ident: bb0115
  article-title: Automated graph-based analysis and correction of cortical volume topology
  publication-title: IEEE Trans. Med. Imaging
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  ident: bb0180
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: NeuroImage
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: bb0040
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 9
  start-page: 457
  year: 2005
  end-page: 466
  ident: bb0105
  article-title: Automatic segmentation of MR images of the developing newborn brain
  publication-title: Med. Image Anal.
– volume: 4
  start-page: 43
  year: 2000
  end-page: 55
  ident: bb0150
  article-title: Adaptive, template moderated, spatially varying statistical classification
  publication-title: Med. Image Anal.
– start-page: 883
  year: 2007
  end-page: 890
  ident: bb0135
  article-title: Clinical neonatal brain MRI segmentation using adaptive nonparametric data models and intensity-based Markov priors
  publication-title: MICCAI 2007
– volume: 47
  start-page: 564
  year: 2009
  end-page: 572
  ident: bb0160
  article-title: Automatic segmentation of newborn brain MRI
  publication-title: NeuroImage
– volume: 18
  start-page: 1444
  year: 2008
  end-page: 1454
  ident: bb0045
  article-title: Mapping the early cortical folding process in the preterm newborn brain
  publication-title: Cereb. Cortex
– volume: 32
  start-page: 1041
  year: 2006
  end-page: 1049
  ident: bb0080
  article-title: Detailed semiautomated MRI based morphometry of the neonatal brain: preliminary results
  publication-title: NeuroImage
– volume: 43
  start-page: 721
  year: 2008
  end-page: 730
  ident: bb0010
  article-title: Infant brain probability templates for MRI segmentation and normalization
  publication-title: NeuroImage
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: bb0030
  article-title: FCM: the fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
– volume: 11
  start-page: 1189
  year: 1997
  end-page: 1212
  ident: bb0085
  article-title: An automated technique for statistical characterization of brain tissues in magnetic resonance imaging
  publication-title: Int. J. Pattern Recogn. Artif. Intell.
– volume: 7
  start-page: 513
  year: 2003
  ident: 10.1016/j.neuroimage.2009.07.066_bb0035
  article-title: A fully automatic and robust brain MRI tissue classification method
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(03)00037-9
– volume: 18
  start-page: 1444
  year: 2008
  ident: 10.1016/j.neuroimage.2009.07.066_bb0045
  article-title: Mapping the early cortical folding process in the preterm newborn brain
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhm180
– volume: 17
  start-page: 87
  year: 1998
  ident: 10.1016/j.neuroimage.2009.07.066_bb0125
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.668698
– volume: 5
  start-page: 56
  year: 1995
  ident: 10.1016/j.neuroimage.2009.07.066_bb0015
  article-title: The ontogeny of human gyrification
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/5.1.56
– volume: 28
  start-page: 12176
  year: 2008
  ident: 10.1016/j.neuroimage.2009.07.066_bb0065
  article-title: A structural MRI study of human brain development from birth to 2 years
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3479-08.2008
– start-page: 1041
  year: 2006
  ident: 10.1016/j.neuroimage.2009.07.066_bb0055
– volume: 32
  start-page: 1041
  year: 2006
  ident: 10.1016/j.neuroimage.2009.07.066_bb0080
  article-title: Detailed semiautomated MRI based morphometry of the neonatal brain: preliminary results
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.05.020
– start-page: 883
  year: 2007
  ident: 10.1016/j.neuroimage.2009.07.066_bb0135
  article-title: Clinical neonatal brain MRI segmentation using adaptive nonparametric data models and intensity-based Markov priors
  publication-title: MICCAI 2007
– volume: 46
  start-page: 726
  year: 2009
  ident: 10.1016/j.neuroimage.2009.07.066_bb0005
  article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.018
– volume: 23
  start-page: 903
  year: 2004
  ident: 10.1016/j.neuroimage.2009.07.066_bb0155
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.828354
– volume: 47
  start-page: 564
  year: 2009
  ident: 10.1016/j.neuroimage.2009.07.066_bb0160
  article-title: Automatic segmentation of newborn brain MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.04.068
– start-page: 603
  year: 2008
  ident: 10.1016/j.neuroimage.2009.07.066_bb0170
  article-title: Effects of registration regularization and atlas sharpness on segmentation accuracy
  publication-title: Med. Image Anal.
– volume: 31
  start-page: 228
  year: 2006
  ident: 10.1016/j.neuroimage.2009.07.066_bb0100
  article-title: A Bayesian model for joint segmentation and registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.11.044
– volume: 38
  start-page: 461
  year: 2007
  ident: 10.1016/j.neuroimage.2009.07.066_bb0165
  article-title: Automatic segmentation and reconstruction of the cortex from neonatal MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.07.030
– volume: 118
  start-page: 23
  year: 2006
  ident: 10.1016/j.neuroimage.2009.07.066_bb0075
  article-title: Regional brain development in serial magnetic resonance imaging of low-risk preterm infants
  publication-title: Pediatrics
  doi: 10.1542/peds.2005-2675
– volume: 18
  start-page: 885
  year: 1999
  ident: 10.1016/j.neuroimage.2009.07.066_bb0140
  article-title: Automated model-based bias field correction of MR images of the brain
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.811268
– volume: 4
  start-page: 43
  year: 2000
  ident: 10.1016/j.neuroimage.2009.07.066_bb0150
  article-title: Adaptive, template moderated, spatially varying statistical classification
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(00)00003-7
– volume: 21
  start-page: 1421
  year: 2002
  ident: 10.1016/j.neuroimage.2009.07.066_bb0120
  article-title: HAMMER: hierarchical attribute matching mechanism for elastic registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2002.803111
– volume: 26
  start-page: 297
  year: 1945
  ident: 10.1016/j.neuroimage.2009.07.066_bb0040
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 2
  start-page: 315
  year: 2000
  ident: 10.1016/j.neuroimage.2009.07.066_bb0095
  article-title: A survey of current methods in medical image segmentation
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.2.1.315
– volume: 26
  start-page: 487
  year: 2007
  ident: 10.1016/j.neuroimage.2009.07.066_bb0025
  article-title: Topology-preserving tissue classification of magnetic resonance brain images
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2007.893283
– volume: 10
  start-page: 191
  year: 1984
  ident: 10.1016/j.neuroimage.2009.07.066_bb0030
  article-title: FCM: the fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– volume: 31
  start-page: 1116
  year: 2006
  ident: 10.1016/j.neuroimage.2009.07.066_bb0180
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 9
  start-page: 457
  year: 2005
  ident: 10.1016/j.neuroimage.2009.07.066_bb0105
  article-title: Automatic segmentation of MR images of the developing newborn brain
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2005.05.007
– start-page: 210
  year: 2003
  ident: 10.1016/j.neuroimage.2009.07.066_bb0110
– volume: 33
  start-page: 341
  year: 2002
  ident: 10.1016/j.neuroimage.2009.07.066_bb0050
  article-title: Whole brain segmentation automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 43
  start-page: 721
  year: 2008
  ident: 10.1016/j.neuroimage.2009.07.066_bb0010
  article-title: Infant brain probability templates for MRI segmentation and normalization
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.07.060
– volume: 13
  start-page: 115
  year: 2003
  ident: 10.1016/j.neuroimage.2009.07.066_bb0070
  article-title: Hierarchical fuzzy segmentation of brain MR images
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.10035
– volume: 13
  start-page: 1104
  year: 2006
  ident: 10.1016/j.neuroimage.2009.07.066_bb0145
  article-title: Joint registration and segmentation of neuroanatomic structures from brain MRI
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2006.05.017
– volume: 17
  start-page: 143
  year: 2002
  ident: 10.1016/j.neuroimage.2009.07.066_bb0130
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– volume: 26
  start-page: 839
  year: 2005
  ident: 10.1016/j.neuroimage.2009.07.066_bb0020
  article-title: Unified segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 20
  start-page: 57
  year: 1999
  ident: 10.1016/j.neuroimage.2009.07.066_bb0090
  article-title: An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/S0167-8655(98)00121-4
– volume: 33
  start-page: 115
  year: 2006
  ident: 10.1016/j.neuroimage.2009.07.066_bb0060
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.05.061
– volume: 11
  start-page: 1189
  year: 1997
  ident: 10.1016/j.neuroimage.2009.07.066_bb0085
  article-title: An automated technique for statistical characterization of brain tissues in magnetic resonance imaging
  publication-title: Int. J. Pattern Recogn. Artif. Intell.
  doi: 10.1142/S021800149700055X
– volume: 20
  start-page: 1167
  year: 2001
  ident: 10.1016/j.neuroimage.2009.07.066_bb0115
  article-title: Automated graph-based analysis and correction of cortical volume topology
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.963819
– volume: 7
  start-page: 171
  year: 2003
  ident: 10.1016/j.neuroimage.2009.07.066_bb0175
  article-title: A variational framework for integrating segmentation and registration through active contours
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(03)00004-5
SSID ssj0009148
Score 2.4064457
Snippet In the study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to...
In study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 391
SubjectTerms Accuracy
Algorithms
Brain
Brain - anatomy & histology
Brain - growth & development
Fuzzy Logic
Humans
Image Processing, Computer-Assisted
Infant
Infant, Newborn
Longitudinal Studies
Magnetic Resonance Imaging
Neonate
Pediatrics
Probabilistic atlas
Software
Studies
Subject-specific atlas
Tissue segmentation
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLYQB8QF8aY8e-Ba1jVJ0wpxQAgESOPAQ-IWpXnA0OgQ2678duI23RgPaRK3qo2l1okdN7a_D-BQWa2UpTqSzGYRNcRd5VpjA7M0KR4SVo20nZv08oFeP7LHOThremGwrNL7_tqnV97a32l5bbbeut3WnYsM3HbjNrQc4waCfphSjvj5Rx-TMo-8Tet2OEYiHO2reeoarwozsvvqLNcjV_KjuMJL_HWL-hmCfq-k_LI1XSzDko8pw9P6tVdgzpSrsNDxWfM1OLkxeEbuhhRICBFWrxIOzNOrbzxyt8qw10fqopFGmqywc3sVDuoSw3V4uDi_P7uMPG1CpBilw8hiLhHzb9YyWegsTRMZcy0LI2WcGRcUGEvTdmYltVlMOTN5amNb8MRKldmYbMB82S_NFoSSK5Zro7Q1lJIkL4itGMQypWLrTD8A3mhKKI8pjtQWPdEUj72IiY6R8jIXMRdOxwG0x5JvNa7GDDJ5Mxmi6Rt1nk445z-D7PFYdmp9zSi928y98DY-EIjNiKwlhARwMH7srBNTLrI0_dFAJEiZ4_6wAwj_GMEJxVx0QgPYrNfSRB-InMoYanlqlY0HIDT49JOy-1xBhCc8db-ybPtfX70Di3WtBB447cL88H1k9lwINiz2Kxv7BHP8NJk
  priority: 102
  providerName: Elsevier
Title Neonatal brain image segmentation in longitudinal MRI studies
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811909008532
https://dx.doi.org/10.1016/j.neuroimage.2009.07.066
https://www.ncbi.nlm.nih.gov/pubmed/19660558
https://www.proquest.com/docview/1506816833
https://www.proquest.com/docview/21136107
https://www.proquest.com/docview/734093524
https://pubmed.ncbi.nlm.nih.gov/PMC2764995
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Za9tAEB4aG0pfStJTOVw99FWpjl3tilJKEhKctjbBNOC3ZbVHmpLISWW_5rdnR1rZSS_8IgtrB8RoZzSa4_sA3iurlbJER5JaHhGTubNCaxxglibHJGEzSDsa58Nz8mVKpz7hVvu2ys4nNo5azxTmyD8gEh5yRGTZ55vbCFmjsLrqKTQ2oO9cMKc96B8ej88mK9jdhLTDcDSLeJIUvpen7fBqECMvr53detxKth83aIl_fUH9GYD-3kf54MV0sgnPfUQZHrRbYAuemOoFPB35mvlL-DQ2mCF3S0qkgwibWwlrc3Htx47cX1V4NUPiooVGkqxwNDkN67bB8BWcnxx_PxpGnjQhUpSQeWSxkojVN2upLDXP81TGTMvSSBlz40ICY0mecCuJ5TFh1BS5jW3JUisVt3H2GnrVrDJvIZRM0UIbpa0hJEuLMrMNfxhXKrbO8ANgnaaE8ojiSGxxJbrWsZ9ipWMkvCxEzITTcQDJUvKmRdVYQ6boHobopkadnxPO9a8h-3Ep6yOLNmJYU3q3e_bCW3gtVvsxgHfLy842seAiKzNb1CJFwhz3fR1A-I8VLCNYiU5JAG_avbTSB-KmUopafrTLlgsQGPzxleryRwMQnrLcfcjS7f_f9w48a1shMJ-0C735r4XZcxHWvBzAxv5d4o5sygbQPziafDvD39Ovw_HAm9g9uBMvmA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuFc-SUqgPcAzkYceJUIV4tNql3RWqWqk34_gBRW22kF0h_hS_EU_s7FJe2ktvq8Szisbj8dgz830AT5TVSlmqY8lsGVOTu1-V1tjALE2Bl4RdI-1oXAyO6bsTdrICP_peGCyr7H1i56j1ROEd-XNEwkOOiDx_efElRtYozK72FBreLPbN92_uyNbuDN-6-X2aZXu7R28GcWAViBWjdBpbTLVhespaJmtdFkUmE65lbaRMSuP2TGNpkZZWUlsmlDNTFTaxNc-sVKVNcve_12DNhRmVW0Vrr3fH7w8XML8p9c13LI_LNK1C7ZCvKOsQKk_PnZ8IOJn8WdKhM_51Q_wz4P29bvOXjXDvFqyHCJa88iZ3G1ZMcweuj0KO_i7sjA3eyLshNdJPkO5TSGs-noc2J_eoIWcTJEqaaSTlIqPDIWl9QeM9OL4Sdd6H1WbSmAdAJFes0kZpayjNs6rObcdXViqVWOdoIuC9poQKCOZIpHEm-lK1z2KhYyTYrETChdNxBOlc8sKjeCwhU_WTIfouVedXhdtqlpB9MZcNkYyPUJaU3urnXgSP0oqF_UewPX_tfAEmeGRjJrNWZEjQ487zEZB_jOA5xcx3RiPY8La00AfitDKGWr5kZfMBCER--U1z-qkDJM944Q7ObPP_370NNwZHowNxMBzvP4SbvgwD77K2YHX6dWYeuehuWj8OS4rAh6texT8BErJohw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbwJFJoDHEPzsGNHqEJAu-pSdlVVVOrNOH5AUZstZFeIv8avwxM7u5SX9tLbKvGsorE9M_bMfB_AU2W1UpboRFLLE2IK96vSGhuYpSnxkrBrpB1Pyv1j8vaEnqzBj74XBssqe5vYGWo9VXhHvo1IeMgRURTbNpRFHO4OX158SZBBCjOtPZ2GXyIH5vs3d3xrd0a7bq6f5flw7_2b_SQwDCSKEjJLLKbdMFVlLZW15mWZy5RpWRspU26c_zSWlBm3klieEkZNVdrU1iy3UnGbFu5_r8E6c16RD2D99d7k8GgJ-ZsR34hHi4RnWRXqiHx1WYdWeXrubEbAzGTP0w6p8a_O8c_g9_cazl-c4vAm3AjRbPzKL79bsGaa27AxDvn6O7AzMXg774bUSEURd58St-bjeWh5co-a-GyKpElzjQRd8fhoFLe-uPEuHF-JOu_BoJk25gHEkilaaaO0NYQUeVUXtuMu40ql1hmdCFivKaECmjmSapyJvmzts1jqGMk2K5Ey4XQcQbaQvPCIHivIVP1kiL5j1dlY4dzOCrIvFrIhqvHRyorSm_3ci2BdWrHcCxFsLV47u4DJHtmY6bwVOZL1uLN9BPE_RrCCYBY8JxHc92tpqQ_EbKUUtXxplS0GICj55TfN6acOnDxnpTtE04f__-4t2HC7V7wbTQ4ewXVfkYHXWpswmH2dm8cu0JvVT8KOiuHDVW_in4EebLM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neonatal+Brain+Image+Segmentation+in+Longitudinal+MRI+Studies&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Shi%2C+Feng&rft.au=Fan%2C+Yong&rft.au=Tang%2C+Songyuan&rft.au=Gilmore%2C+John+H.&rft.date=2010-01-01&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=49&rft.issue=1&rft.spage=391&rft.epage=400&rft_id=info:doi/10.1016%2Fj.neuroimage.2009.07.066&rft_id=info%3Apmid%2F19660558&rft.externalDocID=PMC2764995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon