Self-assembled biomimetic [2Fe2S]-hydrogenase-based photocatalyst for molecular hydrogen evolution

The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a su...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 106; no. 26; pp. 10460 - 10465
Main Authors Kluwer, A.M, Kapre, R, Hartl, F, Lutz, M, Spek, A.L, Brouwer, A.M, van Leeuwen, P.W.N.M, Reek, J.N.H
Format Journal Article
LanguageEnglish
Published Washington National Academy of Sciences 30.06.2009
National Acad Sciences
SeriesMolecular Recognition and Self-Assembly Special Feature
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a supramolecular biomimetic approach to form a catalyst that produces molecular hydrogen using light as the energy source. It is composed of an assembly of chromophores to a bis(thiolate)-bridged diiron ([2Fe2S]) based hydrogenase catalyst. The supramolecular building block approach introduced in this article enabled the easy formation of a series of complexes, which are all thoroughly characterized, revealing that the photoactivity of the catalyst assembly strongly depends on its nature. The active species, formed from different complexes, appears to be the [Fe₂(μ-pdt)(CO)₄{PPh₂(4-py)}₂] (3) with 2 different types of porphyrins (5a and 5b) coordinated to it. The modular supramolecular approach was important in this study as with a limited number of building blocks several different complexes were generated.
AbstractList The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a supramolecular biomimetic approach to form a catalyst that produces molecular hydrogen using light as the energy source. It is composed of an assembly of chromophores to a bis(thiolate)-bridged diiron ([2Fe2S]) based hydrogenase catalyst. The supramolecular building block approach introduced in this article enabled the easy formation of a series of complexes, which are all thoroughly characterized, revealing that the photoactivity of the catalyst assembly strongly depends on its nature. The active species, formed from different complexes, appears to be the [Fe 2 (μ-pdt)(CO) 4 {PPh 2 (4-py)} 2 ] ( 3 ) with 2 different types of porphyrins (5a and 5b) coordinated to it. The modular supramolecular approach was important in this study as with a limited number of building blocks several different complexes were generated.
The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a supramolecular biomimetic approach to form a catalyst that produces molecular hydrogen using light as the energy source. It is composed of an assembly of chromophores to a bis(thiolate)-bridged diiron ([2Fe2S]) based hydrogenase catalyst. The supramolecular building block approach introduced in this article enabled the easy formation of a series of complexes, which are all thoroughly characterized, revealing that the photoactivity of the catalyst assembly strongly depends on its nature. The active species, formed from different complexes, appears to be the [Fe 2 (μ-pdt)(CO) 4 {PPh 2 (4-py)} 2 ] ( 3 ) with 2 different types of porphyrins (5a and 5b) coordinated to it. The modular supramolecular approach was important in this study as with a limited number of building blocks several different complexes were generated.
The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a supramolecular biomimetic approach to form a catalyst that produces molecular hydrogen using light as the energy source. It is composed of an assembly of chromophores to a bis(thiolate)-bridged diiron ([2Fe2S]) based hydrogenase catalyst. The supramolecular building block approach introduced in this article enabled the easy formation of a series of complexes, which are all thoroughly characterized, revealing that the photoactivity of the catalyst assembly strongly depends on its nature. The active species, formed from different complexes, appears to be the [...] (31) with 2 different types of porphyrins (5a and 5b) coordinated to it. The modular supramolecular approach was important in this study as with a limited number of building blocks several different complexes were generated. (ProQuest: ... denotes formulae/symbols omitted.)
The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a supramolecular biomimetic approach to form a catalyst that produces molecular hydrogen using light as the energy source. It is composed of an assembly of chromophores to a bis(thiolate)- bridged diiron ([2Fe2S]) based hydrogenase catalyst. The supramolecular building block approach introduced in this article enabled the easy formation of a series of complexes, which are all thoroughly characterized, revealing that the photoactivity of the catalyst assembly strongly depends on its nature. The active species, formed from different complexes, appears to be the [Fe sub(2)( mu -pdt)(CO) sub(4){PPh sub(2)(4-py)} sub(2)] (3) with 2 different types of porphyrins (5a and 5b) coordinated to it. The modular supramolecular approach was important in this study as with a limited number of building blocks several different complexes were generated.
The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a supramolecular biomimetic approach to form a catalyst that produces molecular hydrogen using light as the energy source. It is composed of an assembly of chromophores to a bis(thiolate)-bridged diiron ([2Fe2S]) based hydrogenase catalyst. The supramolecular building block approach introduced in this article enabled the easy formation of a series of complexes, which are all thoroughly characterized, revealing that the photoactivity of the catalyst assembly strongly depends on its nature. The active species, formed from different complexes, appears to be the [Fe₂(μ-pdt)(CO)₄{PPh₂(4-py)}₂] (3) with 2 different types of porphyrins (5a and 5b) coordinated to it. The modular supramolecular approach was important in this study as with a limited number of building blocks several different complexes were generated.
Author Lutz, M
van Leeuwen, P.W.N.M
Spek, A.L
Kluwer, A.M
Brouwer, A.M
Kapre, R
Reek, J.N.H
Hartl, F
Author_xml – sequence: 1
  fullname: Kluwer, A.M
– sequence: 2
  fullname: Kapre, R
– sequence: 3
  fullname: Hartl, F
– sequence: 4
  fullname: Lutz, M
– sequence: 5
  fullname: Spek, A.L
– sequence: 6
  fullname: Brouwer, A.M
– sequence: 7
  fullname: van Leeuwen, P.W.N.M
– sequence: 8
  fullname: Reek, J.N.H
BookMark eNqFkUFv1DAQhS1URLcLZ45EHJA4pB07tpNckFDVAlKlHrY9IWTZzmQ3lRMvtlN1_z1e7UIFFy4zh_n85o3fGTmZ_ISEvKVwTqGuLraTjufQQCulpCBfkAWFlpaSt3BCFgCsLhvO-Ck5i_EBAFrRwCtySlsqueB0QcwKXV_qGHE0DrvCDH4cRkyDLb6za2SrH-Vm1wW_xrwJS5NLV2w3Pnmrk3a7mIreh2L0Du3sdCh-0wU-ejenwU-vycteu4hvjn1J7q-v7i6_lje3X75dfr4preA8lYitwR5BN1Qz2VSGC2PqRla0agUzzBoDpsZGGl3Vve06K2xnKa8FIBfWVEvy6aC7nc2IncUpBe3UNgyjDjvl9aD-nkzDRq39o2I1CMHaLPDhKBD8zxljUuMQLTqnJ_RzVGz_0a2oM_j-H_DBz2HKx2WGcipltr0kFwfIBh9jwP6PEwpqH57ah6eew8sviqPsfvBMS8VkblxCRj7-B1H97FzCp5TZdwe2117pdRiiul9lfxVQKYDztvoFegSyag
CitedBy_id crossref_primary_10_1063_1_3679387
crossref_primary_10_1016_j_jphotochemrev_2017_09_001
crossref_primary_10_1002_ange_201103984
crossref_primary_10_1002_anie_201704327
crossref_primary_10_1016_j_bbabio_2015_10_005
crossref_primary_10_1021_acs_inorgchem_1c03004
crossref_primary_10_1039_c2cc33097k
crossref_primary_10_1002_ange_202006013
crossref_primary_10_1016_j_jinorgbio_2011_07_010
crossref_primary_10_1002_chem_201406361
crossref_primary_10_1039_c1dt11923k
crossref_primary_10_1002_cssc_201100490
crossref_primary_10_1002_ejic_201600866
crossref_primary_10_1126_sciadv_1501014
crossref_primary_10_1016_j_inoche_2012_04_034
crossref_primary_10_1016_j_ccr_2014_10_001
crossref_primary_10_1016_j_jphotochemrev_2010_07_002
crossref_primary_10_1021_ic102168f
crossref_primary_10_1002_ejic_201300537
crossref_primary_10_1021_acsomega_0c04901
crossref_primary_10_1021_acs_organomet_9b00022
crossref_primary_10_1021_om201126w
crossref_primary_10_1002_cssc_201200190
crossref_primary_10_1002_anie_201303110
crossref_primary_10_1021_jp2040778
crossref_primary_10_1039_c2cs35475f
crossref_primary_10_1039_C6DT03044K
crossref_primary_10_1002_anie_201301289
crossref_primary_10_1021_ic2026472
crossref_primary_10_1039_C7SC01747B
crossref_primary_10_1002_ejic_201500355
crossref_primary_10_1039_C5DT04311E
crossref_primary_10_1002_cssc_201000062
crossref_primary_10_1016_j_apcatb_2020_119836
crossref_primary_10_1351_PAC_CON_12_08_05
crossref_primary_10_1021_ic200243y
crossref_primary_10_1039_D1DT02351A
crossref_primary_10_1021_ic500777d
crossref_primary_10_1021_acsorginorgau_1c00011
crossref_primary_10_1016_j_jphotochem_2019_01_007
crossref_primary_10_1016_j_cocis_2011_08_006
crossref_primary_10_1039_c1ee01334c
crossref_primary_10_1021_acs_inorgchem_7b01244
crossref_primary_10_1021_acs_inorgchem_5b01744
crossref_primary_10_1016_j_jelechem_2013_12_025
crossref_primary_10_1002_ange_201000380
crossref_primary_10_1039_D1NJ02104D
crossref_primary_10_1021_acs_organomet_2c00277
crossref_primary_10_1016_j_molstruc_2023_135287
crossref_primary_10_1039_c2dt12096h
crossref_primary_10_1016_j_ijhydene_2012_08_150
crossref_primary_10_1016_j_solener_2016_03_010
crossref_primary_10_1039_C3EE43982H
crossref_primary_10_1016_j_ijhydene_2014_09_084
crossref_primary_10_1002_anie_201103984
crossref_primary_10_1039_c3dt50956g
crossref_primary_10_1021_acs_jpca_8b00661
crossref_primary_10_1039_C4TA04914D
crossref_primary_10_1063_1674_0068_cjcp2111230
crossref_primary_10_1002_ejic_201501333
crossref_primary_10_1002_chem_201500193
crossref_primary_10_1039_C5FD00084J
crossref_primary_10_1039_c0dt00011f
crossref_primary_10_1002_anie_202006013
crossref_primary_10_1038_s41467_018_04541_w
crossref_primary_10_1039_C9CC03871J
crossref_primary_10_1073_pnas_0905341106
crossref_primary_10_1016_j_jcat_2018_08_023
crossref_primary_10_1002_ange_201205915
crossref_primary_10_1002_ange_200905115
crossref_primary_10_1021_cr100038y
crossref_primary_10_1039_c1cc12390d
crossref_primary_10_1016_j_ccr_2012_02_016
crossref_primary_10_1016_j_chemphys_2017_12_014
crossref_primary_10_1016_j_jorganchem_2020_121217
crossref_primary_10_1039_b927089m
crossref_primary_10_1016_j_bbabio_2011_01_011
crossref_primary_10_1021_ja211778j
crossref_primary_10_1021_om300418z
crossref_primary_10_1002_chem_201003564
crossref_primary_10_1016_j_ccr_2023_215174
crossref_primary_10_1002_anie_201205915
crossref_primary_10_1039_c2dt31618h
crossref_primary_10_1002_cssc_201200960
crossref_primary_10_1021_cs200458b
crossref_primary_10_1002_anie_200905115
crossref_primary_10_1039_C4NJ02405B
crossref_primary_10_1039_b911129h
crossref_primary_10_1039_C6CS00436A
crossref_primary_10_1039_c1cc12200b
crossref_primary_10_1021_acs_inorgchem_7b01923
crossref_primary_10_1039_C8DT02831A
crossref_primary_10_1016_j_jorganchem_2019_120880
crossref_primary_10_1002_ejic_201300038
crossref_primary_10_1007_s11120_019_00671_4
crossref_primary_10_1016_j_ccr_2021_214172
crossref_primary_10_1002_cssc_201200490
crossref_primary_10_1021_ic9016454
crossref_primary_10_3390_inorganics5010014
crossref_primary_10_1007_s11696_016_0049_8
crossref_primary_10_1039_c0ee00708k
crossref_primary_10_1039_c4cc01471e
crossref_primary_10_1111_j_1751_1097_2011_00966_x
crossref_primary_10_1002_ange_201303110
crossref_primary_10_1002_chem_200902489
crossref_primary_10_1080_00958972_2021_1918339
crossref_primary_10_1002_ejic_201900072
crossref_primary_10_1039_c2dt30468f
crossref_primary_10_1021_ja208555h
crossref_primary_10_1039_C4SC03946G
crossref_primary_10_1039_C3DT53471E
crossref_primary_10_1039_c2dt30823a
crossref_primary_10_1002_ange_201301289
crossref_primary_10_1002_ejic_201501377
crossref_primary_10_1021_acs_organomet_5b01040
crossref_primary_10_1002_ejic_202000523
crossref_primary_10_1039_C2CS35272A
crossref_primary_10_1039_C4CC03946G
crossref_primary_10_1038_s41598_017_14728_8
crossref_primary_10_1002_anie_201000380
crossref_primary_10_1039_C6EE00629A
crossref_primary_10_1039_B923159P
crossref_primary_10_1039_D0SC03715J
crossref_primary_10_1016_j_ijhydene_2014_05_003
crossref_primary_10_1039_c2ra21422a
crossref_primary_10_1002_anie_201006352
crossref_primary_10_1016_j_jorganchem_2011_05_007
crossref_primary_10_1021_acsanm_4c01277
crossref_primary_10_1039_C7DT01039G
crossref_primary_10_1021_jp106512a
crossref_primary_10_1039_b902866h
crossref_primary_10_1002_ange_201006352
crossref_primary_10_1021_acs_chemrev_2c00759
crossref_primary_10_1002_chem_201600541
crossref_primary_10_3390_biomimetics8030304
crossref_primary_10_1002_chem_201100235
crossref_primary_10_1016_j_ccr_2017_11_002
crossref_primary_10_1002_aoc_3119
crossref_primary_10_1039_C9NJ04887A
crossref_primary_10_1021_acs_chemrev_6b00299
crossref_primary_10_1039_c1dt11166c
crossref_primary_10_1016_j_isci_2020_101613
crossref_primary_10_1039_C5CC03897A
crossref_primary_10_1002_chem_201303317
crossref_primary_10_1039_C6RA05778K
crossref_primary_10_1007_s11426_012_4514_0
crossref_primary_10_1021_jacs_8b10186
crossref_primary_10_1002_chem_201803351
crossref_primary_10_1039_C5TA02565F
crossref_primary_10_1007_s12678_014_0200_7
crossref_primary_10_1002_chem_201603040
crossref_primary_10_1002_cssc_201500067
crossref_primary_10_1039_C2CS35223K
crossref_primary_10_1021_acs_inorgchem_7b02289
crossref_primary_10_1016_j_jorganchem_2013_09_007
crossref_primary_10_1002_celc_202100331
crossref_primary_10_1002_ange_201704327
crossref_primary_10_1038_s41467_021_24647_y
crossref_primary_10_1007_s12678_013_0157_y
crossref_primary_10_1016_j_coche_2012_03_002
crossref_primary_10_1038_ncomms3695
crossref_primary_10_1002_chem_201803342
crossref_primary_10_1021_jz401016h
crossref_primary_10_1007_s10822_014_9795_2
crossref_primary_10_1002_anie_202008298
crossref_primary_10_1002_aoc_3481
crossref_primary_10_1002_ejic_201000979
crossref_primary_10_1039_c3dt00078h
crossref_primary_10_1039_c0cc03154b
crossref_primary_10_1039_C8DT04211J
crossref_primary_10_1021_acs_organomet_5b00644
crossref_primary_10_1021_acs_inorgchem_9b02813
crossref_primary_10_1039_C9SE00320G
crossref_primary_10_1002_cssc_201402381
crossref_primary_10_1002_cctc_201801257
crossref_primary_10_1039_D0CC05870J
crossref_primary_10_1016_j_poly_2017_08_028
crossref_primary_10_1007_s10876_014_0790_5
crossref_primary_10_1016_j_ica_2020_119435
crossref_primary_10_1002_ange_202008298
crossref_primary_10_4019_bjscc_71_18
crossref_primary_10_1021_om200459s
crossref_primary_10_1016_j_cclet_2021_06_013
crossref_primary_10_1002_cphc_201500530
crossref_primary_10_1039_C3CS60027K
crossref_primary_10_1002_chem_202000204
crossref_primary_10_1002_chem_201405052
crossref_primary_10_1002_chem_201002510
crossref_primary_10_1039_c2cs35171d
crossref_primary_10_1002_asia_201000087
crossref_primary_10_1039_C2CC37853A
crossref_primary_10_1039_D0CS01089H
crossref_primary_10_1002_cctc_201000428
crossref_primary_10_1016_j_ica_2015_04_024
Cites_doi 10.1021/ja0348997
10.1002/anie.200503663
10.1016/S0969-2126(99)80005-7
10.1126/science.1150057
10.1021/ja063294i
10.1021/ja038955f
10.1073/pnas.0536955100
10.1021/ja0386795
10.1039/b715990k
10.1038/nature06669
10.1016/j.ccr.2005.01.013
10.1039/B615037C
10.1002/chem.200500875
10.1126/science.282.5395.1853
10.1073/pnas.0603395103
10.1126/science.309.5731.101
10.1039/b005687l
10.1021/jp710498v
10.1016/S0010-8545(00)00268-X
10.1021/ic061211t
10.1126/science.1138748
10.1126/science.240.4851.440
10.1016/j.ccr.2004.11.018
10.1021/ic051231f
10.1039/B606045P
10.1126/science.1071063
10.1002/1521-3773(20010119)40:2<284::AID-ANIE284>3.0.CO;2-N
10.1002/anie.200703413
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jun 30, 2009
2009 by The National Academy of Sciences of the USA
Copyright_xml – notice: Copyright National Academy of Sciences Jun 30, 2009
– notice: 2009 by The National Academy of Sciences of the USA
DBID FBQ
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7ST
7U6
5PM
DOI 10.1073/pnas.0809666106
DatabaseName AGRIS
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
Sustainability Science Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList

CrossRef
Virology and AIDS Abstracts
Environment Abstracts

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 10465
ExternalDocumentID 1775624861
10_1073_pnas_0809666106
106_26_10460
US201301650449
Genre Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
H13
KM
PQEST
X
XHC
AAYXX
ABXSQ
ADACV
AQVQM
CITATION
IPSME
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7ST
7U6
5PM
ID FETCH-LOGICAL-c544t-ee9befe0a81a2683b45bb786313952b2cbb0b7e86ba37fcddc5cdc14750e45cb3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 20:40:41 EDT 2024
Fri Oct 25 09:05:23 EDT 2024
Mon Nov 04 11:13:04 EST 2024
Fri Aug 23 00:41:11 EDT 2024
Thu May 30 08:50:59 EDT 2019
Wed Nov 11 00:29:53 EST 2020
Wed Dec 27 19:30:07 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c544t-ee9befe0a81a2683b45bb786313952b2cbb0b7e86ba37fcddc5cdc14750e45cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Julius Rebek, Jr., The Scripps Research Institute, La Jolla, CA, and accepted November 26, 2008
Author contributions: A.M.K., P.W.N.M.v.L., and J.N.H.R. designed research; A.M.K. and R.K. performed research; A.M.K., R.K., F.H., M.L., A.L.S., and A.M.B. analyzed data; and A.M.K., F.H., A.M.B., and J.N.H.R. wrote the paper.
OpenAccessLink https://europepmc.org/articles/pmc2705529?pdf=render
PMID 19164541
PQID 201416686
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_106_26_10460
pnas_primary_106_26_10460_fulltext
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2705529
proquest_journals_201416686
fao_agris_US201301650449
proquest_miscellaneous_20809957
crossref_primary_10_1073_pnas_0809666106
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2009-06-30
PublicationDateYYYYMMDD 2009-06-30
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-30
  day: 30
PublicationDecade 2000
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationSeriesTitle Molecular Recognition and Self-Assembly Special Feature
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationYear 2009
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
Voet D (e_1_3_3_12_2) 1995
Li P (e_1_3_3_26_2) 2005
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
Rocchini E (e_1_3_3_21_2) 2000
e_1_3_3_23_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
References_xml – ident: e_1_3_3_7_2
  doi: 10.1021/ja0348997
– ident: e_1_3_3_9_2
  doi: 10.1002/anie.200503663
– ident: e_1_3_3_14_2
  doi: 10.1016/S0969-2126(99)80005-7
– ident: e_1_3_3_3_2
  doi: 10.1126/science.1150057
– ident: e_1_3_3_29_2
  doi: 10.1021/ja063294i
– ident: e_1_3_3_6_2
  doi: 10.1021/ja038955f
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.0536955100
– ident: e_1_3_3_27_2
  doi: 10.1021/ja0386795
– ident: e_1_3_3_19_2
  doi: 10.1039/b715990k
– ident: e_1_3_3_2_2
  doi: 10.1038/nature06669
– volume-title: Biochemistry
  year: 1995
  ident: e_1_3_3_12_2
  contributor:
    fullname: Voet D
– ident: e_1_3_3_22_2
  doi: 10.1016/j.ccr.2005.01.013
– ident: e_1_3_3_20_2
  doi: 10.1039/B615037C
– ident: e_1_3_3_23_2
  doi: 10.1002/chem.200500875
– ident: e_1_3_3_13_2
  doi: 10.1126/science.282.5395.1853
– year: 2005
  ident: e_1_3_3_26_2
  article-title: Influence of tertiary phosphanes on the coordination configurations and electrochemical properties of iron hydrogenase model complexes: Crystal structures of [(μ-S2C3H6)Fe2(CO)6-nLn] (L = PMe2Ph, n = 1, 2; PPh3, P(OEt)3, n = 1)
  publication-title: Eur J Inorg Chem
  contributor:
    fullname: Li P
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.0603395103
– ident: e_1_3_3_11_2
  doi: 10.1126/science.309.5731.101
– start-page: 3591
  year: 2000
  ident: e_1_3_3_21_2
  article-title: Synthesis and properties of iron-group hydrido-cyano complexes trans-[MH(CN)(L)2], M = Fe, Ru or Os, L = diphosphine, and their hydrogen, trifluoroboron and triphenylboron isocyanide derivatives of the type trans-[MH(CNH)(L)2]O3SCF3, trans-[MH(CNBX3)(L)2], X = F or Ph, and trans-[M(H2)(CNBF3)(dppp)2]BF4 [dppp = Ph2P(CH2)3PPh2]
  publication-title: J Chem Soc Dalton Trans
  doi: 10.1039/b005687l
  contributor:
    fullname: Rocchini E
– ident: e_1_3_3_24_2
  doi: 10.1021/jp710498v
– ident: e_1_3_3_17_2
  doi: 10.1016/S0010-8545(00)00268-X
– ident: e_1_3_3_25_2
  doi: 10.1021/ic061211t
– ident: e_1_3_3_4_2
  doi: 10.1126/science.1138748
– ident: e_1_3_3_28_2
  doi: 10.1126/science.240.4851.440
– ident: e_1_3_3_18_2
  doi: 10.1016/j.ccr.2004.11.018
– ident: e_1_3_3_30_2
  doi: 10.1021/ic051231f
– ident: e_1_3_3_8_2
  doi: 10.1039/B606045P
– ident: e_1_3_3_1_2
  doi: 10.1126/science.1071063
– ident: e_1_3_3_5_2
  doi: 10.1002/1521-3773(20010119)40:2<284::AID-ANIE284>3.0.CO;2-N
– ident: e_1_3_3_16_2
  doi: 10.1002/anie.200703413
SSID ssj0009580
Score 2.4526384
Snippet The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for...
SourceID pubmedcentral
proquest
crossref
pnas
fao
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Publisher
StartPage 10460
SubjectTerms Catalysts
Chemical compounds
Hydrogen bonds
Molecules
Physical Sciences
Studies
Title Self-assembled biomimetic [2Fe2S]-hydrogenase-based photocatalyst for molecular hydrogen evolution
URI http://www.pnas.org/content/106/26/10460.abstract
https://www.proquest.com/docview/201416686
https://search.proquest.com/docview/20809957
https://pubmed.ncbi.nlm.nih.gov/PMC2705529
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbWPfGC2AAtDIaFeBgPbhvHP5LHaWIaoCGkUmkSQpbPsWmlJqnWDmn_Pec06cgDLzz7Eju-s--L7-4zIe-FDCHTVrHSSWBCypIV0gcGmU5LH3Kf2ljvfPNVXc_F51t5e0BkXwvTJu07WI7rVTWul4s2t3JduUmfJzb5dnPJIwUMLyYjMkID7X_R90y7-a7uhOP2K7jo-Xx0NlnXdjNGiIQQH1FDe3sRoiMhRTrwSqNgm8h1itID3DnMmvzLDV09I087_EgvduM8Ige-PiZH3Qrd0POORvrDcwIzvwoMsbGvYOVLGgvtl1WsWaQ_0Dj57CdbPJR3DVoQejIW3VlJ14tm27RHOg-bLUVAS6v-_lzaS1P_u7PXF2R-9fH75TXrblRgTgqxZd4X4IOf2jy1XOUZCAmgc5UhDpQcuAOYgva5Apvp4EpUoCtdKhBWeCEdZC_JYd3U_oTQ3EpdTlNbhFyJADzywAOHyNasgkt1Qs77GTXrHXGGaQPeOjNxZs2jHhJygjNu7C_c1sx8xmMwNUXkKESRkKQVfnyDMlyZGJieJuTdP9tM6FJnEnLaK9B0q3NjeMxuVSrHnt_uW3FZxViJrX1zH0VweIXEz9ADre97i7Tcwxa01paeu7POV__95Cl5sotZxazE1-Rwe3fv3yD02cIZgv5PX85ag_8DdVYFFA
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacoALanmooYVaiEM5eDdx_EiOqKJaoFshbVeqhJBlOza70iZZdVOk_nvG2WRLDlw4exInnhnPl8zMZ4Q-MO59KrUgheWGMM4LknPniUllUjifuUSHfufptZjM2ddbfruHeN8L0xbtW7McVatyVC0XbW3lurTjvk5s_H16QQMFDM3H--gJ-GvM-o_0Hddutu08obABM8p6Rh-ZjteV3owAJAHIB9zQnl8E-Ihxlgzi0r7XdWA7BekB8hzWTf4ViC4P0fMOQeJP2yc9QnuueoGOOh_d4POOSPrjS2RmbuUJoGNXmpUrcGi1X5ahaxH_APOks59k8VDc1WBDEMtICGgFXi_qpm5_6jxsGgyQFpf9Cbq4l8bud2exr9D88vPNxYR0ZyoQyxlriHO5cd7FOks0FVlqGDdGZiIFJMipodaY2EiXCaNT6W0BKrSFTRgAC8e4NelrdFDVlTtGONNcFnGic58J5g0NTPCGmsDXLLxNZITO-xVV6y11hmpT3jJVYWXVox4idAwrrvQv2NjUfEZDOjUB7MhYHqGoFX68g1BUqJCajiP0_p9jynfFMxE66RWoOv_cKBrqW4XIYOaz3Sg4VsiW6MrV90EEHi_n8BpyoPXdbIGYezgC9toSdHf2-ea_rzxDTyc30yt19eX62wl6ts1ghRrFU3TQ3N27twCEGvOuNfs_L4EHcQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokRAXRHmooUAjxKEcvNk4fiRHVFiVR6tKy0qVELL8ZFfaPNRNkfrvGWeTbXPgwtmTOPHM2F8yM98g9J4y7zOhOLaGaUwZs7hgzmOdidQ6n7tUhXrn8wt-tqBfr9jVvVZfXdK-0atJtS4n1WrZ5VY2pUmGPLHk8vyUBAoYUiSN9ckeegg-O-XDh_qObzffVp8Q2IQpoQOrj8iSplKbCQAlAPqAHboeRoCRKKPp6Gza86oOjKcgPUKf49zJe4fR7Cl60qPI-OP2aQ_QA1c9Qwe9n27ik55M-sNzpOdu7TEgZFfqtbNxKLdflaFyMf4JJkrmv_Dy1l7XYEdwnuFwqNm4WdZt3f3Yud20McDauBy66MaDdOz-9Fb7Ai1mn3-cnuG-rwI2jNIWO1do591U5akiPM80ZVqLnGeABhnRxGg91cLlXKtMeGNBjcaalAK4cJQZnb1E-1VduUMU54oJO01V4XNOvSaBDV4THTibuTepiNDJsKKy2dJnyC7sLTIZVlbe6SFCh7DiUv2GzU0u5iSEVFPAj5QWEYo64bs7cEm4DOHpaYTe_XNM-j6BJkJHgwJl76MbSUKOK-c5zHy8GwXnChETVbn6JojA4xUMXkOMtL6bLZBzj0fAZjuS7t5GX_33lcfo0eWnmfz-5eLbEXq8DWKFNMXXaL-9vnFvAAu1-m1n9X8B-CkIhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-assembled+biomimetic+%5B2Fe2S%5D-hydrogenase-based+photocatalyst+for+molecular+hydrogen+evolution&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kluwer%2C+A.+M.&rft.au=Kapre%2C+R.&rft.au=Hartl%2C+F.&rft.au=Lutz%2C+M.&rft.series=Molecular+Recognition+and+Self-Assembly+Special+Feature&rft.date=2009-06-30&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=106&rft.issue=26&rft.spage=10460&rft.epage=10465&rft_id=info:doi/10.1073%2Fpnas.0809666106&rft_id=info%3Apmid%2F19164541&rft.externalDBID=PMC2705529
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F26.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F26.cover.gif