Self-assembled biomimetic [2Fe2S]-hydrogenase-based photocatalyst for molecular hydrogen evolution
The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a su...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 106; no. 26; pp. 10460 - 10465 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
National Academy of Sciences
30.06.2009
National Acad Sciences |
Series | Molecular Recognition and Self-Assembly Special Feature |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a supramolecular biomimetic approach to form a catalyst that produces molecular hydrogen using light as the energy source. It is composed of an assembly of chromophores to a bis(thiolate)-bridged diiron ([2Fe2S]) based hydrogenase catalyst. The supramolecular building block approach introduced in this article enabled the easy formation of a series of complexes, which are all thoroughly characterized, revealing that the photoactivity of the catalyst assembly strongly depends on its nature. The active species, formed from different complexes, appears to be the [Fe₂(μ-pdt)(CO)₄{PPh₂(4-py)}₂] (3) with 2 different types of porphyrins (5a and 5b) coordinated to it. The modular supramolecular approach was important in this study as with a limited number of building blocks several different complexes were generated. |
---|---|
AbstractList | The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a supramolecular biomimetic approach to form a catalyst that produces molecular hydrogen using light as the energy source. It is composed of an assembly of chromophores to a bis(thiolate)-bridged diiron ([2Fe2S]) based hydrogenase catalyst. The supramolecular building block approach introduced in this article enabled the easy formation of a series of complexes, which are all thoroughly characterized, revealing that the photoactivity of the catalyst assembly strongly depends on its nature. The active species, formed from different complexes, appears to be the [Fe
2
(μ-pdt)(CO)
4
{PPh
2
(4-py)}
2
] (
3
) with 2 different types of porphyrins (5a and 5b) coordinated to it. The modular supramolecular approach was important in this study as with a limited number of building blocks several different complexes were generated. The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a supramolecular biomimetic approach to form a catalyst that produces molecular hydrogen using light as the energy source. It is composed of an assembly of chromophores to a bis(thiolate)-bridged diiron ([2Fe2S]) based hydrogenase catalyst. The supramolecular building block approach introduced in this article enabled the easy formation of a series of complexes, which are all thoroughly characterized, revealing that the photoactivity of the catalyst assembly strongly depends on its nature. The active species, formed from different complexes, appears to be the [Fe 2 (μ-pdt)(CO) 4 {PPh 2 (4-py)} 2 ] ( 3 ) with 2 different types of porphyrins (5a and 5b) coordinated to it. The modular supramolecular approach was important in this study as with a limited number of building blocks several different complexes were generated. The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a supramolecular biomimetic approach to form a catalyst that produces molecular hydrogen using light as the energy source. It is composed of an assembly of chromophores to a bis(thiolate)-bridged diiron ([2Fe2S]) based hydrogenase catalyst. The supramolecular building block approach introduced in this article enabled the easy formation of a series of complexes, which are all thoroughly characterized, revealing that the photoactivity of the catalyst assembly strongly depends on its nature. The active species, formed from different complexes, appears to be the [...] (31) with 2 different types of porphyrins (5a and 5b) coordinated to it. The modular supramolecular approach was important in this study as with a limited number of building blocks several different complexes were generated. (ProQuest: ... denotes formulae/symbols omitted.) The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a supramolecular biomimetic approach to form a catalyst that produces molecular hydrogen using light as the energy source. It is composed of an assembly of chromophores to a bis(thiolate)- bridged diiron ([2Fe2S]) based hydrogenase catalyst. The supramolecular building block approach introduced in this article enabled the easy formation of a series of complexes, which are all thoroughly characterized, revealing that the photoactivity of the catalyst assembly strongly depends on its nature. The active species, formed from different complexes, appears to be the [Fe sub(2)( mu -pdt)(CO) sub(4){PPh sub(2)(4-py)} sub(2)] (3) with 2 different types of porphyrins (5a and 5b) coordinated to it. The modular supramolecular approach was important in this study as with a limited number of building blocks several different complexes were generated. The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a supramolecular biomimetic approach to form a catalyst that produces molecular hydrogen using light as the energy source. It is composed of an assembly of chromophores to a bis(thiolate)-bridged diiron ([2Fe2S]) based hydrogenase catalyst. The supramolecular building block approach introduced in this article enabled the easy formation of a series of complexes, which are all thoroughly characterized, revealing that the photoactivity of the catalyst assembly strongly depends on its nature. The active species, formed from different complexes, appears to be the [Fe₂(μ-pdt)(CO)₄{PPh₂(4-py)}₂] (3) with 2 different types of porphyrins (5a and 5b) coordinated to it. The modular supramolecular approach was important in this study as with a limited number of building blocks several different complexes were generated. |
Author | Lutz, M van Leeuwen, P.W.N.M Spek, A.L Kluwer, A.M Brouwer, A.M Kapre, R Reek, J.N.H Hartl, F |
Author_xml | – sequence: 1 fullname: Kluwer, A.M – sequence: 2 fullname: Kapre, R – sequence: 3 fullname: Hartl, F – sequence: 4 fullname: Lutz, M – sequence: 5 fullname: Spek, A.L – sequence: 6 fullname: Brouwer, A.M – sequence: 7 fullname: van Leeuwen, P.W.N.M – sequence: 8 fullname: Reek, J.N.H |
BookMark | eNqFkUFv1DAQhS1URLcLZ45EHJA4pB07tpNckFDVAlKlHrY9IWTZzmQ3lRMvtlN1_z1e7UIFFy4zh_n85o3fGTmZ_ISEvKVwTqGuLraTjufQQCulpCBfkAWFlpaSt3BCFgCsLhvO-Ck5i_EBAFrRwCtySlsqueB0QcwKXV_qGHE0DrvCDH4cRkyDLb6za2SrH-Vm1wW_xrwJS5NLV2w3Pnmrk3a7mIreh2L0Du3sdCh-0wU-ejenwU-vycteu4hvjn1J7q-v7i6_lje3X75dfr4preA8lYitwR5BN1Qz2VSGC2PqRla0agUzzBoDpsZGGl3Vve06K2xnKa8FIBfWVEvy6aC7nc2IncUpBe3UNgyjDjvl9aD-nkzDRq39o2I1CMHaLPDhKBD8zxljUuMQLTqnJ_RzVGz_0a2oM_j-H_DBz2HKx2WGcipltr0kFwfIBh9jwP6PEwpqH57ah6eew8sviqPsfvBMS8VkblxCRj7-B1H97FzCp5TZdwe2117pdRiiul9lfxVQKYDztvoFegSyag |
CitedBy_id | crossref_primary_10_1063_1_3679387 crossref_primary_10_1016_j_jphotochemrev_2017_09_001 crossref_primary_10_1002_ange_201103984 crossref_primary_10_1002_anie_201704327 crossref_primary_10_1016_j_bbabio_2015_10_005 crossref_primary_10_1021_acs_inorgchem_1c03004 crossref_primary_10_1039_c2cc33097k crossref_primary_10_1002_ange_202006013 crossref_primary_10_1016_j_jinorgbio_2011_07_010 crossref_primary_10_1002_chem_201406361 crossref_primary_10_1039_c1dt11923k crossref_primary_10_1002_cssc_201100490 crossref_primary_10_1002_ejic_201600866 crossref_primary_10_1126_sciadv_1501014 crossref_primary_10_1016_j_inoche_2012_04_034 crossref_primary_10_1016_j_ccr_2014_10_001 crossref_primary_10_1016_j_jphotochemrev_2010_07_002 crossref_primary_10_1021_ic102168f crossref_primary_10_1002_ejic_201300537 crossref_primary_10_1021_acsomega_0c04901 crossref_primary_10_1021_acs_organomet_9b00022 crossref_primary_10_1021_om201126w crossref_primary_10_1002_cssc_201200190 crossref_primary_10_1002_anie_201303110 crossref_primary_10_1021_jp2040778 crossref_primary_10_1039_c2cs35475f crossref_primary_10_1039_C6DT03044K crossref_primary_10_1002_anie_201301289 crossref_primary_10_1021_ic2026472 crossref_primary_10_1039_C7SC01747B crossref_primary_10_1002_ejic_201500355 crossref_primary_10_1039_C5DT04311E crossref_primary_10_1002_cssc_201000062 crossref_primary_10_1016_j_apcatb_2020_119836 crossref_primary_10_1351_PAC_CON_12_08_05 crossref_primary_10_1021_ic200243y crossref_primary_10_1039_D1DT02351A crossref_primary_10_1021_ic500777d crossref_primary_10_1021_acsorginorgau_1c00011 crossref_primary_10_1016_j_jphotochem_2019_01_007 crossref_primary_10_1016_j_cocis_2011_08_006 crossref_primary_10_1039_c1ee01334c crossref_primary_10_1021_acs_inorgchem_7b01244 crossref_primary_10_1021_acs_inorgchem_5b01744 crossref_primary_10_1016_j_jelechem_2013_12_025 crossref_primary_10_1002_ange_201000380 crossref_primary_10_1039_D1NJ02104D crossref_primary_10_1021_acs_organomet_2c00277 crossref_primary_10_1016_j_molstruc_2023_135287 crossref_primary_10_1039_c2dt12096h crossref_primary_10_1016_j_ijhydene_2012_08_150 crossref_primary_10_1016_j_solener_2016_03_010 crossref_primary_10_1039_C3EE43982H crossref_primary_10_1016_j_ijhydene_2014_09_084 crossref_primary_10_1002_anie_201103984 crossref_primary_10_1039_c3dt50956g crossref_primary_10_1021_acs_jpca_8b00661 crossref_primary_10_1039_C4TA04914D crossref_primary_10_1063_1674_0068_cjcp2111230 crossref_primary_10_1002_ejic_201501333 crossref_primary_10_1002_chem_201500193 crossref_primary_10_1039_C5FD00084J crossref_primary_10_1039_c0dt00011f crossref_primary_10_1002_anie_202006013 crossref_primary_10_1038_s41467_018_04541_w crossref_primary_10_1039_C9CC03871J crossref_primary_10_1073_pnas_0905341106 crossref_primary_10_1016_j_jcat_2018_08_023 crossref_primary_10_1002_ange_201205915 crossref_primary_10_1002_ange_200905115 crossref_primary_10_1021_cr100038y crossref_primary_10_1039_c1cc12390d crossref_primary_10_1016_j_ccr_2012_02_016 crossref_primary_10_1016_j_chemphys_2017_12_014 crossref_primary_10_1016_j_jorganchem_2020_121217 crossref_primary_10_1039_b927089m crossref_primary_10_1016_j_bbabio_2011_01_011 crossref_primary_10_1021_ja211778j crossref_primary_10_1021_om300418z crossref_primary_10_1002_chem_201003564 crossref_primary_10_1016_j_ccr_2023_215174 crossref_primary_10_1002_anie_201205915 crossref_primary_10_1039_c2dt31618h crossref_primary_10_1002_cssc_201200960 crossref_primary_10_1021_cs200458b crossref_primary_10_1002_anie_200905115 crossref_primary_10_1039_C4NJ02405B crossref_primary_10_1039_b911129h crossref_primary_10_1039_C6CS00436A crossref_primary_10_1039_c1cc12200b crossref_primary_10_1021_acs_inorgchem_7b01923 crossref_primary_10_1039_C8DT02831A crossref_primary_10_1016_j_jorganchem_2019_120880 crossref_primary_10_1002_ejic_201300038 crossref_primary_10_1007_s11120_019_00671_4 crossref_primary_10_1016_j_ccr_2021_214172 crossref_primary_10_1002_cssc_201200490 crossref_primary_10_1021_ic9016454 crossref_primary_10_3390_inorganics5010014 crossref_primary_10_1007_s11696_016_0049_8 crossref_primary_10_1039_c0ee00708k crossref_primary_10_1039_c4cc01471e crossref_primary_10_1111_j_1751_1097_2011_00966_x crossref_primary_10_1002_ange_201303110 crossref_primary_10_1002_chem_200902489 crossref_primary_10_1080_00958972_2021_1918339 crossref_primary_10_1002_ejic_201900072 crossref_primary_10_1039_c2dt30468f crossref_primary_10_1021_ja208555h crossref_primary_10_1039_C4SC03946G crossref_primary_10_1039_C3DT53471E crossref_primary_10_1039_c2dt30823a crossref_primary_10_1002_ange_201301289 crossref_primary_10_1002_ejic_201501377 crossref_primary_10_1021_acs_organomet_5b01040 crossref_primary_10_1002_ejic_202000523 crossref_primary_10_1039_C2CS35272A crossref_primary_10_1039_C4CC03946G crossref_primary_10_1038_s41598_017_14728_8 crossref_primary_10_1002_anie_201000380 crossref_primary_10_1039_C6EE00629A crossref_primary_10_1039_B923159P crossref_primary_10_1039_D0SC03715J crossref_primary_10_1016_j_ijhydene_2014_05_003 crossref_primary_10_1039_c2ra21422a crossref_primary_10_1002_anie_201006352 crossref_primary_10_1016_j_jorganchem_2011_05_007 crossref_primary_10_1021_acsanm_4c01277 crossref_primary_10_1039_C7DT01039G crossref_primary_10_1021_jp106512a crossref_primary_10_1039_b902866h crossref_primary_10_1002_ange_201006352 crossref_primary_10_1021_acs_chemrev_2c00759 crossref_primary_10_1002_chem_201600541 crossref_primary_10_3390_biomimetics8030304 crossref_primary_10_1002_chem_201100235 crossref_primary_10_1016_j_ccr_2017_11_002 crossref_primary_10_1002_aoc_3119 crossref_primary_10_1039_C9NJ04887A crossref_primary_10_1021_acs_chemrev_6b00299 crossref_primary_10_1039_c1dt11166c crossref_primary_10_1016_j_isci_2020_101613 crossref_primary_10_1039_C5CC03897A crossref_primary_10_1002_chem_201303317 crossref_primary_10_1039_C6RA05778K crossref_primary_10_1007_s11426_012_4514_0 crossref_primary_10_1021_jacs_8b10186 crossref_primary_10_1002_chem_201803351 crossref_primary_10_1039_C5TA02565F crossref_primary_10_1007_s12678_014_0200_7 crossref_primary_10_1002_chem_201603040 crossref_primary_10_1002_cssc_201500067 crossref_primary_10_1039_C2CS35223K crossref_primary_10_1021_acs_inorgchem_7b02289 crossref_primary_10_1016_j_jorganchem_2013_09_007 crossref_primary_10_1002_celc_202100331 crossref_primary_10_1002_ange_201704327 crossref_primary_10_1038_s41467_021_24647_y crossref_primary_10_1007_s12678_013_0157_y crossref_primary_10_1016_j_coche_2012_03_002 crossref_primary_10_1038_ncomms3695 crossref_primary_10_1002_chem_201803342 crossref_primary_10_1021_jz401016h crossref_primary_10_1007_s10822_014_9795_2 crossref_primary_10_1002_anie_202008298 crossref_primary_10_1002_aoc_3481 crossref_primary_10_1002_ejic_201000979 crossref_primary_10_1039_c3dt00078h crossref_primary_10_1039_c0cc03154b crossref_primary_10_1039_C8DT04211J crossref_primary_10_1021_acs_organomet_5b00644 crossref_primary_10_1021_acs_inorgchem_9b02813 crossref_primary_10_1039_C9SE00320G crossref_primary_10_1002_cssc_201402381 crossref_primary_10_1002_cctc_201801257 crossref_primary_10_1039_D0CC05870J crossref_primary_10_1016_j_poly_2017_08_028 crossref_primary_10_1007_s10876_014_0790_5 crossref_primary_10_1016_j_ica_2020_119435 crossref_primary_10_1002_ange_202008298 crossref_primary_10_4019_bjscc_71_18 crossref_primary_10_1021_om200459s crossref_primary_10_1016_j_cclet_2021_06_013 crossref_primary_10_1002_cphc_201500530 crossref_primary_10_1039_C3CS60027K crossref_primary_10_1002_chem_202000204 crossref_primary_10_1002_chem_201405052 crossref_primary_10_1002_chem_201002510 crossref_primary_10_1039_c2cs35171d crossref_primary_10_1002_asia_201000087 crossref_primary_10_1039_C2CC37853A crossref_primary_10_1039_D0CS01089H crossref_primary_10_1002_cctc_201000428 crossref_primary_10_1016_j_ica_2015_04_024 |
Cites_doi | 10.1021/ja0348997 10.1002/anie.200503663 10.1016/S0969-2126(99)80005-7 10.1126/science.1150057 10.1021/ja063294i 10.1021/ja038955f 10.1073/pnas.0536955100 10.1021/ja0386795 10.1039/b715990k 10.1038/nature06669 10.1016/j.ccr.2005.01.013 10.1039/B615037C 10.1002/chem.200500875 10.1126/science.282.5395.1853 10.1073/pnas.0603395103 10.1126/science.309.5731.101 10.1039/b005687l 10.1021/jp710498v 10.1016/S0010-8545(00)00268-X 10.1021/ic061211t 10.1126/science.1138748 10.1126/science.240.4851.440 10.1016/j.ccr.2004.11.018 10.1021/ic051231f 10.1039/B606045P 10.1126/science.1071063 10.1002/1521-3773(20010119)40:2<284::AID-ANIE284>3.0.CO;2-N 10.1002/anie.200703413 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Jun 30, 2009 2009 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright National Academy of Sciences Jun 30, 2009 – notice: 2009 by The National Academy of Sciences of the USA |
DBID | FBQ AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7ST 7U6 5PM |
DOI | 10.1073/pnas.0809666106 |
DatabaseName | AGRIS CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts Sustainability Science Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Environment Abstracts Sustainability Science Abstracts |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts Environment Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 10465 |
ExternalDocumentID | 1775624861 10_1073_pnas_0809666106 106_26_10460 US201301650449 |
Genre | Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ H13 KM PQEST X XHC AAYXX ABXSQ ADACV AQVQM CITATION IPSME 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7ST 7U6 5PM |
ID | FETCH-LOGICAL-c544t-ee9befe0a81a2683b45bb786313952b2cbb0b7e86ba37fcddc5cdc14750e45cb3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 20:40:41 EDT 2024 Fri Oct 25 09:05:23 EDT 2024 Mon Nov 04 11:13:04 EST 2024 Fri Aug 23 00:41:11 EDT 2024 Thu May 30 08:50:59 EDT 2019 Wed Nov 11 00:29:53 EST 2020 Wed Dec 27 19:30:07 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c544t-ee9befe0a81a2683b45bb786313952b2cbb0b7e86ba37fcddc5cdc14750e45cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Julius Rebek, Jr., The Scripps Research Institute, La Jolla, CA, and accepted November 26, 2008 Author contributions: A.M.K., P.W.N.M.v.L., and J.N.H.R. designed research; A.M.K. and R.K. performed research; A.M.K., R.K., F.H., M.L., A.L.S., and A.M.B. analyzed data; and A.M.K., F.H., A.M.B., and J.N.H.R. wrote the paper. |
OpenAccessLink | https://europepmc.org/articles/pmc2705529?pdf=render |
PMID | 19164541 |
PQID | 201416686 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_106_26_10460 pnas_primary_106_26_10460_fulltext pubmedcentral_primary_oai_pubmedcentral_nih_gov_2705529 proquest_journals_201416686 fao_agris_US201301650449 proquest_miscellaneous_20809957 crossref_primary_10_1073_pnas_0809666106 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2009-06-30 |
PublicationDateYYYYMMDD | 2009-06-30 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-30 day: 30 |
PublicationDecade | 2000 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationSeriesTitle | Molecular Recognition and Self-Assembly Special Feature |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationYear | 2009 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 Voet D (e_1_3_3_12_2) 1995 Li P (e_1_3_3_26_2) 2005 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 Rocchini E (e_1_3_3_21_2) 2000 e_1_3_3_23_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 |
References_xml | – ident: e_1_3_3_7_2 doi: 10.1021/ja0348997 – ident: e_1_3_3_9_2 doi: 10.1002/anie.200503663 – ident: e_1_3_3_14_2 doi: 10.1016/S0969-2126(99)80005-7 – ident: e_1_3_3_3_2 doi: 10.1126/science.1150057 – ident: e_1_3_3_29_2 doi: 10.1021/ja063294i – ident: e_1_3_3_6_2 doi: 10.1021/ja038955f – ident: e_1_3_3_15_2 doi: 10.1073/pnas.0536955100 – ident: e_1_3_3_27_2 doi: 10.1021/ja0386795 – ident: e_1_3_3_19_2 doi: 10.1039/b715990k – ident: e_1_3_3_2_2 doi: 10.1038/nature06669 – volume-title: Biochemistry year: 1995 ident: e_1_3_3_12_2 contributor: fullname: Voet D – ident: e_1_3_3_22_2 doi: 10.1016/j.ccr.2005.01.013 – ident: e_1_3_3_20_2 doi: 10.1039/B615037C – ident: e_1_3_3_23_2 doi: 10.1002/chem.200500875 – ident: e_1_3_3_13_2 doi: 10.1126/science.282.5395.1853 – year: 2005 ident: e_1_3_3_26_2 article-title: Influence of tertiary phosphanes on the coordination configurations and electrochemical properties of iron hydrogenase model complexes: Crystal structures of [(μ-S2C3H6)Fe2(CO)6-nLn] (L = PMe2Ph, n = 1, 2; PPh3, P(OEt)3, n = 1) publication-title: Eur J Inorg Chem contributor: fullname: Li P – ident: e_1_3_3_10_2 doi: 10.1073/pnas.0603395103 – ident: e_1_3_3_11_2 doi: 10.1126/science.309.5731.101 – start-page: 3591 year: 2000 ident: e_1_3_3_21_2 article-title: Synthesis and properties of iron-group hydrido-cyano complexes trans-[MH(CN)(L)2], M = Fe, Ru or Os, L = diphosphine, and their hydrogen, trifluoroboron and triphenylboron isocyanide derivatives of the type trans-[MH(CNH)(L)2]O3SCF3, trans-[MH(CNBX3)(L)2], X = F or Ph, and trans-[M(H2)(CNBF3)(dppp)2]BF4 [dppp = Ph2P(CH2)3PPh2] publication-title: J Chem Soc Dalton Trans doi: 10.1039/b005687l contributor: fullname: Rocchini E – ident: e_1_3_3_24_2 doi: 10.1021/jp710498v – ident: e_1_3_3_17_2 doi: 10.1016/S0010-8545(00)00268-X – ident: e_1_3_3_25_2 doi: 10.1021/ic061211t – ident: e_1_3_3_4_2 doi: 10.1126/science.1138748 – ident: e_1_3_3_28_2 doi: 10.1126/science.240.4851.440 – ident: e_1_3_3_18_2 doi: 10.1016/j.ccr.2004.11.018 – ident: e_1_3_3_30_2 doi: 10.1021/ic051231f – ident: e_1_3_3_8_2 doi: 10.1039/B606045P – ident: e_1_3_3_1_2 doi: 10.1126/science.1071063 – ident: e_1_3_3_5_2 doi: 10.1002/1521-3773(20010119)40:2<284::AID-ANIE284>3.0.CO;2-N – ident: e_1_3_3_16_2 doi: 10.1002/anie.200703413 |
SSID | ssj0009580 |
Score | 2.4526384 |
Snippet | The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for... |
SourceID | pubmedcentral proquest crossref pnas fao |
SourceType | Open Access Repository Aggregation Database Enrichment Source Publisher |
StartPage | 10460 |
SubjectTerms | Catalysts Chemical compounds Hydrogen bonds Molecules Physical Sciences Studies |
Title | Self-assembled biomimetic [2Fe2S]-hydrogenase-based photocatalyst for molecular hydrogen evolution |
URI | http://www.pnas.org/content/106/26/10460.abstract https://www.proquest.com/docview/201416686 https://search.proquest.com/docview/20809957 https://pubmed.ncbi.nlm.nih.gov/PMC2705529 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbWPfGC2AAtDIaFeBgPbhvHP5LHaWIaoCGkUmkSQpbPsWmlJqnWDmn_Pec06cgDLzz7Eju-s--L7-4zIe-FDCHTVrHSSWBCypIV0gcGmU5LH3Kf2ljvfPNVXc_F51t5e0BkXwvTJu07WI7rVTWul4s2t3JduUmfJzb5dnPJIwUMLyYjMkID7X_R90y7-a7uhOP2K7jo-Xx0NlnXdjNGiIQQH1FDe3sRoiMhRTrwSqNgm8h1itID3DnMmvzLDV09I087_EgvduM8Ige-PiZH3Qrd0POORvrDcwIzvwoMsbGvYOVLGgvtl1WsWaQ_0Dj57CdbPJR3DVoQejIW3VlJ14tm27RHOg-bLUVAS6v-_lzaS1P_u7PXF2R-9fH75TXrblRgTgqxZd4X4IOf2jy1XOUZCAmgc5UhDpQcuAOYgva5Apvp4EpUoCtdKhBWeCEdZC_JYd3U_oTQ3EpdTlNbhFyJADzywAOHyNasgkt1Qs77GTXrHXGGaQPeOjNxZs2jHhJygjNu7C_c1sx8xmMwNUXkKESRkKQVfnyDMlyZGJieJuTdP9tM6FJnEnLaK9B0q3NjeMxuVSrHnt_uW3FZxViJrX1zH0VweIXEz9ADre97i7Tcwxa01paeu7POV__95Cl5sotZxazE1-Rwe3fv3yD02cIZgv5PX85ag_8DdVYFFA |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacoALanmooYVaiEM5eDdx_EiOqKJaoFshbVeqhJBlOza70iZZdVOk_nvG2WRLDlw4exInnhnPl8zMZ4Q-MO59KrUgheWGMM4LknPniUllUjifuUSHfufptZjM2ddbfruHeN8L0xbtW7McVatyVC0XbW3lurTjvk5s_H16QQMFDM3H--gJ-GvM-o_0Hddutu08obABM8p6Rh-ZjteV3owAJAHIB9zQnl8E-Ihxlgzi0r7XdWA7BekB8hzWTf4ViC4P0fMOQeJP2yc9QnuueoGOOh_d4POOSPrjS2RmbuUJoGNXmpUrcGi1X5ahaxH_APOks59k8VDc1WBDEMtICGgFXi_qpm5_6jxsGgyQFpf9Cbq4l8bud2exr9D88vPNxYR0ZyoQyxlriHO5cd7FOks0FVlqGDdGZiIFJMipodaY2EiXCaNT6W0BKrSFTRgAC8e4NelrdFDVlTtGONNcFnGic58J5g0NTPCGmsDXLLxNZITO-xVV6y11hmpT3jJVYWXVox4idAwrrvQv2NjUfEZDOjUB7MhYHqGoFX68g1BUqJCajiP0_p9jynfFMxE66RWoOv_cKBrqW4XIYOaz3Sg4VsiW6MrV90EEHi_n8BpyoPXdbIGYezgC9toSdHf2-ea_rzxDTyc30yt19eX62wl6ts1ghRrFU3TQ3N27twCEGvOuNfs_L4EHcQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokRAXRHmooUAjxKEcvNk4fiRHVFiVR6tKy0qVELL8ZFfaPNRNkfrvGWeTbXPgwtmTOPHM2F8yM98g9J4y7zOhOLaGaUwZs7hgzmOdidQ6n7tUhXrn8wt-tqBfr9jVvVZfXdK-0atJtS4n1WrZ5VY2pUmGPLHk8vyUBAoYUiSN9ckeegg-O-XDh_qObzffVp8Q2IQpoQOrj8iSplKbCQAlAPqAHboeRoCRKKPp6Gza86oOjKcgPUKf49zJe4fR7Cl60qPI-OP2aQ_QA1c9Qwe9n27ik55M-sNzpOdu7TEgZFfqtbNxKLdflaFyMf4JJkrmv_Dy1l7XYEdwnuFwqNm4WdZt3f3Yud20McDauBy66MaDdOz-9Fb7Ai1mn3-cnuG-rwI2jNIWO1do591U5akiPM80ZVqLnGeABhnRxGg91cLlXKtMeGNBjcaalAK4cJQZnb1E-1VduUMU54oJO01V4XNOvSaBDV4THTibuTepiNDJsKKy2dJnyC7sLTIZVlbe6SFCh7DiUv2GzU0u5iSEVFPAj5QWEYo64bs7cEm4DOHpaYTe_XNM-j6BJkJHgwJl76MbSUKOK-c5zHy8GwXnChETVbn6JojA4xUMXkOMtL6bLZBzj0fAZjuS7t5GX_33lcfo0eWnmfz-5eLbEXq8DWKFNMXXaL-9vnFvAAu1-m1n9X8B-CkIhA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-assembled+biomimetic+%5B2Fe2S%5D-hydrogenase-based+photocatalyst+for+molecular+hydrogen+evolution&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kluwer%2C+A.+M.&rft.au=Kapre%2C+R.&rft.au=Hartl%2C+F.&rft.au=Lutz%2C+M.&rft.series=Molecular+Recognition+and+Self-Assembly+Special+Feature&rft.date=2009-06-30&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=106&rft.issue=26&rft.spage=10460&rft.epage=10465&rft_id=info:doi/10.1073%2Fpnas.0809666106&rft_id=info%3Apmid%2F19164541&rft.externalDBID=PMC2705529 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F26.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F26.cover.gif |